GOVERNMENT SPENDING MULTIPLIERS UNDER THE ZERO LOWER BOUND: EVIDENCE FROM JAPAN

Wataru Miyamoto Bank of Canada Thuy Lan Nguyen Dr Santa Clara University Bo

Dmitriy Sergeyev Bocconi University

Columbia Japan Economic Seminar February 10, 2017

The views are of the authors and not of the Bank of Canada

WHAT WE DO

- Are multipliers different across ZLB and normal periods?
 - On-impact Output Multipliers: 1.5 in ZLB vs 0.6 outside ZLB using Japanese data
- Can a standard New Keynesian model be consistent with the empirical findings?
 - ZLB period caused by low confidence, and with not too persistent spending, can replicate some features of output and inflation multipliers

Plan

- Motivation
- Data
- Specification
- Output multiplier
- Other results
- Model

MULTIPLIERS DURING ZLB: THEORY

MULTIPLIERS DURING ZLB: THEORY

Neoclassical models

- Baxter-King (1993), etc.
- Output multiplier is *independent* of monetary policy

MULTIPLIERS DURING ZLB: THEORY Neoclassical models

- Baxter-King (1993), etc.
- Output multiplier is *independent* of monetary policy

New Keynesian models with "fundamental-driven" ZLB

- Eggertsson (2011), Woodford (2011), Christiano-Eichenbaum-Rebelo (2012)
- Output multiplier can be *larger* during ZLB

MULTIPLIERS DURING ZLB: THEORY Neoclassical models

- Baxter-King (1993), etc.
- Output multiplier is *independent* of monetary policy

New Keynesian models with "fundamental-driven" ZLB

- Eggertsson (2011), Woodford (2011), Christiano-Eichenbaum-Rebelo (2012)
- Output multiplier can be *larger* during ZLB

New Keynesian models with "confidence-driven" ZLB

- Mertens-Ravn (2014)
- Output multiplier can be *smaller* during ZLB

Evidence from the Great Depression

- Ramey (2011), Crafts-Mills (2012)
- Estimates: 0.3-0.9
- ZLB overlaps with recession, rationing, patriotism (WWII)

Evidence from the Great Depression

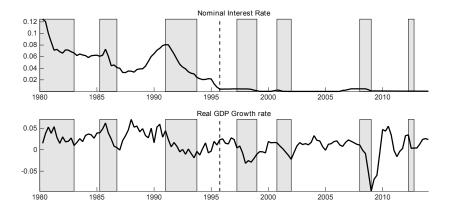
- Ramey (2011), Crafts-Mills (2012)
- Estimates: 0.3-0.9
- ZLB overlaps with recession, rationing, patriotism (WWII)

Evidence from the Great Depression and Recession

- Ramey-Zubairy (2014)
- Estimates: 0.6-1.6
- ZLB periods coincide with recessions

Evidence from the Great Depression

- Ramey (2011), Crafts-Mills (2012)
- Estimates: 0.3-0.9
- ZLB overlaps with recession, rationing, patriotism (WWII)


Evidence from the Great Depression and Recession

- Ramey-Zubairy (2014)
- Estimates: 0.6-1.6
- ZLB periods coincide with recessions

Evidence from monetary unions

- Nakamura-Steinsson (2014), Bruckner-Tuladhar (2014)
- Estimates: 1.5, 0.4-0.8
- Need a model to map to aggregate multiplier

JAPANESE DATA

DATA

Sample Period

- 1980:I-1995:III (normal period)
- ▶ 1995:IV-2014:I (ZLB period)

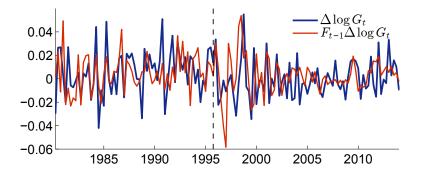
Quarterly macro variables Y_t , G_t , T_t , C_t , I_t , π_t , i_t

Source: National Accounts

New Quarterly forecasts of G_t , Y_t , π_t

- Source: Japan Center for Economic Research (JCER)
- Other forecast: Japan Government Outlook, OECD, IMF

IDENTIFICATION ASSUMPTIONS


Exogenous government spending changes

 Gov spending does not respond to output within a quarter [Blanchard-Perotti, 2002]

Unexpected government spending shocks

▶ Remove one-quarter forecast of government spending and past variables [F_{t-1}G_t and ψ(L)y_{t-1}]

GOVERNMENT SPENDING AND ITS FORECAST

SPECIFICATION

1. Remove expected government spending growth

$$\Delta \ln G_t = \alpha + \gamma F_{t-1} \Delta \ln G_t + \psi(L) y_{t-1} + \epsilon_t$$

Specification

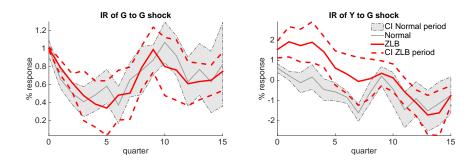
1. Remove expected government spending growth

$$\Delta \ln G_t = \alpha + \gamma F_{t-1} \Delta \ln G_t + \psi(L) y_{t-1} + \epsilon_t$$

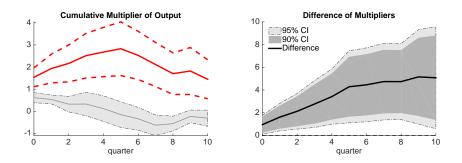
2. Project variable of interest x_{t+h} on estimated shock $\hat{\epsilon}_t$

$$x_{t+h} = \alpha_h^x + \beta_h^x \cdot \hat{\boldsymbol{\epsilon}}_t + \psi_h^x(L) y_{t-1} + \boldsymbol{\epsilon}_{t+h}^x$$

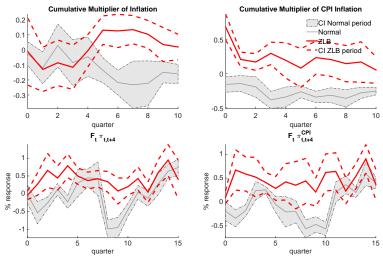
- Controls $y_t = \{G_t, T_t, Y_t, u_t\}$
- Include 4 lags for each control variables
- All variables are per capita and deflated by GDP deflator
- 3. Estimate for each subperiod: ZLB, outside ZLB


CUMULATIVE OUTPUT MULTIPLIER

$$\sum_{j=0}^{h} \frac{Y_{t+j} - Y_{t-1}}{Y_{t-1}} = \alpha_h^x + M_h^y \sum_{j=0}^{h} \frac{G_{t+j} - G_{t-1}}{Y_{t-1}} + \psi_h^x(L) y_{t-1} + \epsilon_{t+h}^x,$$


with
$$\sum_{j=0}^{h} \frac{G_{t+j}-G_{t-1}}{Y_{t-1}}$$
 IV by $\hat{\epsilon}_t$.

 Interpretation: M^Y_h measures dollar changes in output when G changes by \$1 after h quarters


IMPULSE RESPONSE FUNCTIONS OF G and YAFTER GOVERNMENT SPENDING SHOCK

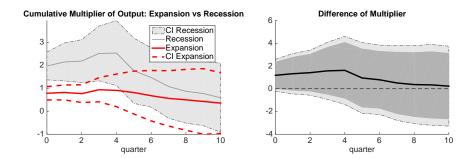
OUTPUT MULTIPLIER

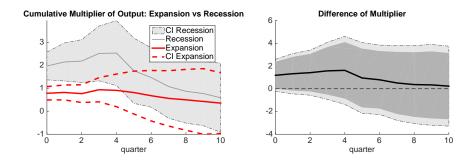
INFLATION AND EXPECTED INFLATION IRFS

Interest Rate

Other Variables

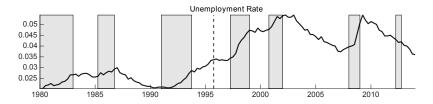
Multipliers in recessions and booms

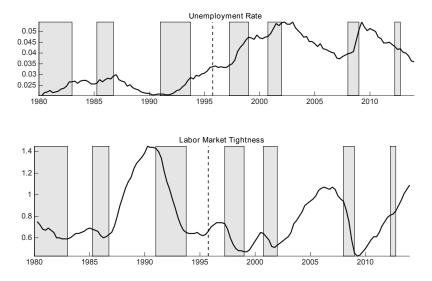

- Theory: Michaillat (2014)
- Empirics: Auerbach-Gorodnichenko (2012a,b)


Multipliers in recessions and booms

- Theory: Michaillat (2014)
- Empirics: Auerbach-Gorodnichenko (2012a,b)

Multipliers in recessions and booms in Japan


- ► Recessions: the Cabinet Office of Japan classification
- Specification: add recession dummies


Note: recessions are 45% of normal period, 30% of ZLB period

PERMANENT RECESSION

PERMANENT RECESSION

Contemporaneous Reaction of G to Y

Baseline identification assumption

- G_t does not react to Y_t
- Blanchard-Perotti (2002), etc.
- Can change in this assumption explain results?

Contemporaneous Reaction of G to Y

Alternative

- Assume G_t responds to Y_t with elasticity η
- First stage regression

 $\Delta \ln G_t = \alpha + \eta \Delta \ln Y_t + \gamma F_{t-1} \Delta \ln G_t + \psi(L) y_{t-1} + \epsilon_t$

η ≠ 0 changes the magnitude of the multipliers but in same direction for *both* periods

TABLE: Automatic Stabilizer

η	Normal	ZLB
0	0.6	1.5
-0.1	0.7	1.7
0.1	0.5	1.4

Would need a different η in each period to explain the difference

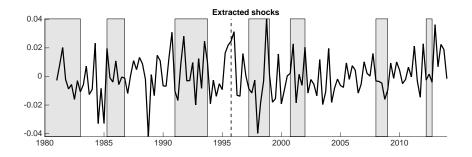
NEW KEYNESIAN MODEL

- Can a standard New Keynesian model be consistent with the empirical findings?
- Main Findings:
 - ZLB period caused by low confidence, and with not too persistent spending, can generate output and inflation multipliers close to empirics.
 - Not ZLB period caused by fundamental shocks
 - Model matches the output multiplier in the normal period at short horizons

Model Details

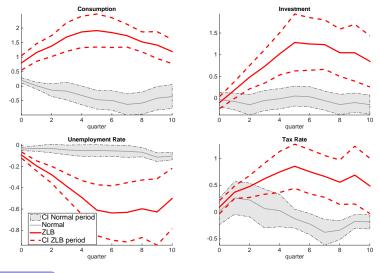
INTUITION

- Model mechanism:
 - G shock leads to inflation \rightarrow Real rate goes down in ZLB \rightarrow Private demand up
 - ▶ Important: G elevated during the ZLB
- ▶ In the data: G shock is persistent
- In the model, expected duration:
 - Fundamental-driven ZLB: short 2 years
 - Confidence-driven shock ZLB: long 5 years
- So the model can explain majority of the difference of output multipliers only in the confidence-driven ZLB


1. Output multiplier is larger during the ZLB period.

2. A standard NK model with not too persistent government spending shock in the ZLB period caused by low confidence can explain some of the empirical features.

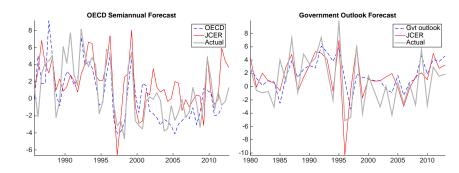
THANK YOU


Extra Slides

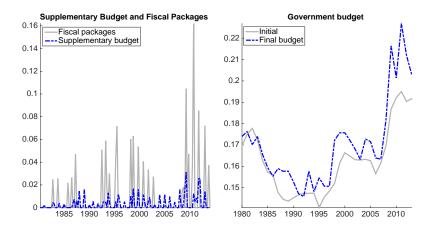
EXTRACTED SHOCKS $\hat{\epsilon}_t$

▲ Back

OTHER VARIABLE MULTIPLIERS



Other Variables



JCER VS OTHER FORECAST

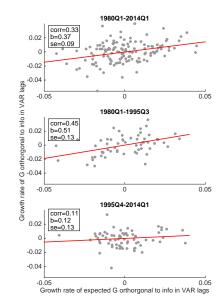
NON-STANDARD CHANGES TO THE BUDGET

IMPORTANCE OF FORECAST DATA

How "predictable" the G shocks without forecast?

Project G-growth on past observables

$$\Delta \ln G_t = \alpha + \psi(L) y_{t-1} + \epsilon_t^g$$

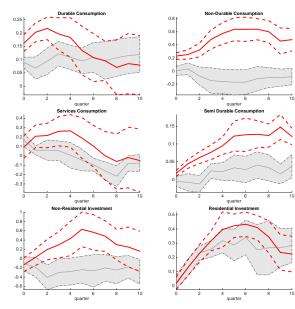

Project forecasted G-growth on observables

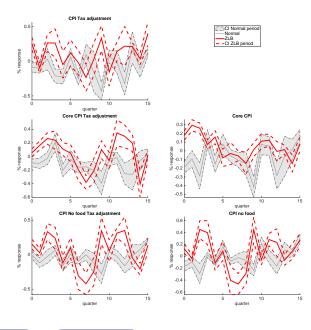
$$\Delta F_{t-1} \ln G_t = \alpha + \psi(L) y_{t-1} + \epsilon_t^{Fg}$$

• If forecasts are useless, no correlation between $\hat{\epsilon}_t^g$ and $\hat{\epsilon}_t^{Fg}$

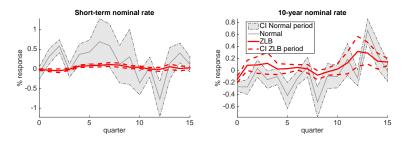
◀ Back

 $\hat{\epsilon}_t^g$ vs. $\hat{\epsilon}_t^{Fg}$


OUTPUT MULTIPLIERS


WITH AND WITHOUT FORECAST DATA

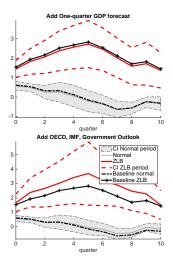
Components of C and I

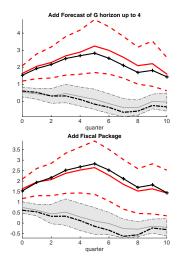


Back to Overview

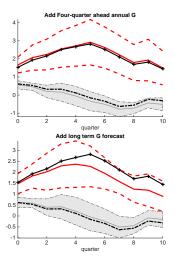
NOMINAL INTEREST RATE

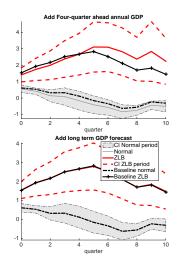
▲ Back

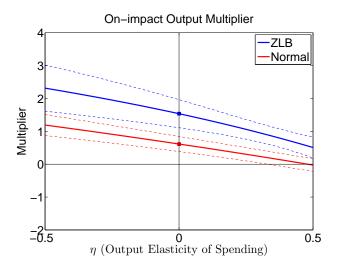

ROBUSTNESS

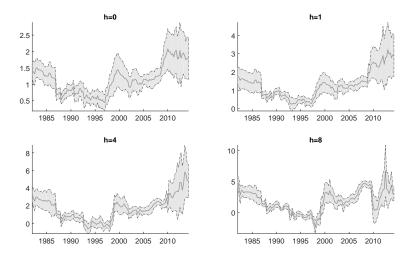

Results do not change if we add

- 1-quarter ahead GDP forecast
- 1-year ahead GDP forecast
- 2-year ahead GDP forecast
- 1-year ahead G forecast
- 2-year ahead G forecast
- OECD semiannual measures of expectations
- ► IMF quarterly (since 2003) measures of expectations


ADDITIONAL FORECAST CONTROLS




LONGER-TERM FORECAST CONTROLS



Elasticity of G to Y

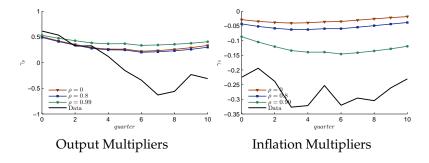
▶ Back

ROLLING MULTIPLIERS ESTIMATION

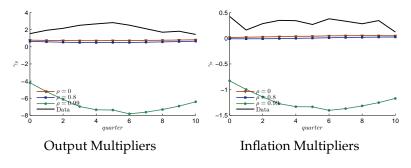
Model

IS and Phillips curves

$$\begin{aligned} \widehat{y}_t - \widehat{g}_t &= \mathbb{E}_t \left(\widehat{y}_{t+1} - \widehat{g}_{t+1} \right) - \widetilde{\sigma} \left(i_t - \mathbb{E}_t \pi_{t+1} - r_t^{net} \right) \\ \pi_t &= \beta \mathbb{E} \pi_{t+1} + \kappa \left(\widehat{y}_t - \Gamma \widehat{g}_t \right) \end{aligned}$$

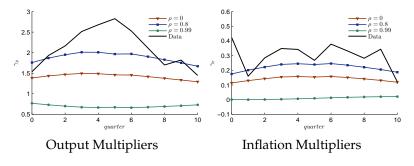

Monetary policy

$$i_t = \max\left\{0, (1-\rho_i)(\bar{r}+\phi_\pi\pi_t+\phi_y\hat{y}_t)+\rho_i i_{t-1}\right\}$$


Fiscal policy

$$\widehat{g}_{t} = \begin{cases} \widehat{g}_{t}^{estimated} & 0 \le t \le 15\\ \widehat{g}_{15}^{estimated} \cdot \rho^{t-15} & t > 15 \end{cases}$$

TAYLOR RULE


TEMPORARY INTEREST RATE SPREADS SHOCK

Expected duration of ZLB: 2 years

DEFLATIONARY TRAP

Expected duration of ZLB: 5 years