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The Max-Min Principle of Product Differentiation

1. Introduction

The theory of product differentiation has as its goal the determination of market structure
and conduct of firms that can determine the specifications of their products besides choosing
output and price. Traditional models of product differentiation and marketing have focused on
products that are defined by one characteristic only.! One-characteristic models are sufficient
for the understanding of the interaction between product specification and price. The main
question in this setting is the degree of product differentiation at equilibrium -- does the
acclaimed "Principle of Minimum Differentiation" (stating that product specifications will be very
similar at equilibrium) hold? Intensive research on this question has conclusively determined that
the Principle of Minimum Differentiation does not hold for any well-behaved model.> Thus as
long as we confine product differentiation to one dimension, there will be significant differences
in the equilibrium product specifications. However, most goods are defined by a long vector of
product attributes, and a priori, the failure of the Principle of Minimum Differentiation is not
clear in multi-attribute competition. Furthermore, if it does fail, questions characterizing the

failure will naturally arise.

' See Hotelling (1929), Vickrey (1964), D’ Aspremont, Gabszewicz and Thisse (1979),
Salop (1979), Economides (1984), Anderson, de Palma, and Thisse (1992), among others in
economics and Hauser and Shugan (1983), Moorthy (1988) and Kumar and Sudarshan (1988)
in marketing.

? See Neven (1985) for a discussion of the necessary conditions for minimal
differentiation. Also note that the failure of minimal differentiation does not necessarily
imply maximal differentiation. D’Aspremont ez al. (1979) establish a maximal differentiation
equilibrium in a one-dimensional variant of Hotelling (1929) by assuming a quadratic
disutility of distance (transportation cost) function. Economides (1986b) establishes
intermediate (neither minimum nor maximal) differentiation equilibria for a disutility of
distance (transportation cost) function of the form d* 5/3 < a < 1.26. Economides (1984)
establishes intermediate differentiation equilibria by allowing for a finite maximal utility
(reservation price) for a differentiated good in the original linear disutility of distance function
of Hotelling (1929).
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The Principle of Minimum Differentiation fails in one-dimensional models because
product similarity increases competition, and reduces prices and profits. When we add a second
dimension, two possibilities emerge: products can be significantly differentiated in both
dimensions (maximum-maximum differentiation or max-max) or products may have quite
different degrees of product differentiation in different dimensions (for example minimum
differentiation in one dimension and maximum differentiation in another or max-min). The logic
of the results of the one-dimensional models is not sufficient to show which of the two
configurations will arise in a two- dimensional model.

The present paper determines the equilibrium configuration in a standard two-dimensional
model as max-min. That is, we establish that firms will try to maximally differentiate in one
dimension and minimally differentiate in another. We call this the Principle of Maximum-
Minimum Differentiation. We further show that when products can be differentiated in three
dimensions, firms differentiate maximally in one dimension and minimally in the remaining two.
We call this the Principle of Max-Min-Min Differentiation.

In our setup, the disutility of distance function has different weights in each dimeﬁsion.
These weights measure the importance that consumers place on each attribute of the product.
We find that the nature and number of equilibria depend crucially on these weights. For
example, when consumers care a lot about the attribute of the first dimension (and therefore place
a high weight on it), the "max-min" equilibrium exists, where firms maximally differentiate in
the first dimension only. Similarly, when the consumers place a high weight on the second
attribute, the "min-max" equilibrium exists, where firms maximally differentiate in the second
dimension only. When the weights are roughly comparable, both equilibria exist. The same
pattern hold in the three-characteristics model. The "max-min-min" equilibrium, where firms
maximally differentiate in the first dimension only, occurs when the weight of the first attribute

is large. When, in addition, the weight of the second attribute is significant as well, the "min-
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max-min" equilibrium occurs as well. When all weights are comparable, the "min-min-max"
equilibrium occurs in addition to the previous two.

The qualitative relationship between weights and type and number of equilibria is very
important because it can used to show a seamless transition from Hotelling’s one-characteristic
paradigm to models of two and three characteristics. Start with the original one-dimensional
model of Hotelling. It can be embedded in a two dimensional model, where the weight placed
by the consumers in the second attribute is negligible. We show, that if this second weight is
small, the equilibrium of two-dimensional model will have maximal differentiation in the first
dimension, and no differentiation in the second dimension ("max-min"). Adding a third attribute
that the consumers do not consider important preserves the equilibrium pattern, which now
becomes "max-min-min". Only when the second weight is significant, a second equilibrium
("min-max") appears.

In three dimensions, the equilibria show minimal differentiation in two dimensions and
maximal in one. Thus, if the maximal differentiation in one dimension remains unobserved, the
equilibrium may seem to be one of minimal differentiation. Howeuver, if the only dimension
observed is the one about which consumers care the most, then the previous discussion shows
that maximal differentiation will be observed.

All our results are established in a framework of a two-stage game, in the first stage of
which firms simultaneously choose locations, while in the second stage they simultaneously
choose prices. Thus, the equilibria we describe are subgame perfect, and firms anticipate the
effects of changes in their locations to the equilibrium prices. Intuitively, this game structure
captures the fact that prices are more flexible (easier to change) in the short run, while product
specifications are not; pricing decisions often are made when product specifications cannot be

changed.’

> See Salop (1979), Economides (1989), and Rao and Steckel (forthcoming).
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In the existing literature, few papers have allowed determination of product specifications
in two characteristics, notably Economides (1989a, 1993), Neven and Thisse (1990) and
Vandenbosch and Weinberg (1994).* Neven and Thisse (1990) investigate product quality and
variety decisions of two firms in a two dimensional product space. They combine the
"horizontal” differentiation (ideal point) and "vertical" differentiation (vector attribute) paradigms,
and investigate subgame-perfect equilibria for product and price decisions in a duopoly.
Vandenbosch and Weinberg (1994) analyze a model of two-dimensional vertical (quality)
differentiation. We analyze a model of two-dimensional variety differentiation.’
The remainder of this paper is organized as follows. In Section 2, we present the market
environment. In Section 3, we analyze the two dimensional market and derive the price and
position equilibria. We extend the model to three dimensions in Section 4. Finally in Section

5, we conclude with a discussion of our results and provide directions for future research.

2. The Model

We describe the model in general terms that are relevant for markets of either two or
three attributes. We assume that there are two firms, labeled 1 and 2, and each offers a single
n-attribute product. The position of a product i can be represented in n-dimensional attribute
space by an n-tuple, 6, € [0, 1]". The elements of 6; give the position of the product on each
of the n attributes. Each consumer is represented by an ideal point which gives the coordinates

of the product which the consumer would prefer to all others if all were sold at the same price.

4 This is in contrast with analysis on the interaction of price and location competition in
multidimensional settings without explicit locational determination as in Economides (1986a),
or two-dimensional models that can be reduced to one-dimensional competition as Lane
(1980), Hauser and Shugan (1983), Hauser (1988), and Ansari, Economides, and Ghosh
(1994).

5 After a working paper version of this article had been circulating, we discovered that
Tabuchi (1994) had independently derived similar results for a two-dimensional variety model
with equal weights on attributes.
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A consumer j can therefore be represented by the vector of coordinates of his ideal point, A,
e [0, 1]~

Each consumer’s utility is a decreasing function of the square of the Euclidean distance

between the product specifications and the consumer’s ideal point.® Formally, a consumer of

type A; derives the following utility from buying one unit of product i at price p;
U(A;; B:p)= Y -wio - A I* - p. (1)

Y is a positive constant, the same for all consumers and assumed to be high enough so that all
consumers buy a differentiated product. w is a vector of weights that the consumers attach to
attributes. We assume that the w vector is same across all individuals.

Consumers’ ideal points are distributed uniformly over the attribute space; consumers also
possess perfect information about brand positions and prices in the market. Firms maximize
profits and have zero marginal costs of production.” Firms compete by following a two-stage
process. In the first stage they simultaneously choose product positions. Once these are
determined, they simultaneously choose prices in the second stage. We seek subgame-perfect
equilibria of the game implied by this framework. Thus, firms anticipate the impact of location
decisions on equilibrium prices. Given this basic model structure, we analyze next the two-

dimensional market in detail.®

¢ Models of product differentiation involving a quadratic utility loss function include
D’ Aspremont et al. (1979), Neven (1985), and Economides (1989b). Also ideal point models
in marketing assume that preferences are negatively related to the square of the Euclidean
distance between the product and the consumer’s ideal point (see, e.g. Green and Srinivasan
(1978)).

7 Positive constant marginal costs lead to formally equivalent results.

® The geometric structure of our two dimensional model parallels that in Neven and
Thisse (1990). However, important differences do arise in the structure of the positioning
stage within the two stage game.



3. The Two Dimensional Model

3.1 Demand Formulation

In two dimensions, the joint space of consumers and products is a unit square. A product
1 is represented by the vector V, = (x,, y;), whereas an arbitrary consumer can be identified by
the address (a, b). Without loss of generality, we assume that y, 2y, and x, 2 X, A

consumer’s utility for product i takes the form
Ui(a, b; x;, v P = T - wi(a-x)?-wy(b-y)?*-p for i=1,2 )

The demand for product i is generated by consumers who obtain greater utility from it than
from the other product. To characterize the market area of firm 1, consisting of consumers who
buy product 1, we need to derive the locus of consumers who are indifferent between brands 1
and 2. Their ideal points satisfy U,(a, b; x,, y;, p1) = Ux(a, b; x,, y,, p,), which is equivalent
to

b(a) = [(p, - p)) + S - 2aw X]/[2wW,Y]

where S = w;(x,> - X)) + w(y, - y,), X =%, -X,and Y=y,-y,

This locus is a straight line and partitions the total market (the unit équare) into two
demand areas for the firms (see Figure 1). Given our assumptions regarding the product
positions, the area below the separating line represents firm 1’s demand and the area above 1t
represents firm 2’s demand. The slope of the separating line (b-line) is independent of the prices,
but the intercept is not. The location of the line within the unit square depends upon the price
difference, p, - p,, between the two firms. When firm 1 increases its price (or firm 2 decreases
its price), the separating line shifts down reducing the market area for firm 1.

The demand for firm 1, D, is obtained by integrating the b(a) line over the appropriate

range of a. Since consumers always buy one product or the other, D, = 1 - D,. Assuming zero

® The other situation, in which x, > x,, can be dealt with in a symmetric way.
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Figure 1: Market Areas for the Two Firms

costs, profits are I, = p,D,, I, = p,D,. Since the domain of integration depends upon the slope
and location of the indifference line within the unit square, the demand expressions change
whenever the indifference line shifts its locations and passes through a corner of the market. See
Figure 2. To capture the dependence of the demand expressions on the relationship between
prices and product positions, we first distinguish between two scenarios that depend only upon
the positions of product 1 and product 2 and the relative importance consumers give to the
attributes, and do not depend on prices. In scenario A, shown in the left column in Figure 2,
product positions for the two firms satisfy condition A: |db/da| <1 & w,X <w,Y, i.e., the
weighted difference in positions along attribute 2 is greater than the weighted difference in
positions along attribute 1. In scenario B, shown in the right column in Figure 2, product
positions satisfy condition B: w,Y < w,X, which is just the negation of condition A. Once
product positions are fixed, the relevant scenario can be identified, and the nature of dependence

of the demand and profits on the price difference of the two firms can be studied within each
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scenario. Within each scenario, we identify three cases that are distinguished by the difference

in the prices p, - p;.

3.1.1 Scenario A

We first analyze scenario A and focus on the dependence of the demand expressions and
profit functions on the relative price difference between the firms. We fix the positions of both
brands and the price of firm 2, p,, When p, is high, the b line that separates the market areas
is shown in Case 1A, Figure 2. As firm 1 reduces its price, the relative price difference
decreases and the b line shifts up and crosses the vertical sides of the square, as shown in Case
2A in Figure 2. Finally, when firm 1’s price is even lower, the b line cuts the top and right
of the unit square, a situation shown in Case 3A, Figure 2. The demand expressions for each of
these cases are different because the domain of integration differs across the cases; the demand
expressions are summarized below. We label the demand expressions for firm i in case k as
D-.

Case 1A: When 0 < (p, - p, + S) < 2w,X, the demand of firm 1is D{* = (p, - p, +

S (8w, w,XY).

Case 2A: When 2w, X < (p, - p; + S) < 2w,Y, the demand of firm 1 is DX = (p, - p,

+ S - w, X)/2w,Y).

Case 3A: When 2w,Y < (p, - p; + S) € 2(w,X + w,Y), the demand of firm 1 is D;*

=(p,-p1 + S - w, X -w,Y)/(8w,w,XY).

3.3  Scenario B
In Scenario B, the product positions satisfy w,Y < w,X; we again have three cases for
the demand. When p, is high, the b line has the orientation shown in case 1B of Figure 2.

Notice that even though the orientation of the indifference line is different from that in case 1A,



Case 1A Case 1B

1 1
0 0
0 1 0 1
Case 2A Case 2B
1 1
0
0 1 00 1
Case 3A Case 3B
1 1
0
0 1 00 1 .

Figure 2: Market Areas for the Various Cases Under Scenarios A and B
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the demand expression in case 1B is the same as in case 1A because the domain of integration
remains the same.’” When p, decreases, the market areas are as in case 2B of Figure 2. In
case 2B. the demand expression differs from that of case 2A because the orientation of the
separating line changes the domain of integration. Finally, when p, is low, in case 3B of Figure
2, the demand expressions are the same as in case 3A. These demand expressions and price
domains are summarized below.

Case 1B: When 0 < (p, - p; + S) < 2w,Y, the demand of firm 1is D!® =D~

Case 2B: When 2w,Y <p, - p, + S < 2w, X, the demand of firm 1is D®=(p,- P
+S - w,Y)/(2w,X).

Case 3B: When 2w,X < (p, - p; + S) £ 2(w,X + W,Y), the demand of firm 1 is D;®

— 3A
= D*.

&}

~——
~—~
-

Figure 3: Demand for Firm 1

10 However, the ranges of price p, for which these demand expressions hold are
different across the two scenarios.
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Figure 3, shows a typical demand curve for firm 1 under Scenario A. The demand
equations show that the demand is continuous across the different price domains. The different

segments of D, can also be derived in a manner analogous to that for D,.

34 Price Equilibrium

In this section, we show that a unique non-cooperative price equilibrium exists for any
pair of product positions (chosen by the two firms in the first stage), and we calculate the
equilibrium prices.

The main step in proving existence is in establishing that each firms’ profit function is
quasi-concave in its own price. The concavity properties of the profit function depend upon the
choice of the utility function and the distribution of consumer preferences. Caplin and Nalebuff
(1991) have established twin restrictions on utility functions and preference distributions that
guarantee existence of price equilibria for a number of firms with n-dimensional product
specifications. Our utility function (2) is a special case of the general utility function of Caplin
and Nalebuff (Assumption Al, p. 29). In addition, the uniform distribution of consumer
preferences is concave and confirms with the p-concavity conditions employed in Caplin and
Nalebuff. Hence our model satisfies assumptions Al and A2, of Caplin and Nalebuff. Then
from their Theorems 1 and 2, a price equilibrium exists in our model, for any pair of positions.

Since the profit function is twice differentiable and the distribution of preferences is
concave (and therefore log-concave), we apply the uniqueness result (Proposition 6, p. 42) of
Caplin and Nalebuff to ensure that the price equilibrium is unique for each pair of positions.
What remains is to calculate the equilibrium prices for each pair of locations. This has to be
done for each case in each scenario. The equilibrium price functions are obtained by solving the

first order conditions of the profit functions 0I1,/dp, = dIl,/dp, = 0."' We start with case 1A.

' Second order conditions also hold.
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Case 1A: The demand for firm 1 is given by D!* and for firm 2 is given by D,* =1
- D!, The first order conditions yield two solutions. We eliminate the one that gives negative

prices. The remaining solution gives equilibrium prices,
piAT =[S + (8% + 32w, w,XY)"?1/8, pit" = [3(S* + 32w,w,XY)"? -58}/8,

The above equilibrium prices apply to product positions which satisfy 0 < p,*” - pj*" + S <

2w, X. Positions that result in case 1A also satisfy w,X < w,Y. We define the pairs of locations

that satisfy these conditions (and therefore result in case 1A) as R,,. R,, is a subset of the
1A*

four-dimensional hypercube [0, 1]*. The condition p}*" - pi** + S =0 is always true, whereas

P - pit + S £2w,X s satisfied if
(G1) 4w X 2 2w,Y + S.
Case 2A: Equilibrium prices are:
P = 2w,Y + S - w,X)/3, pA = (dw,Y - S + w,X)/3,

Substitution of equilibrium prices in the defining condition of case 2A, results in 2w, X < p*’
- p¥" + S <2w,Y. The LHS of this inequality is satisfied when condition (G1) fails, i.e., when
(4w, X <2w,Y + S), whereas the RHS of the inequality is satisfied when

(G2) 4w, Y 2 2w, X + S.

These two conditions, in conjunction with w,X < w,Y, define the region R,,, of location pairs
for which p#" and p*° define an equilibrium.

Case 3A: Equilibrium prices are:

pi*" = [5S - 10(w,X + w,Y) + 3NY/8, p** = [2(w,X + w,Y) - S + NJ/8
where N =[(S - 2(w, X + w,Y))* + 32w, w,XY]"2
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These equilibrium expressions apply for product positions that satisfy 2w,Y < p;** - pi*" + S

< 2(w,X + w,Y). While the RHS is always true, thé other condition LHS is true if condition
(G2) fails. This condition, together with w,X < w,Y, defines the region R,,.

Case 1B: In this case the demand and profit expressions are the same as in case 1A.

Therefore the equilibrium price expressions are identical to those of case 1A. The region of

locations for which these prices form an equilibrium is now given by R,z and corresponds to

the region represented by (G2) in conjuction with w,X > w,Y.

Case 2B: The equilibrium prices are:

P = 2w, X + S - w,Y)/3, p¥F = (4w, X - S + w,Y)/3

These form the equilibrium price pair when the product positions satisfy 2w,Y < p®* - pZ* +

S <2w,X. The LHS is satisfied if (G2) fails whereas the RHS is satisfied if (G1) holds.'?

Case 3B: The demand and equilibrium price and profit expressions are the same as in
case 3A. The region of the hypercube for which these expressions apply is named R,; and is
defined by pairs of locations where (G1) fails and w,X > w,Y holds.

It is clear from the above discussion that the six demand regions R,,, R,, Ry, Ryp, Rop,
R;;, partition the four dimensional hypercube [0, 1]°. When we fix the product location of one
firm (say firm 2), these regions can be represented in two-dimensional product space. Figure 4
shows the regions of the locations of (x,, y,) when firm 2 is located at (x,, y,) = (1/2, 1). The
regions now show the locus of firm 1 locations that satisfy the inequalities pertaining to the six
demand cases. Figure 4 shows that as firm 1 changes its location, different demand regions are
encountered. Moreover, the nature of these regions, and even the existence of some of them,
depends upon the ratio of weights w = w,/w,. For instance, in Figure 4, when w = 1, Regions

1A and 1B are never encountered. In contrast when w = 0.6, all six regions are encountered.

2 Note the symmetry between the price expressions in the two scenarios.



w=1

Legend: Ry Is =; Rygis -; Ry, is +;
R,, is .5 Ry, is * and Ry is blank.

Figure 4: Regions of Location of Firm 1 when Firm 2 is Located at (1/2, 1).

14
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35 Product Equilibria

We now establish the subgame-perfect equilibrium positions of firms. With subgame-
perfection, firms anticipate the equilibrium prices in the subgames. We can write profits in the

locations stage as

(%, 1> X, ¥2) = TP (x4, Y X25 ¥2)» p;(xp Yoo X2 Y2)s Xp» Yo X0 ¥2) 1 =1, 2.

Thus, a change in location has two effects on profits: a direct effect, and an indirect effect
through prices.’

Depending on the ratio of the weights w = w,/w,, there are either one or two location
equilibria (and their mirror images). At all equilibria, there is minimum differentiation in one
dimension and maximum differentiation in the other. The first candidate equilibrium is (x;, y})
= (1/2, 0), (X3, y2) = (1/2, 1), i.e., firms are located in the middle of the horizontal segments of
the box, implying minimum differentiation in x and maximum differentiation in y. We call this
the "min-max" equilibrium. The second candidate equilibrium is (x,", y;") = (0, 1/2), (x;", y;7)
= (1, 1/2), i.e., firms are located at the middle points of the vertical segments of the box,
implying minimum differentiation in y and maximum differentiation in x. We call this the "max-
min" equilibrium. We show that, for w < 0.406, only the "max-min" (second) equilibrium
exists; for 0.406 < w < 2.463 = 1/0.406 both equilibria exist; and, for 2.463 < w, only the
"min-max" (first) equilibrium exists.

The method of our proof is as follows. Suppose that firm 2 is located at (x;, y;) = (1/2,
1). We identify the direction in which profits of firm 1 increase as its location changes by

calculating the (vector) gradient of profits, DIT{. We do this by evaluating analytic expressions

" Essentially the indirect effect is through the price pf the opponent: dIl/dx, = oI1,/dx,
+ (3T1/3p))(dpi/dx;) + T1/9p)(dp;/dx;) = oI1/dx; + (AT1/dp)(dp;/dx,), since OIl/dp; = O at
the price subgame.
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Figure 5: Gradient of Profits for Firm 1
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for DII.* We identify locations for firm 1 where the profit gradient is zero (critical points
of the gradient), and determine if each point is a local maximum, minimum, or saddle point (see
Figure 5). We find that, for w > 1, there is only one local maximum, at (1/2, 0); therefore it
is also a global maximum (in x, and y,) of the profit function ITL It follows that, for w >
1, (1/2, 0) is the best response to (1/2, 1). Therefore, for this range of w, "min-max" is an
equilibrium.

Given that firm 2 is located at (x,, y,) = (1/2, 1), for w < 1, there are two local maxima
of firm 1’s profits, at (1/2, 0) and (0, 1/2). Let the "middle location" profits of firm 1 be i)
= [1,(1/2, 0, 1/2, 1), and the "left" profits be TII(L) = I1,(0, 1/2, 1/2, 1). We show the
comparison of IT,(M) and II(L) in Figure 5. For 1 > w > 0.406, I1,(M) > I1,(L);"
therefore (x;, y;) = (1/2, 0) is the (global) best reply of firm 1 to (x;, y,) = (1/2, 1). For the
same w range, by symmetry with respect to the horizontal axis through (1/2, 1/2), (x5, y;) =
(1/2, 1) is the global best reply to (x;, y;) = (1/2, 0); therefore (x;, y;) = (1/2, 0), (X3, y3) =
(1/2, 1), i.e., "min-max", is a subgame-perfect equilibrium.

For w < 0.406, [T{M) < ITi{(L); therefore (0, 1/2) is the best reply to (1/2, 1).
However, (1/2, 1) is not the best reply (0, 1/2). This is established as follows. Let firm 1 be
at (0, 1/2). The problem for the choice of location seen from the point of view of firm 2 is
symmetric to the problem of firm 1 (that has been discussed so far) with axis of symmetry the
negative diagonal of the square. Further, from the point of view of firm 2, the relative weights
are w = w,/w, = 1/w. Thus, in this case, w < 0.406 < w’ > 2.463 > 1. It follows from the
previous arguments that (1, 1/2) is a global best reply to (0, 1/2). Since (1/2, 1) is not the

best reply to (0, 1/2), the first candidate equilibrium (min-max") is nof an equilibrium. Using

¥ These expressions differ across the various R regions of location pairs. The
expressions as well as the Mathematica evaluation and plotting routines are available from the
authors.

5 For w < 1, I,(M) = ww,/2, and II,(L) = (5 + w)*w,/144, so that IT,(M) = IT,(L)
& w=31-6Y26 « 0.406.
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the same arguments as earlier, and appealing to symmetry, we have that, for w’ = w/w, = 1/w
> 0.406, the second candidate equilibrium ("max-min") is an equilibrium.

Putting the conditions together, it follows that for w < 0.406 only the "max-min"
equilibrium [(x;", y;*) = (0, 1/2), (x;°, y,) = (1, 1/2)] exists; for w > 1/0.406 = 2.463, only the
"min-max" equilibrium [(x;, y;) = (1/2, 0), (x5, ¥,) = (1/2, 1)] exists; and for 0.406 < w <
2.463, both the "max-min" and the "min-max" equilibria exist. Remembering the definition
of w, w = w,/w,, note that the "min-max" equilibrium exists when w, is relatively large, and
similarly, the "max-min" equilibrium exists when w, is relatively large. When w, and w,
are roughly of similar magnitude, both equilibria exist. When one weight is much larger than
the other, there is only one equilibrium where maximal differentiation occurs in the dimension
that corresponds to the high weight.

At both equilibria, the firms share the market equally. At the first equilibrium, prices for
both brands are p, = p, = w, and profits are II, = I, = w,/2; at the second equilibrium, prices
are p, = p, = w,; while profits are II, =II, = w,/2.

Interestingly, positions implying maximal differentiation on both attributes ("max-max")
are not equilibrium positions. Even though both firms have profits equal to the equilibrium
profits when they are maximally differentiated on both attributes, such a pair of positions is not
an equilibrium. Given that its opponent has located at the corner of the square, a firm has a
unilateral incentive to deviate from such a position and move inward.'®

At this stage it is natural to ask whether this pattern of equilibria generalizes to higher
dimensions. In higher dimensions, will competitors differentiate on more than one attribute or

continue to differentiate only on one attribute? Will we continue to get just two equilibria or will

' In a way, this is similar to locational incentives in the one-dimensional linear
transportation cost model of Hotelling (1929). In that model, profits were equal for any
symmetric locations, but each firm had a unilateral incentive to move toward the other.
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the number of equilibria depend on the dimensionality of the product space? To answer these

questions, we analyze a three-dimensional market in the next section.

4. Three Dimensional Model

4.1 Demand Formulation

In three dimensions, the space of attributes is a unit cube. A product position is denoted
by a riple 6, = (x;, y;, z) and an ideal point is denoted by A; = (a, b, ¢). We continue to
assume that x, 2x,,y, 2y, and z, 2z, and that the attribute weights w,, w,, w,, are constant

across consumers. Thus the utility of consumer A; when he buys one unit of product 6; is
Ui(a9 b, C; xi, yi’ Zi) = I - w](a - xi)z = WZ(b = yi)Z - W3(C = Zi)z - pl; 1 = 1, 2.

The market areas are given by three-dimensional regions of the cube separated by a plane,
rather than two-dimensional regions of a square separated by a line as in the two-dimensional
case we discussed earlier. The locus of consumers on this plane, who are indifferent between

buying from either firm, is given by
c(a, b)=[p,-p, +S - 2aw,X - 2bw,Y)/(2w,Z)

where S = wi(x;* - x%) + Wy, - y) + Wa(z,2 - 2,9, X =%, - X, Y=Yy, -y, Z=2, - z,, and
(a, b) € [0, 1] x [0, 1] are the coordinates of the consumer in the first two dimensions. The
region below (above) the plane is composed of customers of product 1 (2). As before, when firm
1 decreases its price p, (or firm 2 increases p,), the plane shifts upwards, thereby increasing
firm 1’s demand D,. As in the two dimensional model, the expression for demand depends upon

the position and orientation of the plane.
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4.2 Price Equilibria

The remainder of our analysis parallels the two-dimensional model. The only real
difference is the level of complexity. Because of this complexity, we only outline the analysis
here. Complete details are available from the authors upon request.

Whereas there were only two scenarios (A and B) in the two-dimensional model, there
are twelve distinct scenarios in three dimensions. Different positions of the two brands define
different orientations of the plane and intersections of the cube, thus defining the various
scenarios. The twelve scenarios are defined in detail in Appendix 1. For each scenario, there
are seven cases (instead of three) and corresponding demand expressions. Typical cases are
shown in Figure 6. As firm 1 decreases its price p;, the plane that separates the market areas
(more precisely the market volumes) moves up. A new case arises whenever the plane cuts a
corner of the cube. In each case, price equilibria are computed for each potential pair of product
positions. In some of the cases, this is impossible to do analytically. Hence, we resort to
numerical methods. In particular, we use iterative root-finding algorithms to find the roots of the

systems of pairs of cubic equations that emerge from the first order conditions."”

4.3 Product Equilibria

Using a procedure similar to that used in analyzing the two-dimensional model (outlined
in detail in Appendix 2), we identified three position equilibria. In each equilibrium
configuration, the two brands are differentiated on only one attribute and occupy central positions
on the other two attributes. Specifically,

1. When wa/w, = 0.406 and w,/w, > 0.406, the equilibrium positions are 8; = (1/2, 1/2,

0), 6, = (12, 1/2, 1), i.e., "min-min-max".

7 The entire procedure was programmed in Mathematica.



21
1

ROIh
AN
.wm&&..nww&w
0 bae ey
ORDRNCAL
ZRENRRRY]
R0
AR
ey 9oty ¥
QR0
OO wo
Qw: a#
hetee

Case 3

I

Scenario
Case 2

Case 1

Case 4b

Case 4da

Pl
2R e,
Ty 3830 10 £5 7]
e“u‘u:nﬁ‘.&#w.o
QAP
N

A2
(R
ende
ey .n&“mm@u
Al el ded,
A e
3 X

w
Fey

2,
2
20 1
X u.anw \...*
o ediofes
e ¢..$@%
2 ...Jaww 5%
X b.%
s

)
S .%o»..
\» 08,

Case 6

Case 5

5
,

N\

",
f

&
Sy
.,

g
i

i

o

'y

)
1/,
It

)
s,

s

1,
?;
A

()
7
2
NN

)
‘ttoh
i
SN
2
e
(20 ﬁi
Jhes
! Q.‘.
D
e
0
",
e

bl

2
%50
2
‘e,
0,
-»w

2

J

Three Dimensions

m

Market Areas (Volumes)

re 6

Fi



L

Figure 7: Regions of Existence of Equilibria in the Three-Dimensional Simplex

22



23
2. When wy/w, 2 0.406 and w,/w, = 0.406, , the equilibrium positions are 6] = (1/2, 0,

1/2), 6, = (1/2, 1, 1/2), i.e., "min-max-min".

3. When w,/w, 2 0.406 and w,/w, = 0.406, , the equilibrium positions are 6; = (0, 1/2,

1/2), 8; = (1, 1/2, 1/2), i.e., "max-min-min".

The regions of existence of these equilibria can easily illustrated on the three-dimensional
simplex in Figure 7, where w, + W, + w; = 1, w;, W,, w; = 0.8 On segment AC define the
points D and D’ such that (AD)/(DC) = (CD")/(AD’) = 0.406, with similar definitions of E, E’,
F, and F’ on segments AB and BC. The region of the weights w = (w,, w,, w,) € (CDHF’) that
leads to a "min-min-max" equilibrium is shaded. Similarly, w € (AE’KD") leads to a "max-min-
min" equilibrium, and w € (BFME) leads to a "min-max-min" equilibrium. Notice that, roughly
speaking, each equilibrium has maximal differentiation in the dimension that corresponds to the
highest weight. Further, when the weights are roughly similar and fall in the central hexagon
(MGHIKL), all three equilibria exist. In regions where two weights are high but the third weight
is low, two equilibria exist, each with maximal differentiation in the dimension that corresponds
one of the two high weights. For example, for w € (DGMLD’), "min-min-max" and "max-min-
min" are both equilibria. In regions where only one weight is large (close to the vertices) only
one equilibrium exists -- the one that differentiates maximally in the dimension the large weight.
For example, for w € (CD’LF) only the "max-min-min" equilibrium exists.

At each equilibrium, both firms charge equal prices and share the market equally. This
pattern of equilibrium positions confirms our understanding that in multidimensional spaces, firms

seek to differentiate their offerings on one dimension only in order to reduce the impact of price

'* The weights are, in general unrestricted. For a point w where the weights do not add
up to 1, draw the ray from the origin to that point and project it to w’ on the simplex. It is
clear that the equilibrium existence properties of w and w’ are identical. Thus, the
description of the existence areas on the simplex is sufficient. Of course, the equivalence of
the existence properties of w and w’ arises fundamentally from the fact that the utility
function allows for a normalization of its parameters, and the linear restriction w, + w, + W,
=1 1is a permissible normalization.
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competition.'” Once products are differentiated maximally in one dimension, firms assume

identical (central) positions on the other attributes.*’

5. Conclusion

In this paper we have examined product positioning and pricing in a muiti-attribute
framework. We derived subgame-perfect equilibrium positions and associated prices for a
duopoly. In one dimension, maximal differentiation holds as shown in D’Aspremont et al.
(1979). We find that, in two dimensions, there are two equilibria when all consumers consider
the two attributes as equally important. In each of these equilibria, firms are maximally
differentiated on one attribute and minimally differentiated on other. Moreover, when firms are
minimally differentiated on one attribute, they occupy central positions on that attribute. We also
find that when attributes are differentially weighted by the consumers, so that one attribute has
significantly greater importance than the other, only a single equilibrium remains. In this
equilibrium firms maximally differentiate on the more important attribute and occupy central
positions on the other attribute.

In moving from two to three dimensions we showed that the essential character of the
equilibrium does not change. In particular, at the three-dimensional equilibrium, ‘ﬁrms are
maximally differentiated on one dimension only. In three dimensions, depending on the
importance that consumers place in each attribute, there is one, two, or three equilibria. In each
equilibrium, firms are maximally differentiated on one attribute and minimally differentiated on
the other two. An equilibrium with maximal differentiation in a certain dimension occurs when
consumers place sufficient importance to the corresponding attribute. Thus, if consumers place

importance only on the first attribute, the equilibrium is "max-min-min," i.e., it has maximal

! This idea was suggested to us independently as a conjecture by Jacques Thisse.

¥ Finally, we must note that we have not shown that these are the only locational
equilibria. However, we were unable to locate any other equilibrium despite extensive search.
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differentiation in the first dimension only. When consumers place importance on the second
attribute as well, the "min-max-min" equilibrium occurs too. Further, when consumers place
importance on the third attribute as well, the "min-min-max" equilibrium occurs in addition to
the other two. Thus, for example, when all attributes are weighted equally, all three equilibria

("max-min-min,” "min-max-min,"” and "min-min-max") exist.

An important aspect of our results is the multiplicity of equilibria in both the two and the
three-dimensional models. When consumers value all attributes roughly equally, all locational
n-tuples with maximal differentiation in one dimension and minimal differentiation in all others,
are equilibria. As more weight is put on a particular dimension, equilibria get eliminated one by
one until we reach a unique equilibrium. This shows that advertising can have a very important
role in eliminating certain equilibria, even if the effect of advertising on the underlying
preferences is marginal.

There are a number of directions in which these results can be extended. First, there is
the obvious extension to higher dimensional spaces. Are the equilibrium locations of a n-
dimensional attribute spaces only differentiated in one dimension? Second, how do the locational
results fare when there are more than two competitors? Third, what for what classes of

distributions can we extend our duopoly positioning results? All these are very interesting

questions that we leave for further research.
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Appendix 1: Demand Definitions for the Three-Dimensional Model
We first document all twelve scenarios. The defining features are:
Scenario 1A: w,X < w,Y < (w, X + w,Y) S w,Z
Scenario 1B: w,X £ w,Y < w,Z < (w,X + w,Y)
Scenario 2A: w,X S w,Z < (W, X + w,Z) S w,Y
Scenario 2B: w,X < w,Z < w,Y < (w,X + w,7)
Scenario 3A: w,Y £ w,X £ (w,X + w,Y) S w,Z
Scenario 3B: w,Y £ w,X < w,Z < (w, X + w,Y)
Scenario 4A: w,Y £ w,Z < (w,Y + w,Z) £ w, X
Scenario 4B: w,Y < w,Z < w X < (w,Y + w,Z)
Scenario 5A: wyZ < w, X < (WX + w,Z) < w,Y
Scenario 5B: w,Z £ w, X < w,Y £ (w,X + w,Z)
Scenario 6A: w,Z < w,Y < (W,Y + w,Z) < w, X
Scenario 6B: w,Z < w,Y < w X £ (W,Y + w,Z)

While each scenario in the two attributes model generates three cases, each of the above
twelve scenarios generates seven cases. In naming the resulting demand expressions, we follow
the conventions developed in the two dimensional model.

We start with Scenario IA. For any fixed price p,, if p,, is such that p, - p; + S <0,
then firm 1 has no demand. In order to calculate the demand segment D;*, we need to define
the region of integration. The separating plane intersects the (a, b) plane in a straight line given
by blimit = (p, - p; + S - 2aw,X)/(2w,Y). This straight line, blimit, further intersects the a axis
at point aint = (p, - p; + S)/2w,X). Now, when p, is reduced so that 0 <L <2X, where L
=(p, - p; + S), the separating plane intersects all three axes as in case 1, Figure 6, and we have

Case 1A: when 0 <L <2w,X, demand for firm 1 is

D = [0 P c(a, b) db da = LM,
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where H = 48w, w,w.XYZ.

When p, is further decreased, the separating plane passes through the corner (1, 0, 0)

of the product space and as shown in case 2, Figure 6, and we have

Case 2A: when 2w, X <L <£2w,Y, demand is
D} = Ié Igl’””’ c(a, b) db da = D! - (L - w,X)H

When p, is further reduced, the plane while moving up crosses the corner (0, 1, 0) and
we have |

Case 3A: when 2w,Y <L <£2(w,X + w,Y),
sa _ qaint ol 1 limit _DP2A (] 3
D} = Ig ) o c(b.2)dbda+ Iaim ; Ig c(b, a) db da = D* - (L - 2w,Y)¥H,

where aintl = (L - 2w,Y)/(2w,X) is the intercept of the blimit line with the line b = 1.
On further reduction in p,, we have case 4a, Figure 7, where the indifference plane
intersects the vertical faces of the unit cube.

Case 4A: when 2(w,X + w,Y) <L <2w,Z, we have
D = Ié I(I) c(b, a) db da = D} + (L - 2(w,X + w,Y))¥/H,
which simplifies further to a linear function in p, given by
D} = (L - w;X - w,Y)/(2w,2Z).

When p, is further reduced so that the separating plane moves past the (0, 0, 1) corner,
we have

Case SA: when 2w,Z <L < 2(w,X+w,Z),

. mit]
DA = J-gmtz J'gl"mt

int2 I ]
db da + !g ) gy (> @) db da+ IaintZ Io c(b, a) db da
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where blimitl = (L - 2aw,X - 2w,Z)/(2w,Y) is the line of intersection of c(a, b) with the plane
c = 1. ain2 is obtained by substituting b =0 in blimitl. Hence, aint2 = (L - 2w,Z)/(2w,X),
whereas, bint2 = (L - 2w,Z)/(2w,Y), is obtained by setting a = 0 in blimitl. The demand

expression then is

D =D* - (L - 2w,Z)"H

Next, on further reduction in p,, the plane passes past (1, 0, 1) and we get:

Case 6A: when p, satisfies 2(w,X + w;Z) <L < 2(w,Y + w,Z), we have

o (I (plimit] 1
D, _IO fg db da+JO Iblimit] c(b, a) db da

which reduces to

D =D + (L - 2(w,X + w,Y))/H.

Finally, we calculate the point of intersection of blimit/ with theline ¢ =1 and b=
1 to get aint3 = (L - 2(w,Y + w,Z))/(2w,X). Now, as shown in case 7, Figure 6, we have

Case 7A: when 2(w,Y + w;Z) <L <2(w,X + w,Y + w,Z), the demand is given by

7a _ @int3 (I 1 limit] 1 1
Dt = 0"y dbda+ oy o T dbda S g f oo, doda

This reduces to

DA = D% + (L - 2(w,Y + w,Z))/H.

This completes Scenario 1A. We next describe the demand expressions and regions pertaining

to Scenario 1B.

Scenario 1B.

Case 1B: When 0 <L < 2w,X, demand for firm 1 is D,"® = D}*
Case 2B: When 2w, X <L < 2w,Y, demand for firm 1is D = D}
Case 3B: When 2w,Y <L < 2w,Z, demand is D;® = DA,
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Case 4B: When 2w,Z <L <2(w,X + w,Y), D{® = D}* - (L - 2w,Z))*/H.
Case 5B: When 2(w,X + w,Y) <L < 2(w,X + w,Z), D}® = D}*
Case 6B: When 2(w,X + w,Z) <L < 2(w,Y + w,Z), we have D = D and
Case 7B: When 2(w,Y + w,Z) <L £ 2(w,X + w,Y + w,Z), D/® = D4,

As is evident from the above, the two scenarios differ across only one demand expression.
However, the regions of the product space associated with cases 3, 4, and 5, are different across
the two scenarios.

We now show how the remaining scenarios can be obtained from the two that were
analyzed above. We define transformation rules that we use on the above derived demand
expressions and price inequalities so as to obtain the corresponding expressions in the other
scenarios. The transformation rules are as follows:
rep2 = (W, X - w, X, w,Y =5 w,Z, w,Z - w,Y); rep3 = (w, X - w,Y, w,Y = w, X, w,Zow,Z);
repd = (W, X = w,Y, w,Y = w,Z, w,Z - w,X); rep5 = (W, X = w,Z, w,Y = w, X, W,Z-w,Y);
and rep6 = (W, X = w;Z, w,Y - w,Y, w,Z = w,X).

Theée rules work as follows. In order to obtain the seven cases of demand and the
associated price domains for Scenario 2A, we apply rep2 on the corresponding demand
expressions and price domains of Scenario 1A. For example, the demand expression for case 1
of Scenario 2A can be obtained by simultaneously substituting in D;* above, w,X in place of
w, X, w;Z in place of w,Y, and w,Y in place of w,Z. These replacement rules follow from
the geometric symmetry associated with the sides of the unit cube. Similarly, Scenario 2B can
be analyzed by applying rep2 on the corresponding expressions of Scenario 1B. The other

scenarios can be analyzed in an analogous manner.
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Appendix 2: Numerical Determination of Product Equilibrium in Three Dimensions
Step 1: Initialize j =1
Step 2: Fix 0, = (X,, ¥, Z,), the position of brand 2 to some initial triple 8y e [0, 1}
Step 3: Vary the position of brand 1 from (0, 0, 0) to 6, - €, on a three dimensional
grid.
Step 4: For each pair of positions,
a. Identify the scenario that is true.
b. Determine the price solutions for each of the seven cases associated with the
scenario.
c. Check the boundary conditions of each case and identify the case that yields the
equilibrium prices.
d. Calculate profits based on the equilibrium prices.
Step 5: Identify the position of brand 1 that maximizes profits for that brand. Call this
position 6, = 6.
Step 6: Fix 6, at ©. Vary the position of brand 2 from & +¢& to (1, 1, 1) on a three
dimensional grid and invoke step 4.
Step 7: Identify the position for brand 2 that maximizes profit for that brand. Call this
8, = 0J*', and fix the position of brand 2 at this point.
Step 8: Increment j by 1 and repeat the steps 3-7. Stop if 63! =6 and €)' = 6.
Otherwise, return to Step 3.

The entire algorithm was programmed in Mathematica.



