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Abstract
I analyze a model where systems are composed of two components. Hybrid
systems, composed of components produced by different firms, require an adapter
or interface to function. Through design manipulations, component-producing
firms control the price of the adapter which is produced by a competitive

sector. I show that, for symmetric demand, when firms choose non-cooperatively

design specifications and prices, they produce fully compatible components, both
when the choices are simultaneous and when they are taken in sequence, with the
specification choice preceding the price choice. However, if the demand for
hybrid systems is very small, at equilibrium firms choose to maximize the degree
of incompatibility of their components. If the demand for one single-producer
system is very large, then only the small-demand firm wants compatibility, and a

regime of limited incompatibility results.
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Many complex pfoducts are composed of complementary components. For
example, a personal computer is composed of a central processing unit and a
monitor. The good "use of a spreadsheet” requires three components, a
spreadsheet program such as Lotus 123, a computer operating system, such as
PC-DOS and a personal computer, such as the IBM-AT. Some components are
immediately and freely combinable to produce a system in which they function
together. For example, IBM-AT's central processing unit can connect to a NEC
monitor, and a NEC computer can connect to an IBM monitor. However, some
manufacturers make it difficult for their components to connect with components

made by other firms. For example, the original Apple Macintosh was built as a

single unit containing the computer and the monitor. Attachment of a different
monitor was very difficult and costly.
In general, I assume that the combination of two components produced by

different manufacturers requires an investment in an interface, adapter or

. . 1
translator to create a functioning hybrid system. In most cases adapters are

produced by a competitive sector. However, the component-producing firms can
determine the cost of an adapter through their choice of the design of the
components. The cost of the adapter defines the degree of compatibility of
components produced by competing firms. _Full compatibility means that no
adapter (or an adapter of zero cost) is required for operation of a hybrid
system.

I explicitly assume away any positive consumption externalities, commonly
called network externalities. In the presence of a network externality, the
value of the nith unit sold by firm i is increasing with the total number of

units sold in the '"network” of compatible products, = n,. This creates a
i

natural tendency for firms to gravitate towards full compatibility with the
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products of their competitors.2 I show that, because of the complementarity

between components, there is a natural tendency towards full compatibility, even

in the absence of network externalities.

At first glance, it seems that firms will try to choose component
specifications that would make it difficult and expensive to combine them with
components made by the opponent firms. It seems that in this way they would
ensure that more of their own production is sold. However, this intuition is
incorrect. We establish that firms acting non-cooperatively will try to make
their components directly and freely combinable with components made by an
opponent. Because components are complementary with the adapter, the elasticity
of demand for components that a firm faces is increasing in the price of the
adapter. When the price of the adapter is zero, a firm faces the most inelastic
demand and realizes the highest price and profits. Thus, each firm decides to
design its components so the price of the adapter is minimized. As a result,

full compatibility arises in this model as a non-cooperative equilibrium and not

as a coordinated decision of cooperating firms adhering to an agreement. Firms
have the possibility to establish two different standards but they decide
non-cooperatively to adhere to the same standard.

In the context of locationally differentiated components, Carmen Matutes
and Pierre Regibeau (1988) and Nicholas Economides (1989) have shown that, faced
with the choice between a regime of full compatibility and a regime of full
incompatibility, firms prefer full compatibility. The present paper improves on
these results by allowing firms to continuously vary the degree of compatibility
of their components with those of the competitor. Therefore, the choice is not
between two extreme regimes, but from a continuum of possible regimes. In this
paper the choice of regime is explicit and non-cooperative. Thus, full

compatibility and standardization arise as a non-cooperative equilibrium of the



game. The model of this paper is specified for a general demand function.
Thus, I avoid the restrictions on demand and computational limitations imposed
by a locational structure.

Two exceptions to the full compatibility results are analyzed, both arising
from demand asymmetries. In the first case, I assume that the demand for hybrid
systems is smaller than the demand for simple-producer systems. When the demand
for hybrids is low enough, it is not a high enough reward to balance the cost of
the extra competition that compatibility implies. Then, each firm chooses a
high cost of the adapter and there are two different "standards™ in the
industry. The second exception arises when only the demand for one
single-producer system is high, and the demand for the second firm's
single-producer system as well as the demand for hybrids are low. In this
setup, the firm with the low demand wants compatibility to get access to the
markets for hybrids. However, the high-demand firm will prefer compatibility
only when the markets for the other three systems are large enough. When the
demands of the other three systems are low enough, compatibility does not reward
enough the high-demand firm for the added competition. It will then opt for a
high adapter cost, and this will result in an adapter with an intermediate cost,
since the small-demand firm always opts for compatibility. These exceptions
point to the significance of the relative scale of the demand in the
non—cooperative creation of standards.

The rest of the paper is organized as follows. Section I sets—up the
model. Section II analyzes the game of simultaneous choice of adapter’'s cost
and prices under symmetrical demand conditions. Section III analyzes the game
of adapter’s cost in the first stage and price cost in the second stage.

Section IV analyzes the first asymmetric case when hybrids’ demand is small
relative to the demand for single-producer systems. Section V analyzes the
second asymmetric case when only the demand for one single-producer system is

large. Section VI contains extensions and concluding remarks.



I. Model Set-up

In the basic model of this paper there are two firms, each producing a
component of type 1 and a component of type 2. Components of different types
can be combined to produce systems demanded by consumers. Components produced
by the same firm are readily combinable. Components produced by different firms
require an adapter to allow them to function together as a working system.

Let Py and P, be the increments of the prices above their constant marginal
costs of components of type 1 and type 2 produced by firm 1. Similarly, let 9
and do be the increments of prices above their constant marginal costs of the
components of type 1 and 2 produced by firm 2.3 Let ij denote the identity of a
system composed of component 1 produced by firm i and of component 2 produced by
firm j. System 11 is available to the consumers at price Py + Py and system 22
is available to the consumers at price q, + g - Hybrid systems 12 and 21
require an adapter.

Interfaces are produced by a competitive sector and sold at marginal cost.
However, the duopolists have the ability to determine how costly the adapter
will be through decisions concerning the design of the components they produce.
Let x € [0, x] be the cost of the adapter attributed to the design choice of
firm 1. Similarly, let y € [0, y] be the cost of the adapter that is the result
of the design choice of firm 2. Thus, system 12 is available to the consumer at
price Py + 5 + x + y. Similarly, system 21 is available at price q + Py + x
+ y. The cost of the adapter, x + y, defines the degree of compatibility of
components made by opponent firms. When x + y = O, there is full compatibility.
The higher the cost of the adapter, the less compatible the components of the
hybrid systems.

The assumption that the influences of each firm on the cost of the adapter

are additive plays no important role in the derivation of the basic results. A
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more general cost function for the adapter can be used, ¢(x,y), where x and y
are the decision variables of firms 1 and 2 respectively. The requirements on
such a function would be that it is symmetric, ¢(x, y) = ¢(y. x), increasing,
8¢/3x > 0, 8¢/8y > 0, and passes through the origin, ¢(0, 0) = O.4

Two game structures are analyzed. In the first game structure, the
decisions of the degree of compatibility are taken simultaneously with the
pricing decisions. The second game structure has two stages. Design decisions
(choices of x and y) are taken at the first stage. Pricing decisions are taken
in the second stage. I seek subgame-perfect equilibria. The two-stage game
models many situations where it is more difficult to vary the design rather than
the price in the short run.

In both game structures, I show that, for a symmetric demand system, firms
decide non-cooperatively to be in an environment of full compatibility by

choosing their products’ designs so that the price of an adapter is zero. Thus,

an adapter will not be needed at equilibrium.

II. The Game of Simul taneous Choice

I first analyze the simultaneous’ choices model. Firm 1 chooses x, Py and
Py. while firm 2 chooses y, 9, and g - There are four products, product 11
available at price Py + Py product 22 available at price q + A5+ product 12
available at price Py + o + x + y, and product 21 available at price q; + Py +

X +y. I use superscripts to denote the demand and profit functions.

The profits of firm 1 come from sales of component 1, D11 + D12, and from
sales of component 2, D11 + D21. The profit function of firm 1 is,
1 11 12 11 21
T°(p;» Py ;- Ay X, ¥) =p (D77 + D7) + py (D" + D). (1a)
Similarly, the profit function of firm 2 is,
21 22 12 22 ’
(b by a;0 ay. X, ¥) = a (D7 + D7) + qu(D'2 + D) (1b)



where Dij is the demand for product ij. The demand for product 11 can be
written as a functibn of four variables; first, of its own price; second, of the
price of the product that differs from 11 in the second component, i.e. of
product 12; third, as a function of the price of the product that differs from
11 in the first component, i.e. of product 21; and fourth, as a function of the
price of the product that differs from 11 in both components, i.e. of product

22. Thus D11 is written as

11
D" (p; + Py, Py Ay * X+ ¥, q + Py +X+Y, q +0q,).

We can write the demand function for any other product in a similar manner, as a
function of its own price, the price of the product that differs from it in the
second component, the price of the product that differs from it in the first
component and the price of the system that differs from it in both components.
For example, the demand for product 12 can be written as

D12(p +q,+X+Yy, P, +Py 9y + Ay, G * Py * X + Y)

1 2 1 2 71 2 71 2 ’
I assume that the demand system is symmetric, so that, when written in the

above manner, one function represents the demand for any product. Thus, I
assume,

Al: The demand system is symmetric so that

p'l(a, b, ¢, d) = D%(b, a, d, ¢) = D?!(c, d. a, b) = D°2(d, c. b, a). (2)

where a, b, c, d are the prices of systems 11, 12, 21 and 22 respectively.

Note, however, that no restrictions have been placed on the
substitutability between systems. Thus, system 11 is not necessarily equally
substitutable with systems 12, 21 and 22. Function Dll(a, b, ¢, d}) is not
assumed to be symmetric with respect to b, c¢, and d.

By assumption Al, the substitutability between products 11 and 12 is the

same in the demands of products 11 and 12. Further, the price of product 21 has
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the same effect on the demand for product 11 as the price of product 22 has on
the demand of product 12, since in both cases the comparable products differ in
the first component. Finally, the price of product 22 is seen in the demand for
product 11 as the price of product 21 is seen in the demand for product 12,
since in both cases the comparable products differ in both components.

The demand for any product is decreasing in its own price and increasing in
the price of any of its three substitutes. As a regularity condition, I assume
that the own price effects on demand outweigh the effects of the prices of
substitutes.

A2: An equal increase in the price of all four goods decreases the demand

of anvy particular good, that is, for all i and j,

4
S DiJ(a, b, ¢, d) < 0,
k=1

where subscripts denote partial derivatives.

I also make a technical weak concavity assumption on the demand.

A3: Dll < Dll < Dll ¢ Dll and Dii ¢ Dll < D11

11
11 $ Dyg £ D3 ¢ Dy 43 $ Dyo-

Consider the effect on the profits of firm 1 of an increase in the price of

the adapter, caused by a change in the design specification of firm 1. It is

an'/ax = pa(0'! + D'%)/8x + p,d(D'" + p21)/ax. (3)
Consider first the effect on the sales of component 1 produced by firm 1. Sales
of firm 1 are composed of D11 and D12. Remember the definition of D11 =

Dll(a, b, ¢, d) and D12 = D12(b. a, d, c), where a = P; + Py b = q, *+ Py + X
+y, c= Py + 49 +x+y,d-= q + q, are the prices of the four available
systems. The effect of an increase in the price of the adapter on sales of firm
1’s component 1 is

ar'! +

D'%)/dx = D)} (a, b, ¢ ) + Di'(a. b, c .d)
+ D12(b, a, d, c) + Diz(b, a, d, c). (4)

By the symmetry of the demand system assumed in Al,



D;%(b. a, d. ¢) = DI} (b, a, d, o). D,°(b. a, d. ¢) = D (b, a, d. ¢). (5)
Using the weak concavity assumption A3, I show in the Appendix that
Di!(b. a, d, ¢) <Dj'(a. b, ¢, d), (6)
and
Dy'(b. a. d. ¢) < D (a. b. c. d). (7)

Substituting (5), (6) and (7) in (4) it follows that

a'! + 0'%)/ax = D' (a. b. ¢, @) + Dll(a. b. c. d) + D (b, a. d. )
4
+ Db, a, d, ¢) < 3 Dil(a, b, ¢ ,4) < oO. (8)
4 ok

Thus, the effect of an increase in the price of the adapter on the sales of
component 1 produced by firm 1 is smaller than or equal to the effect of an
equal increase in all four prices. By assumption A2, the demand falls when the
prices of all four goods rise equally. It follows that increasing the price of
the adapter decreases the demand for component 1 of firm 1. Similarly, it is
shown in the Appendix that an increase in the adapter’s price decreases the
demand for component 2 of firm 1, i.e.,

4
a(0'' + p*ysex ¢ 3 Dil(a. b, ¢ .d) <O. (9)

k=1
By substitution of (8) and (9) in (3) it follows that profits for firm 1 fall in

the price of the adapter,
4
1 Dll

M /8x < (p; + Py)* T D <O. (10)
k=1

Lemma 1: An increase in the price of the adapter results in a decrease in

grofits.5

Proof: See the Appendix.

It follows that firm 1 will choose x* = 0. Similarly, firm 2 will choose
y* = 0. Therefore, the price of an adapter or interface is zero, x* + y* = 0.
In other words, no adapter or interface is needed at equilibrium, and the

products are fully compatible.



Proposition 1: At the non—cooperative equilibrium of the game of

simul taneous choice of prices and design specifications, firms choose to produce

fully compatible products.

Note that full compatibility was established as a non-cooperative
equilibrium of independently acting firms, and no cooperation, agreements, or
enforcement of thereof was required. A single "standard” evolves from

non—-cooperative behavior.

ITI. The Two-stage Game

In the two-stage game structure, firms choose the degree of compatibility
of their components in the first stage, while they set prices in the second
stage. This game structure describes many situations where prices are more
flexible in the short run than are design specifications. 1 seek a
subgame-perfect equilibrium.

I first analyze the equilibrium of the last stage. Each firm chooses
prices to maximize its profits so that,
aﬂl/ap1 = 6H1/8p2= 8H2/6q1 = 6H2/6q2 = 0. (11)
Equilibrium prices that solve (11) can be written parametrically as pT(X. y),
p;(x, v), qT(x, V), q;(x, y). By equilibrium perfection, firms predict
correctly in the first stage the equilibrium prices of the last stage. Thus,
the objective function of firm 1 in the first stage is,

1, y) = Hl(p)f(x. v). pylx, ¥). qj(x. ). aG(%. ¥). X, ¥),
where the superscript "d" is used for the stage of design specifications.
Similarly, the objective function of firm 2 in the first stage is
(x. y) = P@(x. v). pylx. ¥). ai(x ¥). dy(x. ¥). x. ¥).
In the stage of design specifications, firms choose how compatible their

components are going to be with the ones of the opponent. This means that they
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decide on the price (cost) of the required adapter or adapter, x+y, where x is a
choice of firm 1, and y is a choice of firm 2.

In the previous section I have established that, ceteris paribus, profits

fall in the cost of the adapter, aﬂl/dx < 0. I will now show that the incentive
to reduce the cost of the adapter is higher in the two-stage game than in the
game of simultaneous choice, i.e. that dHld/dx < aﬂl/dx. This will imply that
firms will choose zero as the adapter’s price at the perfect equilibrium of the
two-stage game. Thus, at the perfect equilibrium there will be again full
compatibility.

Consider the variation of profits with the price of the adapter in the
first stage. It is

1

artd/ax = arlsox + 6H1/6p1°dpt/dx + 6H1/6p2°dp;/dx + aﬂl/aql'qu/dx + 6H1/6q2'dq;/dx

= anl/ax + 6H1/6q1'qu/dx + aﬂl/aqz-dq;/dx, (12)
since anl/apl = 6H1/8p2 = 0 at the subgame equilibrium (pT(x, y). p;(x, ).
qT(x, v}, q;(x, yv)). The contribution of firm 1 to the cost of the adapter, x,
influences profits directly, and indirectly through the prices of the components
produced by the opponent. By symmetry,

aj(x. y) = q;(x, ¥).
and (12) simplifies to

dﬂld

/dx = 8T /3x + 2-811'/8q~dq)/dx. (13)
Thus, the difference between the one-stage and two-stage games in the individual
firm’s incentive to reduce the price of the adapter is proportional to the cross
price effect on profits, anl/aql, and on the influence of the price of the
adapter on the opponent’s price, dqt/dx. Since components made by different
manufacturers are substitutes, the cross price effect on profits is positive, so

that an increase in the price of a component produced by firm 2 increases the

profits of firm 1,
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am'/6q, > 0. (14)
In the appendix I ﬁhow that an increase in the price of the adapter implies a
downward shift in the demands for components and this implies more elastic
demands and lower prices for components, and, in particular,
dq}/dx < 0. (15)
The crucial assumption to guarantee that a firm faced with reduced demand for
its components responds by cutting their prices is that the adapter and the

component are strategic substitutes. Formally we assume

A4: An adapter and a component are strategic substitutes so that

a2n1/apiax - aznl/apiay <o, 62H2/6qi6x = 62H2/aqiay <o, i=1, 2.

Substituting in (14) and (15) in (13) it follows that

am'9sax < ar'sex < o.
Using the same method, I can show that
dH2d/dy < 6H2/6y < 0.

Below I provide an intuitive illustration of how profits decrease in
response to increases in the price of the adapter. Figure 1 was constructed
under the assumption that P) =Py =P and q; = 95 = 9. Referring to Figure 1, 1
compare profits at the original equilibrium at A and at the new equilibrium at B
after x has increased. From A3 we know that an increase of x shifts the best
reply function of firm 1 to the left to R1' and the best reply function of firm
2 to the right to R2'. Let HA denote firm 1's iso-profit curve through A and
let T(A) be level of profits at A. Define point C on the new best reply curve
of firm 1, R1’, at firm 2's price level of the original equilibrium, qy- Before
the increase of x, profits are lower at C than at A because of the natural order
of the iso-profit curves. Thus II{(A) > II{C), where II{C) denotes the level of
profits at C before x increased. Let II'(C) denote the level of profits at C

after x increased. From equation (10) and the results of the simultaneous game



RIZ /R

R2

R2~

Figure 1: Comparison of equilibrium profits for firm 1 at A and B.
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we know that increases in x decrease profits ceteris paribus. Thus, I(C) >
1°(C). In Figure 1, the new iso-profit curve through C, Hé (broken line). is
tangent to the horizontal, while the old iso-profit through C, UC (solid line)
is not, since C is on the new best reply but not on the old best reply. Now,
because of the natural order of the iso-profit curves after the increase of x,
o (C) > 1’ (B). Combining the inequalities. it follows that

m(A) > m(c) > 1 (C) > T’ (B).
Thus, equilibrium profits fall as x increases.

Therefore, in the first stage., given any Y. firm 1 will choose x* = 0.
Similarly. given any x, firm 9 will choose y* - 0. Thus, there exists a unique
subgame—perfect equilibrium at x* = y* = 0. At equilibrium, no adapter is
needed and there is full compatibility between components produced by different
firms.

Proposition 9: At the perfect equilibrium of the two-stage game of design
specifications choices in the first stage and prices choices in the second
stage, competing firms produce fully compatible components.

Proof: See the Appendix.

Although these results were established for a world of two firms, they can
easily be extended to 2 world of three or more firms, each producing two
components. In the three—firm situation, product 33 needs no adapter, while
products 13 and 31 require an adapter of cost x'+z’, and products 23 and 32
require an adapter of cost y'+z. Firm 1 chooses X and x', firm 2 chooses y and
y’, and firm 3 chooses Z and z'. It is not difficult to work through the
arguments made for two firms problem and see that at equilibrium all adapters
cost zero, i.e. X =X = y=y =2°*= 2' = 0, and there is full compatibility.

The results of this paper can also be extended to 2 world of systems

composed of as many components as producers, with each firm producing each type



13
of component. For example, in a world of three firms in this framework there
are twenty seven (i.e. 33) systems available, starting with 111, 121, 131, 211,
221, 231, 311, 321, 331, 112, 122, 132, etc. 1 assume that a different adapter
is needed for each hybrid system, and that each firm controls a part of the
adapter’s cost through its decisions on the design of its components. It is
easy to see that the problem is very similar to the one discussed above. The
proof that full compatibility arises at equilibrium is a straightforward

repetition of the proofs of this and the previous sections.

IV. Sensitivity to Symmetry I: Small Demand for Hybrids

The results of the previous two sections have been established for
symmetric demand systems, where the demand for hybrid systems is equal to the
demand for single-producer systems, under assumption Al. If the demand for
hybrid systems is small compared to the demand for single-producer systems,
increases in the cost of the adapter have a small negative effect on profits
generated from sales of hybrid systems, but have a significant positive effect
on profits generated from sales of single-producer systems. Thus, when the
demand for hybrid systems is relatively small, increases in the price of the
adapter tend to increase prices and profits. Below I establish this result for
the two-stage game structure. The proof for the one-stage game structure is
similar. Demand for hybrid systems can be small if such systems are always
perceived as inferior to the single-producer systems or when manufacturers
promote their complete systems.

Consider the case of a linear demand system where the demand for a hybrid
system is k times the demand of a single-producer system, i.e.

p'l(a, b, ¢, d) = D2(b, a, d. ¢)/k = DPl(c. d. a, b)/k = D2(4, c. b, a),

where k € (0, 1]. The demand system can be written as
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rDlli rlﬂ -_B 6 5 . b Pp . p
1 2
pl2 k| + | 6k =Bk ek k| [py tay +x+y
D21 k vk ek -Bk o6k a + Py + x +y
22
hD o le - e ‘T 5 —B o qu + q2
or equivalently,
rpl -
(11 [ ]
D o-B -3 +e o+e 1+5 1 P,
D12 k(6-B) k(6+e) k{(~r+e) k(~-B) k(e-B) k 9,
p?! k(v+e) k(1-B) k(6-B) k(b+e) k(e-B) k| | ay
D22 T+e S+e 6-B -3 T+6 1} |x+ vy
- a o
where a, B, v, 6, ¢, « > O.
Profit maximization by firm 1 implies 8H1/6p1 =0, <=
(2(14k) (6-B) ~+56-2B+k(~+6+2e) (1+k)(~r+e) O+e+k(v-B) ~+6+k(e-B) 1+k)-
t
(p; Py 4y 99 Xty @) =0, (16)

% % %
where superscript "t" denotes a transposed vector. By symmetry, Py =Py =P,

qT = q; = q* and equation (13) simplifies to

[1+35-4B+k(1+36+2e-2B) Jp . + [1+6+2e+k(2v+e-B) 1. + [v+b+k(e-B)1(x+y) + a(1+k)

Similarly, from profits maximization of firm 2,

[7+6+2e+k(27+e—B)]p* + [36+w—4ﬁ+k(7+35+2e—2ﬁ)]q* + [+6+k(e-B) ] (x+y) + a(l+k)

1}

Their common solution is
P (6y) = @ (6y) = {a(1+k)+[v+6+k(e-P) ] (x+y) }/[2(2B-27-6-€)+3k(B-1-6-€)]. (17)
By assumption A2, increases in the price of all four goods decrease the demand

of any good. Thus,

B>v+6+e (18)

and the denominator of (17) is positive. For the numerator to be positive, I

require that

k<[a+ {(v+8)x+y))/B -e)(x+y) - a]. (19)
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The realized profits for firm 1 at the equilibrium of the subgame are
1d % 2
T, y) = [2(28 - v - 6) + 2k(B - v - 6 - )1(p (x. ¥))°. (20)
In the first stage, firms choose x and y non-cooperatively. From (20) it is
evident that the effect of changes in the price of the adapter on profits come
entirely through the equilibrium prices,

dax = 2[2(B -~ - 6) + 2k(B -+ - 6 - e)]p 3p /3x.

an1

Prices vary with the adapter cost as

8p /3x = [v+ 6 + k(e - B)J/[2(28 - 26 - v - €) + 3k(B -7 - 6 - )]. (21)
The denominator is always positive, as noted above in (18). However, the sign
of the numerator depends on the scale of the hybrid demand, k. Let

Ky = (1+8)/(Bc)

be the value of k that makes the numerator of Gp*/ax zero. For small k,
k < kl’ the numerator, v+&6+k(e-B), is positive and therefore Bﬂld/ax >0, i.e.
profits increase with the cost of the adapter. See Figure 2. Then firm 1
chooses the maximum x possible, i.e. x = X. Similarly, firm 2 chooses the
maximum y possible, y = ;, and we observe maximum incompatibility with the
adapter’s cost at X+ y. Conversely, for k large, k > kl' the numerator of (21)
is negative and firm 1 will choose x = 0. Similarly, firm 2 will choose y = 0
and there will be full compatibility. The range of k for this event includes k
= 1, the symmetric case where the hybrid-system demand equals the
single-producer-system demand, that was discussed in generality in the previous
sections. I have shown that a single standard results when the demand for
hybrids is comparable to the demand for single-producer systems (k close to 1),
while two different standards result when the demand for hybrid systems is small

(k small).

Proposition 3: For a linear demand system, at the perfect equilibrium

firms choose full compatibility if and only if the relative scale of the demand

for hybrid systems is sufficiently large.6




(en'/ax) , = (ar*%8y)

Figure 2: The rate of change of profits with the cost of the adapter for the

demand structures of Sections IV and V.
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V. Sensitivity to Symmetry II: Demand for one Single—-producer System is lLarge

This section analyzes the case when the demand for one of the single-
producer systems is large, while demands for all other systems are small. This
case can arise naturally in a setting where one firm enjoys good reputation from
past achievements in related fields, while the second firm is relatively
unknown. Then the demand for any systems that embody a component produced by
the second firm will be small.

Formally, consider a linear demand system where the demand for for systems
12, 21 and 22 is k times the demand for system 11,

p'l(a, b, c, d) = D!2(b, a. d, ¢)/k = D°X(c, d. a, b)/k = D22(d, c, b, a)/k,

where k 1is in (O, 1]. This demand system can be written as

D11 1 -B o) ~y € Py + P,

D12 ki + ok -Bk ek Ak Py + S + x+y
21| = ¢ ) :

D k vk ek -fk 06k q + Ps + x+y

D22 k ek ~k &k Bk q, + 45

or equivalently as,

P1
D [ s p v e wo 1] |,
p'2 K(6-B) k(b+e) k(r+e) k(r-B) k(e-B) k| | q
2| T | k(rre) K(v-B) K(6-B) K(6+e) k(e-) k| a, |
D22‘ | k(r+e) K(5ve) K(6-B) K(1-B) k(v+8) k| [x +y
L @

where a, B, v, 6, ¢, k > O.

Although the degree of compatibility is variable, to understand the
intuition let us consider two extreme situations, full compatibility where x =y
= 0, and total incompatibility when the cost of the adapter is so high that the
demand for hybrids is zero. The incentive for compatibility of the (small)

second firm is significant. By making its components compatible with those of
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firm 1, firm 2 attempts to approximately triple its demand from D22 to D22 +

D12 + D21 = 3D22. The incentive for compatibility for the large firm is much
smaller. By making its components compatible with those of firm 2, firm 1 will
increase its demand from D11 to D11 + D12 + D21 x D11 + 2kD11. Thus, the
incentive for compatibility clearly depends on k. For small k, the demand
reward for compatibility to firm 1 is small and does not compensate it for the
increase in competition. Hence, for small k, firm 1 will attempt to maximize
incompatibilities by choosing the maximal x available. However, for k large,
the demand reward is sufficient to compensate firm 1 for the increase in
competition, and firm 1 will choose full compatibility. In particular for k =
1 this case reduces to the general symmetric case analyzed in section III,
where compatibility always results.
The profit maximization by firm 1 is identical to the one of the previous
section. It implies anl/ap1 =0 <=
(2(1+k)(6-B) ~+6-2B+k(~+6+2e) (l+k)(r+e) OS+et+k(~-B) ~+6+k(e-B) 1+k)-
(, Py 4, 9y xty @) =0 (16)
Maximization by firm 2 implies 6H2/6p2 =0 <=
(2k(~v+e) k(~+6+e-B) 4k(6-B) 2k(~+6+e-B) k(~r+6+e-B 2k)-
(p, Py 9, 9y xty )" =o0. (22)
Given symmetry across components, P; =Py = p*, q; =4y = q*, and (16) and (22)
reduce to
p*(7+36—4ﬁ+k(7+36+2e—2ﬁ)) + q*(7+6+2e+k(2w+e—ﬁ)) + (x+y)(v+6+k(e-B)) + a(l+k) = O
and
p*(37+3e+5—ﬁ) + q*(27+66+2e—6ﬁ) + (xt+ty)(~v+6+e-B) + 2a = O.
I solve these to derive p*(x, v), q*(x,y) and dp*/dx and dq*/dx,
dp*/dx = [(B—-06-¢) (v+b+2e+k(2v+e-B)) - (k(B-€)-7-56)(2v+66+2e-6B)]/D (23)

dq’/dx = [(k(B-€)-71-8)(31+3e+6-B) - (B-v-6-€)(1+36-4P+k(7+36+2e-28))]/D (24)
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where
D = (3v+3e+5-B) (v+6+2e+k(2v+e-B)) - (2v+656+2e-6B) (v+36-4B+k(v+36+2e-2B)) (25)
The realized profits for each firm at the equilibrium of the subgame are
proportional to the firm’s price,
M s 2(p ) (2B -7 -6 +Kk(B--56-¢€)] (262)
24 2 ok(d™)%(38 - 27 - 26 - €). (26b)
In the first stage, firms choose x and y non-cooperatively, anticipating the
equilibrium prices and profits of the last stage. From (26a,b) it is evident
that the direction of change of profits with a change in the price of the
adapter is the same as the direction of change of the equilibrium price. We
show in the Appendix that the (small) second firm's price decreases with the
price of the adapter, while the first firm’s price increases with the price of
the adapter for small k and decreases with the price of the adapter for large k.

Lemma 2: dp*/dx > 0 and Bﬂld/ax >0 for O0<¢k<k dp*/dx < 0 and

21

1d while dq/dy < 0 and 8I°%/dy < 0 for all k.

gl " /9x <0 for 12 k> k2,

Further, k2 < k1 < 1.
. 1d n2d . . .
Functions &0 /8x and 0’ /dy are pictured in Figure 2. From Lemma 2
it follows that firm 2 chooses always compatibility by setting y = 0. However,
firm 1 chooses compatibility and sets x = O only if k > k2. Otherwise, firm 1

chooses incompatibility and sets x = x. Therefore there can be two

qualitatively different equilibria. For k > k2, there is full compatibility and

the cost of the adapter is zero. For k < k2, there is partial compatibility and

the cost of the adapter is x.

Proposition 4: When the demand for one single-producer system is high, the

opponent always chooses compatibility. The high demand firm chooses

incompatibility if its demand is large; it chooses compatibility if its demand

is close to the demand of the other three systems.

Thus, for k > k2 a single "standard" results. For k < k2 two "standards"

result, but their difference is smaller than in the case of the previous
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section, as signified by the fact that here the required adapter costs x and
there it costed x ; ;. the dominance of the market by one firm results in
total compatibility or only partial incompatibility.

Note that, since k2 < k1 < 1, the range of values of k such that
compatibility prevails, (k2, 1], is larger than the similar range (kl' 171 of the
case of the previous section where only hybrids demand was small. This shows
clearly the workings of competition among single-producer and hybrid systems.
Small demand for hybrid systems tends to drive the market towards
incompatibility. However, this drive is weakened when there is disparity in the
single—-producer systems demands as well. Thus, compatibility tends to arise
more often, and incompatibilities when they arise are smaller, when only one
single-producer demand is large. Table 1 summarizes the

compatibility/incompatibility regimes and the corresponding price for the

adapter for the two asymmetric demand structures as well as for the symmetric

structure.
Table 1
Market Demand Range of k
Specification (0, k2) (k2, kl) (kl‘ 1]
Small Demand Total - Total Total
for Hybrids Incompatibility Incompatibility Compatibility
%* % = - %* »* - - » %
X +y =x+y X +y =x+y X +y =0
One Large Single- Partial Total Total
Producer Demand Incompatibility Compatibility Compatibility
x* + y* = x x* + y* =0 x* + y* =0
All Symmetric Total Compatibility
x*+y*=0
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V. Extensions and Concluding Remarks

So far I have assumed that the markets for adapters were perfectly
competitive so that increases in marginal costs were directly reflected in their
prices. But, for the arguments of this paper to hold, all that is required is
that the price of an adapter is increasing in its marginal cost, and this can
come about from many market structures of the adapter industry.

When the players in the adapter market are strategically active, I
postulate a three-stage game structure. In the first stage, the component-
producing firms choose the design specifications of their components, and
thereby the cost of production x+y of the adapters for hybrid systems is
determined. In the second stage, the producers of adapters choose their prices.
In the third stage, the component-producing firms choose prices. As before, in
each stage firms consider the decisions of previous stages as final, and
correctly anticipate the equilibrium of the subsequent subgame.

Let z be the equilibrium price for the adapters. Then z takes the position
of x+y in the formulas for the prices of the components in the subgame that
follows the choice of z. Provided that x and y have a positive influence on z,
the arguments of all the previous sections go through. Note that x+y is the
marginal cost of an adapter and z is its equilibrium price. Thus, the results
of this article generalize to market structures for the production of adapters
such that the equilibrium adapter price is increasing with marginal cost. This
holds for monopoly and symmetric oligopoly in the adapter market where the
component-producing firms do not participate.

If a component-producing firm participates in the production of adapters,

the results are ambiguous. A firm still has the incentive to lower the cost of
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an adapter and its price so that the profits from sales of components are
maximized. However, the firm also has an incentive to increase the adapter’s
price so that its profits from the sale of adapters increase. Of course, the
balance of these incentives depends on the degree of competition in the market
for adapters. This problem, as well as the problem of the incentive of a
component—-producing firm to enter the market for adapters are still open for
further research.

This paper has shown that, in the absence of network externalities and for

symmetric demand systems, full compatibility arises as an equilibrium in a game

where firms choose non-cooperatively the degree of compatibility of their
components and the prices at which they sell them, even in the absence of
network externalities. Full compatibility arises again as the equilibrium of a
two-stage game where design specifications are chosen in the first stage and
prices are chosen in the second stage. However, when demand for hybrid systems
is relatively low, the reverse result is true: firms choose to maximize the
incompatibility of their components.

When the demand for only one single-producer system is relatively high, the
small-demand firm chooses always full compatibility while the high-demand firm
chooses full compatibility only if its demand is of comparable size to the
demands of the other three systems. When the demand for one single-producer
system is very high, the firm that produces it chooses to maximize
incompatibility as much as possible, thus resulting in partial incompatibility
since the small-demand firm chooses not to add to the incompatibility.

These results point to the significance of the relative scale of the demand
for single-producer systems and hybrid systems in the determination of
standards. When the scale of single-producer and hybrid systems is the same, a

single standard always results. When hybrid demand is low, two quite different



22

standards evolve. When only the demand for one single producer system is very

large,
of the
demand
system
single

demand

then two standards result but they do not differ (as measured by the cost
required adapter) as much as the opposing standards of the case of low
for hybrids only. Finally, when the demand for one single-producer

is large but comparable to the demands for the other three systems, a
standard evolves. The worst scenario for compatibility arises when the

for single-producer systems is large while the demand for hybrids is

small, while the best scenario for compatibility arises when the demand is of

equal scale for all systems.



Appendix

Proof of Lemma 1:

To complete the proof of the validity of equation (8),

a!! + p*?)/ax < 5 D.'(a. b, ¢ .d) <O (8)
k=1
we need to show equations (6) and (7),
Dil(b, a, d, c) ¢ Dil(a, b, c, d); (6)
D, (b, a, d, ¢) < D' (a. b, c. d). (7)
To show equation {6), note that
D;'(b. a, d. ¢) < D'(a. b, d. ) (A1)
provided that (b - a) > 0 and D}i < D}é. Without loss of generality we
assume b - a = q; *x +y - p 2 0. The condition Dii < Di; is satisfied by
assumption A3. Further,
D}l(a, b, d, c) < Dil(a, b, ¢, d) (A2)
provided that (c - d) > O and Dii < D};. Without loss of generality we
assume ¢ - d = Py + X +y - a4, 2> 0. The condition D}i < D}; is satisfied by

assumption A3. Combining conditions (Al) and (A2) results in (6).

To show equation (7), note that

Dy (b, a, d. ¢) <D;'(a, b, d. ) (A3)
provided that (b - a) > O and Di} < D;;, as assumed in assumption A3.
Further,

D;'(a. b, d. ¢) < D'(a. b, c. d) (A4)
provided that ¢ - d > 0, and Déé < Dii. as assumed in A3. Combining conditions

(A3) and (A4) results in (7).

To prove equation (9),

4
+D*)/6x ¢ 3 D l(a. b, e, d) <O, (9)
k=1

a(pl!
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note that

a0®l/ax = 02M(c. d. a. b) + D2l(c. d. a, b),

while as before,
ap't/ox = Dy (a, b, c. d) + Dil(a, b, c, q).
Using the same technique as above, it can be shown that

p?!(c, d, a, b) = D;'(c. d. a, b) < Di'(a. d. c. b) < Di'(a, b, c. d) (AS)

provided that Dii < D}é and D}i < D};, and these are satisfied by assumption

A3. Further,

D2!(c. d. a. b) = D,'(c, d, a, b) < D (a. d. c, b) < Dy (a, b, c, d) (A6)

. 11 11 11 11 P .
provided that D41 < D43 and D‘14 < D42, and these are satisfied by assumption

A3. Equation (9) follows immediately, and, together with (8), it implies

o' /ax = p,a(d'! + p'2) /8% + p (D' + p?ly/8x < 0.
Q.E.D.

Proof of Proposition 2:

Differentiating 6U1/6p1 = 0 with respect to X results in

62H1/6p16x . a2nl/apf-

2.1 »* 2.1 %
+ 91 /Bplaq1 dql/dx + 311 /aplaq2 dq2/dx =0

dp)/dx + 62H1/6p18p2°dp;/dx

By symmetry, the expression simplifies to

2.1,. 2

62H1/8p16x + 2[8°M"/8p2 - dp)/dx + 62H1/6p16q1'qu/dx] = 0. (AT)

Similarly, differentiating 6H2/6q1 = O with respect to x results in

62H2/6q16x + 2[62H2/6q16p1-dpt/dx + 62H2/6q%°dqt/dx] = 0. (A8)
Solving the system of (A7, A8) with respect to de/dx and qu/dx we derive
dq/dx = [—62H1/6p§°62n2/6q16x + 62H2/6q18p1-62H1/6p16x]/D, (A9)

where the denominator

D= 62U1/6p%°62ﬂ2/6q% - 62H1/6p18q1'62H2/6q16p1 >0

is positive from second order conditions. Further, —62H1/6p? > 0 and
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2H2 . . . L 2.1
d /6q16p1 > 0, while from A4 (strategic substitutability) 871 /aplax < 0 and
62H2/6q16x = 62H2/6q16y < 0. Substituting in (A9) it follows that dq?/dx < 0.
Q.E.D.

Proof of lLemma 2:

dp*/dx can be written as
dp /dx = (A + Bk)/D
where
A=(B-7-6=-¢€)(-57 -58 + 2e) - (v + 85)(4v + 4e),
B=(B-€e)(53-50-7v-¢€)+2v(B -~ 86 - &),
D = R + Sk,
R = (27 + 2e)(37 + 76 + 2¢ - 8B).
S=-11(B-7v-6-€e) 2= (B-~-6=-e)(1Tr - 56 + %) + 2(6 - v)(v + €).
Clearly, R < 0. Since
R+S=-35B-v-6-¢€)>-(B-n~-56-e)(52r + 26 + 5le)
- 6(2y + e)(v +€e) - e(by + 6+ 6e) <O,
it follows that D < O for all k e [0, 1].
For A < O, it is sufficient that [ 1is sufficiently large,
B>~ +6+e+ 4(x + 8)(~ + €}/(2e- 5v- 58).
Thus dp*/dx >0 at k =0. B is immediately positive, B > O. Since
A+B=(B-7-86-¢€e)(B8-56+1+¢€) >0,
it follows that dp*/dx < 0O at k = 1. There exists a unique k =k, = -A/B

2

such that, for all k < k., dp*/dx > 0, and, for all k > k dp*/dx < 0.

2 2’
dq*/dx can be written as
dq /dx = (C + Ek)/D,

where

C=4B-~-6 - e)2 + (B-7-06-€)(20 + 4y + 4e) - 2(~ + 8)(~

+
m
~

and
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E=(B-~v-86-¢€e)(B+71-36+¢€)+2(r+8)(v+¢€).
Both C and E are positive for B sufficiently large. Thus dq*/dx for all k e
(0, 1].
Finally, k2 < k1 {=>

[(B-v—6-€) (5v+556-2e)+4(~+8) (v+e) /[ (B-€) (BB-55-v-€)+2v(B-v-6-¢)] < (~+5)/(B-¢)

which is equivalent (after few steps) to
9 (Bov-5-€)2-2(~+e) (v+8) (B-1-6-€) < O,

which is immediately true. Q.E.D.
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Footnotes
1. Sometimes this adapter should be interpreted as the translation or
conversion of a program to work with a different operating system then the one
it was originally written for. For the purposes of this paper, an adapter or
interface can also be interpreted as any device, such as translator, converter

or gateway, that allows two components to function together in a hybrid system.

2. A positive consumption externality of good X typically arises because of the
existence of a complementary good Y with some public good features. Higher
consumption of X implies a lower effective price for Y. Therefore the effective
price of the last unit of X sold is lower than the effective price of the first
unit. Under full compatibility, the total sales of all the compatible goods
have a negative effect on the price of Y. Thus, a firm that joins a large
"network"” of compatible goods enjoys a higher willingness—-to-pay for its good.
For example, a firm adhering to. the VHS standard for video cassette recorders
enjoys a higher demand than if it chose the Beta standard, because the libraries
for VHS tapes are typically larger than the libraries for Beta tapes. See
Michael Katz and Carl Shapiro (1985) among others for an analysis of network

externalities.

3. For the rest of this exposition, P{+ Py 9;- and q, are called prices as if
marginal costs were zero, but the equivalence with the constant marginal cost

case 1is obvious.

4. This specification excludes functional forms such as ¢(x, y) = xy where

each firm has the opportunity to unilaterally impose compatibility on the
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industry. This is because, given all the dimensions on which design
specifications can be varied, it seems unlikely that all incompatibilities
introduced by the opponent can be anticipated and neutralized. Also, such
functional forms would create multiplicity of equilibria such as x* =0,y =y,

y > 0, that are all essentially equivalent compatibility equilibria.

5. This result can be interpreted as showing that adapters and components are

substitutes.

6. Note that for a linear demand system, strategic substitutability of adapters
and components is equivalent to substitutability between components and
adapters. This is because 6H1/6x and 62H1/6p16x are of the same sign,

o' /9x = p, (+6+k(e-B)). G°M'/0p,Bx = (p, + py)(1+o+k(e-B)).
Note further that for the symmetric linear demand system (k = 1)
substitutability and‘strategic substitutability are equivalent to condition Al,
i.e. that an increase in all four prices decreases demand for each system, since

1 4 11

gl /8x = p1(7+6+e—B) =p,+ 3 D7 <O.

1 k=1 k
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