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The Max -Min Principle of Product Different iat ion

1. Int roduct ion

The theory of product different iat ion has as its goal the determ inat ion of market st ructure

and conduct of firms that can determ ine the specificat ions of their products besides choosing

output and price . Tradit ional models of product different iat ion and market ing have focused on

products that are defined by one characterist ic only .’ One-characterist ic models are sufficient

for the understanding of the interact ion between product specificat ion and price. The main

quest ion in this set t ing is the degree of product different iat ion at equilibrium does the

acclaimed " Principle of Minimum Different iat ion " ( stat ing that product specificat ions will be very

sim ilar at equilibrium ) hold ? Intensive research on this quest ion has conclusively determ ined that

the Principle of Minimum Different iat ion does not hold for any well -behaved model. Thus as

long as we confine product different iat ion to one dimension , there will be significant differences

in the equilibrium product specificat ions. However , most goods are defined by a long vector of

product at t ributes, and a priori, the fai lure of the Principle of Minimum Different iat ion is not

clear in mult i - at t ribute compet it ion . Furthermore , i f i t does fai l , quest ions characterizing the

fai lure will naturally arise.

1
See Hotelling ( 1929 ) , Vickrey ( 1964 ), D�Aspremont, Gabszewicz and Thisse ( 1979) ,

Salop ( 1979 ) , Econom ides ( 1984 ) , Anderson , de Palma, and Thisse ( 1992 ) , among others in

econom ics and Hauser and Shugan ( 1983 ) , Moorthy ( 1988 ) and Kumar and Sudarshan ( 1988 )
in market ing

2
See Neven ( 1985 ) for a discussion of the necessary condit ions for m inimal

different iat ion . Also note that the fai lure of m inimal different iat ion does not necessari ly

imply maximal different iat ion . D’Aspremont et al . ( 1979 ) establish a maximal different iat ion

equilibrium in a one- dimensional variant of Hotelling ( 1929 ) by assum ing a quadrat ic

disut i li ty of distance (t ransportat ion cost ) funct ion . Econom ides ( 1986b ) establishes
intermediate (neither m inimum nor maximal ) different iat ion equilibria for a disut i li ty of

distance ( t ransportat ion cost ) funct ion of the form da, 5/ 3 < a < 1.26 . Econom ides ( 1984)

establishes intermediate different iat ion equilibria by allowing for a finite maximal ut i li ty

( reservat ion price ) for a different iated good in the original linear disut i li ty of distance funct ion
of Hotelling ( 1929 ) .
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The Principle of Minimum Different iat ion fai ls in one- dimensional models because

product sim ilari ty increases compet it ion , and reduces prices and profi ts. When we add a seconda

dimension , two possibi li t ies emerge : products can be significant ly different iated in both

dimensions ( maximum - maximum different iat ion or max -max ) or products may have quite

different degrees of product different iat ion in different dimensions ( for example m inimum

different iat ion in one dimension and maximum different iat ion in another or max -m in ). The logic

of the results of the one-dimensional models is not sufficient to show which of the two

configurat ions will arise in a two- dimensional model.

The present paper determ ines the equilibrium configurat ion in a standard two - dimensionala

model as max -m in . That is , we establish that firms will t ry to maximally different iate in one

dimension and m inimally different iate in another. We call this the Principle of Maximum

Minimum Different iat ion . We further show that when products can be different iated in three

dimensions , firms different iate maximally in one dimension and m inimally in the remaining two .

We call this the Principle of Max -Min -Min Different iat ion .

In our setup , the disut i li ty of distance funct ion has different weights in each dimension .

These weights measure the importance that consumers place on each at t ribute of the product.

We find that the nature and number of equilibria depend crucially on these weights. For

example, when consumers care a lot about the at t ribute of the first dimension ( and therefore place

a high weight on it ) , the " max-m in " equilibrium exists, where firms maximally different iate in

the first dimension only . Sim ilarly, when the consumers place a high weight on the second

at t ribute , the " m in -max " equilibrium exists, where firms maximally different iate in the second

dimension only. When the weights are roughly comparable, both equilibria exist . The same

pat tern hold in the three -characterist ics model . The "max -m in -m in " equilibrium , where firms
-

maximally different iate in the first dimension only, occurs when the weight of the first at t ribute

is large. When , in addit ion , the weight of the second at t ribute is significant as well, the "m in
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max - m in " equilibrium occurs as well . When all weights are comparable, the " m in -m in-max "

equilibrium occurs in addit ion to the previous two .

The quali tat ive relat ionship between weights and type and number of equilibria is very

important because it can used to show a seam less t ransit ion from Hotelling’s one- characterist ic

paradigm to models of two and three characterist ics. Start with the original one-dimensional

model of Hotelling . It can be embedded in a two dimensional model , where the weight placed

by the consumers in the second at t ribute is negligible . We show , that i f this second weight is

small , the equilibrium of two - dimensional model will have maximal different iat ion in the first

dimension , and no different iat ion in the second dimension ( " max- m in " ) . Adding a third at t ribute

that the consumers do not consider important preserves the equilibrium pat tern , which now

becomes "max -m in -m in ". Only when the second weight is significant, a second equilibrium

( " m in - max " ) appears.

In three dimensions , the equilibria show minimal different iat ion in two dimensions and

maximal in one. Thus, i f the maximal different iat ion in one dimension remains unobserved , the

equilibrium may seem to be one of m inimal different iat ion . However , i f the only dimension

observed is the one about which consumers care the most , then the previous discussion shows

that maximal different iat ion will be observed .

All our results are established in a framework of a two - stage game , in the first stage of

which firms simultaneously choose locat ions, while in the second stage they simultaneously

choose prices. Thus, the equilibria we describe are subgame perfect, and firms ant icipate the

effects of changes in their locat ions to the equilibrium prices. Intuit ively, this game structure

captures the fact that prices are more flexible ( easier to change ) in the short run , while product

specificat ions are not ; pricing decisions often are made when product specificat ions cannot be

changed .

3
See Salop ( 1979 ) , Econom ides ( 1989 ) , and Rao and Steckel ( forthcom ing ).
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In the exist ing Literature, few papers have allowed determ inat ion of product specificat ions

in two characterist ics, notably Econom ides ( 1989a, 1993 ) , Neven and Thisse ( 1990 ) and

Vandenbosch and Weinberg (1994). Neven and Thisse ( 1990 ) invest igate product quali ty and

variety decisions of two firms in a two dimensional product space. They combine the

"horizontal" different iat ion ( ideal point ) and " vert ical " different iat ion (vector at t ribute ) paradigms,

and invest igate subgame-perfect equilibria for product and price decisions in a duopoly.

Vandenbosch and Weinberg ( 1994) analyze a model of two -dimensional vert ical ( quali ty )

5

different iat ion . We analyze a model of two - dimensional variety different iat ion .

The remainder of this paper is organized as follows. In Sect ion 2 , we present the market

environment. In Sect ion 3 , we analyze the two dimensional market and derive the price and9

posit ion equilibria. We extend the model to three dimensions in Sect ion 4. Finally in Sect ion

5 , we conclude with a discussion of our results and provide direct ions for future research .

2 . The Model

We describe the model in general terms that are relevant for markets of either two or

three at t ributes. We assume that there are two firms, labeled 1 and 2 , and each offers a single

n -at t ribute product . The posit ion of a product i can be represented in n -dimensional at t ribute

space by an n - tuple, ; � ( , 1) ". The elements of ; give the posit ion of the product on each

of the n at t ributes. Each consumer is represented by an ideal point which gives the coordinates

of the product which the consumer would prefer to all others i f all were sold at the same price.

4
This is in cont rast with analysis on the interact ion of price and locat ion compet it ion in

mult idimensional set t ings without explici t locat ional determ inat ion as in Econom ides ( 1986a) ,

or two - dimensional models that can be reduced to one- dimensional compet it ion as Lane

( 1980 ) , Hauser and Shugan ( 1983 ) , Hauser ( 1988 ) , and Ansari, Econom ides, and Ghosh

( 1994) .

5
After a working paper version of this art icle had been circulat ing, we discovered that

Tabuchi ( 1994) had independent ly derived sim ilar results for a two -dimensional variety model

with equal weights on at t ributes.
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A consumer j can therefore be represented by the vector of coordinates of his ideal point, A ;

E [ , 1]"

Each consumer’s ut i li ty is a decreasing funct ion of the square of the Euclidean distance

between the product specificat ions and the consumer’s ideal point . Formally , a consumer of

type A; derives the following ut i li ty from buying one unit of product i at price pi :

U (A ;; ;; p .) = Y - w.110 ; - A; 12 - Pi (1)

Y is a posit ive constant , the same for all consumers and assumed to be high enough so that all

consumers buy a different iated product . w is a vector of weights that the consumers at tach to

at t ributes. We assume that the w vector is same across all individuals.

Consumers ’ ideal points are dist ributed uniform ly over the at t ribute space ; consumers also

possess perfect informat ion about brand posit ions and prices in the market . Firms maxim ize

profi ts and have zero marginal costs of product ion .? Firms compete by following a two - stage

process . In the first stage they simultaneously choose product posit ions. Once these are

determ ined , they simultaneously choose prices in the second stage. We seek subgame-perfect

equilibria of the game implied by this framework . Thus, firms ant icipate the impact of locat ion

decisions on equilibrium prices. Given this basic model st ructure , we analyze next the two

8
dimensional market in detai l.

6
Models of product different iat ion involving a quadrat ic ut i li ty loss funct ion include

D’Aspremont et al . ( 1979) , Neven ( 1985 ) , and Econom ides ( 1989b) . Also ideal point models

in market ing assume that preferences are negat ively related to the square of the Euclidean

distance between the product and the consumer’s ideal point ( see, e.g. Green and Srinivasan

( 1978 ) ) .

7
Posit ive constant marginal costs lead to formally equivalent results.

8

The geometric st ructure of our two dimensional model parallels that in Neven and

Thisse ( 1990 ) . However , important differences do arise in the st ructure of the posit ioning

stage within the two stage game.
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3 . The Two Dimensional Model

3.1 Demand Formulat ion

In two dimensions, the joint space of consumers and products is a unit square. A product

i is represented by the vector V; = ( xi , y :) , whereas an arbit rary consumer can be ident if ied by

the address ( a , b ) . Without loss of generali ty, we assume that yz 2 y, and x 2 x ,.’ A>

consumer’s ut i li ty for product i takes the form

U ( a, b ; X ;, Yi , P; ) = I - w , (a - x ;) 2 - w2 ( b - y:) 2 - Pi for i = 1, 2 ./ (2 )

The demand for product i is generated by consumers who obtain greater ut i li ty from it than

from the other product. To characterize the market area of firm 1, consist ing of consumers who

buy product 1, we need to derive the locus of consumers who are indifferent between brands i

and 2. Their ideal points sat isfy U , ( a , b ; X� , Y� , P.) = U2( a, b ; X2 , Y2 , P2) , which is equivalent
=>

to

b (a) = S[ ( P2 - P.) + S - 2aw X ]/[ 2w2Y]

where S = wi (x22 - X , ) + wz(yz? - y� ), X = X2 - X� , and Y = y2 - Y� .=

This locus is a st raight line and part i t ions the total market ( the unit square) into two

demand areas for the firms ( see Figure 1) . Given our assumpt ions regarding the product

posit ions, the area below the separat ing line represents firm l’s demand and the area above it

represents firm 2’s demand . The slope of the separat ing line ( b - line) is independent of the prices,

but the intercept is not. The locat ion of the line within the unit square depends upon the price

difference, P. - P2 , between the two firms. When firm 1 increases its price ( or firm 2 decreases

its price ), the separat ing line shifts down reducing the market area for firm 1 .

The demand for firm 1, D1, is obtained by integrat ing the b (a) line over the appropriate

range of a . Since consumers always buy one product or the other, D2 = 1 - Di. Assum ing zero>

9
The other situat ion , in which xi > X2 , can be dealt with in a symmetric way.
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1

Firm2

bla )

Firm 1

1

Figure 1: Market Areas for the Two Firms

costs, profi ts are 1l, = P,D ,,II , = P2D2 . Since the domain of integrat ion depends upon the slope

and locat ion of the indifference line within the unit square, the demand expressions change

whenever the indifference line shifts its locat ions and passes through a corner of the market. See

Figure 2. To capture the dependence of the demand expressions on the relat ionship between

prices and product posit ions , we first dist inguish between two scenarios that depend only upon

the posit ions of product 1 and product 2 and the relat ive importance consumers give to the

at t ributes, and do not depend on prices. In scenario A, shown in the left column in Figure 2 ,

product posit ions for the two firms sat isfy condit ion A: lab / da / < 1 w ,X 5 w2Y, i.e., the

weighted difference in posit ions along at t ribute 2 is greater than the weighted difference in

posit ions along at t ribute 1. In scenario B, shown in the right column in Figure 2 , product

posit ions sat isfy condit ion B : w2Y < w,X, which is just the negat ion of condit ion A. Once

product posit ions are fixed , the relevant scenario can be ident if ied, and the nature of dependence>

of the demand and profi ts on the price difference of the two firms can be studied within each
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scenario . Within each scenario , we ident ify three cases that are dist inguished by the difference

in the prices P2 - P� :

3.1.1 Scenario A

We first analyze scenario A and focus on the dependence of the demand expressions and

profi t funct ions on the relat ive price difference between the firms. We fix the posit ions of both

brands and the price of firm 2 , P2 . When P, is high , the b line that separates the market areas

is shown in Case 1A, Figure 2. As firm 1 reduces its price, the relat ive price difference

decreases and the b line shifts up and crosses the vert ical sides of the square , as shown in Case

2A in Figure 2. Finally, when firm l’s price is even lower, the bline cuts the top and right

of the unit square , a situat ion shown in Case 3A, Figure 2. The demand expressions for each of

these cases are different because the domain of integrat ion differs across the cases ; the demand

expressions are summarized below . We label the demand expressions for firm i in case k as

DO

Case 1A: When s ( P2 - P. + S) S 2w ,X, the demand of firm 1 is DIA = (P2 - P. +

S )? / ( 8w ,w2XY ).

Case 2A: When 2w ,X = (P2 - P. + S ) s2w Y, the demand of firm 1 is D2A = (P2 - P.

+ S - w , X ) / (2w2Y).(

=

� �
Case 3A : When 2w_ Y (P2 - P. + S) s 2 (w_ X + w2Y) , the demand of firm 1 is DA

(P2 - P. + S - w ,X -w2Y )? / (8w ,w2XY).

3.3 Scenario B

In Scenario B, the product posit ions sat isfy wiY < w2X ; we again have three cases for

the demand. When P, is high , the bline has the orientat ion shown in case 1B of Figure 2 .

Not ice that even though the orientat ion of the indifference line is different from that in case 1A,
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Case 1A Case 1B

1 1

1 1

Case 2A Case 2B

1 1

1 1

Case 3A Case 3B

1

1 1 �

Figure 2 : Market Areas for the Various Cases Under Scenarios A and B
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the demand expression in case 1B is the same as in case 1A because the domain of integrat ion

remains the same.10 When P. decreases, the market areas are as in case 2B of Figure 2. In

Pi

case 2B , the demand expression differs from that of case 2A because the orientat ion of the

separat ing line changes the domain of integrat ion. Finally, when P, is low , in case 3B of Figure

2 , the demand expressions are the same as in case 3A. These demand expressions and price

domains are summarized below .

Case 1B : When 5 (P2 - P. + S) < 2w Y, the demand of firm 1 is DB = D/ A.

Case 2B: When 2w2Y 5 P2 - P. + S 5 2w,X, the demand of firm 1 is D,2B = (P2 - P.

+ S - w2Y ) /( 2w , X ).
3B

Case 3B : When 2w ,X = (P2 - Pi + S) S 2 (w.X + w2Y) , the demand of firm 1 is D

= DBA

P.
D

1

1A
D

2A
D

� �

1

Figure 3 : Demand for Firm 1

10
However, the ranges of price P. for which these demand expressions hold are

different across the two scenarios.
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Figure 3 , shows a typical demand curve for firm 1 under Scenario A. The demand

equat ions show that the demand is cont inuous across the different price domains . The different

segments of D, can also be derived in a manner analogous to that for Di.

3.4 Price Equilibrium

In this sect ion, we show that a unique non -cooperat ive price equilibrium exists for any

pair of product posit ions ( chosen by the two firms in the first stage) , and we calculate the

equilibrium prices.

The main step in proving existence is in establishing that each firms’ profi t funct ion is

quasi-concave in its own price. The concavity propert ies of the profi t funct ion depend upon the

choice of the ut i li ty funct ion and the dist ribut ion of consumer preferences. Caplin and Nalebuff

( 1991) have established twin rest rict ions on ut i li ty funct ions and preference dist ribut ions that

guarantee existence of price equilibria for a number of firms with n - dimensional product

specificat ions. Our ut i li ty funct ion ( 2 ) is a special case of the general ut i li ty funct ion of Caplin

and Nalebuff ( Assumpt ion Al , p . 29 ) . In addit ion , the uniform dist ribut ion of consumer

preferences is concave and confirms with the p -concavity condit ions employed in Caplin and

Nalebuff . Hence our model sat isfies assumpt ions Al and A2 , of Caplin and Nalebuff . Then

from their Theorems 1 and 2 , a price equilibrium exists in our model , for any pair of posit ions.

Since the profi t funct ion is twice different iable and the dist ribut ion of preferences is

concave (and therefore log-concave ) , we apply the uniqueness result ( Proposit ion 6 , p . 42 ) of

Caplin and Nalebuff to ensure that the price equilibrium is unique for each pair of posit ions.

What remains is to calculate the equilibrium prices for each pair of locat ions. This has to be

done for each case in each scenario . The equilibrium price funct ions are obtained by solving the

first order condit ions of the profi t funct ions an ,/ ap, = 211 /2p2 = 0." We start with case 1A.,� � ,

11
Second order condit ions also hold .
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= 1
Case 1A : The demand for firm 1 is given by DA and for firm 2 is given by DLA

- DA. The first order condit ions yield two solut ions. We elim inate the one that gives negat ive

prices . The remaining solut ion gives equilibrium prices,

IA
pip.A* = [ S + ( S? + 32w ,w2XY) 2) / 8 , p2A * = [ 3 ( S2 + 32w ,w.XY) 1/ 2 -55 ] / 8 ,/ ]

=

The above equilibrium prices apply to product posit ions which sat isfy SP2A* - PA* + SS
*

2w ,X . Posit ions that result in case 1A also sat isfy w X 5 w2Y. We define the pairs of locat ions

1Athat sat isfy these condit ions (and therefore result in case 1A) as Ria : Ria is a subset of the

four - dimensional hypercube [ , 1 ] � . The condit ion p2A* - p ? A* + S20 is always t rue, whereas
* IA

IA
P2A - P14 * + S s2w ,X is sat isfied if

(G1) 4w X 2 2w_ Y + S.

Case 2A : Equilibrium prices are:

*2A
Pip24 * = ( 2w,Y + S - w , X )/ 3, p2A* = (4w , Y - S + w , X ) / 3,,

=

*
Subst itut ion of equilibrium prices in the defining condit ion of case 2A, results in 2w,X = P2A*

- p24 + S S 2w,Y. The LHS of this inequali ty is sat isfied when condit ion (G1) fai ls , i .e., when

(4w,X S 2w2Y + S) , whereas the RHS of the inequali ty is sat isfied when

2A*

(G2 ) 4w2Y 2 2w,X + S.

These two condit ions, in conjunct ion with w,X 5 w2Y, define the region Rza, of locat ion pairs

2A
for which p ?A* and p� A" define an equilibrium .*

Case 3A : Equilibrium prices are :

� � � �
p }A* = [5S - 10 ( w , X + w2Y ) + 3N ]/ 8, P3A* = [ 2 ( w , X + w2Y) - S + N ] / 8

where N = [ ( S - 2 ( w ,X + w2Y ))2 + 32w ,w2XY]\ ?
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These equilibrium expressions apply for product posit ions that sat isfy 2w2Y p� A* - P3A * + S
� � � � *

52 ( w.X + w2Y) . While the RHS is always t rue, the other condit ion LHS is t rue if condit ion

( G2 ) fai ls. This condit ion , together with w ,X 5 w2Y, defines the region R3A:

Case 1B: In this case the demand and profi t expressions are the same as in case 1A.

Therefore the equilibrium price expressions are ident ical to those of case 1A. The region of

locat ions for which these prices form an equilibrium is now given by Rib and corresponds to

the region represented by (G2 ) in conjuct ion with w , X > wzY.

Case 2B : The equilibrium prices are :

* 2B
P1p2B * = ( 2w,X + S - w2Y ) / 3, p� B* = (4w ,X - S + w2Y ) / 3

These form the equilibrium price pair when the product posit ions sat isfy 2w2Y 5 p2B* - p�
2B *-

Pi

S S 2w ,X. The LHS is sat isfied if (G2 ) fai ls whereas the RHS is sat isfied if (G1) holds.12

Case 3B : The demand and equilibrium price and profi t expressions are the same as in

case 3A. The region of the hypercube for which these expressions apply is named R3B and is

defined by pairs of locat ions where (G1) fai ls and w,X > w2Y holds .

It is clear from the above discussion that the six demand regions Ra, R2A, R3A, RB, R2B

R3B, part i t ion the four dimensional hypercube [ , 1] � . When we fix the product locat ion of one

firm ( say firm 2 ) , these regions can be represented in two -dimensional product space. Figure 4

shows the regions of the locat ions of ( x , y ,) when firm 2 is located at ( x2 , yz) = ( 1/ 2, 1) . The

regions now show the locus of firm 1 locat ions that sat isfy the inequali t ies pertaining to the six

demand cases . Figure 4 shows that as firm 1 changes its locat ion , different demand regions are

encountered . Moreover, the nature of these regions , and even the existence of some of them ,

depends upon the rat io of weights w = w2 / w ;. For instance, in Figure 4, when w = 1, Regions

1A and 1B are never encountered . In cont rast when w = 0.6 , all six regions are encountered .

12

Note the symmetry between the price expressions in the two scenarios.
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W=1

1

0.8

0.6

IX

0.4

0.2

0.1 0.2 0.3 0.4 0.5

x1

w =0.7

1

0.8

0.6
yl

0.4

0.2

0.1 0.2 0.3 0.4 0.5

x1

Legend : R2B is = ; R3B is - ; R3a is + ;

R2A is . ; Rja is * and Rib is blank .

Figure 4 : Regions of Locat ion of Firm 1 when Firm 2 is Located at ( 1/ 2 , 1) .
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3.5 Product Equilibria

We now establish the subgame-perfect equilibrium posit ions of firms. With subgame

perfect ion , firms ant icipate the equilibrium prices in the subgames . We can write profi ts in the

locat ions stage as

=
II ; (* 1, Y� , X2 , y2) = ; (pi ( x1, Y� , X2 , y2 ), P� (x1, Y� , X2 , y2 ), X� , Y� , X2 , Yz), i = 1, 2 .1,12

Thus , a change in locat ion has two effects on profi ts: a direct effect, and an indirect effect

through prices.13

Depending on the rat io of the weights w = w2 / w ,, there are either one or two locat ion

equilibria ( and their m irror images ). At all equilibria, there is m inimum different iat ion in one

dimension and maximum different iat ion in the other. The first candidate equilibrium is ( xi , yi )

= ( 1/ 2 , ) , ( x , y2 ) = ( 1/ 2 , 1 ) , i .e., f i rms are located in the m iddle of the horizontal segments of

the box , implying m inimum different iat ion in x and maximum different iat ion in y . We call this

� �
the " m in - max " equilibrium . The second candidate equilibrium is (x; " , yi " ) = ( , 1/ 2 ), (xz� , y� ")

=>

=
( 1, 1/ 2 ), i .e., firms are located at the m iddle points of the vert ical segments of the box ,

implying m inimum different iat ion in y and maximum different iat ion in x . We call this the "max

min " equilibrium . We show that, for w < 0.406 , only the " max - m in " ( second ) equilibrium

exists ; for 0.406 SW S 2.463 = 1/ 0.406 both equilibria exist ; and , for 2.463 < w , only the

"m in -max " ( first ) equilibrium exists.

The method of our proof is as follows. Suppose that firm 2 is located at ( x , y2 ) = ( 1/ 2 ,

1) . We ident ify the direct ion in which profi ts of firm 1 increase as its locat ion changes by

calculat ing the ( vector) gradient of profi ts, Dr. We do this by evaluat ing analyt ic expressions

13
Essent ially the indirect effect is through the price of the opponent: dIT/ / dx; = � n /ax� � ./ � �

+ ( ani,/ ap :) (dp ;/dx ;) + (211/ 2p;)(dp ;/ dx ;) = 311/ax: + (a11/ � p ;)(dp;/dx;), since � n /op; = at� � � � , /

the price subgame.

= =
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Figure 5 : Gradient of Profi ts for Firm 1
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14
for DN.4 We ident ify locat ions for firm 1 where the profi t gradient is zero ( cri t ical points

of the gradient ) , and determ ine if each point is a local maximum , minimum , or saddle point ( see

9Figure 5 ) . We find that , for w 2 1 , there is only one local maximum , at ( 1/ 2 , ) ; therefore it

is also a global maximum ( in x , and y� ) of the profi t funct ion 11. It follows that , for w ?

1, (1/ 2, ) is the best response to ( 1/ 2 , 1) . Therefore, for this range of w, " m in -max " is an

= >

equilibrium .

Given that firm 2 is located at ( x�, ya) = ( 1/ 2, 1) , for w < 1, there are two local maximay2

of firm l’s profi ts, at ( 1/ 2 , ) and ( , 1/ 2 ). Let the " m iddle locat ion " profi ts of firm 1 be [ (M )

= [ / / ( 1/ 2, , 1/ 2 , 1) , and the " left " profi ts be 11,( L ) = 11,( , 1/ 2 , 1/ 2 , 1) . We show the

comparison of 1/ ( M ) and ( L ) in Figure 5. For 1 > w > 0.406, 81,(M ) > [1/( L ); 15

therefore (xi , yi ) = ( 1/ 2, ) is the ( global) best reply of firm 1 to ( x , y) = ( 1/ 2 , 1) . For they2 1

same w range, by symmetry with respect to the horizontal axis through ( 1/ 2 , 1/ 2 ), ( x , y)

( 1/ 2, 1) is the global best reply to (xi , yi ) = ( 1/ 2 , ) ; therefore ( xi , yi ) =, ( 1/ 2, ) ; therefore ( Xi , yi ) = ( 1/ 2, ) , ( x , y2 ) =

( 1/ 2 , 1) , i .e., " m in-max " , is a subgame-perfect equilibrium .

For w < 0.406 , 7 ( M ) < (L) ; therefore ( , 1/ 2 ) is the best reply to ( 1/ 2 , 1) .

-

=

7

However , ( 1/ 2 , 1) is not the best reply ( , 1/ 2 ). This is established as follows. Let firm 1 be

at ( , 1/ 2 ). The problem for the choice of locat ion seen from the point of view of firm 2 is

symmetric to the problem of firm 1 ( that has been discussed so far) with axis of symmetry the

negat ive diagonal of the square. Further, from the point of view of firm 2 , the relat ive weights

are w’ = w /w� = 1/ w . Thus, in this case , w < 0.406 W’ > 2.463 > 1. It follows from the,w2 w

previous arguments that ( 1, 1/ 2 ) is a global best reply to ( , 1/ 2 ). Since ( 1/ 2 , 1) is not the

best reply to ( , 1/ 2 ), the first candidate equilibrium (m in -max " ) is not an equilibrium . Using

14
These expressions differ across the various R regions of locat ion pairs. The

expressions as well as the Mathemat ica evaluat ion and plot t ing rout ines are available from the

authors.

15
For w < 1, II,( M ) = ww ,/ 2 , and II,( L ) = (5 + w )?w ,/ 144, so that 11,( M ) = [ 1/ ( L )� ( L )

w = 31 - 6/ 26 - 0.406 .*
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= 1/ wthe same arguments as earlier, and appealing to symmetry , we have that , for w’ = w ;/w2

> 0.406 , the second candidate equilibrium ( "max -m in ") is an equilibrium .

Put t ing the condit ions together , i t follows that for w < 0.406 only the " max -m in "

+

equilibrium [ ( xi * , yi ) = ( , 1/ 2 ), ( x ** , yi " ) = ( 1, 1/ 2 )] exists ; for w > 1/ 0.406 = 2.463 , only the*

" min -max " equilibrium [ ( xi , y ) = ( 1/ 2, ) , ( x , y )( 1/ 2 , ) , ( x , y ) = ( 1/ 2 , 1) ] exists ; and for 0.406 < W <

2.463 , both the " max -m in " and the "m in - max " equilibria exist . Remembering the definit ion

=

of w , w = w2w ,/ w2 , note that the " m in -max " equilibrium exists when wz is relat ively large, and

sim ilarly, the " max- m in " equilibrium exists when w, is relat ively large. When w, and wz

are roughly of sim ilar magnitude, both equilibria exist. When one weight is much larger than

the other, there is only one equilibrium where maximal different iat ion occurs in the dimension

that corresponds to the high weight.

=

At both equilibria, the firms share the market equally . At the first equilibrium , prices for

both brands are P. = P2 = w, and profi ts are , = I2 = w / 2 ; at the second equilibrium , prices

are P. = P2 = w , while profi ts are II, = II, = w ,/ 2.Pi =

Interest ingly, posit ions implying maximal different iat ion on both at t ributes ( "max -max ")

= &1

are not equilibrium posit ions. Even though both firms have profi ts equal to the equilibrium

profi ts when they are maximally different iated on both at t ributes, such a pair of posit ions is not

an equilibrium . Given that its opponent has located at the corner of the square , a firm has a

unilateral incent ive to deviate from such a posit ion and move inward.16

At this stage it is natural to ask whether this pat tern of equilibria generalizes to higher

dimensions. In higher dimensions, will compet itors different iate on more than one at t ribute or

cont inue to different iate only on one at t ribute ? Will we cont inue to get just two equilibria or will

16 In a way, this is sim ilar to locat ional incent ives in the one - dimensional linear

t ransportat ion cost model of Hotelling ( 1929) . In that model , profi ts were equal for any

symmetric locat ions, but each firm had a unilateral incent ive to move toward the other .
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the number of equilibria depend on the dimensionali ty of the product space ? To answer these

quest ions , we analyze a three -dimensional market in the next sect ion .

4 . Three Dimensional Model

4.1 Demand Formulat ion

In three dimensions, the space of at t ributes is a unit cube. A product posit ion is denoted

by a t riple ; = ( X ;, Yj , z; ) and an ideal point is denoted by A; = (a, b , c ) . We cont inue to

assume that x2 < x ,, y2 = y1and 22 z,, and that the at t ribute weights W , W2 , W3 , are constant
> 1

across consumers . Thus the ut i li ty of consumer A, when he buys one unit of product ; is

U; ( a, b ,c ; X ;,Y;, Z ; ) = 1 - w , (a - x ;) 2 - w2 ( b - y:) 2 - wz ( c - z; ) ? - Pi ; i = 1 , 2 .

The market areas are given by three - dimensional regions of the cube separated by a plane,

rather than two -dimensional regions of a square separated by a line as in the two -dimensional

case we discussed earlier. The locus of consumers on this plane, who are indifferent between

buying from either firm , is given by

c ( a , b ) = ( P2 - Pi + S - 2aw , X - 2bw,Y] / ( 2w2Z)
=

2
where S = w ;(xz? - x3) + wz(yz? - y, 3 ) + w3 (22 - 23), X = X2 - X� , Y = y2 - Y , Z = 22 - 2 , and

( a, b ) � [ , 1] x [ , 1] are the coordinates of the consumer in the first two dimensions. The

region below (above) the plane is composed of customers of product 1 ( 2 ) . As before, when firm

1 decreases its price P. ( or firm 2 increases P2 ), the plane shifts upwards, thereby increasing

firm l’s demand Dz . As in the two dimensional model , the expression for demand depends upon

the posit ion and orientat ion of the plane.
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4.2 Price Equilibria

The remainder of our analysis parallels the two- dimensional model. The only real

difference is the level of complexity . Because of this complexity, we only out line the analysis

here . Complete detai ls are available from the authors upon request .

Whereas there were only two scenarios ( A and B ) in the two - dimensional model, there

are twelve dist inct scenarios in three dimensions . Different posit ions of the two brands define

different orientat ions of the plane and intersect ions of the cube , thus defining the various

scenarios. The twelve scenarios are defined in detai l in Appendix 1. For each scenario , there

are seven cases ( instead of three) and corresponding demand expressions . Typical cases are

shown in Figure 6. As firm 1 decreases its price P1, the plane that separates the market areas

(more precisely the market volumes ) moves up . A new case arises whenever the plane cuts a

corner of the cube. In each case , price equilibria are computed for each potent ial pair of product

posit ions. In some of the cases , this is impossible to do analyt ically. Hence, we resort to

numerical methods. In part icular, we use iterat ive root -finding algorithms to find the roots of the

17
systems of pairs of cubic equat ions that emerge from the first order condit ions.

4.3 Product Equilibria

Using a procedure sim ilar to that used in analyzing the two -dimensional model ( out lined

in detai l in Appendix 2 ) , we ident if ied three posit ion equilibria. In each equilibrium

configurat ion , the two brands are different iated on only one at t ribute and occupy cent ral posit ions

on the other two at t ributes. Specifically,

When wz / w , 2 0.406 and w2/ w , 2 0.406 , the equilibrium posit ions are = ( 1/ 2 , 1/ 2 ,1 .

) , = ( 1/ 2, 1/ 2 , 1) , i .e., " m in - m in-max " .

17
The ent ire procedure was programmed in Mathemat ica .
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2 . When w2 / w , 2 0.406 and wz/ w , 2 0.406 , , the equilibrium posit ions are = ( 1/ 2 , ,,

1/ 2 ) , = ( 1/ 2 , 1, 1/ 2 ) , i .e., " m in - max- m in " .>

3 .
When w ,/ w2 2 0.406 and wi / wz 20.406 , , the equilibrium posit ions are = ( , 1/ 2,

1/ 2 ), = ( 1 , 1/ 2 , 1/ 2 ) , i .e., " max -m in -m in " .

The regions of existence of these equilibria can easily i llust rated on the three- dimensional

simplex in Figure 7, where w , + W2 + wz = 1, W. , W2, wz 2 0.18 On segment AC define the1, W1 W3

points D and D’ such that (AD )/ (DC) = (CD +) / ( AD ’) = 0.406 , with sim ilar definit ions of E, E’,

F, and F’ on segments AB and BC. The region of the weights w = (wi , W2, W3 ) � (CDHF’) thatW1

leads to a " m in -m in-max " equilibrium is shaded . Sim ilarly, w � ( AE�KD ’) leads to a "max -m in7

m in " equilibrium , and we (BFME) leads to a " m in -max -m in " equilibrium . Not ice that, roughly

speaking, each equilibrium has maximal different iat ion in the dimension that corresponds to the

highest weight . Further, when the weights are roughly sim ilar and fall in the cent ral hexagon

(MGHIKL ), all three equilibria exist. In regions where two weights are high but the third weight

is low , two equilibria exist, each with maximal different iat ion in the dimension that corresponds

one of the two high weights. For example, for w � (DGMLD ’), " m in -m in -max " and "max -m in

min " are both equilibria. In regions where only one weight is large ( close to the vert ices) only

one equilibrium exists -- the one that different iates maximally in the dimension the large weight .

For example, for we ( CD’LF) only the " max-m in - m in " equilibrium exists.

At each equilibrium , both firms charge equal prices and share the market equally. This

pat tern of equilibrium posit ions confirms our understanding that in mult idimensional spaces , firms

seek to different iate their offerings on one dimension only in order to reduce the impact of price

18
The weights are , in general unrest ricted . For a point w where the weights do not add

up to 1, draw the ray from the origin to that point and project it to w ’ on the simplex . It is

clear that the equilibrium existence propert ies of w and w’ are ident ical. Thus, the

descript ion of the existence areas on the simplex is sufficient. Of course , the equivalence of

the existence propert ies of wand w’ arises fundamentally from the fact that the ut i li ty

funct ion allows for a normalizat ion of its parameters , and the linear rest rict ion w , + W2 + W3

= 1 is a perm issible normalizat ion .
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compet it ion .’ Once products are different iated maximally in one dimension , firms assume

20
ident ical ( cent ral) posit ions on the other at t ributes.

5. Conclusion

In this paper we have exam ined product posit ioning and pricing in a mult i - at t ribute

framework . We derived subgame-perfect equilibrium posit ions and associated prices for a

duopoly . In one dimension , maximal different iat ion holds as shown in D�Aspremont et al .

( 1979 ) . We find that, in two dimensions , there are two equilibria when all consumers consider

the two at t ributes as equally important. In each of these equilibria, firms are maximally

different iated on one at t ribute and m inimally different iated on other. Moreover, when firms are

m inimally different iated on one at t ribute, they occupy cent ral posit ions on that at t ribute. We also

find that when at t ributes are different ially weighted by the consumers , so that one at t ribute has>

significant ly greater importance than the other , only a single equilibrium remains. In this

equilibrium firms maximally different iate on the more important at t ribute and occupy cent ral

posit ions on the other at t ribute .

In moving from two to three dimensions we showed that the essent ial character of the

equilibrium does not change. In part icular, at the three -dimensional equilibrium , firms are-

maximally different iated on one dimension only . In three dimensions , depending on the

importance that consumers place in each at t ribute, there is one, two , or three equilibria. In each

equilibrium , firms are maximally different iated on one at t ribute and m inimally different iated on

the other two. An equilibrium with maximal different iat ion in a certain dimension occurs when

consumers place sufficient importance to the corresponding at t ribute . Thus, i f consumers place

importance only on the first at t ribute, the equilibrium is " max-m in -m in , " i .e., i t has maximal

19 This idea was suggested to us independent ly as a conjecture by Jacques Thisse.

20
Finally, we must note that we have not shown that these are the only locat ional

equilibria. However, we were unable to locate any other equilibrium despite extensive search .
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different iat ion in the first dimension only . When consumers place importance on the second

at t ribute as well, the " m in - max -m in " equilibrium occurs too . Further, when consumers place

importance on the third at t ribute as well, the "m in -m in -max " equilibrium occurs in addit ion to

the other two . Thus, for example, when all at t ributes are weighted equally, all three equilibria

("max-m in -m in ," " m in - max - m in , " and "m in -m in -max " ) exist .

An important aspect of our results is the mult iplici ty of equilibria in both the two and the

three - dimensional models . When consumers value all at t ributes roughly equally , all locat ional

n - tuples with maximal different iat ion in one dimension and m inimal different iat ion in all others,

are equilibria . As more weight is put on a part icular dimension , equilibria get elim inated one by

one unt i l we reach a unique equilibrium . This shows that advert ising can have a very important

role in elim inat ing certain equilibria , even if the effect of advert ising on the underlying

preferences is marginal.

There are a number of direct ions in which these results can be extended . First, there is

the obvious extension to higher dimensional spaces. Are the equilibrium locat ions of a n

dimensional at t ribute spaces only different iated in one dimension ? Second , how do the locat ional

results fare when there are more than two compet itors ? Third , what for what classes of

dist ribut ions can we extend our duopoly posit ioning results ? All these are very interest ing

quest ions that we leave for further research .
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Appendix 1: Demand Definit ions for the Three- Dimensional Model

We first document all twelve scenarios. The defining features are :

Scenario 1A: w , X 5 w2Y = ( w , X + w2Y) S w ZS

Scenario 1B : w.X sw2Y SW Z S (w X + w2Y)

Scenario 2A: W ,X S w Z 5 ( w ,X + w2Z) w2Y

Scenario 2B : w , X SW Z 5 w2Y S ( w ,X + w2Z)w

Scenario 3A: w2Y SW , X = ( w , X + w2Y) S wzZ

Scenario 3B : w2Y 5 w X 5 w z 5 ( w X + w2Y), S

Scenario 4A: w2Y S W2Z < ( w_ Y + w2Z) Sw ,Xw w

Scenario 4B : w2Y S w Z 5w , X S ( w2Y + w2Z)SWZ

Scenario 5A: wz2 sw ,X ( w X + w2Z) S W2Y

Scenario 5B : w Z sw ,X S w2Y = ( w , X + w32)

Scenario 6A: w z 5 w2Y S ( w2Y + w2Z) w ,X

Scenario 6B : wzZ 5 w2Y SW,X 5 ( w2Y + w2Z )5

While each scenario in the two at t ributes model generates three cases , each of the above

twelve scenarios generates seven cases . In nam ing the result ing demand expressions , we follow

the convent ions developed in the two dimensional model .

P1We start with Scenario IA. For any fixed price P2, i f Pi , is such that P2 - P. + SSO,

then firm 1 has no demand . In order to calculate the demand segment D1 , we need to define

the region of integrat ion. The separat ing plane intersects the ( a , b ) plane in a st raight line given

by blim it (P2 - P. + S - 2aw ,X )/ ( 2w Y ). This st raight line, blim it , further intersects the a axis

at point aint = (P2 - P. + S )/ (2w ,X) . Now , when p , is reduced so that OSLS 2X, where L

(P2 - Pi + S ) , the separat ing plane intersects all three axes as in case 1, Figure 6 , and we have

Case 1A: when O SL 52w ,X, demand for firm 1 is

DA saint jblim it c( a,b ) db da = L�/H ,O
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where H = 48w , w2w.XYZ .

When pis further decreased , the separat ing plane passes through the corner ( 1, , )

of the product space and as shown in case 2 , Figure 6 , and we have

Case 2A: when 2w ,X SL S 2w Y, demand is

D = = lim it c ( a, b ) db da = DA - (L - wX ) ? H- L - /Ha b

When P. is further reduced , the plane while moving up crosses the corner ( , 1, ) and

we have

Case 3A: when 2w , Y SL S2 (w ,X + w2Y ),

DA
saint soc ( b , a ) db da +

s jblim it c(b,a ) db da = DBA - ( L - 2w2Y) * / H ,aint l ’

where aint ) = (L - 2w2Y)/ ( 2w , X ) is the intercept of the blim it line with the line b = 1.

On further reduct ion in Pi , we have case 4a, Figure 7, where the indifference plane>

intersects the vert ical faces of the unit cube .
.

Case 4A: when 2 ( w , X + w2Y ) SL S 2w3Z, we have

D^^ = p m c ( b , a ) db da = D } ^ + ( L - 2 ( w.X + wzY))/H ,

which simpli f ies further to a linear funct ion in P. given by

D1A = (L - w ,X - w2Y ) / (2w , Z ).=

When Pi is further reduced so that the separat ing plane moves past the ( , , 1) corner ,

we have

Case 5A: when 2w Z SL S2 (w ,X+w2Z) ,

D� A = � aint2 jblim it) db da + faint2 s1
paint ’Llim iel c ( b , a ) db da + L’intez o clb

s
o

(aintz - c(b,a) do da
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where blim it ) = ( L - 2aw , X - 2w3Z)/ ( 2w2Y) is the line of intersect ion of c ( a , b ) with the plane

c = 1. aint2 is obtained by subst i tut ing b = ) in blim it l . Hence, aint2
=

( L - 2w2Z )/ ( 2w , X ),

whereas, bint2 = (L - 2w2Z ) / (2w2Y ), is obtained by set t ing a = ) in blim it ) . The demand

expression then is

DA = D ,4A - ( L - 2w2Z ) ?/ H

Next, on further reduct ion in P� , the plane passes past ( 1, , 1) and we get :

Case 6A : when P sat isfies 2 ( w ,X + w2Z) SLS 2 (w2Y + W2Z) , we have

DA
D.� = polim it l db da +1) Poliom ieim it l c ( b , a )

c (b, a) db da
)

which reduces to

D ^ = DA + (L - 2 ( w ,X + w , Y )) */ H.

Finally, we calculate the point of intersect ion of blim it ) with the line c = 1 and b :=

1 to get aint3
=

( L - 2 ( w2Y + w2Z ) )/ (2w , X ). Now , as shown in case 7, Figure 6, we have

Case 7A: when 2 (w_ Y + w Z ) SL S2 ( w_ X + w2Y + W3Z) , the demand is given by

DA raint31 db da +
blim it] db da +

s? so
3

c (b , a) db da .
aint30 aint3 ’blim it !

This reduces to

D / A = DA + (L - 2 ( w2Y + w Z ))}/ H .
7A =

This completes Scenario 1A. We next describe the demand expressions and regions pertaining

to Scenario 1B.

Scenario 1B.

Case 1B: When SL S 2w,X, demand for firm 1 is D , B = DA

Case 2B : When 2w ,X SL S2w Y,demand for firm 1 is DB = D� A

Case 3B : When 2w2Y SL S 2w3Z, demand is D.B = D3A.
3B
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1

SB

Case 4B : When 2wZZ SL S 2 ( w ,X + w2Y) , DAB = DBA - (L -DA - (L - 2w2Z ) )} / H .

Case 5B : When 2 ( w , X + w,Y) SL 52 ( w , X + wz2) , DB = DA

Case 6B : When 2 ( w ,X + w Z ) SL S 2( w2Y + w2Z) , we have DOB = DA, and

Case 7B : When 2 (w2Y + wzZ) SL S 2 ( w ,X + w2Y + wzZ) , D = DA.
7B
1

As is evident from the above, the two scenarios differ across only one demand expression .2

However, the regions of the product space associated with cases 3 , 4 , and 5 , are different across

the two scenarios.

We now show how the remaining scenarios can be obtained from the two that were

analyzed above. We define t ransformat ion rules that we use on the above derived demand

expressions and price inequali t ies so as to obtain the corresponding expressions in the other

scenarios. The transformat ion rules are as follows:

=
rep2 = (w ,X � w ,X, w2Y � w32, w32 w2Y ); rep3 = (w ,X � w2Y, w,Y � w ,X, w22 - w2Z );� ) 2-

rep4 = (w ,X � w,Y, w2Y � w Z , w Z � w ,X) ; rep5 = ( w X � wzZ, w2Y � w ,X, w32->w Y );w2Y , w2Y
&

and rep6 = ( w X � wzZ, w2Y � w2Y, w Z w ,X) .

These rules work as follows. In order to obtain the seven cases of demand and the

associated price domains for Scenario 2A, we apply rep2 on the corresponding
demand

expressions and price domains of Scenario 1A. For example, the demand expression for case 1

of Scenario 2A can be obtained by simultaneously subst i tut ing in D? A above, w ,X in place of

w ,X, wzZ in place of w2Y, and w2Y in place of wzZ. These replacement rules follow from

the geometric symmetry associated with the sides of the unit cube. Sim ilarly , Scenario 2B can

be analyzed by applying rep2 on the corresponding expressions of Scenario 1B. The other

scenarios can be analyzed in an analogous manner .
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Appendix 2 : Numerical Determ inat ion of Product Equilibrium in Three Dimensions

Step 1: Init ialize j = 1

Step 2 : Fix ez = ( X2 , Yz , 22 ) , the posit ion of brand 2 to some init ial t riple � [ , 1] ;

Step 3 : Vary the posit ion of brand 1 from ( , , ) to 02 - E, on a three dimensional>

grid .

Step 4 : For each pair of posit ions ,

a . Ident i fy the scenario that is t rue.

b . Determ ine the price solut ions for each of the seven cases associated with the

scenario .

C. Check the boundary condit ions of each case and ident ify the case that yields the

equilibrium prices .

d . Calculate profi ts based on the equilibrium prices .

Step 5 : Ident ify the posit ion of brand 1 that maxim izes profi ts for that brand . Call this

posit ion , = .01
=

Step 6 : Fix , at ej Vary the posit ion of brand 2 from ; + � to ( 1, 1, 1) on a three

dimensional grid and invoke step 4 .4

Step 7: Ident ify the posit ion for brand 2 that maxim izes profi t for that brand. Call this

02 = 0,4l, and fix the posit ion of brand 2 at this point.

Increment j by 1 and repeat the steps 3-7. Stop if 8j +1 = ; and oj t1 = ojStep 8 :

Otherwise, return to Step 3 .

The ent ire algorithm was programmed in Mathemat ica.


