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Abstract

We develop a regime-switching SVAR (structural vector autoregression) in which the
monetary policy regime, chosen by the central bank responding to economic condi-
tions, is endogenous and observable. QE (quantitative easing) is one such regime.
The model incorporates the exit condition for terminating QE. We apply it to Japan,
a country that has experienced three QE spells. Our impulse response analysis shows
that an increase in reserves raises output and inflation and that exiting from QE can be
expansionary.
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1 Introduction and Summary

Quantitative easing, or QE, is an unconventional monetary policy that combines zero policy rates

and positive excess reserves held by depository institutions at the central bank. This paper uses

an SVAR (structural vector autoregression) to study the macroeconomic effects of QE. Reliably

estimating such a time-series model is difficult because only several years have passed since the

adoptation of QE by central banks around the world. We are thus led to examine Japan, a country

that accumulated, by our count, 130 months of QE as of December 2012. Those 130 QE months

come in three installments, which allows us to evaluate the effect of exiting from QE. We end the

sample period in 2012 because the Bank of Japan, under the new governor since 2013, appears to

have embarked on a regime that is very different from those observed in our sample period.

We will start out by documenting for Japan that reserves are greater than required reserves

(and often several times greater) when the policy rate is below 0.05% (5 basis points) per year.

We say that the zero-rate regime is in place if and only if the policy rate is below this critical rate.

Therefore, the regime is observable and, since reserves are substantially higher than the required

level, the zero-rate regime and QE are synonymous. There are three spells of the zero-rate/QE

regime: March 1999 - July 2000 (call it QE1), March 2001 - June 2006 (QE2), and December

2008 to date (QE3). They account for the 130 months. For most of those months the BOJ (Bank

of Japan) made a stated commitment of not exiting from the zero-rate regime as long as inflation

is below a certain threshold.

Our SVAR, in its simplest form, has two monetary policy regimes: the zero-rate regime in

which the policy rate is very close to zero, and the normal regime of positive policy rates. It is a

natural extension of the standard recursive SVAR1 to accommodate both the zero lower bound on

the policy rate and the exit condition. There are four variables: inflation, output (measured by the

output gap), the policy rate, and excess reserves, in that order. The first two equations of the

1 See Christiano, Eichenbaum, and Evans (1999) for the recursive SVAR. Their SVAR orders variables

by placing non-financial variables (such as inflation and output) first, followed by monetary policy

instruments (such as the policy rate and measures of money), and financial variables (such as stock

prices and long-term interest rates).
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system are reduced-form equations describing inflation and output dynamics. The reduced-form

coefficients are allowed to depend on the regime. The third is the Taylor rule providing a shadow

policy rate. Due to the zero lower bound, the actual policy rate cannot be set equal to the shadow

rate if the latter is negative. The fourth equation specifies the central bank’s supply of excess

reserves under QE. The exit condition requires that the central bank ends the zero-rate regime

only if the shadow rate is positive and the inflation rate is greater than or equal to a certain

threshold. The regime is endogenous because its occurrence depends on inflation and output

through the zero lower bound and the exit condition.

We describe the effects of various monetary policy changes by a counter-factual analysis in

a style similar to the standard IR (impulse response) analysis. To evaluate the effect of a change

in the policy rate, the reserve supply, the regime that occurs in the base period t, or a combination

thereof, we compare the projected path of inflation and output conditional on the baseline history

up to t with the path conditional on the alternative history that differs from the baseline history

with respect to the policy variable(s) in question in t. The response profile, namely the difference

between the two projected paths at various horizons, reduces to the standard IR function (adapted

to nonlinear models) if the two histories differ in only one respect. We find:

• QE is expansionary. When the current regime is the zero-rate/QE regime, the response of

output and inflation to an increase in excess reserves is positive. This is consistent with the

finding in the literature on the macro effects of QE to be reviewed in the next section. The

significance of our finding is that we allow the regime to vary endogenously in periods after

the base period.

• Surprisingly, exiting from QE can be expansionary. We set t = July 2006, the month the

zero-rate/QE regime was terminated, and consider an alternative and counter-factual history of

not exiting from QE in t. The two histories differ in t not just in the regime but also in the

policy rate and excess reserves. We find that output and inflation are lower under the

counter-factual alternative of extending QE to July 2006.

After a literature review in Section 2 and making a case for the monetary policy regime

observability in Section 3, we devote four sections on the baseline model. Section 4 describes our
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four-variable SVAR. Section 5 reports our parameter estimates. Section 6 conducts the

counter-factual analysis which produces the two main findings reported above. Since these

findings can be controversial, we devote Section 7 for a discussion of possible reasons why these

conclusions might obtain.

The findings delivered by the simple baseline SVAR model hold up when we extend it to

encompass two features about excess reserves found specifically in Japanese data. First, not all

QEs are alike. In the “weak” QE, as observed in QE1 (March 1999 - July 2000), excess reserves

behave differently than in the “strong” QE, as in QE2 and QE3, when they are large and

responsive to inflation and output. Second, there are a few incidents of positive excess reserves

under positive interest rates. The response profiles in our conter-factual analysis are similar when

these two features are incorporated.

These two extensions are presented in Section 8. It also examines robustness to several

variations of the baseline model. Section 9 is a brief conclusion.

2 Relation to the Literature

The literature on the macroeconomic effects of QE is growing rapidly. Here in this section, we

restrict our attention to those studies that use time-series data to evaluate the macroeconomic

effect of QE; studies utilizing DSGE (dynamic stochastic general equilibrium) models and those

whose main concern is the yield curve implications of the zero-rate policy will be mentioned in

Section 7. Remarkably, all the time-series studies we came across with report that QE raises

inflation and output. In one strand of the literature, the measure of QE is price-based. Kapetanios

et. al. (2012) and Baumeister and Benati (2013) include the yield spread in their VARs (vector

autoregressions). The QE measure in Wu and Xia (2014) is the shadow policy rate properly

defined.

More relevant to our paper are those studies that use quantities as the QE measure. The

earliest and also the cleanest is Honda et. al. (2007) for Japan. Their QE measure is reserves,

which was the target used by the BOJ (Bank of Japan) during the zero-rate period of 2001

through 2006. Their recursive VAR of prices, output, and reserves, estimated on monthly data for
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the zero-rate period, shows that the IR of prices and output to an increase in reserves is positive.

A more elaborate SVAR with the same QE measure, estimated by Schenkelberg and Watzka

(2013) on Japanese monthly data for the period of 1995-2010 (when the policy rate was below

1%), yields the same conclusion. The QE measure in Gambacorta et. al. (2014) is the level of

central bank assets. Their VAR is recursive except that they allow the central bank assets and the

financial variable (VIX in their case) to interact contemporaneously in the same month. The

sample period is January 2008-June 2011. They overcome the shortness of the sample by

utilizing data from eight advanced economies including Japan.

Another way to deal with the small sample problem is to include the normal period of

positive policy rates but allow the model parameters to vary over time in some specific ways.

Kimura and Nakajima (2013) use quarterly Japanese data from 1981 and assume two QE spells

(2001:Q1 - 2006:Q1 and 2010:Q1 on). Their TVAR (time-varying parameter VAR) takes the zero

lower bound into account by forcing the variance of the coefficient in the policy rate equation to

shrink during QEs. Fujiwara (2006) and Inoue and Okimoto (2008) apply the hidden-state

Markov-switching SVAR to Japanese monthly data. They find that the probability of the second

state was very high in most of the months since the late 1990s. For those months, the IR of output

to an increase in the base money is positive and persistent.

Because the regime is chosen by the central bank to honor the zero lower bound, or more

generally, to respond to inflation and output, it seems clear that the regime must be treated as

endogenous. And, as will be argued in the next section, a strong case can be made for the

observability of the monetary policy regime. None of the papers with quantitative QE measures

cited so far treat the regime as observable and endogenous. Furthermore, their IR analysis does

not allow the regime to change in the future.

The regime in Iwata and Wu (2006) and Iwata (2010), in contrast, is observable and

endogenous. It is necessarily endogenous because the policy rate in their VAR, being subject to

the zero lower bound, is a censored variable. Our paper differs from theirs in several important

respects. First, our SVAR incorporates the exit condition as well as the zero lower bound. Second

and crucially, we consider IRs to regime changes. This allows us to examine the macroeconomic

effect of exiting from QE. As already mentioned in the introduction, our paper has a surprising
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result on this issue. Third, their IR exhibits the price puzzle (see Figure 3 of Iwata (2010)). We

show in our paper that, at least for the output gap measure we consider, the price puzzle is to a

large extent resolved if we allow the equilibrium real interest rate to vary over time.2

3 Identifying the Zero-Rate Regime

Identification by the “L”

We identify the monetary policy regime on the basis of the relation between the policy rate and

excess reserves. Figure 1a plots the policy rate against m, the excess reserve rate defined as the

log of the ratio of the actual to required levels of reserves.3 Because the BOJ (Bank of Japan)

recently started paying interest on reserves, the vertical axis in the figure is not the policy rate r

itself but the net policy rate r − r where r is the rate paid on reserves (0.1% since November

2008). It is the cost of holding reserves for commercial banks.

The figure shows a distinct L shape. Excess reserves are positive for all months for which

the net policy rate r − r is below some very low critical rate, and zero for most, but not all,

months for which the net rate is above the critical rate.4 Those months with m > 0 and with very

low net policy rates will form the zero-rate period. To examine those months with m > 0 but with

positive net policy rates, we magnify the plot near the origin in Figure 1b. The dotted horizontal

red line is the critical rate of r − r = 0.05% (5 basis points). The dots off the vertical axis (for

2 Braun and Shioji (2006) show that the price puzzle is pervasive for both the U.S. and Japan in the

recursive SVAR model. For Japan, they use monthly data from 1981 to 1996 and find that a large and

persistent price puzzle arises for a variety of choices for the financial variables including commodity

prices, the Yen-Dollar exchange rate, oil prices, the wholesale price index, and the 10-year yield on

government bonds. They also find that the puzzle arises when each of those financial variables are

placed third after inflation and output.

3 The policy rate in Japan is the overnight uncollateralized interbank rate called the “Call rate”. The level

of reserves and the policy rate are the averages of daily values over the reserve maintenance period to

be consistent with the required reserve system in place. See the data appendix for more details.

4 The two months of significantly positive excess reserves when the policy rate is about 8% are February

and March of 1991, when the Gulf war was about to end.

6



which m > 0) and over the red dotted line can be divided into two groups. The first is composed

of the filled squares above the dotted red line. They come from the period July 2006 - November

2008, between spells of very low net policy rates. The observation in this group with the largest

value of m is (mt, rt − rt) = (0.21, 0.49%) for t = September 2008, the time of the Lehman crisis.

The second group above the red dotted line is indicated by filled circles. Their value of m is much

lower than for the first group. They come from the late 1990s and the early 2000s when the

Japanese financial system was under stress. The largest m is (mt, rt − rt) = (0.089, 0.22%) for t =

October 1998 when the Long-Term Credit Bank went bankrupt.

Because the supply curve of reserves should be horizontal when the policy rate is positive,

the second group represents the demand for excess reserves when the shock to reserve demand is

large for precautionary reasons. Regarding the first group (the filled squares), it appears that, until

the Lehman crisis, precautionary demand was not the reason for commercial banks to hold excess

reserves. Industry sources indicate that, after several years of near-zero interbank rate with large

excess reserves, the response by smaller-scale banks when the policy rate turned positive from

essentially zero was to delay re-entry to the interbank market.5 As more banks returned to the

interbank market, however, aggregate excess reserves steadily declined. This declining trend

continued until Lehman, when smaller banks as well as large ones sharply increased reserves. In

the empirical analysis below, we set m to zero for those months leading up to Lehman (or,

equivalently, we constrain the lagged m coefficient in the reduced form to zero). On the other

hand, we view the positive excess reserves from September 2008 until the arrival of the next

zero-rate period as representing demand and leave the excess reserve value as is.

We say that the zero-rate regime is in place if and only if the net policy rate r − r is below

5 A breakdown of excess reserves by type of financial institutions since 2005, available from the BOJ’s

homepage, shows that large banks quickly reduced their excess reserves after the termination in July

2006 of the zero-rate policy while other banks (regional banks, foreign banks, and trust banks) were

slow to adjust. The average of excess reserves for July 2006 - August 2008 is only 0.1% of the average

for January 2005 - June 2006 for large banks and 5.4% for other banks. In order to exploit the arbitrage

opportunity presented by the positive interbank rates, banks need to train their employees afresh. The

reason commonly cited for the slow adjustment (see, e.g., Kato (2010)) is that medium- to small-scale

banks, after several years of near-zero overnight rates, didn’t find it profitable to immediately return to

the interbank market by incurring this re-entry cost.
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the critical rate of 0.05% (5 annual basis points). Since there are no incidents of near-zero excess

reserves when the net rate is below the critical rate (the minimum is 0.041, see Table 3 below),

the zero-rate regime is synonymous with QE (quantitative easing). For this reason we will use the

term “the zero-rate regime” and “QE” interchangeably. Under our definition, there are three

periods of the zero-rate/QE regime in Japan:

QE1: March 1999 - July 2000,

QE2: March 2001 - June 2006,

QE3: December 2008 to date.

Figure 2a has the time-series bar chart of the excess reserve rate m. The three QE spells are

indicated by the shades. As just explained, the thin bars between QE2 and the Lehman crisis of

September 2008 will be removed in the empirical analysis below.6 QE1 looks different from QE2

and QE3. The value of m during QE2, much higher than during QE1, was supply-determined

because the level of reserves (i.e., the current account balance) during the spell was the BOJ’s

target. It seems clear that the same was true for QE3 because, although no longer an explicit

target, the current account balance was the frequent subject during the BOJ’s policy board

meetings. QE2 and QE3 will be referred to as the period of “strong” QE. QE1 is the period of

“weak” QE because the value of m, although positive, is much lower than under “strong” QE. For

the most part, we will treat QE1 as a historical aberration. That is, the SVAR of the next section

and the counter-factual analysis of Section 6 will assume that the only type of QE under the

zero-rate regime is the “strong” type. A full analysis of both types of QE is postponed until

Section 8.7

6 The value of m for December 1999 was very high, about 0.9, due to the Y2K problem. This Y2K spike

has been replaced by the sample mean of m over QE1 in the bar chart.

7 We do this for four reasons. First, the exposition of the SVAR and the counter-factual analysis are

much more transparent if there are only two regimes, one of which is the normal regime. Second, the

model with just one QE type may be adequate for economies other than Japan, notably the U.S. Third,

the market’s expectations embedded in the reduced form may well be that the “weak” QE would never

be repeated. Fourth, as will be shown in Section 8, the results will not change greatly if the model is

extended to two QE types.
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Consistency with BOJ Announcements

Our dating of the zero-rate regime, which is based solely on the net policy rate, agrees with

announced monetary policy changes. To substantiate this claim, we collected relevant

announcements of the decisions made by the BOJ’s Monetary Policy Meetings (Japanese

equivalent of the U.S. FOMC, held every month and sometimes more often) in Table 1. For

example, the end of our QE1 is followed by the 11 August 2000 BOJ announcement declaring

the end of a zero-rate policy, and the 14 July 2006 BOJ announcement follows our QE2’s end.

The 19 March 2001 announcement marks the start of our QE2. The only discrepancy between

our QE darting and the BOJ announcements is the start of QE1. The 12 February 1999 BOJ

announcement, which is to guide the policy rate as low as possible, is more than one month

before the start of our QE1 (whose first month is the March 1999 reserve maintenance period). It

took a while for the BOJ to lower the policy rate averaged over a reserve maintenance period

below 0.05%.

The Exit Condition

Several authors have noted that the BOJ’s zero-interest rate policy is a combination of a zero

policy rate and a stated commitment to a condition about inflation for exiting from the zero-rate

regime.8 Indeed, the BOJ statements collected in Table 1 indicate that during our three

zero-rate/QE spells, the BOJ repeatedly expressed its commitment to an exit condition stated in

terms of the year-on-year (i.e., 12-month) CPI (Consumer Price Index) inflation rate. For

example, during QE1’s very first reserve maintenance period (March 16, 1999 - April 15, 1999),

the BOJ governor pledged to continue the zero rate “until the deflationary concern is dispelled”

(see the 13 April 1999 announcement in the table). To be sure, the BOJ during the first twelve

months of QE3 did not publicly mention the exit condition, until December 18, 2009. However,

as Ueda (2012), a former BOJ board member, writes about this period: “At that time some

observers thought that the BOJ was trying to target the lower end of the understanding of price

stability, which was 0-2%.” (Ueda (2012, p. 6)) We will assume that the exit condition was in

place during this episode as well.

8 See, e.g., Okina and Shiratsuka (2004) and Ueda (2012).
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The last several months of QE2 (ending in June 2006) require some discussion. Table 2 has

data for those and surrounding months. The 9 March 2006 announcement declared that the exit

condition was now satisfied. However, the actual exit from the zero-rate regime did not take place

until July 2006. To interpret this episode, we note that the year-on-year CPI inflation rate

(excluding fresh food) for March 2006 was significantly above 0%, about 0.5%, if the CPI base

year is 2000, but merely 0.1% (as shown in the table) if the base year is 2005. The 2005 CPI

series was made public in August 2006. We assume that the BOJ postponed the exit until July

because it became aware that inflation with the 2005 CPI series would be substantially below

inflation with the 2000 CPI series.

4 The Regime-Switching SVAR

This section presents our four-variable SVAR (structural vector autoregression). Strictly for

expositional clarity, the model here makes two simplifying assumptions about the excess reserve

rate m (the log of the actual-to-required reserve ratio). First, it is zero under the normal regime of

positive policy rates. Second, the zero-rate regime is equated with “strong” QE. That is, there is

only one type of QE and m under QE is supply-determined by the central bank. Those

assumptions will be lifted in Section 8.

The Standard Three-Variable SVAR

As a point of departure, consider the standard three-variable SVAR in the review paper by Stock

and Watson (2001). The three variables are the monthly inflation rate from month t − 1 to t (pt),

the output gap (xt), and the policy rate (rt).9 The inflation and output gap equations are

reduced-form equations where the regressors are (the constant and) lagged values of all three

variables. The third equation is the Taylor rule that relates the policy rate to the contemporaneous

values of the year-on-year inflation rate and the output gap. The error term in this policy rate

9 In Stock and Watson (2001), the three variables are inflation, the unemployment rate, and the policy

rate. We have replaced the unemployment rate by the output gap, because Okun’s law does not seem

to apply to Japan. The sampling frequency in Stock and Watson (2001) is a quarter.
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equation is assumed to be uncorrelated with the errors in the reduced-form equations. This error

covariance structure, standard in the structural VAR literature (see Christiano, Eichenbaum, and

Evans (1999)), is a plausible restriction to make, given that our measure of the policy rate for the

month is the average over the reserve maintenance period from the 16th of the month to the 15th

of the next month.

As is standard in the literature (see, e.g., Clarida etl. al. (1998)), we consider the Taylor rule

with interest rate smoothing. That is,

(Taylor rule) rt = ρrr∗t + (1 − ρr)rt−1 + vrt, r∗t ≡ α
∗

r + β∗r
′

(1×2)

πt

xt

 , vrt ∼ N(0, σ2
r ). (4.1)

Here, πt, defined as πt ≡
1
12 (pt + · · · + pt−11), is the year-on-year inflation rate over the past 12

months. If the adjustment speed parameter ρr equals unity, this equation reduces to rt = r∗t + vrt.

We will call r∗t the desired Taylor rate.

Introducing Regimes

The three-variable SVAR just described does not take into account the zero lower bound on the

policy rate. Given the interest rate rt (≥ 0) paid on reserves, the lower bound is not zero but rt.

The Taylor rule with the lower bound, which we call the censored Taylor rule, is

(censored Taylor rule) rt = max
[
ρrr∗t + (1 − ρr)rt−1 + vrt︸                       ︷︷                       ︸

shadow Taylor rate

, rt
]
, vrt ∼ N(0, σ2

r ). (4.2)

Now ρrr∗t + (1 − ρr)rt−1 + vrt is a shadow rate, not necessarily equal to the actual policy rate.

It will turn out useful to rewrite this in the following equivalent way. Define the monetary

policy regime indicator st by

st =


P if ρrr∗t + (1 − ρr)rt−1 + vrt︸                       ︷︷                       ︸

shadow Taylor rate

> rt,

Z otherwise.

(4.3)
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Then the censored Taylor rule can be written equivalently as

(censored Taylor rule) rt =


ρrr∗t + (1 − ρr)rt−1 + vrt︸                       ︷︷                       ︸

shadow Taylor rate

, vrt ∼ N(0, σ2
r ) if st = P,

rt if st = Z.

(4.4)

Note that rt − rt = 0 if and only if st = Z. Thus, consistent with how we identified the regime in

the previous section, we have st = P (call it the normal regime) if the net policy rate rt − rt is

positive and st = Z (the zero-rate regime) if the rate is zero. An outside observer can tell, without

observing the shadow Taylor rate, whether the regime is P or Z.

The Exit Condition

We have thus obtained a simple regime-switching three-variable SVAR by replacing the Taylor

rule by its censored version. We expand this model to capture the two aspects of the zero-rate

regime discussed in the previous section. One is the exit condition, the additional condition

needed to end the zero-rate regime when the shadow rate ρrr∗t + (1 − ρr)rt−1 + vrt has turned

positive. As was documented in the previous section, the condition set by the BOJ is that the

year-on-year inflation rate be greater than or equal to some threshold. We allow the threshold to

be time-varying. More formally, we retain the censored Taylor rule (4.4) but modify (4.3) as

follows.

If st−1 = P, st =


P if ρrr∗t + (1 − ρr)rt−1 + vrt︸                       ︷︷                       ︸

shadow Taylor rate

> rt,

Z otherwise.

If st−1 = Z, st =


P if ρrr∗t + (1 − ρr)rt−1 + vrt︸                       ︷︷                       ︸

shadow Taylor rate

> rt and πt ≥ π + vπt︸  ︷︷  ︸
period t threshold

, vπt ∼ N(0, σ2
π

),

Z otherwise.

(4.5)
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We assume that the stochastic component of the threshold (vπt) is i.i.d. over time.10 It is still the

case that rt − rt = 0 if and only if st = Z, regardless of whether st−1 = P or Z. As before, an

outside observer can tell the current monetary policy regime just by looking at the net policy rate:

st = P if rt − rt > 0 and st = Z if rt − rt = 0.

Adding m to the System

The second extension of the model is to add the excess reserve rate mt (defined, recall, as the log

of actual-to-required reserve ratio) to the system. This variable, while constrained to be zero in

the normal regime P, becomes a monetary policy instrument in the zero-rate regime Z. It is a

censored variable because excess reserves cannot be negative. If mst is the (underlying) supply of

excess reserves, actual mt is determined as

mt =


0 if st = P,

max
[
mst, 0

]
if st = Z.

(4.6)

Our specification of mst is as in Eggertson and Woodford (2003); it depends on the current

value of inflation and output with partial adjustment:

(excess reserve supply) mst ≡ αs + βs
′

(1×2)

πt

xt

 + γsmt−1 + vst, vst ∼ N
(
0, σ2

s

)
. (4.7)

The speed of adjustment is 1 − γs. We expect the inflation (πt) and output (xt) coefficients to be

negative, i.e., βs < 0, since the central bank would increase excess reserves when deflation

worsens or output declines.

Allowing the Reduced Form Coefficients to Depend on the Regime

The central bank sets the policy rate under the normal regime and the excess reserve level under

the zero-rate regime. Since the policy rule is different — very different — between the two

regimes, the reduced-form equations describing inflation and output dynamics could shift with

the regime. If the private sector in period t sets (pt, xt) in full anticipation of the period’s regime

10 If we introduced serial correlation by allowing vπt to follow the AR(1) (the first-order autoregressive

process) for example, we would have to deal with an unobservable state variable (which is vπ,t−1 for

the AR(1) case) appearing only in an inequality. The usual filtering technique would not be applicable.
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to be chosen by the central bank, the period t reduced form should depend on the date t regime.

Since we view this to be a very remote possibility, we assume that the reduced-form coefficients

and error variance and covariances in period t depend, if at all, on the lagged regime st−1.

To Recapitulate

This completes our exposition of the regime-switching SVAR on four variables, pt (monthly

inflation), xt (the output gap), rt (policy rate), and mt (the excess reserve rate). The underlying

sequence of events leading up to the determination of the two policy instruments (rt,mt) can be

described as follows. At the beginning of period t and given the previous period’s regime st−1,

nature draws two reduced-form shocks, one for inflation and the other for output, from a bivariate

distribution. The reduced-form coefficients and the error variance-covariance matrix may depend

on st−1. This determines (pt, xt) and hence the 12-month inflation rate πt ≡
1

12 (pt + · · · + pt−11).

The central bank then draws three policy shocks (vrt, vπt, vst) fromN( 0
(3×1)

, diag(σ2
r , σ

2
π
, σ2

s )). It

can now calculate: ρrr∗t + (1 − ρr)rt−1 + vrt (the shadow Taylor rate given in (4.1)), π + vπt (the

inflation threshold shown in (4.5)), and mst (excess reserve supply, given in (4.7)). Suppose the

previous regime was the normal regime (so st−1 = P). Then the bank picks st = P if

ρrr∗t + (1 − ρr)rt−1 + vrt > rt, and st = Z otherwise. Suppose, on the other hand, that st−1 = Z.

Then the bank terminates the zero-rate/QE regime and picks st = P only if

ρrr∗t + (1 − ρr)rt−1 + vrt > rt and πt ≥ π + vπt. If st = P, the bank sets rt to the shadow rate and

the market sets mt to 0; if st = Z, the bank sets rt at rt and mt at max[mst, 0].

The model’s variables are (st,yt) with yt ≡ (pt, xt, rt,mt). Assume, as we do in the empirical

analysis, that the reduced-form equations involve only one lag. To be clear about the nature of the

stochastic process the model generates, assume, only here and temporarily, that the monthly

inflation rate pt rather than the 12-month inflation rate πt enters the Taylor rule and the excess

reserve supply equation and that rt (the rate paid on reserves) is constant (at zero). Then the

model with the exit condition is a time-invariant mapping from (st−1,yt−1) and the i.i.d. date t

shocks (consisting of the reduced-form shocks and the policy shocks (vrt, vπt, vst)) to (st,yt).

Therefore, the stochastic process generated by the model, {st,yt}
∞

t=0, is a first-order Markov

process. Now, with the 12-month inflation π rather than the 1-month inflation p in the Taylor rule

14



and in the excess reserve supply equation, the number of lags for y is not 1 but 11 and the

mapping is from (st−1,yt−1,yt−2, ...,yt−11) and the date t shocks. With the time-varying

exogenous variable rt, the mapping is not time-invariant.

For later reference, we write the mapping as

(st,yt) = ft
(
st−1,yt−1,yt−2, ...,yt−11, ( εt

(2×1)
, vrt, vπt, vst);θA,θB,θC

)
. (4.8)

Here, εt is the bivariate reduced-form shock in date t and v’s are the monetary policy shocks.

(θA,θB,θC) form the model’s parameter vector. The first subset of parameters, θA, is the

reduced-form parameters describing inflation and output dynamics. Because we allow the

reduced form to depend on the (lagged) regime, the parameter vector θA consists of two sets of

parameters, one for P and the other for Z. The second subset, θB, is the parameters of the Taylor

rule (4.5), while the third subset, θC, describe the excess reserve supply functions (4.7). More

precisely,

θB =

α∗r, β∗r
(2×1)

, ρr, σr, π, σπ

 , θC =

αs, βs
(2×1)

, γs, σs

 .
The mapping is not time-invariant only because of the presence of the exogenous variable.

5 Estimating the Model

This section has three parts: a summary of Appendix 4 about the derivation of the model’s

likelihood function, a summary of the data description of Appendix 1, and a presentation of the

estimation results.

The Likelihood Function (Summary of Appendix 4)

Were it not for regime switching, it would be quite straightforward to estimate the model because

of its block-recursive structure. As is well known, the regressors in each equation are

predetermined, so the ML (maximum likelihood) estimator is OLS (ordinary least squares). With

regime switching, the regressors are still predetermined, but regime endogeneity needs to be

taken into account as described below.
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Thanks to the block-recursive structure, the model’s likelihood function has the convenient

property of additive separability in a partition of the parameter vector, so the ML estimator of

each subset of parameters can be obtained by maximizing the corresponding part of the log

likelihood function. More specifically, the log likelihood is

log likelihood = LA(θA) + LB(θB) + LC(θC). (5.1)

The parameter vectors θA, θB, and θC have been defined at the end of the previous section.

The first term, LA(θA), being the log likelihood for the reduced-form for inflation and

output, is entirely standard, with the ML estimator of θA given by OLS. That is, the

reduced-form parameters for regime P can be obtained by OLS on the subsample for which the

lagged regime st−1 is P, and the same for Z. There is no need to correct for regime endogeneity

because the reduced form errors for period t is independent of the lagged regime. Regarding the

reserve supply parameters θC, which are estimated on subsample with st = Z, the censoring

implicit in the “max” operator in (4.6) calls for Tobit with mt as the limited dependent variable.

However, since there are no observations for which mt is zero on subsample Z (which makes the

zero-rate regime synonymous with QE as noted in Section 3), Tobit reduces to OLS. There is no

need to correct for regime endogeneity because the current regime st is independent of the error

term of the excess reserve supply equation.

Regime endogeneity is an issue for the second part LB(θB), because the shocks in the Taylor

rule and the exit condition, (vrt, vπt), affect regime evolution. If the exit condition were absent so

that the censored Taylor rule (4.2) were applicable, then the ML estimator of θB that controls for

regime endogeneity would be Tobit on the whole sample composed of P and Z; subsample P, on

which rt > rt, provides “non-limit observations” while subsample Z, on which rt = rt, is “limit

observations”. With the exit condition, the ML estimation is only slightly more complicated

because whether a given observation t is a limit observation or not is affected by the exit

condition as well as the lower bound.

The Data (Summary of Appendix 1)

The model’s variables are p (monthly inflation), x (output gap), r (the policy rate), and m (the

excess reserve rate).
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The excess reserve rate m is the log of actual to required reserves. We have already

mentioned that actual reserves and the policy rate r for the month are the averages over the

reserve maintenance period. The graph of m has been shown in Figure 2a. Recall that we defined

the zero-rate/QE regime Z as months for which the net policy rate rt − rt is less than 5 basis

points. We ignore the variations of r during the regime by setting rt − rt to zero for all

observations in subsample Z.

The output measure underlying the output gap x is a monthly GDP series obtained by

combining quarterly GDP and a monthly comprehensive index of industry activities available

only since January 1988. This determined the first month of the sample period. For potential

GDP, we use the official estimate by the Cabinet Office of the Japanese government (the Japanese

equivalent of the U.S. Bureau of Economic Analysis). It is based on the Cobb-Douglas

production function with the HP (Hodrick-Prescott) filtered Solow residual. The output gap is

then defined as 100 times the log difference between actual and potential GDP. Monthly GDP

and potential GDP are in Figure 2b. It shows the well-known decline in the trend growth rate that

occurred in the early 1990s, often described as the (ongoing) “lost decade(s)”. It also shows that

the output gap has rarely been above zero during the lost decades. The fluctuations in potential

output toward the end of the sample period reflect the earthquake and tsunami of March 2011.

The inflation rate p is constructed from the CPI (consumer price index). The relevant CPI

component is the so-called “core” CPI (the CPI excluding fresh food), which, as documented in

Table 1, is the price index most often mentioned in BOJ announcements. (Confusingly, the core

CPI in the U.S. sense, which excludes food and energy, is called the “core-core” CPI.) We made

adjustments to remove the effect of the increase in the consumption tax rate in 1989 and 1997

before performing a seasonal adjustment. We also adjusted for large movements in the energy

component of the CPI between November 2007 and May 2009.11 The year-on-year (i.e.,

11 It appears that those large movements were discounted by the BOJ. The monetary policy announcement

of August 19, 2008 (http://www.boj.or.jp/en/announcements/release_2008/k080819.pdf), which stated

that the policy rate would remain at around 50 basis points, has the following passage: “The CPI

inflation rate (excluding fresh food) is currently around 2 percent, highest since the first half of 1990s,

due to increased prices of petroleum products and food.”
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12-month) inflation rate πt equals πt = 1
12 (pt + · · · + pt−11). Figure 2c has πt since 1988 along

with the policy rate rt and the trend growth rate, defined as the 12-month growth rate of the

potential output series shown in Figure 2b.

Simple statistics of the relevant variables are in Table 3. Since we set the net policy rate

rt − rt to zero under Z and since rt = 0 during QE1 and QE2 and rt = 0.1% during QE3, the

policy rate rt itself is 0% during QE1 and QE2 and 0.1% during QE3.

Parameter Estimates

Having described the estimation method and the data, we are ready to report parameter estimates.

We start with θB.

Taylor rule with exit condition (θB).

Most existing estimates of the Taylor rule for Japan end the sample at 1995 because the policy

rate shows very little movements near the lower bound since then.12 In our ML estimation, which

can incorporate the lower bound on the policy rate, the sample period can include all the many

recent months of very low policy rates. On the other hand, the starting month is January 1988 at

the earliest because that is when our monthly output series starts.

Before commenting on the ML estimate shown in Table 4 below, we state two

considerations underpinning our specification of the Taylor rule.

• (variable real interest rates) We have been treating the intercept in the desired Taylor rate r∗t

(the α∗r in (4.1)) as a constant because of the assumption of the constant real interest rate.13

This assumption, however, does not seem appropriate for Japan, given the decline in the trend

growth rate during the “bubble” period of the late 1980s to the early 1990s, shown in Figure

12 See Miyazawa (2010) for a survey.

13 In Taylor’s (1993) original formulation, the constant term α∗r equals 1%. It is the difference between

the equilibrium real interest rate, which is assumed constant at 2%, and half times the target inflation

rate of 2%.
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2c.14 That the intercept α∗r may have declined during the period can be seen from the figure.

Before the bubble, say in 1988, the 12-month inflation rate was very low, about 0.4% but the

policy rate was well above zero, about 4%. In the post-bubble period, both the policy rate and

the inflation rate are very low.15 See Figure 3 below for the behaviour of the desired rate when

trend growth is factored in.

• (deviations from the Taylor rule) It is widely agreed that the BOJ under governor Yasushi

Mieno set the policy rate at a very high level to quell the asset price bubble.16 We view this as

a prolonged deviation from the Taylor rule and include a dummy variable, to be called the

“Mieno dummy”. It takes a value of 1 from December 1989, when Mieno became governor, to

June 1991, the month before the policy rate was cut. Another deviation seems to have occurred

during the banking crisis of the second half of the 1990s. Between September 1995 and July

1998, the policy rate remained low despite improvements in inflation and output. Assuming

that the BOJ refrained from raising the policy rate to help alleviate the Japanese banking crisis,

we include a dummy for this period in the equation as well.17

Economists at the BOJ were aware of the intercept drift due to changing real interest rates.

14 For example, Hayashi and Prescott (2002) document that both the TFP (total factor productivity) and

the rate of return on capital declined in the early 1990s. The Taylor rule for Japan in Braun and Waki

(2006) allows the equilibrium real rate to vary with the TFP growth.

15 The decline in the output gap only partially explains the post-bubble low policy rates. The output

gap was 0.8% in 1988 and −2.0% in 1995. Even if the output gap coefficient in the desired Taylor

rule is as high as 0.5, the decline in the desired rate explained by the output gap is about 1.4% (=

0.5 × (2.0% + 0.8%)).

16 See, for example, a booklet for popular consumption by Okina (2013) who was a director of the BOJ’s

research arm.

17 The Bank of Japan started releasing minutes of the monetary policy meetings only since March 1998

(the 3 March 1998 release is about the meeting on January 16, 1998), so it is not possible for out-

side observers to substantiate the claim. However, those released minutes of the early part of 1998

do include frequent mentions of the financial system. For example, the minutes of the 16 January

1998 meeting has the following passage: “... a majority of the members commented that the sufficient

provision of liquidity would contribute to stabilizing the financial system and to improving household

and depositor sentiment.”
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For example, Okina and Shiratsuka (2002) include the trend growth rate (as measured as the

12-month growth rate of potential GDP) in their Taylor rule.18 We do the same here. Our

specification of the Taylor rule, therefore, is that the intercept α∗r in the desired Taylor rule is an

affine function of the trend growth rate as well as the Mieno (anti-bubble) and banking crisis

dummies.

Table 4 reports our ML estimates. The Mieno dummy coefficient of 2.5% in the desired

Taylor rate indicates that the policy rate during the height of the bubble was well above what is

prescribed by the Taylor rule. As expected, the banking crisis dummy has a negative sign — the

desired policy rate would have been higher on average by 37 basis points were it not for the

banking crisis. The trend growth rate has a coefficient that is close to unity (0.98) and highly

significant (t = 11.5). The inflation and output coefficients (β∗r in (4.1)) are estimated to be

(0.75, 0.07). Given the low persistence of inflation (to be found in the reduced-form inflation

equation below), it is not surprising that the inflation coefficient is below unity. The estimated

speed of adjustment per month is 14%. The mean of the time-varying threshold inflation rate

affecting the exit condition is mere 0.53% per year.

We should note that it is crucial to include the Mieno dummy if the sample includes the

bubble period because without it the inflation coefficient is very imprecisely estimated (0.32,

t = 0.5), with the run-up of the policy rate during the bubble period almost entirely attributed to

the trend growth rate.

The desired Taylor rate r∗t implied by the ML estimate is shown in the dotted line in Figure

3. It highlights the role of the exit condition. The desired Taylor rate r∗t , and hence the shadow

Taylor rate (ρrr∗t + (1 − ρr)rt−1), turned positive in the middle of QE2. Yet the QE was not

terminated until the inflation rate is slightly above zero (as shown in Table 2).

Excess reserve supply equation (θC).

18 As is well known in the RBC (real business cycle) calibration literature, the trend growth rate is closely

linked to the equilibrium real interest rate. For the case of the power utility u(C) = 1
1−γ C1−γ, the long-

run (log) real interest rate is an affine function of the trend growth rate: − log(β) + γg, where g here is

the long-run growth rate of output. In the case of the log utility (γ = 1), the long-run real interest rate

and the trend growth rate move one-for-one.
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We have noted that the ML estimator can be obtained by regressing mt on the constant, πt, xt,

and mt−1 on subsample Z. We have also noted earlier that QE1 looks very different from QE2

and QE3, with mt much lower and less persistent during QE1. For this reason we drop QE1 when

estimating the excess reserve supply equation. The estimates are in Table 5. Both the inflation

and output coefficients pick up the expected sign. The issue of how to treat m during QE1 will be

addressed in Section 8.

Inflation and output reduced-form equations (θA).

As mentioned above, the ML estimate of the reduced form can be obtained by OLS on two

separate subsamples, “lagged” subsample P (i.e., those t’s with st−1 = P) and “lagged” subsample

Z (with st−1 = Z). The BIC (Baysian information criterion) instructs us to set the lag length to

one on both subsamples.19 We include the current values of the Mieno (anti-bubble) and the

banking crisis dummies and the trend growth rate in the set of regressors in order to allow those

variables to affect the intercepts of the reduced form.

Table 6 shows the estimates. First consider lagged subsample P. We exclude lagged m in

order to be consistent with the model’s current assumption that m = 0 under regime P; in Section

8, when we recognize occasionally positive excess reserves, the effect of lagged m will be taken

into account.

On lagged subsample P, Andrew’s (1993) sup F test finds no structural break for the

19 If n is the lag length and K is the total number of coefficients (including the intercepts) of the bivariate

system, we have K = 2× (2 + 4n) for lagged subsample Z (there are two regressors bedides (p, x, r,m):

the constant and the trend growth rate). For lagged subsample P, we have K = 2 × (4 + 3n) because

lagged m is absent but the Mieno and banking crisis dummy are present. Let T be the sample size and

ε̂t be the 2× 1 matrix of estimated reduced-form residuals. Given the moderate sample size, we set the

maximum lag length at nmax = 6 and the sample starts from t =July 1988. The information criterion

to be minimized over n = 1, 2, ...,nmax is

log


∣∣∣∣∣∣∣ 1
T

T∑
t=1

ε̂t ε̂
′

t

∣∣∣∣∣∣∣
 + K · C(T)/T, (5.2)

where C(T) = log(T). Under the AIC (Akaike information criterion) which sets C(T) = 2, the lag

length chosen is 2 for lagged subsample P and 1 for Z.
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inflation equation but a structural break for the output equation occurring in March 1995.20 We

show in Table 6 the reduced-form estimates for the two P subsamples split at March 1995. The

output gap (x) equation indeed looks very different before and after the break, particularly for the

lagged x and the lagged r coefficients. The output persistence measured by the lagged x

coefficient is much lower before the break. The output effect of the policy rate (the lagged r

coefficient) is similar in magnitude but the sign is reversed.

The monthly inflation (p) equation on lagged subsample P, with no significant structural

breaks, exhibits two notable features, observable before and after the break. First, inflation

persistence is non-existent, as indicated by the lagged p coefficient of about −0.1. Second, the

lagged r coefficient is positive and large. The estimated value of the coefficient of 0.44 after the

break means that a 1 percentage point cut in the policy rate lowers inflation by 0.44 percentage

points in the next period. That is, the IR (impulse response) of a 1 percentage point cut to

inflation is negative at −0.44 on impact (i.e., at horizon 1). The estimate, however, is not

20 In testing for structural breaks, we allow all coefficients to shift except for the Mieno and banking crisis

dummies. We exclude Mieno and crisis dummies because their values are zero for many possible break

dates.
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statistically significant with a t-value of 0.8.21 22

Turn now to lagged zero-rate subsample Z. The difference in the policy rule for excess

reserves between QE1 and QE2&QE3 mean that the reduced-form coefficients during QE1 could

be different. For this reason the sample excludes QE1 and combines QE2 and QE3. The

regressors include rt−1 because, although it is constant in each QE spell, it differs across spells

(see Table 3). Therefore, if rt−1 were replaced by the QE3 dummy, the lagged r coefficients (of

0.49 and −0.66, both statistically insignificant) in the inflation and output equations would be

scaled down by a factor of 10, with the coefficients of the other variables unchanged.

The positive lagged m coefficients on lagged subsample Z imply that both inflation and

output rise as excess reserves are increased. These effects are statistically significant. The

coefficient of 0.40 in the output equation, for example, means that the IR of the output gap to a

unit increase in m (an increase by 100 percentage points) is 0.40 percentage points on impact.

21 The positive rt−1 coefficient may be due to the fact that rt−1 is the average over the period of the 16th

of month t− 1 and the 15th of month t. If the central bank can respond to price increases of the month

by raising the policy rate in the first 15 days of the month, there will be a positive correlation between

pt and rt−1. To check this, we replaced rt−1 by rt−2 and found a very similar coefficient estimate.

22 The positive lagged r coefficient in the monthly inflation equation emerges on U.S. data as well. The

inflation and output reduced form estimated on U.S. monthly data is as follows (t-values in brackets):

pt = 0.94
[1.93]

+ 0.45
[12.1]

pt−1 − 0.12
[−1.5]

xt−1 + 0.34
[7.9]

rt−1,

xt = 0.023
[0.8]

+ 0.0039
[1.6]

pt−1 + 0.99
[187]

xt−1 + 0.0067
[2.4]

rt−1,

t = March 1960,..., August 2008. Here, pt is the monthly CPI inflation rate from month t − 1 to t in

annual percentage rates, xt is the unemployment rate (not the output gap) of month t in percents, and rt

is the average from the 16th day of month t to the 15th day of month t+1. The data appendix includes a

documentation of the U.S. monthly data. The estimated lagged rt−1 coefficient in the inflation equation

declines as the sample becomes more recent: it is 0.31 [t = 6.4] if the sample starts from 1970, 0.27

[t = 5.4] if from 1980, and −0.08 [t = −0.6] if March 1995. Because the x here for the U.S. data is the

unemployment rate, not the output gap, the positive lagged r coefficient of 0.0067 in the x equation is

not surprising.
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6 Counter-Factual Analysis

Having identified the model, we can generate the paths of the model’s variables from some base

period. Our counter-factual analysis compares the expected value of the variables at various

horizons conditional on the actual history up to the base period to that conditional on an

alternative history. The difference in history examined in this section is with respect to the

monetary policy shocks including those that would bring about changes in the regime.

If the model is linear and if the only difference between the two histories is the value of one

of the shocks in the base period, our counter-factual analysis reduces to the familiar IR (impulse

response) analysis. Nevertheless, for nonlinear models such as ours, we find it more transparent

to designate the history in terms of the model variables rather than in terms of the shock

realizations. The next subsection explains the reason using a univariate example. The reader can

skip the next subsection without losing continuity.

Issues Related to Nonlinear Models: A Univariate Illustration

For linear models, the IR analysis is well known since Sims (1980). Our model, however, is

nonlinear because the dynamics depends on the regime and also because of the nonnegativity

constraint on excess reserves. Several issues crop up when we extend the IR nalysis from linear

to nonlinear models. To illustrate, this subsection considers a possibly nonlinear univariate

process whose dynamics is described by the mapping yt = f (yt−1, εt) where εt is an i.i.d. shock.

Since there is only one shock in the model, our counter-factual analysis and the IR analysis are

equivalent.

The IR proposed by Gallant, Rossi, and Tauchen (1993, hereafter GRT) compares the

forecast conditional on a current history of the variable to that conditional on an alternative

history that differs by a perturbation δ for the current period. For the univariate example here, it

can be stated simply and cleanly as

E(yt+k | yt + δ)︸           ︷︷           ︸
alternative forecast

− E(yt+k | yt)︸      ︷︷      ︸
baseline forecast

, k = 1, 2, ... (6.1)
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Because the process {yt} is first-order Markov, it is enough to include its current value in the

conditioning information.

The definition can be stated equivalently (albeit less cleanly) in terms of the shock εt rather

than the variable yt. The shock-based translation is via the inverse of the mapping from εt to yt.

Define

φ(yt; yt−1) ≡
{
εt

∣∣∣ yt = f (yt−1, εt)
}
. (6.2)

This is a correspondence from yt to εt conditional on lagged information yt−1. It can be

set-valued because multiple values of εt can be consistent with a given value of yt. This would

happen if, for example, yt is discrete-valued or sencored. By construction, the expectation

conditional on both εt and yt−1, E(yt+k|εt, yt−1), is related to E(yt+k|yt) by the identity:

E(yt+k | yt) = E
(
yt+k

∣∣∣ εt ∈ φ(yt; yt−1), yt−1

)
. (6.3)

Despite the appearance of yt−1 in the conditioning information, the conditional expectation does

not depend on yt−1; the particular way in which the correspondence φ depends on yt−1 is such

that this is the case.23 Substituting the identity (6.3) for two current realizations of the variable, yt

and yt + δ, into (6.1), we obtain the error-based translation of GRT’s IR:

E
(
yt+k

∣∣∣ εt ∈ φ(yt + δ; yt−1), yt−1

)
︸                                    ︷︷                                    ︸

alternative forecast

−E
(
yt+k

∣∣∣ εt ∈ φ(yt; yt−1), yt−1

)
︸                               ︷︷                               ︸

baseline forecast

. (6.4)

Therefore, GRT’s IR can be written as: E(yt+k | εt ∈ A, yt−1) − E(yt+k | εt ∈ B, yt−1) for

suitably chosenA and B. For linear models, (i) the setsA and B are singletons, (ii) the IR

depends on the two (singleton) sets only through their differenceA−B, (iii) it is

history-independent (i.e., doesn’t depend on yt here), and (iv) it is proportional to the shock size

δ. None of these features are necessarily shared by nonlinear models.

23 As an example, consider the linear AR1 process: yt = ρyt−1 + εt. We have: E(yt+k | yt) = ρkyt,

E(yt+k | εt, yt−1) = ρkεt + ρk+1yt−1, and φ(yt; yt−1) is a singleton {yt − ρyt−1}. Setting εt = yt − ρyt−1,

we have E(yt+k | εt = yt − ρyt−1, yt−1) = ρk(yt − ρyt−1) + ρk+1yt−1 = ρkyt. The IR by (6.1), which is

also by (6.4) below, equals ρkδ.
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The Policy-Rate Effect

Our model is described by the mapping (4.8) where the variables are (st,yt) (with

yt ≡ (pt, xt, rt,mt)) and the shock vector is (εt,vt) where εt is the bivariate reduced-form shock to

inflation (p) and output (x) while vt ≡ (vrt, vπt, vst) is composed of the Taylor rule shock (vrt), the

shock to the inflation threshold (vπt), and the reserve supply shock (vst). The discrete variable of

the model is st representing the monetary policy regime.

Start with the familiar case where the only difference between the two histories is

concerning the shock to the interest rate vrt. Our counter-factual analysis asks: what difference

would it have made if the shock were different in size. The difference is given by:

E
(
yt+k

∣∣∣ st = P, (pt, xt, rt + δr, 0),︸              ︷︷              ︸
yt ≡ (pt, xt, rt,mt) in the alternative history

yt−1, ...,yt−10

)

− E
(
yt+k

∣∣∣ st = P, (pt, xt, rt, 0),︸        ︷︷        ︸
yt ≡ (pt, xt, rt,mt) in the baseline history

yt−1, ...,yt−10

)
, y = p, x, r,m.

(6.5)

The response profile, namely this difference at various horizons (k), is the natural and transparent

extension to the nonlinear model of the standard IR function of the policy-rate shock. Before

commenting on the particular configuration of the current value of the variables (st,yt) in the

baseline and alternative histories, we make three remarks about the conditional expectations

forming the baseline and alternative forecasts.

• (the conditioning information) Shifting time t forward by one period in the mapping (4.8) gives

(st+1,yt+1) = ft+1

(
(st,yt),yt−1, ...,yt−10; (εt+1,vt+1);θA,θB,θC

)
, vt+1 ≡ (vr,t+1, vπ,t+1, vs,t+1).

(6.6)

This defines the distribution of (st+k,yt+k) conditional on (st,yt,yt−1, ...,yt−10) for horizons

k = 1, 2, .... This conditional distribution defines the conditional expectations. It thus suffices

to include the current value of (s,y) and ten lags of y in the conditioning information. In

particular, there is no need to include the lagged regime st−1. We also note that we are

allowing future regimes to change in the conditional expectations calculations.
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• (Monte Carlo integration) We compute numerically the conditional expectations by simulating

a large number of sample paths generated by the mapping (6.6) and then taking the average of

those simulated sample paths. In the counter-factual simulations to be reported below, 10,000

simulated paths are generated.

• (projected paths of exogenous variables) There are four exogenous variables in the system: r

(the rate paid on reserves), the banking crisis dummy (for September 1995-July 1998), the

Mieno (anti-bubble) dummy (for December 1989-June 1991), and the trend growth rate (the

12-month growth rate of potential GDP). Each simulated sample path of (s,y) from the base

period t depends on the projected path from t on of those exogenous variables.24 Our

counter-factual analysis, which compares two simulated sample paths, is invariant to the

projected exogenous variables path with linear systems, but not so with nonlinear systems such

as ours. The projected path of the exogenous variables we use for our calculations of the

response profile is their actual path (with the values beyond the sample period set equal to the

value at the end of the period).

Two points regarding the configuration of (st,yt) in the baseline and alternative forecasts in

(6.5):

• (the reduced-form shocks are controlled for) Not only the history up to t − 1 but also the

current value of (pt, xt) are the same in both the baseline and alternative histories; the only

difference is that the policy rate rt differs by δr. In terms of shocks, the reduced-form shocks

εt are the same but the Taylor rule shock vrt differs by δr (see Appendix 2, particularly

(A2.21), for a more formal statement). Thus the difference in the policy rate is purely due to

an exogenous policy decision.

• (restrictions on (st,yt) for well-defined conditional expectations) Given that the common

regime is P, in order for the conditional expectations to be well-defined, (i) mt (the excess

reserve rate) must be 0 in both the baseline and alternative histories because of the assumption

24 Therefore, the expectations operator should have a subscript t (Et rather than E). We won’t carry this

sub t for notational simplicity.
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(to be relaxed in Section 8) of zero excess reserve demand under P, and (ii) rt > rt in the

baseline history and rt + δr > rt in the alternative history because under P the lower bound is

not binding.

In the next several figures, we display the estimated response profiles with error bands. The

error bands are obtained as follows. Draw a parameter vector from the estimated asymptotic

distribution and do the Monte Carlo integration (with 1,000 simulations given the parameter

vector).25 Continue this until we accumulate 400 “valid” response profiles.26 Pick the 84 and 16

percentiles for each horizon (so the coverage rate is 68%, corresponding to one-standard error

bands).

Figure 4a shows the policy-rate effect, namely the response profiles given in (6.5) for

horizons k = 0, 1, 2, ..., 60. The interest-rate shock is δr = −1, that is, a policy rate cut of 1

percentage point. In contrast to the linear case, the difference in conditional expectations depends

not only on how the alternative history differs from the baseline but also on the baseline history

itself. So the baseline period needs to be specified. In order to calculate the response profiles of

the policy rate cut, however, the base period has to be May 1995 or before, when the policy rate is

above 1 percent. We take the base period t to be the earliest month after the structural break,

25 The likelihood function is additively separable as shown in (5.1) where θA is the bivariate reduced-

form parameters (including the error variance-covariance matrix), θB is the Taylor rule parameters,

and θC describes the excess reserve supply function. Consequently, if θ̂A is the ML estimator of

θA, for example, and if Avar(θ̂A) is its asymptotic variance, a consistent estimator, ̂Avar(θ̂A), of the

asymptotic variance is the inverse of 1/T times the Hessian of LA(θA) where T is the sample size. For

θB, we draw the parameter vector by generating a random vector from N
(
θ̂B, 1

T
̂Avar(θ̂B)

)
. We do

the same for and θC. For θA, we draw the parameter vector according to the RATS manual. That is,

let Σ̂ here be the ML estimator of the 2 × 2 variance-covariance matrix Σ of the bivariate error vector

in the reduced form. It is simply the sample moment of the bivariate residual vector from the reduced

form. We draw Σ from the inverse Wishart distribution with TΣ̂ and T −K as the parameters, where T

is the sample size and K is the number of regressors. Let Σ̃ be the draw. We then draw reduced-form

coefficient vector from N(b, Σ̃ ⊗ (TSXX)−1), where b here is the estimated reduced-form coefficients

and SXX is the sample moment of the reduced-form regressors.

26 Let IR(i, k) be the k-period ahead response of variable i and let n be the horizon. For each i, define

v1i ≡
∑`

k=1(IR(i, k))2 and v2i ≡
∑n

k=`+1(IR(i, k))2 where ` is the largest integer not exceeding 0.8n. We

declare the response profile “valid” if max
i

v2i/v1i ≤ 0.1. We set n (the response horizon) to 120.
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March 1995, when the policy rate, at rt = 2.0%, was comfortably above zero.

In the figure, that the rate cut is 1 percentage point can be read off from the intercept of the

profile in the lower-left panel, which shows the response profile of r to r. In the response profile

for p, shown in the upper-left panel, the immediate response (at horizon k = 1) is negative, at

−0.44%. As mentioned in the previous section, the immediate response equals the perturbation δr

times the lagged r coefficient in the reduced-form for inflation. The immediate response does not

depend on the history because the reduced form in the next period depends on the current regime.

The immediate response’s wrong sign is quickly reversed in several months. The error band

shows that, for all k, the response is not significantly different from zero. The output gap

response shows that the rate cut has a strong expansionary effect, reaching a peak of about 2.4%

in 12 months. Because of the high initial policy rate of 2.0%, the system rarely switches to QE in

the simulations (the average duration of the initial regime of P is about 3 years under either

scenario, baseline or alternative), which explains the almost no response of m as shown in the

south-east panel of the figure.

The QE Effect

We turn to examine the response to changes in the excess reserve rate m. Since the central bank

has control over m only under the zero-rate regime, we set st = Z in both the baseline and

alternative histories. Given that the common regime is Z, for the conditional expectations to be

well-defined, set rt = rt in both histories. These considerations determine the configuration of

(st,yt) in the baseline and alternative histories. The response to the QE shock vst is thus the

following difference:

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt,mt + δm),︸                 ︷︷                 ︸
yt ≡ (pt, xt, rt,mt) in the alternative history

yt−1, ...,yt−10

)

− E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt,mt),︸         ︷︷         ︸
yt ≡ (pt, xt, rt,mt) in the baseline history

yt−1, ...,yt−10

)
, y = p, x, r,m.

(6.7)

Here, as in the case of the interest-rate shock, the response is purely policy-induced, because we

are controlling for the reduced-form shock εt by requiring (pt, xt) to be the same in both histories.

The only difference between the two histories is that the QE shock vst is higher in the alternative
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history by δr (see (A2.22) for the error-based translation of the two histories).

The QE effect, namely the profile of the response to m, does not depend very much on the

choice of the base period t. Figure 4b shows the response profiles for the base period of February

2004 (the peak QE month) when mt = 1.849, about 6.4 (= exp(1.849)) times required reserves.27

The lower-left panel shows the response profile of m to m, so its intercept at horizon k = 0 (the

base period) equals the perturbation δm. Its size is chosen so that its ratio to the estimated

standard deviation of the reserve supply shock vst (which is 0.132 from Table 5) roughly equals

the ratio of −δr (the size of the interest-shock) to the estimated standard deviation of the policy

rate shock vrt (0.134 from Table 4). We have already set δr = −1 percentage point, so δm = 1.0.

The response profile for the output gap (x) is shown in the upper-right panel of the figure. Its

immediate response (the response at k = 1) is about 0.40% (which is the lagged m coefficient in

the output equation of 0.40 shown in Table 6 times δm = 1). Because of the persistence in the

output dynamics exhibited in the estimated reduced form, the response builds on the immediate

response and goes up to nearly 2% in 12 months or so. For monthly inflation (p), the immediate

response (at k = 1) is greater, but the effect tapers off due to the lack of persistence. Because both

output and inflation rise, regime P is more likely to occur under the alternative scenario. This is

why the response of the policy rate (r) gradually rises from zero with the response of m turning

negative. This also explains why the average duration from the base period of the initial regime

(which is Z in both the base and alternative scenarios) is shorter under the alternative scenario

with 10 months than under the base scenario with 28 months.

What Would Have Happened if the Exit Were Delayed?

We can conduct more interesting analysis by allowing the two histories to differ in more than one

respect. To illustrate, we examine the episode of the winding-down of QE2. The data on

(st,mt, rt, pt, πt, xt) during the episode are in Table 2.

The last month of QE2 is June 2006 and the normal regime P resumed in July 2006. In

27 Because the base period t is after the structural break date of March 1995, the estimated reduced-form

parameter vector θ̂A used for simulating sample paths for the Monte Carlo integration comes from the

reduced-form estimate for the post-break period (the middle panel in Table 6).
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terms of our model, the combination of the inflation and output shocks (εt) and the policy shocks

(vt ≡ (vrt, vπt, vst)) for July 2006 was such that the outcome of the mapping (4.8) was, unlike in

the previous month, st = P. What difference would have emerged if QE2 were allowed to

continue, namely if the reduced-form shocks εt for July 2006 were the same but the configuration

of the policy shocks (vrt, vπt, vst) were different enough for the central bank to choose the

different regime of P?

We can answer the question by setting t = July 2006 (when the regime was st = P) and

taking the alternative history to be one with st = Z. The difference we calculate, then, is

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt,me
t),yt−1, ...,yt−10︸                                     ︷︷                                     ︸

counter-factual history

)
− E

(
yt+k

∣∣∣ st = P, (pt, xt, rt, 0),yt−1, ...,yt−10︸                                   ︷︷                                   ︸
observed history in July 2006

)
,

(6.8)

where me
t is the level of mt that can be expected given the history leading up to (pt, xt) and given

the current regime is st = Z (so mt is supply-determined). It can be written as28

me
t ≡ E

[
max[mst, 0]

∣∣∣ pt, xt,yt−1, ...,yt−10

]
= Evst

[
max[mst, 0]

∣∣∣ πt, xt,mt−1

]
with mst given by (4.7).

(6.9)

Thus, the perturbation occurs to not just one but three variables: rt, mt, and st.

The estimate of this me
t for t = July 2006 is 0.45, which is about 1.6 (= exp(0.45)) times

required reserves, about a quarter of the ratio (of 6.4) observed at the peak QE month of February

2002. The estimated response profiles of the difference (6.8) for y = p, x, r,m is in Figure 4c. The

perturbations to m of δm = 0.45 and to r of δr = −0.26 (rt = 0.26% and rt = 0% in July 2006)

can be read off from the intercepts in the two lower panels. Surprisingly, despite the increase in m

and the cut in the policy rate, both inflation and output decline. Continuing QE2 would have been

contractionary.

28 This conditional expectation can be computed analytically by one of the standard Tobit formulas.

Consider the Tobit model y = max[x′β + u, c] where u ∼ N(0, σ2). We have: E(y|x) = [1 − Φ(v)] ×

[x′β + σλ(v)] + Φ(v)c, where v ≡ (c − x′β)/σ and λ(v) ≡ φ(v)/[1 −Φ(v)]. Here, φ and Φ are the pdf

and cdf of the standard normal distribution.
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To see why, decompose the (overall) difference (6.8) as the sum of three differences:

(6.8) = E
(
yt+k | st = Z, (pt, xt, rt,me

t), ...
)
− E

(
yt+k | st = Z, (pt, xt, rt, 0), ...

)
︸                                                                              ︷︷                                                                              ︸

“QE effect”

+ E
(
yt+k | st = Z, (pt, xt, rt, 0), ...

)
− lim

r↓rt
E
(
yt+k | st = P, (pt, xt, r, 0), ...

)
︸                                                                                ︷︷                                                                                ︸

“transitional effect from P to Z”

+ lim
r↓rt

E
(
yt+k | st = P, (pt, xt, r, 0), ...

)
− E

(
yt+k | st = P, (pt, xt, rt, 0), ...

)
.︸                                                                                 ︷︷                                                                                 ︸

“rate-cut effect”

(6.10)

The culprit is the second difference which can be aptly called the “transitional effect”. Its profile,

shown in Appendix Figure 2, is very similar to the overall profile in Figure 4c. As we know from

Figure 4b, the first component (the QE effect) is expansionary, which means that the third

component (the rate-cut effect) for the same base period is contractionary in spite of the decline

in the policy rate from rt = 0.26% to (arbitrarily above) rt = 0%. This is because lowering the

rate from an already very low level makes it more likely that the regime switches from P to Z in

the future with all the contractionary effect of the transitional effect from P to Z. That the rate-cut

effect (the third component) is almost a mirror image of the QE effect (the first component) is

shown in Appendix Figure 3.

Mechanically, the source of the transitional effect is that the reduced-form coefficients

depend on the regime. Appendix 3 provides an analytical expression that links the reduced-form

coefficients to the transitional effect for (p, x). It shows that the contractionary transitional effect

from P to Z is primarily due to the lower values of the reduced-form intercepts under Z.

Would Earlier Exits Have Been Expansionary?

A question arises: if delaying the exit in July 2006 would have been contractionary, would it have

been better to exit earlier? We can answer this question by considering the opposite of (6.8) for

the base period t before July 2006 when the excess reserve rate mt was greater. That is, take Z,

not P, as the baseline regime and take P, not Z, as the counter-factual alternative regime. So the
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difference we calculate would be

lim
r↓rt

E
(
yt+k | st = P, (pt, xt, r, 0),yt−1, ...,yt−10

)
− E

(
yt+k | st = Z, (pt, xt, rt,mt),yt−1, ...,yt−10

)
(6.11)

for any of the Z months preceding July 2006. This difference can be decomposed as

(6.11) =
[
lim
r↓rt

E
(
yt+k | st = P, (pt, xt, r, 0), ...

)
− E

(
yt+k | st = Z, (pt, xt, rt, 0), ...

)
︸                                                                                ︷︷                                                                                ︸

“transitional effect from Z to P”

]

+
[
E
(
yt+k | st = Z, (pt, xt, rt, 0), ...

)
E
(
yt+k | st = Z, (pt, xt, rt,mt), ...

)
︸                                                                           ︷︷                                                                           ︸

“negative of the QE effect”

]
.

(6.12)

There are two components operating in the opposite directions. The first component is

expansionary because it is the negative of the transitional effect from P to Z which, as just seen, is

contractionary. The other component, which is due to the decline in the excess reserve rate from

mt all the way to zero, is contractionary. Whether the overall difference (6.11) is positive or not

(namely, whether ending QE would have been expansionary or not) depends on the strength of

the second component which, in turn, depends on the size of mt. If mt is not large enough, the

first component dominates and the profiles of inflation and output responses would be the

opposite of those in Figure 4c. This is indeed the case for t = June 2006 (with mt = 0.46 as

shown in Table 2), May 2006 (with mt = 0.55) and April 2006 (mt = 1.0 or the actual-to-required

reserve ratio of 2.7), but not for March 2006 with mt = 1.51 or with the actual-to-required reserve

ratio of 4.5. Exiting from QE2 in March 2006 and hence reducing m from 1.51 to zero would

have been contractionary.
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7 Discussion

The paper’s two major findings — that the QE effect exists and that the transitional effect from

the zero-rate to the normal regime is contractionary — could be controversial. This section

explores possibilities that might explain those findings.

Why Do Excess Reserves Matter?

The prevailing view about excess reserves, expounded by Eggertson and Woodford (2003), is that

they don’t matter when the nominal rates are close to the lower bound. Why, then, does the

excess reserve rate m show up with a significant coefficient in the reduced form for inflation (p)

and the output gap (x) on QE months? Here we examine three possible explanations. One is its

effect on the long-term interest rates through reserve-financed changes in the central bank’s asset

size and its maturity structure. Another is the signalling effect on other asset prices. Yet another

is possible balance-sheet adjustments by commercial banks prompted by the capital requirement.

We take up each of them in turn.

Long-Term Interest Rates

To examine the transmission channel through the long-term interest rates, two issues must be

addressed. First, did QE lower the long-term interest rates? Second, if so, did the lower interest

rates raise output and inflaiton? Long-term bond purchases by the central bank could lower the

long-term interest rates either by compressing the term premium or by the signalling effect that

lower expected future short-term interest rates. Recent event studies surveyed by Woodford

(2012), particularly the work by Bauer and Rudebusch (2014), attribute an important role to the

signalling effect associated with the Fed’s LSAP (large-scale asset purchases) announcements.

For Japan, the issue is the extent of the signalling effect because the reserve-financed assets

growth is mostly through short-term government bonds. The evidence reported in Ueda (2012) is

that announcements of reserve increases during QE2 had no effect on the long-term interest rates.

Even if an increase in reserves lowers the long-term interest rates though the signalling

effect, the excess reserve rate m would not have entered the reduced-form equation for inflation

and output if it had no macroeconomic effect. There are relatively few studies on this issue. The

34



DSGE model of Chen, Curdia, and Ferrero (2012) implies that the Fed’s second LSAP increased

GDP growth by only a third of a percentage point, with no effect on inflation.

We have enough monthly observations to evaluate this transmission channel without

resorting to the event study technique. We expand our SVAR to include the spread between the

10-year government bond yield and the policy rate. If zt denotes the additional variable (which

here is the spread) for period t, the two reduced-form equations now have zt−1 as the additional

regressor, and there is an additional equation, placed after the policy variables block, that has zt

as the dependent variable and (pt, xt, rt,mt, zt−1) (in addition to the exogenous variables) as

regressors. The first numerical row of Table 7 extracts relevant coefficients estimates on the 112

observations consisting of QE2 (March 2001 - June 2006) and QE3 (December 2008 - December

2012). It shows that the long-term interest rate channel is almost non-existent. To see this, look at

the zt (the spread) equation first. The coefficient of mt−1 is −0.03, implying that a unit increase

(an increase by 100 percentage point) in the excess reserve rate contemporaneously lowers the

spread only by 3 annual basis points. Next look at the reduced form. Take the output gap, for

example. The estimated immediate response to the 100 percentage point increase in m is to lower

the output gap by an insignificant amount (0.26 × 0.03 percentage points). It is noteworthy that

lagged m coefficients in the reduced form are very similar, in magnitude and in significance, to

those in Table 6 where zt−1 is not included.

Other Asset Prices

The QE’s signalling effect could have macroeconomic effects through asset prices other than the

long-term interest rates. Here we examine the exchange rates and Tobin’s q. The second

numerical row of Table 7 is an extract from the SVAR system with the Yen/Dollar exchange rate.

With no significant coefficients of the relevant variables, the exchange-rate channel is

non-existent. On the other hand, as the third row of the Table shows, the channel through Tobin’s

q may have been in operation. The effect on q of current m is significant with a t-value of 1.99.

The lagged q coefficients in the reduced form are positive and, for output, the t-value is above 1,

at 1.26. It is possible that lagged q coefficient has a higher t-value if q is better measured. As

Honda (2014) notes, the q channel is consistent with the fact that GDP share of investment
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increased substantially during QE2.

The Capital Requirement

There is another explanation, due to Ennis and Wolman (2015), which has to do with the capital

requirement imposed on commercial banks. If the government bonds purchased by the central

bank are initially owned by commercial banks, then any expansion of bank reserves are matched

by a decrease in securities owned by commercial banks, so the open market operation does not

increase the size of banks’ assets. To the extent that bonds purchased by the central bank are

initially owned by non-banks, the assets held by commercial banks increase. Therefore, as

reserves continue to expand, at some point the capital requirement will become binding. One

possibility, of course, is that commercial banks will reduce lending growth, which is

contractionary. Another possibility, pointed out by Ennis and Wolman (2015), is that banks might

attempt to shed assets and liabilities by inducing depositors to withdraw currency and the public

decides to spend the extra cash. Indeed, in Ennis’s (2014) flexible-price general equilibrium

model with an explicit modelling of the banking sector, an increase in reserves engineered by

open market operations brings about a proportionate increase in the price level.29 This is because

bank loans are demand-determined and the supply curve of bank capital is vertical in his model.

To corroborate the Ennis-Wolman conjecture, the last row of Table 7 has the the growth rate

of bank loans as the additional variable to the SVAR. The relevant coefficients are all positive,

which is consistent with the premise of Ennis-Wolman conjecture that the growth of reserves at

least was not at the expense of loan growth.

Can There be a Policy-Induced Exit That is Expansionary?

There is a well-known model of an exit from the liquidity trap by Krugman (1998) and Eggertson

and Woodford (2003). The exit in that model occurs when the real interest rate turns from

29 See Corollary 3.1 and its proof in Ennis (2014). A detailed model of the banking sector that has an

explicit formulation of the liquidity service of reserves in Bianchi and Biggio (2014) shows that an

increase in reserves past the point where the marginal liquidity service falls to zero would bring about

balance-sheet adjustments due to the capital requirement. However, they do not examine its possible

macroeconomic effect.
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negative to positive. Can there be a model in which the exit from the liquidity trap is engineered

by a judicious choice of policy shocks? Such a model is presented in Appendix 5:. It is a minor

variation of the exit model of Eggertson and Woodford (2003). The role played by the real

interest rate in their model is played by the monetary policy shock vrt in the example of

Appendix 5:. As first noted by Benhabib, Schmitt-Grohe, and Uribe (2001), the “aggressive”

Taylor rule with the inflation coefficient that is greather than unity produces two equilibria, one of

which is the liquidity trap. In our example, if monetary policy shock is positive, the exit condition

eliminates the “good” equilibrium with a positive nominal interest rate, sending the economy to

the liquidity trap. When the monetary policy shock is reset to zero, the good equilibrium

re-emerges.

Two caveats are in order about this example. First, inflation, output, and the policy rate are

determined simultaneously, in contradiction of the assumption in our SVAR model that inflation

and output are pre-determined. Second, the monetary policy shock vrt, which is persistent in the

example, is i.i.d. in the SVAR model. We have not been able to find an example of a

policy-induced exit that overcomes these challenges.
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8 Robustness and Extensions

In this section, we examine how the inflation and output responses shown in Figure 4a-4c are

affected to various changes to the model. It will be shown that: (i) allowing for two QE types

makes very little difference, (ii) turning the demand for excess reserves on dampens the

interest-rate effect shown in Figure 4b, and (iii) changing the measure of potential GDP to HP

(Hodrick-Prescott) filtered GDP brings about the price puzzle.

HP-Filtered GDP as Potential GDP

So far, the measure of potential GDP that underlies the output gap and the trend growth rate has

been the official estimate from the Cabinet Office. We now change the measure to the HP-filtered

GDP which, as shown in Figure 2b, tracks actual GDP more closely than the Cabinet Office

measure. For example, the output gap has been mostly positive since July 2011.

Figure 5a-5c show the monthly inflation (p) and output (x) responses with the alternative

measure of potential GDP. To save space, the response profiles of the policy rate (r) and the

excess reserve rate (m) are not shown because they look very similar to those in Figure 4. Of the

three major conclusions stated in the introduction, two of them hold up: QE is expansionary and

the exit from QE2 was expansionary. The conclusion about the effect of policy rate cuts does not

fare so well, however. Recall from Figure 4b that the response of p to a 1 percentage point rate

cut is, although negative initially, positive for most of the rest of the horizon and that the output

response is positive and strong. The response profile for p in Figure 5b exhibits the price puzzle,

with the inflation response never recovering from the initial negative effect. The output response

is about a half in size. The error bands are generally wider.

Excluding the Trend Growth Rate from the System

If we exclude the trend growth rate from both the reduced form shown in Table 6 and the Taylor

rule in Table 4, the model becomes the one studied in Hayashi and Koeda (2014). The response

profiles shown in Figure 4 remain more or less the same except for Figure 4b about the interest

rate cut. The price puzzle emerges and output shows virtually no response.
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The reason for this is well understood since Sims (1992). If there is a variable (the trend

growth rate in the present case) that the central bank responds to but is not included in the Taylor

rule, then what the econometrician regards as the monetary policy shock will include not only the

true policy shock but also the effect of this missing variable. If this variable is also missing in the

inflation and output reduced form, then the response to the incorrectly identified policy shock

will be contaminated by the effect of the missing variable. In the case of a rate cut, the

contaminated policy shock contains not only a genuine unexpected decrease in the policy rate but

also a decline in the trend growth rate. For output, the expansionary effect of a rate cut is offset

by the contractionary effect of a decline in trend growth. This explains the virtual non-response

of output to a rate cut found in Hayashi and Koeda (2014).

Turning Excess Reserve Demand On

In all the simulations underlying the Monte Carlo integration, we turned the demand for excess

reserves off by setting m to zero under regime P. We now relax this assumption. It entails three

changes. First, replace the zero excess reserve under P in (4.6) by max[mdt, 0] where mdt is the

demand for excess reserves to be specified below. Second, include lagged m in the reduced-form

equations for lagged subgsample P. The upper panel of Table 8 has the reduced-form estimates

for the post break period from March 1995. The lagged m coefficient comes out with a negative

sign in both the p and x equations. Third, the definition of interest rate effect in (6.5) and the

transitional effect in (6.8) needs to be modified as follows: In (6.5), replace the zero for mt in the

alternative history by m(a)
t (the expected value of max[mdt, 0] given the history up to rt + δr).

Likewise, replace the zero for mt in the baseline history by m(b)
t (the expected value of

max[mdt, 0] given the history up to rt). Similarly in (6.8), replace the zero for mt in both the

baseline and alternative histories by m(b)
t (the expected value given the history up to rt).

The specification of mdt we consider relates the excess reserve demand to the current values

of π (the 12-month inflation rate), x (the output gap), r (the policy rate) and the lagged value of m.

The equation is to be estimated on the subsample in which m is demand-determined. There is no

need to correct for regime endogeneity because the excess reserve demand shock is independent

of the regime. The estimation method is Tobit because of the censoring in max[mdt, 0].
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We argued in Section 3 that m was supply-determined during QE2 and QE3. Regarding

QE1, based on our reading of the summary of discussions at the BOJ policy board meetings, we

assume that m is demand-determined during QE1.30 Thus the subsample for the excess reserve

demand equation consists of those months under regime P between January 1988 and December

2012 (170 months) and QE1 (17 months).31 We define the limit observations as the months for

which m < 0.5%. There are 141 such months.32 The estimated equation is (t-values in

brackets)33

mdt = −0.005
[−0.2]

+ 0.011
[0.5]

πt − 0.015
[−2.6]

xt − 0.12
[−2.4]

rt + 0.60
[4.4]

md,t−1 + 1.01
[2.7]

GULFt,

estimated standard deviation of the error = 0.053 (s.e. = 0.0057),
sample size = 187, number of limit observations = 141.

(8.1)

The last regressor, GULFt, is a Gulf war dummy for February to April 1991.34 The output

coefficient is negative, perhaps because commercial banks desire excess reserves in recessions.

The estimated error size (measured by its standard deviation) of 0.053 should be compared to the

30 In almost all the board meetings during QE1, one board member proposed to increase the current

account balance far beyond what is required to guide the interbank rate to zero. The proposal was

invariably voted down.

31 Excluding the 17 QE1 months from the sample produces very similar estimates.

32 Recall that we have set mt = 0 for months between QE2 and QE3 (except the Lehman crisis months of

September to November 2008), on the ground that banks postponed re-entry to the interbank market

and held on to excess reserves. So those months, indicated by the thin bars in Figure 2a, are limit

observations.

33 The regime is P in July 2006, but the previous month is the last month of QE2 when m is far above 0.

We assume that the excess reserve demand in that previous month is zero. So md,t−1 = 0 for t = July

2006.

34 The value of m was about 2% in February, 5% in March, and 1% in April 1991. We include the Gulf

dummy because we suspect there was some technical reason for excess reserves. At that time, there

was a huge increase in the deposit by the Japanese treasury at the Bank of Japan. Most of it was for

the payment of 13 billion dollars by the Japanese government to the U.S to help defray the cost of the

Gulf war (which ended in February 1991). The output gap then was well above 2%, the policy rate

was above 8%, and the financial system was apparently sound. There was no reason for commercial

banks to hold excess reserves and the desired m would have been well below zero.
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average fitted value of mdt of about −0.25 (banks on average would have liked to hold only 75%

of required reserves). So mt under P, which is max[mdt, 0], is positive only occasionally.

When the excess reserve demand is turned on, only the interest rate effect, displayed in

Figure 6, is affected noticeably. As in Figure 4b, the initial regime, which is P in both the

baseline and alternative scenarios, lasts for about 3 years. During those years, m is positive

occasionally, which is contractionary because the lagged m coefficient, as shown in Table 8, is

negative in both the inflation and output equations under P . The contractionary effect is greater

under the alternative scenario because the lower policy rate increases m when it is positive. Thus

the response of p and x is dampened.

Allowing for Two QE Types

Finally, we extend the model to allow for two QE types, while the excess reserve demand is kept

on. The zero-rate/QE regime Z is now composed of two sub-regimes. Under the “strong” QE, as

in QE2&QE3 and labeled “S”, the policy rate is zero and m is determined by the excess reserve

supply equation (4.7). Under the “weak” QE, as in QE1 and labeled “W”, the policy rate is zero

but m is set by demand. Thus the censored Taylor rule (4.4) remains valid with Z = S,W, but the

equation determining mt, (4.6), is now

mt =


max

[
mdt, 0

]
, if st = P,W

max
[
mst, 0

]
, if st = S.

(4.6’)

Regarding the regime evolution (4.5), we assume that the central bank chooses between

“weak” and “strong” QEs randomly, with probability q for “weak” QE (“W”) and 1 − q for
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“strong” QE (“S”). That is, (4.5) is modified as

If st−1 = P, st =



P if ρrr∗t + (1 − ρr)rt−1 + vrt︸                       ︷︷                       ︸
shadow Taylor rate

> rt,

Z =


S with probability 1 − q

W with probability q
otherwise.

If st−1 = Z, st =


P if ρrr∗t + (1 − ρr)rt−1 + vrt︸                       ︷︷                       ︸

shadow Taylor rate

> rt and πt ≥ π + vπt︸  ︷︷  ︸
period t threshold

, vπt ∼ N(0, σ2
π

),

Z otherwise, Z = S,W.

(4.5’)

Thus we do not allow for the regime to change from S to W or from W to S; if the previous

regime is S, for example, then the current regime is either P or S. In the response calculations

below, we set q = 1/3. If we set q = 0, this model reduces to the one studied in the preceding

subsection, with only one QE type and with the excess reserve demand turned on.

The last piece of the model is the reduced form under W, which needs to be estimated on

lagged subsample W (those t’s for which st−1 = W or t − 1 is in QE1). QE1 has only 17

observations. The shortness of the sample forces us to impose two restrictions on the reduced

form. First, because r is constant (at 0) during QE1, the lagged r coefficient cannot be identified.

We constrain the coefficient to be zero. Second, there is not much variation in the trend growth

rate g during QE1, which creates near multi-collinearity between the constant and g. We

subsume the effect of trend growth rate in the constant by dropping g from the reduced form.35

The lower panel of Table 8 has the estimates. Unlike the reduced form estimated on lagged

subsample Z (consisting of QE2&QE3) in Table 6, the lagged m coefficient in the inflation

equation is negative.

Allowing for two QE types makes so little difference that the response profiles are not

shown here. Figure 4a and 4c remain virtually unaffected. The interest-rate effect looks similar to

that in Figure 6, which is for the case of one QE type and the active excess reserve demand.

35 One way of avoiding those restrictions is to assume the reduced form is the same under W and P. But

this amounts to assuming that the exit condition had no effect during QE1.
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9 Conclusions

We have constructed a regime-switching SVAR in which the regime is determined by the central

bank responding to economic conditions. The model was used to study the dynamic effect of not

only changes in the policy rate and the reserve supply but also changes in the regime chosen by

the central bank. Our impulse response analysis yields three major conclusions.

• Consistent with the existing literature, we find that an increase in the reserve supply under QE

raises output and inflation.

• However, there is an entry cost to QE. That is, the effect of entering QE with no significant

increase in the reserve supply is contractionary. If the central bank wishes to raise inflation and

output by entering QE, it has to aggressively raise the reserve supply upon entry. The flip side

of the entry cost is an exit bonus that exiting from QE is expansionary if the reserve supply at

the time of the exit is not too large. Our evidence indicates that the critical level of the

actual-to-required reserve ratio below which exiting from QE is expansionary is somewhere

between 3 and 4.5.

The paper was able to derive all these results without a structural model of the inflation and

output dynamics. There are obvious caveats that come with reduced-form approaches such as

ours. First, the paper does not say why QE is expansionary or why exiting from QE can be

expansionary. Second, the paper’s model cannot be used for predicting the effect of policies not

considered in the paper, e.g., a more aggressive QE with larger coefficients in the excess reserve

supply equation or an exit from the zero-rate regime by raising the interest rate paid on reserves

(as the Fed chose to do in the fall of 2015). On the plus side, much as the VAR impulse response

analysis since Sims (1980) interacted with the macro modelling efforts, this paper has produced a

set of stylized facts that macro theorists should strive to match.
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Appendix 1 Data Description

This appendix describes how the variables used in the paper — p (monthly inflation), π (12-month
inflation), x (output gap), r (the policy rate), r (the interest rate paid on reserves), and m (the excess reserve
rate) — are derived from various data sources.

Monthly and Twelve-Month Inflation Rates (p and π)
The monthly series on the monthly inflation rate (appearing in the inflation and output reduced-form) and
the 12-month inflation rate (in the Taylor rule and the excess reserve supply equation) are constructed from
the CPI (consumer price index). The Japanese CPI is compiled by the Ministry of Internal Affairs and
Communications of the Japanese government. The overall CPI and its various subindexes can be
downloaded from the portal site of official statistics of Japan called“e-Stat”. The URL for the CPI is
http://www.e-stat.go.jp/SG1/estat/List.do?bid=000001033702&cycode=0.
This page lists a number of links to CSV files. One of them,
http://www.e-stat.go.jp/SG1/estat/Csvdl.do?sinfid=000011288575
has the “core” CPI (CPI excluding fresh food), the “core-core” CPI (CPI excluding food and energy), and
other components from January 1970. They are seasonally unadjusted series and combine different base
years from January 1970. For how the Ministry combines different base years, see Section III-6 of the
document (in Japanese) downloadable from
http://www.stat.go.jp/data/cpi/2010/kaisetsu/index.htm#p3
Briefly, to combine base years of 2005 and 2010, say, the Ministry multiplies one of the series by a factor
called the “link factor” whose value is such that the two series agree on the average of monthly values for
the year 2005.

Twelve-month inflation rates constructed from the (seasonally unadjusted) “core” CPI and the
“core-core” CPI are shown in Appendix Figure 1. The two humps for 1989 and 1997 are due to the
increases in the consumption tax. The two inflation rates behave similarly, except for the period November
2007 - May 2009.

The above URL has another CSV file, whose link is
http://www.e-stat.go.jp/SG1/estat/Csvdl.do?sinfid=000011288581,
has seasonally adjusted series for various subindexes (including the “core-core” CPI), but only from
January 2005. As explained below, we use the “core-core” CPI between November 2007 and May 2009
that is seasonally adjusted, along with the seasonally unadjusted “core” CPI, in order to construct p
(monthly inflation) and π (12-month inflation). The construction involves three steps.

Adjustment for Consumption Tax Hikes. The consumption tax rate rose from 0% to 3% in April 1989
and to 5% in April 1997. We compute the 12-month inflation rate from the seasonally unadjusted index
(as the log difference between the current value of the index and the value 12 months ago) and subtract
1.2% for t = April 1989,..., March 1990 (to remove the effect of the April 1989 tax hike) and 1.5% for
t = April 1997,..., March 1998 (to remove the effect of the April 1997 tax hike). These two numbers
(1.2% and 1.5%) are taken from Price Report (various years) by the Economic Planning Agency of the
Japanese government (which became a part of the Cabinet Office). We then calculate the index so that
its implied 12-month inflation agrees with the tax-adjusted 12-month inflation.

Seasonal Adjustment. We apply the U.S. Census X12-ARIMA method to the seasonally unadjusted (but
consumption tax-adjusted) “core” index from January 1987 through December 2012 (26 years). The
Census’s program can be downloaded from:
https://www.census.gov/srd/www/winx12/winx12_down.html
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The specification for the seasonal adjustment is the same as the one used by the Ministry (of Internal
Affairs and Communications of the Japanese government) for seasonally adjust various CPI subindexes
mentioned above. Their spec file for the Censu’s X12-ARIMA program is available from
http://www.stat.go.jp/data/cpi/2010/kaisetsu/pdf/3-7.pdf.

For example, the ARIMA order is (0, 1, 1). There is no adjustment for the holiday effect.

Adjustment for the 2007-2008 Energy Price Swing. Let CPI1t be the seasonally adjusted “core” CPI
obtained from this operation for t = January 1970,..., December 2012. Let CPI2t be the seasonally
adjusted “core-core” CPI for t = January 2005,..., December 2012 that is directly available from the
above CSV file. Our CPI measure (call it CPI) is CPI1, except that we switch from CPI1 to CPI2

between November 2007 and May 2009 to remove the large movement in the energy component of the
“core” CPI. More precisely,

CPIt =


CPI1t for t = January 1970, ...,October 2007,

CPIt−1 ×
CPI2t

CPI2,t−1
for t = November 2007, ...,May 2009,

CPIt−1 ×
CPI1t

CPI1,t−1
for t = June 2009, ...,December 2012.

(A1.1)

That is, the “core” CPI (the CPI excluding fresh food) monthly inflation rate is set equal to that given by
the “core-core” CPI (the CPI excluding food and energy) for those months. This is the only period
during which the two CPI measures give substantially different inflation rates, see Appendix Figure 1.

Finally, the monthly inflation rate for month t, pt, is calculated as

pt ≡ 1200 × [log(CPIt) − log(CPIt−1)]. (A1.2)

The 12-month inflation rate for month t, πt, is

πt ≡ 100 × [log(CPIt) − log(CPIt−12)]. (A1.3)

Excess Reserve Rate (m)
Monthly series on actual and required reserves are available from September 1959. The source is the
BOJ’s portal site http://www.stat-search.boj.or.jp/index_en.html/. The value for
month t is defined as the average of daily balances over the reserve maintenance period of the 16th day of
month t to the 15th day of month t + 1. We define the excess reserve rate for month t (mt) as

mt ≡ [log(actual reserve balance for month t) − log(required reserve balance for month t)]. (A1.4)

We make two changes on the series. First, as was argued in Section 3, observed reserves after QE2
(which ends June 2006) and before the Lehman crisis of September 2008 do not seem to represent
demand. For this reason we set mt = 0 for t =July 2006,..., August 2008. Second, there is a Y2K spike in
m for t =December 1999 (which is for the reserve maintenance period of December 16, 1999 thruough
January 15, 2000). We remove this spike by the average of m over the QE1 months (March 1999 - July
2000) excluding December 1999.

Interest Rate paid on Reserves (r)
rt is 0% until October 2008 and 0.1% since November 2008.
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The Policy Rate (r)
We obtained daily data on the uncollateralized overnight “Call” rate (the Japanese equivalent of the U.S.
Federal Funds rate) since the inception of the market (which is July 1985) from Nikkei (a data vendor
maintained by a subsidiary of Nihon Keizai Shinbun (the Japan Economic Daily)). The policy rate for
month t, rt, for t = August 1985,...,December 2012 is the average of the daily values over the reserve
maintenance period of the 16th of month t to the 15th of month t + 1.

In Section 3 of the text, we defined the zero-rate period as months for which the net policy rate rt − rt

is less than 5 basis points. We ignore variations within the 5 basis points by setting rt − rt = 0 for the
zero-rate periods.

Monthly Output Gap (x)
The Three Series. Three quarterly series go into our monthly output gap construction: (i) quarterly

seasonally adjusted real GDP (from the National Income Accounts (NIA), compiled by the Cabinet
Office of the Japanese government), (ii) the monthly “all-industry activity index” (compiled by the
Ministry of Economy, Trade, and Industry of the Japanese government (METI) available from January
1988), and (iii) the quarterly GDP gap estimate by the Cabinet Office of the Japanese government. We
first provide a description of those series along with their sources.

(i) Quarterly NIA GDP

Japanese NIA in general. The Japanese national accounts adopted the chain-linking method in
2004. Quarterly chain-linked real GDP series (seasonally-adjusted) are available from the
Cabnet Office. The relevant homepage is
http://www.esri.cao.go.jp/en/sna/sokuhou/sokuhou_top.html.

Quarterly GDP from 1994:Q1 (GDP1). The current quarterly estimates are continuously revised
by the Cabinet Office. We used the “Quarterly Estimates of GDP Jan.-Mar. 2014 (The Second
Preliminary)(Benchmark year=2005)”, released on June 9, 2014 and available from the above
homepage. The CSV file holding this series is:
http://www.esri.cao.go.jp/jp/sna/data/data_list/sokuhou/files/
2014/qe141_2/__icsFiles/afieldfile/2014/06/04/gaku-jk1412.csv.

The latest quarter is 2014:Q1 (the first quater of 2014). For later reference, call this series
“GDP1”. The series goes back only to 1994:Q1.

Quarterly GDP from 1980:Q1 (GDP2). Recently, the Cabinet Office released the chain-linked
GDP series (for the same benchmark year of 2005) since 1980. The homepage from which
this series can be downloaded is
http://www.esri.cao.go.jp/jp/sna/sonota/kan-i/kan-i_top.html,

which unfortunately is in Japanese. The URL for the Excel file holding this series is
http://www.esri.cao.go.jp/jp/sna/data/data_list/kan-i/files/
pdf/gaku-jk_kan-i.xls.

The URL for the documentation (in Japanese) is
http://www.esri.cao.go.jp/jp/sna/data/data_list/kan-i/files/
pdf/gaiyou.pdf.

This series, call it “GDP2”, is from 1980:Q1 to the 1995:Q1.
Linking GDP1 and GDP2. Because the seasonal adjustment underlying the continuously revised

current GDP series, whose first quarer is 1994:Q1, is retroactive and alters the whole series at
each release, there is a slight difference between GDP1t (at 447, 159.1 trillin yen) and GDP2t

(at 447, 168.3 trillin yen) for t = first quarter of 1994. We link the two series at 1994:Q1 as
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follows.

GDPt =

 GDP2t × λ for t = 1980:Q1 - 1993:Q4,

GDP1t for t = 1994:Q1 - 2014:Q1,
(A1.5)

where λ is the ratio of GDP1t for t = 1994:Q1 to GDP2t for t = 1994:Q1.

(ii) METI’s Monthly All-Industry Activity Index. This index is a Laspeyres index combining four
subindexes: a construction industry index, the IP (the Index of Industrial Producion), a services
industry index, and a government services index. It therefore excludes agriculture. The latest base
year is 2005, with a weight of 18.3% for the IP. METI has released two series, one whose base year
is 2005 and the other (called the “link index”) that combines various past series with different base
years, and the latter series is adjusted so that the two series can be concatenated to form a
consistent series. The two seasonally adjusted series, along with a very brief documentation, can be
downloaded from
http://www.meti.go.jp/statistics/tyo/zenkatu/index.html.

(iii) GDP Gap Estimate by the Cabinet Office. In constructing potential quarterly GDP underlying
their GDP gap estimate, the Cabinet Office uses a production function approach . A documentation
(in Japanese) can be found in:
http://www5.cao.go.jp/j-j/wp/wp-je07/07f61020.html.
To summarize the document, the production function is Cobb-Douglas with 0.33 as capital’s share.
Capital input is defined as an estimate of the capital stock (available from the National Income
Accounts) times capacity utilization. Labor input is the number of persons employed times hours
worked per person. The TFP (total factor productivity) level implied by this production function
and actual quarterly, real, seasonally adjusted GDP is smoothed by the HP (Hodrick-Prescott) filter.
Potential GDP is defined as the value implied by the production function with the smoothed TFP
level. The capital and labor in this potential GDP calculation is also HP smoothed. The (quarterly)
GDP gap is defined as: 100×(actual GDP - potential GDP)/potential GDP.

The Cabinet Office does not release their potential GDP series, but they provide their current
GDP gap series upon request. The GDP gap series we obtained is for 1980:Q1 - 2014:Q1. We
verified, through email correspondences with them, that this series is to be paired with the quarterly
GDP series released on June 9, 2014 (the GDP series described above). The GDP gap series is
reproduced here (137 numbers):
0.3 -1.3 0.0 1.2 0.9 1.0 -0.2 -0.5 0.4 -0.2 -0.7 -0.4 -1.4 -1.4 -1.0 -1.2 -1.1 -0.5 -0.5 -1.4 -0.1 0.2 1.1
1.4 0.6 -0.8 -1.2 -1.3 -2.8 -2.0 -1.2 0.1 1.2 0.1 0.9 0.9 2.5 0.0 0.6 2.6 0.8 2.8 3.7 2.5 2.5 2.8 2.0 1.9
1.3 0.6 0.5 -0.7 -0.2 -1.4 -2.3 -2.2 -1.8 -3.2 -1.7 -3.1 -2.9 -1.8 -1.5 -1.7 -1.3 -0.5 -0.8 0.5 1.0 -0.2 0.0
-0.3 -2.4 -3.1 -3.0 -2.6 -3.6 -3.4 -3.8 -3.4 -2.0 -2.0 -2.5 -2.1 -1.6 -2.1 -3.4 -3.7 -4.1 -3.4 -3.0 -2.9 -3.7
-2.7 -2.6 -1.8 -1.2 -1.4 -1.5 -2.0 -2.0 -1.0 -0.9 -0.9 -0.7 -0.5 -0.8 0.3 1.1 1.0 0.5 1.2 1.8 0.5 -0.7 -4.0
-7.9 -6.5 -6.5 -5.0 -3.7 -2.8 -1.5 -2.1 -3.2 -3.6 -2.4 -2.4 -1.6 -2.4 -3.3 -3.4 -2.3 -1.7 -1.6 -1.7 -0.2 .

Construction of Potential Quarterly GDP. We can back out the Cabinet Offic’s estimate of potential
quarterly GDP by combining this series with the actual GDP series. For quarer t, let GDPt be (real,
seasonally adjusted) GDP described in (i) above and let vt be the GDP gap shown in (iii) above. The
implied potential GDP for quarter t, GDP∗t , satisfies the relation

vt = 100 ×
GDPt − GDP∗t

GDP∗t
. (A1.6)

Construction of Monthly Series. Given the two quarterly series, GDPt (actual GDP) and GDP∗t
(potential GDP), we create the monthly output gap series xt for January 1988-December 2012 as
follows.
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(i) Monthly Interpolation of GDPt. Using the METI all-industry activity index described in (ii)
above, the allocation of quarterly GDP between the three months constituting the quarter is done
by the method of Chow and Lin (“Best Linear Unbiased Interpolation, Distribution, and
Extrapolation of Time Series by Related Series”, Review of Economics and Statistics, Vol. 53, pp.
372-375, 1971). Quarterly GDP at annual rate for 1988:Q1-2012:Q4 is treated as the low
frequency data, and the METI all-industry activity index for January 1988-December 2012 as the
high frequency (monthly) indicator. The quarterly averages of interpolated series are constrained to
be equal to the corresponding quarterly series. The estimation method is weighted least squares.
Actual computation is done using Mr. Enrique M. Quilis’s Matlab code available from:
http://www.mathworks.com/matlabcentral/fileexchange/authors/28788.

(ii) Monthly Interpolation of GDP∗t . We used the spline method. A spline is fitted to GDP∗t for t =

1980:Q1 to 2012:Q4. The value of the interpolated monthly series for the middle month of the
quarter is constrained to be equal to the quarterly series. We used the Matlab function “spline” for
this operation.

(iii) Calculation of xt for January 1988-December 2012. Finally, using this smoothed monthly
potential GDP and the monthly actual GDP, we define the monthly output gap for month t, xt, as

xt ≡ 100 × [log(actual GDP for month t) − log(potential GDP for montht)]. (A1.7)

HP-filtered GDP as Measure of Potential GDP In the other GDP gap series used in the paper, potential
GDP is the HP-filtered actual GDP. To construct this GDP gap series, we first apply the HP
(Hodrick-Prescott) filter to the log of actual quarterly GDP for 1980:Q1-2012:Q4. The smoothness
parameter is the customary 1600. The exponent of this HP-filtered series is the potential quarterly GDP
series. We then apply the same spline method to this series for 1980:Q1-2012:Q4, to obtain the monthly
potential GDP series. Output gap for 1988:Q1-2012:Q4 is then calculated by the formula (A1.7).

Yield Spread
We construct the monthly long-term interest rate series using daily data on the zero coupon ten year yield
(I01810Y) obtained from Bloomberg. The rate for month t is the average of daily values over the reserve
maintenance period of the 16th of month t to the 15th of month t + 1. The yield spread is the difference
between this monthly value and the policy rate for month t (rt).

The Exchange Rate
We construct foreign exchange rate using daily data on the yen-dollar closing spot rate obtained from
WM/Reuters. The rate for month t is the average of daily values over the reserve maintenance period of
the 16th of month t to the 15th of month t + 1.

Bank Loans
We obtained monthly data on bank loans from the Bank of Japan. Specifically, we use “loans and bills
discounted” in the banking account of domestically licensed banks (the Bank of Japan Website code:
FA’FAABK_FAAB2DBEA37). The value for the month is the average over the calendar month.

Stock Price Index
This index is used in the construction of Tobin’s q to be explained below. We construct the monthly stock
price index using daily data on the closing value of Tokyo Stock Price Index (TOPIX) obtained from
Bloomberg. The index for month t is the average of daily values over the reserve maintenance period of
the 16th of month t to the 15th of month t + 1.
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Tobin’s q
We follow three steps to construct monthly Tobin’s q ratio. The first step is a construction by interpolation
of monthly series of the price investment goods. For the low frequency indicator, we use the quarterly
series on the price of investment goods obtained from the National Income Accounts (NIA), compiled by
the Cabinet office of the Japanese government. Specifically, we use the quarterly deflator for private
non-resident investment gross capital formation classified by institutional sectors, downloadable from:
http://www.esri.cao.go.jp/en/sna/data/kakuhou/files/2014/tables/26s16d_en.xls.
We then fit the spline method (in the same manner as in our construction of the potential GDP interpolation
above) to the quarterly series for t = 1994Q1 to 2012Q4. In the second step, we divide the monthly stock
price index by the interpolated monthly prices of investment goods (constructed in the first step), as input
to the third step. In the third step, we conduct monthly interpolation of Tobin’s q using the method of
Chow and Lin (in the same manner as described in the monthly GDP interpolation). For the high
frequency indicator, we use the monthly variable constructed in the second step. For the low frequency
series, we use the end-of-period annual series of Tobin’s q that can be calculated from the balance-sheet
for non-financial corporations in the Japanese National Income Accounts, which is downloadable from
http://www.esri.cao.go.jp/en/sna/data/kakuhou/files/2014/tables/26si12_en.xls.
Tobin’s q is defined as the ratio of the market value of liabilities (defined as the value of total liabilities less
the value of financial assets) to the value of nonfinancial assets.

U.S. Monthly Data on Inflation, Unemployment Rate, and the Policy Rate
The price index used to compute inflation is the consumer price index for all urban consumers (all items,
1982-84=100) available from the BLS (Bureau of Labor Statistics). The BLS series id is CUSR0000SA0.
This series is seasonally adjusted and available at monthly frequency. The unemployment rate is the
civilian unemployment rate obtained from the BLS. The series id is LNS14000000. This series is
seasonally adjusted and available at monthly frequency. It is expressed in percent. The policy rate is the
effective federal funds rate from the Board of Governors of the Federal Reserve System. We take the
average of daily values over the 16th day of the month to the 15th day of the following month. All 3 series
are available fromt the FRED database website:
http://www.research.stlouisfed.org/fred2/.
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Appendix 2 Impulse Responses in Terms of Shocks

This section is a self-contained derivation of the shock-based translation of the three effects — the policy
rate effect (6.5), the QE effect (6.7), and the transitional effect (the second component in (6.8)) — defined
in Section 6 for our nonlinear model.

The Mapping and the Correspondence
The model, described in Section 4, is summarized by the mapping (4.8), reproduced here as

(st,yt) = ft ((εt,vt), It−1) . (4.8’)

Strictly for notational simplicity, the lagged information in (4.8), (st−1,yt−1, ...,yt−11), is written as It−1,
and the parameter vector has been suppressed. The variables of the system are (st,yt) (with
yt ≡ (pt, xt, rt,mt)) and the shock vector is (εt,vt) where εt is the bivariate reduced-form shock to inflation
(pt) and output (xt) while vt ≡ (vrt, vπt, vst) collects the monetary policy shocks, consisting of the Taylor
rule shock (vrt), the shock to the inflation threshold (vπt), and the reserve supply shock (vst). The discrete
variable of the model is st representing the monetary policy regime.

Conditional on lagged information It−1, the mapping (4.8’) is from the shock vector (εt,vt) to the
variables (st,yt). The inverse mapping is the correspondence φ from the variables to the shock vector
defined by the set

φ(st,yt; It−1) ≡
{
(ε,v)

∣∣∣ (st,yt) = ft ((ε,v), It−1)
}
. (A2.1)

As in the simple univariate example in the text, the correspondence is conditional on lagged information
It−1. Thus the set φ can — and will — depend on the lagged regime st−1 which is part of It−1.

The conditional expectations entering the definition of the three effects are conditional on the history
of the variables. The translation of the effects is accomplished by rewriting those conditional expectations
in terms of shocks. The rewriting can be done via φ. For y = p, x, r,m,

E
(
yt+k | (εt,vt) ∈ φ(st,yt; It−1), It−1

)
= E

(
yt+k | (st,yt), It−1

)
(by construction of φ)

= E
(
yt+k | (st,yt),yt−1, ...,yt−10

)
. (by the Markov property)

(A2.2)

The rest of this appendix is to describe this set φ for several relevant configurations of (st,yt).

Conditioning Expectations by Equalities and Inequalities on Shocks
The mapping (4.8’) can be broken into two stages. In the first stage, the bivariate reduced form determines
(pt, xt) given It−1 and εt. Let (̂pt, x̂t) be the systematic component of (pt, xt), so (̂pt, x̂t) is a function of It−1

and (pt, xt)′ = (̂pt, x̂t)′ + εt. The mapping from εt to (pt, xt) is one-to-one. In the second stage, given
(pt, xt, It−1), the three monetary policy shocks (vrt, vπt, vst) determine the regime st, the policy rate (rt), and
the excess reserve rate (mt). How (st, rt,mt) is determined is described by (4.4)-(4.6) of the text. Since the
mapping from εt to (pt, xt) in the first stage is one-to-one, the set φ can be written as

φ(st,yt; It−1) =
{
(ε,v)

∣∣∣ ε =

[
pt − p̂t

xt − x̂t

]
, v ∈ V(st,yt, It−1)

}
, (A2.3)

where the setV is determined by (4.4)-(4.6). The rewriting of the conditional expectations in the
translation of the definition of the three effects then proceeds as follows. Recalling that
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It−1 ≡ (st−1,yt−1, ...,yt−11),

E
(
yt+k

∣∣∣ (st,yt), yt−1, ...,yt−10

)
= E

(
yt+k | (εt,vt) ∈ φ(st,yt; It−1), It−1

)
(by (A2.2))

= E
(
yt+k

∣∣∣ εt =

[
pt − p̂t

xt − x̂t

]
, vt ∈ V(st,yt, It−1), It−1

)
. (by (A2.3))

(A2.4)

The question then boils down to characteringV by (4.4)-(4.6). To reproduce (4.4)-(4.6) compactly
here, we need to introduce additional notation. Let (re

t ,m
e
st) be the systematic components of (rt,mst). So

re
t ≡ ρrr∗t + (1 − ρr)rt−1, me

st ≡ αs + βs
′

(1×2)

[
πt

xt

]
+ γsmt−1 (so mst = me

st + vst). (A2.5)

(See (4.1) for the definition of r∗t , and (4.7) for mst.) (re
t ,m

e
st) are functions of (pt, xt, It−1). Then (4.4)-(4.6)

can be written as

If st−1 = P, st =


P if re

t + vrt︸ ︷︷ ︸
shadow Taylor rate

> rt,

Z otherwise,

If st−1 = Z, st =


P if re

t + vrt︸ ︷︷ ︸
shadow Taylor rate

> rt and πt ≥ π + vπt︸ ︷︷ ︸
period t threshold

,

Z otherwise,

(A2.6)

(censored Taylor rule) rt =


re

t + vrt︸ ︷︷ ︸
shadow Taylor rate

if st = P,

rt if st = Z,

(A2.7)

mt =

 0 if st = P,

max
[
me

st + vst, 0
]

if st = Z.
(A2.8)

We now describe the setV(st,yt, It−1) for v ≡ (vr, vπ, vs) by equalities and inequalities on v, for
several configurations of (st,yt).

(a) st = P, yt = (pt, xt, rt, 0), rt > rt. Thanks to the exit condition, the set depends on the previous regime
st−1 ∈ It−1.

• Suppose first that st−1 = P. By (A2.6), we have st = P if and only if re
t + vrt > rt (i.e., iff the

shadow Taylor rate is above the lower bound). Because the exit condition is mute, the threshold
inflation π + vπt is irrelevant. Given st = P, we have rt = re

t + vrt from (A2.7). For rt > rt, the
inequality condition “re

t + vrt > rt” is redundant. Because mt = 0 regardless of vmt under st = P
by (A2.8), the money supply shock vst can be any value. Thus, if st−1 = P and rt > rt,

V

(
st = P, (pt, xt, rt, 0)︸       ︷︷       ︸

yt

, It−1

)
=

{
v

∣∣∣ vr = rt − re
t , vπ ∈ R, vs ∈ R

}
. (A2.9)
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With thisV, the rewriting of the conditional expectation (A2.4) for the current configuration of
(st,yt) is:

E
(
yt+k

∣∣∣ st = P, (pt, xt, rt, 0)︸       ︷︷       ︸
yt

, yt−1, ...,yt−10

)

= E
(
yt+k

∣∣∣ εt =

[
pt − p̂t

xt − x̂t

]
, vrt = rt − re

t , st−1 = P, yt−1, ...,yt−11︸                     ︷︷                     ︸
It−1

)
.

(A2.10)

• Suppose next that st−1 = Z. Now the exit condition kicks in and requires that the actual inflation
exceed the threshold by (A2.6). Thus there should be an additional condition πt ≥ π + vπt. Thus,
if st−1 = Z and rt > rt,

V

(
st = P, (pt, xt, rt, 0)︸       ︷︷       ︸

yt

, It−1

)
=

{
v

∣∣∣ vr = rt − re
t , vπ ≤ πt − π, vs ∈ R

}
, (A2.11)

so the same conditional expectation can be written as

E
(
yt+k

∣∣∣ st = P, (pt, xt, rt, 0)︸       ︷︷       ︸
yt

, yt−1, ...,yt−10

)

= E
(
yt+k

∣∣∣ εt =

[
pt − p̂t

xt − x̂t

]
, vrt = rt − re

t , vπt ≤ πt − π, st−1 = Z, yt−1, ...,yt−11︸                     ︷︷                     ︸
It−1

)
.

(A2.12)

(b) st = Z, yt = (pt, xt, rt,mt), mt > 0.

• Case: st−1 = P. By (A2.6), we have st = Z if and only if re
t + vrt ≤ rt (i.e., iff the shadow Taylor

rate is below the lower bound). Because the exit condition is mute, the threshold inflation π + vπt

is irrelevant. Given st = Z, there is no further restriction on vrt because by (A2.7) rt = rt

regardless of vrt. By (A2.8), we have mt = max[me
st + vst, 0]. For mt > 0, it must be that

me
st + vst = mt. Thus, if st−1 = P and mt > 0,

V

(
st = Z, (pt, xt, rt,mt)︸         ︷︷         ︸

yt

, It−1

)
=

{
v

∣∣∣ vr ≤ rt − re
t , vπ ∈ R, vs = mt −me

st

}
, (A2.13)

so

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt,mt)︸         ︷︷         ︸
yt

, yt−1, ...,yt−10

)

= E
(
yt+k

∣∣∣ εt =

[
pt − p̂t

xt − x̂t

]
, vrt ≤ rt − re

t , vst = mt −me
st, st−1 = P, yt−1, ...,yt−11︸                     ︷︷                     ︸

It−1

)
.

(A2.14)

• Case: st−1 = Z. The exit condition becomes relevant. The regime Z continues if either the shadow
rate is below the lower bound or inflation is below the threshold. So st = Z if and only if
re

t + vrt ≤ rt or πt ≤ π + vπt. Thus, if st−1 = Z and mt > 0,

V

(
st = Z, (pt, xt, rt,mt)︸         ︷︷         ︸

yt

, It−1

)
=

{
v

∣∣∣ (vr ≤ rt − re
t or vπ > πt − π), vs = mt −me

st

}
, (A2.15)
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so

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt,mt)︸         ︷︷         ︸
yt

, yt−1, ...,yt−10

)

= E
(
yt+k

∣∣∣ εt =

[
pt − p̂t

xt − x̂t

]
, (vrt ≤ rt − re

t or vπt > πt − π), vst = mt −me
st, st−1 = Z, yt−1, ...,yt−11︸                     ︷︷                     ︸

It−1

)
.

(A2.16)

(c) st = Z, yt = (pt, xt, rt, 0). Here, the only difference from the previous configuration is that mt = 0. The
restriction on vst implied by the excess reserve supply equation mt = max[me

st + vst, 0] is that
me

st + vst ≤ 0. Thus,

• Case: st−1 = P.

V

(
st = Z, (pt, xt, rt, 0)︸       ︷︷       ︸

yt

, It−1

)
=

{
v

∣∣∣ vr ≤ rt − re
t , vπ ∈ R, vs ≤ −me

st

}
, (A2.17)

so

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt, 0)︸       ︷︷       ︸
yt

, yt−1, ...,yt−10

)

= E
(
yt+k

∣∣∣ εt =

[
pt − p̂t

xt − x̂t

]
, vrt ≤ rt − re

t , vst ≤ −me
st, st−1 = P, yt−1, ...,yt−11︸                     ︷︷                     ︸

It−1

)
.

(A2.18)

• Case: st−1 = Z.

V

(
st = Z, (pt, xt, rt, 0)︸       ︷︷       ︸

yt

, It−1

)
=

{
v

∣∣∣ (vr ≤ rt − re
t or vπ > πt − π), vs ≤ −me

st

}
, (A2.19)

so

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt, 0)︸       ︷︷       ︸
yt

, yt−1, ...,yt−10

)

= E
(
yt+k

∣∣∣ εt =

[
pt − p̂t

xt − x̂t

]
, (vrt ≤ rt − re

t or vπt > πt − π), vst ≤ −me
st, st−1 = Z, yt−1, ...,yt−11︸                     ︷︷                     ︸

It−1

)
.

(A2.20)

Equivalent Statements in Terms of Shocks
With the expectations conditioned on equalities and inequalities on the shocks, rather than on the variables,
it is now straightforward to translate the responses in terms of shocks. As before, in the expressions below,
“y” is either “p”, “x”, “r”, or “m”.
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The Policy-Rate Effect (6.5). By rewriting the two conditional expectations in (6.5) using (A2.10) and
(A2.12), we obtain the translation: for rt > rt and rt + δr > rt,

E
(
yt+k

∣∣∣ st = P, (pt, xt, rt + δr, 0),︸              ︷︷              ︸
yt ≡ (pt, xt, rt,mt) in the alternative history

yt−1, ...,yt−10

)

− E
(
yt+k

∣∣∣ st = P, (pt, xt, rt, 0),︸        ︷︷        ︸
yt ≡ (pt, xt, rt,mt) in the baseline history

yt−1, ...,yt−10

)

=



E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt = rt − re
t + δr, st−1 = P, yt−1, ...,yt−11

)
− E

(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt = rt − re
t , st−1 = P, yt−1, ...,yt−11

)
if st−1 = P,

E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt = rt − re
t + δr, vπt ≤ πt − π, st−1 = Z, yt−1, ...,yt−11

)
− E

(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt = rt − re
t , vπt ≤ πt − π, st−1 = Z, yt−1, ...,yt−11

)
if st−1 = Z.

(A2.21)

Therefore, the only difference in the configuration of the shocks between the baseline and the
alternative conditional expectations is that the interest rate shock vrt differs by δr in the alternative.

The QE Effect (6.7). Using (A2.14) and (A2.16), we obtain the translation: for mt > 0 and mt + δm > 0,

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt,mt + δm),︸                ︷︷                ︸
yt ≡ (pt, xt, rt,mt) in the alternative history

yt−1, ...,yt−10

)

− E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt,mt),︸         ︷︷         ︸
yt ≡ (pt, xt, rt,mt) in the baseline history

yt−1, ...,yt−10

)

=



E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt ≤ rt − re
t , vst = mt −me

st + δm, st−1 = P, yt−1, ...,yt−11

)
− E

(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt ≤ rt − re
t , vst = mt −me

st, st−1 = P, yt−1, ...,yt−11

)
if st−1 = P,

E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , (vrt ≤ rt − re
t or vπt > πt − π), vst = mt −me

st + δm, st−1 = Z, yt−1, ...,yt−11

)
− E

(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , (vrt ≤ rt − re
t or vπt > πt − π), vst = mt −me

st, st−1 = Z, yt−1, ...,yt−11

)
if st−1 = Z.

(A2.22)
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Again, the only difference in the configuration of the shocks is that the excess reserve shock vst differs
by δm in the alternative.

The Transitional Effect (the second component in (6.8)). Using (A2.10) and (A2.18), and (A2.12) and
(A2.20), we obtain the translation:

E
(
yt+k

∣∣∣ st = Z, (pt, xt, rt, 0),︸        ︷︷        ︸
yt ≡ (pt, xt, rt,mt) in the alternative history

yt−1, ...,yt−10

)

− lim
rt↓rt

E
(
yt+k

∣∣∣ st = P, (pt, xt, rt, 0),︸        ︷︷        ︸
yt ≡ (pt, xt, rt,mt) in the baseline history

yt−1, ...,yt−10

)

=



E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt ≤ rt − re
t , vst ≤ −me

st, st−1 = P, yt−1, ...,yt−11

)
− lim

rt↓rt

E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt = rt − re
t , st−1 = P, yt−1, ...,yt−11

)
if st−1 = P,

E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , (vrt ≤ rt − re
t or vπt > πt − π), vst ≤ −me

st, st−1 = Z, yt−1, ...,yt−11

)
− lim

rt↓rt

E
(
yt+k

∣∣∣ εt =

pt − p̂t

xt − x̂t

 , vrt = rt − re
t , vπt ≤ πt − π, st−1 = Z, yt−1, ...,yt−11

)
if st−1 = Z.

(A2.23)
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Appendix 3 The Analytical Expression for the Transitional Effect

We focus on the the immediate response for (p, x), namely their IR at k = 1 (one period ahead), because it
can be calculated analytically. Write the reduced form for period t + 1 as36

[
pt+1

xt+1

]
=

{
c(st)
(2×1)

+φg(st)
(2×1)

gt+1

}
+φp(st)

(2×1)

pt +φx(st)
(2×1)

xt +φr(st)
(2×1)

rt +φm(st)
(2×1)

mt + εt+1
(2×1)

, (A3.1)

where gt+1 is the concurrent trend growth rate (the 12-month growth rate of potential output to month
t + 1). We can interpret the term in braces, c(st) +φg(st)gt+1, as the time-varying intercept. Our estimates
of the coefficients can be read off from Table 6. For example,

c(P) =

[
0.12
−0.88

]
, c(Z) =

[
−0.57
−0.99

]
, φg(P) =

[
−0.51
1.31

]
, φg(Z) =

[
−0.24
0.03

]
.

The immediate response to the regime change from P to Z comes from the change in the
reduced-form coefficients. Since rt = rt and mt = 0 in the PZ-IR, we have:[

PZ-IR of p at k = 1
PZ-IR of x at k = 1

]
=

{
[c(Z) − c(P)] +

[
φg(Z) −φg(P)

]
gt+1

}
+

[
φp(Z) −φp(P)

]
pt +

[
φx(Z) −φx(P)

]
xt +

[
φr(Z) −φr(P)

]
rt.

(A3.2)

For the base period of t =July 2006, we have pt = −0.3, xt = −0.8 from Table 2. Also, rt = 0 and
gt+1 = 0.86. Thus, for t =July 2006,[

PZ-IR of p at k = 1
PZ-IR of x at k = 1

]
=

{ [
−0.57 − 0.12
−0.99 − (−0.88)

]
︸                ︷︷                ︸

c(Z)−c(P)

+

[
−0.24 − (−0.51)

0.03 − 1.31

]
︸                ︷︷                ︸

φx(Z)−φx(P)

× 0.86︸︷︷︸
gt+1

}

+

[
−0.06 − (−0.09)
0.08 − (−0.01)

]
︸                ︷︷                ︸

φp(Z)−φp(P)

× −0.3︸︷︷︸
pt

+

[
0.12 − 0.13
0.79 − 0.98

]
︸         ︷︷         ︸
φx(Z)−φx(P)

× (−0.8)︸︷︷︸
xt

=

[
−0.46
−1.1

]
.

(A3.3)

This shows that the primary source of the immediate response of (−0.46,−1.1) is the difference between
the regimes in the time-varying intercept. More specifically for p, the difference is due to the constant term
c(st); for x, it is due to the difference in the trend growth coefficient in the reduced form.

36 There is no need to include the Mieno (anti-bubble) and banking crisis dummies in the reduced form
because their values are zero for the base period in question.
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Appendix 4 The Model and Derivation of the Likelihood Function

This appendix has two parts. The first is a self-contained exposition of the model with two regimes (P and
Z) and with the excess reserve demand. The second part derives the likelihood function for the model.

The Model
The state vector of the model consists of a vector of continuous state variables yt and a discrete state
variable st (= P,Z). The continuous state yt has the following elements:

yt
(4×1)
≡


y1t

(2×1)

rt

mt

 , y1t
(2×1)
≡

[
pt

xt

]
, (A4.1)

where p = monthly inflation rate, x = output gap, r = policy rate, and m = excess reserve rate. The model
also involves a vector of exogenous variables, xt. It includes rt, the rate paid on reserves. It can include
other variables (such as the banking crisis dummy), but the identity of those other exogenous variables is
immaterial in the derivation of the likelihood function below.

The model is a mapping from

(st−1,yt−1, ...,yt−11, xt, εt
(2×1)

, vrt, vπt, vst, vdt)

to (st,yt). Here, (εt, vrt, vπt, vst, vdt) are mutually and serially independent shocks. We need to include 11
lags of y because of the appearance of the 12-month inflation rate in the model, see (A4.3) below. The
mapping is defined as follows.

(i) (y1t determined) εt
(2×1)

is drawn fromN(0,Ω(st−1)) and y1t (the first two elements of yt) is given by

y1t
(2×1)

= c(st−1)
(2×1)

+ A(st−1)xt +Φ(st−1)
(2×4)

yt−1
(4×1)

+ εt
(2×1)

. (A4.2)

Here, only one lag is allowed, strictly for expositional purposes; more lags can be included without
any technical difficulties. The matrix A(st−1) has two rows. The number of its columns equals the
dimension of the vector of exogenous variables xt.

(ii) (st determined) Given y1t and (yt−1, ...,yt−11), the central bank calculates (through
(pt, ..., pt−11, xt, rt−1))

πt ≡
1

12
(
pt + · · · + pt−11

)
, re

t ≡ αr + δ′rxt + β′r

[
πt

xt

]
+ γrrt−1. (A4.3)

The central bank draws (vrt, vπt) fromN(0,
[
σ2

r 0
0 σ2

π

]
), and determines st as

If st−1 = P, st =

 P if re
t + vrt > rt,

Z otherwise.
(A4.4a)

If st−1 = Z, st =

 P if re
t + vrt > rt and πt ≥ π + vπt,

Z otherwise.
(A4.4b)
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(iii) (rt determined) Given st, rt is determined as

If st = P, then rt = re
t + vrt. (A4.5a)

If st = Z, then rt = rt. (A4.5b)

Note that rt in (A4.5a) is guaranteed to be > rt under P because by (A4.4a) and (A4.4b) re
t + vrt > rt

if st = P.

(iv) (mt determined) Finally, the central bank draws vst fromN(0, σ2
s ) and the market draws vdt from

N(0, σ2
d). The excess reserve rate mt is determined as

If st = P, then mt = max
[
me

dt + vdt, 0
]
, vdt ∼ N(0, σ2

d), (A4.6a)

If st = Z, then mt = max
[
me

st + vst, 0
]
, vst ∼ N(0, σ2

s ), (A4.6b)

where,

me
dt ≡ αd + δ′dxt + β′d


πt

xt

rt

 + γsmd,t−1, me
st ≡ αs + β′s

[
πt

xt

]
+ γsms,t−1. (A4.7)

When st = P and st−1 = Z, we set md,t−1 = 0; otherwise both ms,t−1 and md,t−1 are equal to mt−1.
Thus, formally, ms,t−1 and md,t−1 are functions of (st, st−1,mt−1).

Let θ be the model’s parameter vector. It consists of four groups:
θA = (c(s),A(s),Φ(s),Ω(s), s = P, Z) ,

θB =
(
αr,δr,βr, γr, σr, π, σπ

)
,

θC =
(
αs,βs, γs, σs

)
,

θD =
(
αd,δd,βs, γd, σd

)
.

(A4.8)

Derivation of the Likelihood Function
The likelihood of the data is (with its dependence on the parameter vector left implicit)

L ≡ p
(
s1, ..., sT,y1, ...,yT | x,Z0

)
, (A4.9)

Here, x ≡ (xT, xT−1, ...),Zt ≡ (st, st−1, ...,yt,yt−1, ...), and p(.|.) is the joint density-distribution function of(
s1, ..., sT,y1, ...,yT

)
conditional on (x,Z0). The usual sequential factorization yields

L =

T∏
t=1

p
(
st,yt | x,Zt−1

)
. (A4.10)

Consider the likelihood for date t, p
(
st,yt | x,Zt−1

)
in (A4.10). Since {xt} is exogenous, it can be written as

p
(
st,yt | x,Zt−1

)
= p

(
st,yt | xt, xt−1, ...,Zt−1

)
. (A4.11)

Recalling that yt =
(
y1t, rt,mt

)
, we rewrite this date t likelihood as

p
(
st,yt | xt, xt−1, ...,Zt−1

)
= p

(
mt | rt, st,y1t, xt, xt−1, ...,Zt−1

)
× p

(
rt | st,y1t, xt, xt−1, ...,Zt−1

)
× Prob

(
st |y1t, xt, xt−1, ...,Zt−1

)
× p

(
y1t | xt, xt−1, ...,Zt−1

)
.

(A4.12)

In what follows, we rewrite each of the four terms on the right hand side of this equation in terms of the
model parameters.
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The Fourth Term, p
(
y1t | xt, xt−1, ...,Zt−1

)
This term is entirely standard:

p
(
y1t | xt, xt−1, ...,Zt−1

)
= b

(
y1t −

(
c(st−1) + A(st−1)xt +Φ(st−1)yt−1

)
;Ω(st−1)

)
, (A4.13)

where b(.;Ω) is the density of the bivariate normal with mean 0
(2×1)

and variance-covariance matrix Ω
(2×2)

.

The Third Term, Prob
(
st |y1t, xt, xt−1, ...,Zt−1

)
This is the transition probability matrix for {st}. The probabilities depend on (re

t , πt, rt) (which in term can
be calculated from (y1t, xt,Zt−1), see (A4.3)). They are easy to derive from (A4.4a) and (A4.4b):

HH
HHHHst−1

st P Z

P Prt 1 − Prt

Z PrtPπt 1 − PrtPπt

Here,

Prt ≡ Prob
(
re

t + vrt > rt | re
t , rt

)
= Φ

(
re

t − rt

σr

)
, (A4.14)

Pπt ≡ Prob (πt ≥ π + vπt | πt) = Φ

(
πt − π
σπ

)
, (A4.15)

where Φ(.) is the cdf ofN(0, 1).

The First Term, p
(
mt | rt, st,y1t, xt, xt−1, ...,Zt−1

)
mt is given by (A4.6a) and (A4.6b). The right-hand-side variables in those equations, including md,t−1 and
ms,t−1, are functions of (rt, st,y1t, xt,Zt−1). So this term is the Tobit distribution-density function given by

h jt ≡

 1
σ j
φ

mt −me
jt

σ j

1(mt>0)

×

1 −Φ

me
jt

σ j

1(mt=0)

,

j = d if st = P and j = s if st = Z,

(A4.16)

where 1(.) is the indicator function, φ(.) and Φ(.) are the density and the cdf ofN(0, 1).

The Second Term, p
(
rt | st,y1t, xt, xt−1, ...,Zt−1

)
If st = Z, then rt = rt with probability 1, so this term can be set to 1. If st = P, there are two cases to
consider.
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• For st−1 = P,

p(rt | st = P,y1t, xt, xt−1, ...,Zt−1)

= p
(
re

t + vrt | re
t + vrt > rt, re

t , rt
)

(by (A4.4a) and (A4.5a) and since (re
t , rt) is a function of (y1t, xt,Zt−1))

=
p
(
re

t + vrt | re
t

)
Prob

(
re

t + vrt > rt | re
t , rt

)
=

1
σr
φ

(
vrt
σr

)
Prob

(
re

t + vrt > rt | re
t , rt

) (b/c re
t + vrt ∼ N

(
re

t , σ
2
r

)
)

=

1
σr
φ

( rt−re
t

σr

)
Prt

(b/c Prt = Prob
(
re

t + vrt > rt | re
t
)
) (A4.17)

• For st−1 = Z,

p(rt | st = P,y1t, xt, xt−1, ...,Zt−1)

= p
(
re

t + vrt | re
t + vrt > rt, πt ≥ π + vπt, re

t , rt, πt
)

(by (A4.4b) and (A4.5a) and since (re
t , rt, πt) is a function of (y1t, xt,Zt−1))

= p
(
re

t + vrt | re
t + vrt > rt, re

t , rt
)

(b/c vrt and vπt are independent)

=

1
σr
φ

( rt−re
t

σr

)
Prt

(as above). (A4.18)

Putting All Pieces Together
Putting all those pieces together, the likelihood for date t, (A4.12), can be written as (with Xt here
denoting (xt, xt−1, ..., ) for brevity)

st|st−1 p
(
mt | rt, st,y1t,Xt,Zt−1

)
p
(
rt | st,y1t,Xt,Zt−1

)
Prob

(
st |y1t,Xt,Zt−1

)
f
(
y1t | Xt,Zt−1

)
P|P hdt

gt
Prt

Prt fPt

P|Z hdt
gt
Prt

PrtPπt fZt

Z|P hst 1 1 − Prt fPt

Z|Z hst 1 1 − PrtPπt fZt

Here,

fPt ≡ b
(
y1t − c(P) − a(P)dt −Φ(P)yt−1;Ω(P)

)
,

fZt ≡ b
(
y1t − c(Z) − a(Z)dt −Φ(Z)yt−1;Ω(Z)

)
,

gt ≡
1
σr
φ

(
rt − re

t

σr

)
, Prt ≡ Φ

(
re

t − rt

σr

)
, Pπt ≡ Φ

(
πt − π
σπ

)
,

h jt is defined in (A4.16) and b(.;Ω) is the density function of the bivariate normal distribution with mean
0

(2×1)
and variance-covariance matrix Ω

(2×2)
.
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Dividing it into Pieces
Taking the log of both sides of (A4.10) while taking into account (A4.11) and (A4.12) and substituting the
entries in the table, we obtain the log likelihood of the sample:

L ≡ log (L) =

T∑
t=1

log
[
p
(
st,yt | xt, xt−1, ...,Zt−1

)]
= LA + L1 + L2 + LD,

where
LA =

∑
st−1=P

log
[

fPt
]
+

∑
st−1=Z

log
[

fZt
]
, (A4.19)

L1 =
∑
st=P

log [Prt] +
∑

st | st−1=P |Z

log [Pπt] +
∑

st | st−1=Z |P

log [1 − Prt] +
∑

st | st−1=Z |Z

log [1 − PrtPπt] , (A4.20)

L2 =
∑
st=P

[
log

(
gt
)
− log (Prt)

]
+

∑
st=Z

log [hst] , (A4.21)

LD =
∑
st=P

log [hdt] . (A4.22)

The terms in L1 + L2 can be regrouped into LB and LC, as in

L = LA + LB + LC︸  ︷︷  ︸
=L1+L2

+LD, (A4.23)

where

LB =
∑
st=P

log
[
gt
]
+

∑
st | st−1=P |Z

log [Pπt] +
∑

st | st−1=Z |P

log [1 − Prt] +
∑

st | st−1=Z |Z

log [1 − PrtPπt] , (A4.24)

LC =
∑
st=Z

log [hst] . (A4.25)

LA,LB,LC and LD can be maximized separately, because L j depends only on θ j ( j = A,B,C,D)
((θA,θB,θC,θD) was defined in (A4.8) above).

As a special case, consider simplifying step (ii) of the mapping above by replacing (A4.4a) and
(A4.4b) by

st =

 P if re
t + vrt > rt,

Z otherwise.
(A4.26)

Namely, drop the exit condition. This is equivalent to constraining Pπt to be 1, so LB becomes

LB =
∑
st=P

log
[
gt
]
+

∑
st=Z

log [1 − Prt] , (A4.27)

which is the Tobit log likelihood function.
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Appendix 5: A Simple Example of Expansionary Exits

This Appendix provides an example in which policy-induced exits from the zero-rate regime are
expansionary. It is a variant of the well-known two-equation new Keynesian model of Eggertson and
Woodford (2003) of the severity of the zero lower bound. As in their analysis, we seek an equilibrium in
which the endogenous variables are time-invariant functions of the state of the world governed by a
two-state Markov chain with one absorbing state. The exogenous variable in their model is the real interest
rate, while in ours it is the monetary policy shock. Solely to provide a simplest possible example, we
replace their two-equations by the Fisher equation, thus dropping the output gap from the model. As in
most theoretical analysis of the zero lower bound but contrary to the recursive model of the text, the
inflation rate and the nominal interest rate are determined simultaneously.

Let ωt be the state of the world whose value is either 0 or 1. Represent the mapping from the state to
the endogenous variables (πt, rt) (where πt is the inflation rate and rt is the nominal interest rate) as

(πt, rt) = (π(ωt), r(ωt)) , π(0)
≡ π(0), π(1)

≡ π(1), r(0)
≡ r(0), r(1)

≡ r(1). (A5.1)

State 1 is the absorbing state. Since we are interested in exits, the path of the state we consider is such that
the initial state is state 0. As time progresses, the state ωt switches from state 0 to 1. In each period, the
probability of the switch is q with 0 < q < 1. If the current state is ωt = 1 in period t, then (πt, rt) will be
constant from t on, so the Fisher equation is

r(1) = ρ + π(1), (A5.2)

where ρ is the constant real interest rate. We assume throughout that ρ > 0. If the current state is ωt = 0,
then the next period’s inflation rate πt+1 is π(0) with probability q and π(1) with probability 1 − q, so the
Fisher equation is

r(0) = ρ + qπ(0) + (1 − q)π(1). (A5.3)

We show below that the following equilibrium

(π(0), r(0)) =

(
−
ρ

q
, 0

)
, (π(1), r(1)) =

(
0, ρ

)
(A5.4)

is supported by the Taylor rule.

To describe the Taylor rule, define the shadow rate r̃t as

r̃t ≡ ρ + φπt + vt. (A5.5)

Here, vt is the monetary policy shock taken to be exogenous to the model. We assume the Taylor principle,
so φ > 1. The mapping from the state to the monetary policy shock is assumed to be

vt =

 v if ωt = 0,

0 if ωt = 1.
(A5.6)

We assume v > 0. Let st, which is either P or Z, be the monetary policy regime. It will turn out that the
regime and the state agree completely (i.e., st = P whenever ωt = 1 and st = Z whenever ωt = 0). The
censored Taylor rule with an inflation exit condition attached to it is described by

(censored Taylor rule) rt =

 r̃t if st = P,

0 if st = Z,
(A5.7)
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with the evolution of the regime governed by

If st−1 = P, st =

 P if r̃t > 0,

Z otherwise.

If st−1 = Z, st =

 P if r̃t > 0 and πt ≥ πt,

Z otherwise,

(A5.8)

where πt is the threshold inflation rate. The Taylor rule considered in the text reduces to this if (i) there is
no lags in adjusting the policy rate (so the shadow Taylor rate and the desired rate coincide) and (ii) the rate
rt paid on reserves is 0. Throughout this first example, the threshold inflation rate πt is constant at zero.

We now exhibit a policy-induced exit that is inflationary.

(a) The state of the world ωt is either 0 or 1. Suppose ωt = 1, so vt = 0 in (A5.5). The inflation rate and
the nominal rate under this state, (π(1), r(1)), have to satisfy the Fisher equation (A5.2) and the Taylor
rule.

(i) If the previous regime st−1 is P, then, by (A5.5)-(A5.8), the Taylor rule becomes

r(1) =

 ρ + φπ(1) if ρ + φπ(1) > 0,

0 otherwise.
(A5.9)

As noted by Benhabib, Schmitt-Grohe, and Uribe (2001), there are two solutions for (π(1), r(1))
to the Fisher equation and the Taylor rule. Those two equilibria are indicated in Appeendix
Figure 4a as points A and B. In the figure, the graph of the Fisher equation is the 45 degree line
passing through (0, ρ). The graph of the Talor rule is the kinked dotted line due to the zero lower
bound. The kink occurs where the straight line with a slope of φ > 0 hits the horizontal axis.
Those two graphs has two intersections, points A and B. Point B is often called the liquidity
trap. Following the mainstream literature, we assume that the “good” equilibrium, point A, is
chosen. At point A, the shadow rate r̃t = ρ + φπt is positive, so the regime st is P.

(ii) If the previous regime is st−1 = Z, then the exit condition kicks in and the Taylor rule (with the
threshold inflation rate πt set to 0) is

r(1) =

 ρ + φπ(1) if ρ + φπ(1) > 0 and π(1)
≥ 0,

0 otherwise.
(A5.10)

Appeendix Figure 4b shows the Fisher equation and the Taylor rule. The graph of the Fisher
equation is the same as in the previous figure, but the Taylor rule now has a discontinuity
occurring at π(1) = 0. Still, the two graphs the same two intersections, points A and B. We
assume that the good equilibrium A is chosen.

We have thus shown that (st, πt, rt) = (P, 0, ρ) if ωt = 1.

(b) Suppose ωt = 0, so vt = v > 0. We show that (st, πt, rt) = (Z,−ρ/q, 0) provided st−1 = Z. Since
π(1) = 0 as just shown, the Fisher equation (A5.3) that the inflation rate and the nominal rate under
state 0, (π(0), r(0)), have to satisfy is

r(0) = ρ + qπ(0). (A5.11)
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Since the previous regime is Z, the exit condition kicks in and the Taylor rule is

r(0) =

 ρ + φπ(0) + v if ρ + φπ(1) + v > 0 and π(0)
≥ 0,

0 otherwise.
(A5.12)

The graphs of the Fisher equation and the Taylor rule as shown in Appeendix Figure 4c. The
difference from the previous figure is that the slope of the Fisher equation is 0 < q < 1 rather than 1,
and, with v > 0, the two graphs have only one intersection, at point C in the figure.

Appendix Table 1 shows the response of the monetary policy regime st, the inflation rate πt, and the
nominal rate rt for a realization of the state of the world that starts with state 0 and switches to state 1 in
period t = 3, with vt, which has been constant at v > 0, suddenly drops to 0 at t = 3. In date 0, the
monetary policy regime s0 was Z perhaps because the real interest rate was negative. In period 1, the real
rate becomes positive but, for reasons explained above in (b), the economy remained trapped in the
liquidity trap. In periods t = 1 and 2, the shadow Taylor rate r̃t equals ρ + φπt + v = −

(
φ
q − 1

)
ρ + v,

which may or may not be positive. Even when it is positive, the monetary policy ragime st is Z by (A5.8)
because the inflation rate is negative at −ρ/q.

Appendix Table 1

t 0 1 2 3 4 5 ...

vt ... v (> 0) v (> 0) 0 0 0 ...

st Z Z Z P P P ...

πt ... −ρ/q (< 0) −ρ/q (< 0) 0 0 0 ...

r̃t ... r − φ
q ρ + v r − φ

q ρ + v ρ ρ ρ ...

rt ... 0 0 ρ ρ ρ ...
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Table 1: Policy Announcements by the Bank of Japan, 1999-2012

date quotes and URLs

1999.2.12 “The Bank of Japan will provide more ample funds and encourage the uncollateralized overnight call rate

to move as low as possible.”

http://www.boj.or.jp/en/announcements/release_1999/k990212c.htm/

1999.4.13 “(The Bank of Japan will) continue to supply ample funds until the deflationary concern is dispelled.” (A

remark by governor Hayami in a Q & A session with the press. Translation by authors.)

http://www.boj.or.jp/announcements/press/kaiken_1999/kk9904a.htm/

1999.9.21 “The Bank of Japan has been pursuing an unprecedented accommodative monetary policy and is explicitly

committed to continue this policy until deflationary concerns subside.”

http://www.boj.or.jp/en/announcements/release_1999/k990921a.htm/

2000.8.11 “... the downward pressure on prices ... has markedly receded. ... deflationary concern has been dispelled,

the condition for lifting the zero interest rate policy.”

http://www.boj.or.jp/en/announcements/release_2000/k000811.htm/

2001.3.19 “The main operating target for money market operations be changed from the current uncollateralized

overnight call rate to the outstanding balance of the current accounts at the Bank of Japan. Under the

new procedures, the Bank provides ample liquidity, and the uncollateralized overnight call rate will be

determined in the market ... The new procedures for money market operations continue to be in place until

the consumer price index (excluding perishables, on a nationwide statistics) registers stably a zero percent

or an increase year on year.”

http://www.boj.or.jp/en/announcements/release_2001/k010319a.htm/

2003.10.10 “The Bank of Japan is currently committed to maintaining the quantitative easing policy until the consumer

price index (excluding fresh food, on a nationwide basis) registers stably a zero percent or an increase year

on year.”

http://www.boj.or.jp/en/announcements/release_2003/k031010.htm/

2006.3.9 “... the Bank of Japan decided to change the operating target of money market operations from the out-

standing balance of current accounts at the Bank to the uncollateralized overnight call rate... The Bank of

Japan will encourage the uncollateralized overnight call rate to remain at effectively zero percent. ... The

outstanding balance of current accounts at the Bank of Japan will be reduced towards a level in line with

required reserves. ... the reduction in current account balance is expected to be carried out over a period

of a few months.... Concerning prices, year-on-year changes in the consumer price index turned positive.

Meanwhile, the output gap is gradually narrowing. ... In this environment, year-on-year changes in the

consumer price index are expected to remain positive. The Bank, therefore, judged that the conditions laid

out in the commitment are fulfilled.”

http://www.boj.or.jp/en/announcements/release_2006/k060309.htm/

2006.7.14 “... the Bank of Japan decided ... to change the guideline for money market operations... The Bank of Japan

will encourage the uncollateralized overnight call rate to remain at around 0.25 percent.”

http://www.boj.or.jp/en/announcements/release_2006/k060714.pdf/

2008.12.19 “... it (author note: meaning the policy rate) will be encouraged to remain at around 0.1 percent (author

note: which is the rate paid on reserves)...”

http://www.boj.or.jp/en/announcements/release_2008/k081219.pdf

2009.12.18 “The Policy Board does not tolerate a year-on-year rate of change in the CPI equal to or below 0 percent.”

http://www.boj.or.jp/en/announcements/release_2009/un0912c.pdf

2010.10.5 “The Bank will maintain the virtually zero interest rate policy until it judges, on the basis of the ‘under-

standing of medium- to long-term price stability’ that price stability is in sight...”

http://www.boj.or.jp/en/announcements/release_2010/k101005.pdf

2012.2.14 “The Bank will continue pursuing the powerful easing until it judges that the 1 percent goal is in sight...”

http://www.boj.or.jp/en/announcements/release_2012/k120214a.pdf
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Table 2: Winding-down of QE2, March to August 2006

March April May June July August

regime (P for normal, Z for zero-rate/QE) Z Z Z Z P P
ratio of actual to required reserves 4.5 2.7 1.7 1.6 1.0 1.0
m, log of the above ratio 1.51 1.00 0.55 0.46 0 0
r, the policy rate (% per year) 0.0 0.0 0.0 0.0 0.26 0.25
p, monthly inflation rate (% per year) 1.1 −1.4 0.9 0.1 −0.3 0.5
π, year-on-year inflation rate (% per year) 0.1 −0.1 0.0 0.2 0.2 0.3
x, output gap (%) −0.7 −0.4 −0.6 −0.5 −0.8 −0.5

Note: The ratio of actual to required reserves for July and August 2006, which was 1.2 (July) and 1.1
(August) in data, is set to 1.0. The policy rate under the zero-rate regime is set equal to r (the rate paid on
reserves) which before November 2008 is 0%.
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Table 3: Simple Statistics, January 1988 - December 2012

p (monthly
inflation

rate, % per
year)

π (12-month
inflation rate,

%)

x (output
gap, %)

r (policy
rate, % per

year)

m (excess
reserve

rate)

trend
growth
rate, %

subsample P (sample size = 170)

mean 0.802 0.847 −0.219 2.640 0.007 2.129
std. dev. 1.569 1.003 1.929 2.582 0.022 1.474

max 5.565 3.229 4.868 8.261 0.206 4.796
min −3.917 −0.904 −4.482 0.075 0.0 0.355

QE1 (March 1999-July 2000, sample size= 17)

mean −0.230 −0.104 −2.996 0.0 0.098 0.725
std. dev. 0.529 0.086 0.919 0.0 0.069 0.025

max 0.938 0.014 −1.354 0.0 0.275 0.755
min −1.069 −0.224 −4.328 0.0 0.041 0.679

QE2 (March 2001-June 2006, sample size= 64)

mean −0.299 −0.408 −2.184 0.0 1.379 0.990
std. dev. 1.106 0.390 1.159 0.0 0.545 0.070

max 2.273 0.196 −0.395 0.0 1.849 1.126
min −2.911 −1.066 −4.335 0.0 0.078 0.863

QE3 (December 2008-December 2012, sample size= 49)

mean −0.531 −0.498 −3.783 0.1 0.941 0.499
std. dev. 1.418 0.462 2.136 0.0 0.417 0.577

max 3.477 0.270 −1.130 0.1 1.701 1.963
min −3.705 −1.279 −9.494 0.1 0.349 −0.840

Note: The last column is the 12-month growth rate of potential GDP, defined as 100 times the log differ-
ence between the potential GDP of the current month and that of 12 month prior.
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Table 5: Excess Reserve Supply Equation

t is in
coefficient of

R2 σs (%)
const πt xt mt−1

QE2 & QE3
(113 obs.)

−0.013
[−0.2]

−0.009
[−0.2]

−0.018
[−2.2]

0.98
(0.033)

0.94 0.132
(0.0088)

Note: Estimation by OLS. t-values in brackets and standard errors in
parentheses. mt is the exces reserve rate, πt is the 12-month inflation
rate to month in percents t, xt is the output gap in percents, σs (standard
deviation of the error) is estimated as σ̂s =

√
SSR/n where n is the

sample size. The standard error of σ̂s is calculated as σ̂s
√

2n
.
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Table 6: Inflation and Output Reduced Form

lagged subsample P, February 1988 - February 1995

st−1 is in dependent variable
coefficient of

R2

const. gt pt−1 xt−1 rt−1 mt−1

P
(85 obs.)

inflation (pt) −0.36
[−0.4]

−0.027
[−0.2]

−0.09
[−0.8]

0.02
[0.1]

0.45
[2.6]

0.32

output (xt) −3.69
[−5.9]

0.48
[3.9]

−0.09
[−1.1]

0.31
[3.0]

0.53
[4.5]

0.83

lagged subsample P, March 1995 - December 2008

st−1 is in dependent variable
coefficient of

R2

const. gt pt−1 xt−1 rt−1 mt−1

P
(85 obs.)

inflation (pt) 0.12
[0.3]

−0.51
[−0.7]

−0.09
[−0.7]

0.13
[1.5]

0.44
[0.8]

0.07

output (xt) −0.88
[−2.8]

1.31
[2.8]

−0.01
[−0.2]

0.98
[17]

−0.52
[−1.5]

0.79

lagged subsample Z

st−1 is in dependent variable
coefficient of

R2

const. gt pt−1 xt−1 rt−1 mt−1

QE2 & QE3
(112 obs.)

inflation (pt) −0.57
[−1.0]

−0.24
[−0.8]

−0.06
[−0.6]

0.12
[1.6]

0.49
[0.2]

0.56
[2.2]

0.10

output (xt) −0.99
[−2.6]

0.03
[0.1]

0.08
[1.3]

0.79
[15]

−0.66
[−0.3]

0.40
[2.3]

0.80

Note: Estimation by OLS. t-values in brackets. p is the monthly inflation rate in percents per year,
x is the output gap in percents, r is the policy rate in percents per year, m is the excess reserve
rate (defined as the log of the ratio of actual to required reserves), and g is the trend growth rate
(the 12-month growth rate in percents of potential output). The Mieno (anti-bubble) dummy (1 if
December 1989 ≤ t ≤ June 1991) and the banking crisis dummy (1 if September 1995 ≤ t ≤ July
1998) are included in the regressions on lagged subsample P but their coefficients are not reported
here; they are not significantly different from zero. There is no need to include those dummies on
lagged subsample Z because their value is zero. The value of rt−1 is 0 (percent) for (QE1 and) QE2,
and 0.1 (percent) for QE3.
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Table 8: Inflation and Output Reduced Form, with Occasionally Positive Ex-

cess Reserve Demand

lagged subsample P, March 1995 - December 2008

st−1 is in dependent variable
coefficient of

R2
const. gt pt−1 xt−1 rt−1 mt−1

P
(85 obs.)

inflation (pt) 0.31
[0.6]

−0.73
[−1.0]

−0.08
[−0.7]

0.10
[1.0]

0.48
[0.9]

−4.1
[−0.8]

0.08

output (xt) −0.56
[−1.6]

0.95
[1.9]

−0.01
[−0.2]

0.92
[15]

−0.46
[−1.3]

−6.9
[−2.0]

0.80

lagged subsample W

st−1 is in dependent variable
coefficient of

R2
const. gt pt−1 xt−1 rt−1 mt−1

QE1
(17 obs.)

inflation (pt) 0.46
[0.7]

−0.19
[−0.7]

0.11
[0.6]

−3.9
[−1.7]

0.19

output (xt) −2.2
[−3.0]

−0.03
[−0.1]

0.45
[2.3]

6.5
[2.5]

0.62

Note: Estimation by OLS. t-values in brackets. p is the monthly inflation rate in percents per
year, x is the output gap in percents, r is the policy rate in percents per year, m is the excess re-
serve rate (defined as the log of the ratio of actual to required reserves), and g is the trend growth
rate (the 12-month growth rate in percents of potential output). The banking crisis dummy (1 if
September 1995 ≤ t ≤ July 1998) is included in the regressions on lagged subsample P but its
coefficient is not reported here. The trend growth rate gt is excluded for lagged subsample W to
avoid near-multicollinearity with the constant.
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Figure 1a: Plot of Net Policy Rate against Excess Reserve Rate, 1988-2012
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Figure 1b: Plot of Net Policy Rate against Excess Reserve Rate, Near Origin
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Figure 2a: Excess Reserve Rate, 1997 - 2012
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Note: The shades indicate the three spells of the zero-rate period.

Figure 2b: Actual and Potential Monthly GDP, 1988 - 2012
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Figure 2c: Policy Rate, Inflation, and Trend Growth Rate, 1988-2012
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Note: The shades indicate the three spells of the zero-rate period.

Figure 3: Policy Rate and Desired Taylor Rate, 1988 - 2012
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Note: The desired Taylor rate is the r∗t defined in (4.1). The intercept α∗r depends on the
trend growth rate and the two dummies (the Mieno dummy for December 1989-June 1991)
and the banking crisis dummy for September 1995 and July 1998). In the plotted desired
Taylor rate, the two dummies are set to zero for all months. The shades indicate the three
spells of the zero-rate period.
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Figure 4a: The Policy Rate Cut Effect, the base period is March 1995
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Note: The r-IR is defined in (6.3). The perturbation size is −1 percentage point as indicated
in the lower-left panel. The 68% probability bands in shades.

Figure 4b: The QE Effect, the base period is February 2004
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Note: The m-IR is defined in (6.2). The perturbation size is 1 as indicated in the lower-right
panel. The 68% probability bands in shades.
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Figure 4c: The Effect of Extending QE2 to July 2006
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Note: The impulse response is defined in (6.5). The perturbation occurs to m, r, and the
regime. The 68% probability bands in shades.
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Figure 5a: The Policy Rate Effect, March 1995, HP-Filtered Potential Output
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Note: See note to Figure 4a. Only the upper panels are shown.

Figure 5b: The QE Effect, February 2004, HP-Filtered Potential Output
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Note: See note to Figure 4b. Only the upper panels are shown.

Figure 5c: The Effect of Extending QE2 to July 2006, HP-Filtered Potential Output
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Note: See note to Figure 4c. Only the upper panels shown.
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Figure 6: The Policy Rate Effect, March 1995, with Demand for Excess Reserves
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Note: The size of perturbation to r is −1 percentage point. The excess reserve rate is not
constrained to be 0 under the normal regime P. It is given by the excess reserve demand
equation (7.1).
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Appendix Figure 1: Twelve-Month CPI Inflation Rate, 1988 - 2012
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Appendix Figure 2: The Transitional Effect from P to Z, base period is July 2006
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Note: The transitional effect from P to Z is defined in (6.10). The only perturbation is a
change in the regime from P to Z.

Appendix Figure 3: The Rate-Cut and QE Effects, base period is July 2006
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Note: The rate-cut and QE effects here are defined in (6.10). In the QE effect, the pertur-
bation size to m is 0.45. In the rate-cut effect, the perturbation size is −0.26 percentage
point.
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Appendix Figure 4a: Two Equilibria without Exit Condition, ωt = 1
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Appendix Figure 4b: Two Equilibria with Exit Condition, ωt = 1
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Appendix Figure 4c: Two Equilibria with Exit Condition, ωt = 0
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