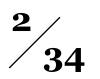
Automation and Comparative Advantage

Shinnosuke Kikuchi MIT

Feb. 2023, Columbia

Skills, Comparative Advantage, Industrialization

- "Developing" countries: Low-skill abundant
- Conventional view:
 - Heckscher–Ohlin
 - Comparative advantage in L-intensive sectors
 - "East Asian Miracle"
 - Export-led growth, Industrialization, ...

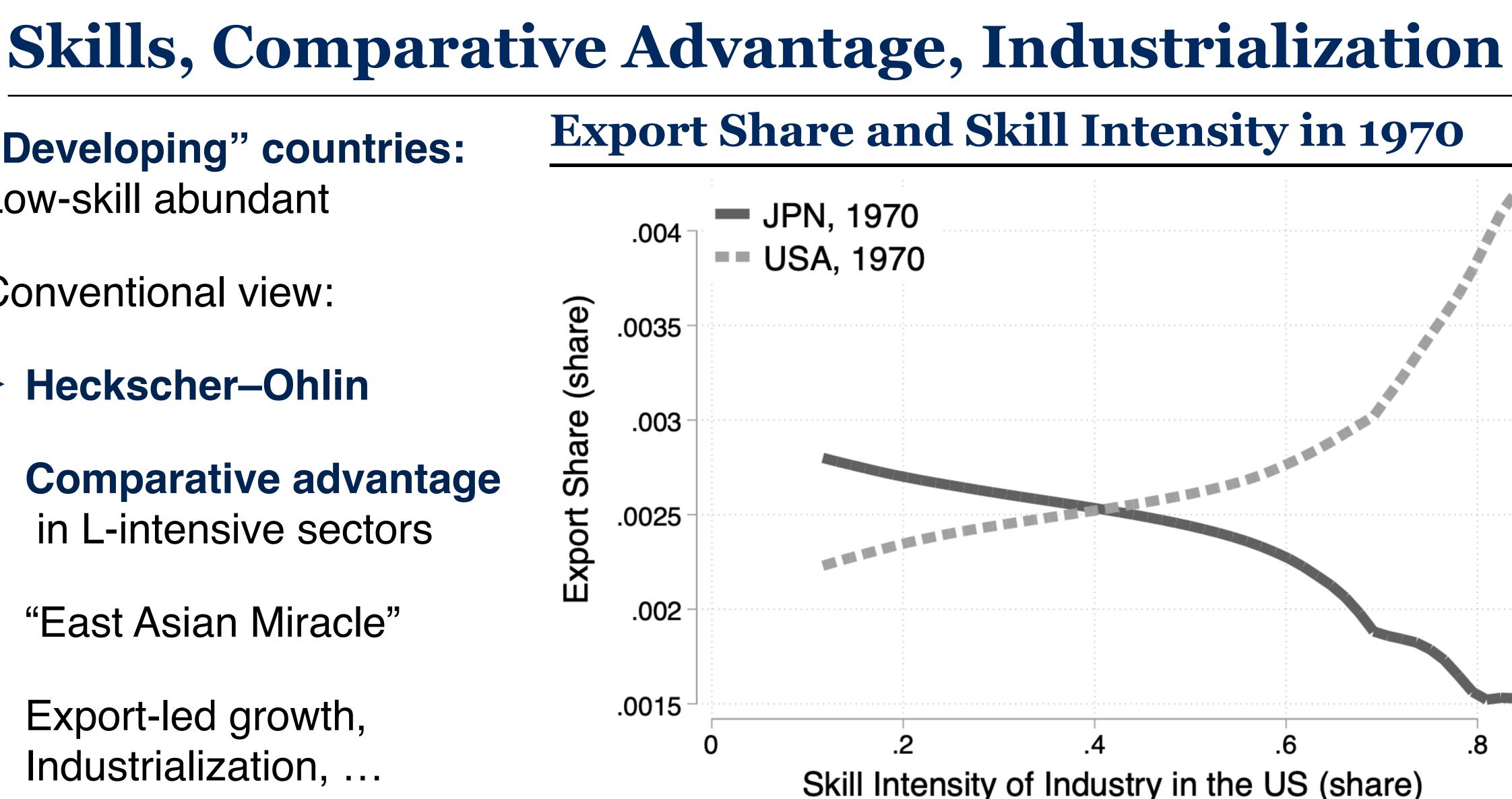


Skills, Comparative Advantage, Industrialization **Export Share and Skill Intensity in 1970** • "Developing" countries: Low-skill abundant .004 Conventional view: Export Share (share) .0035 Heckscher-Ohlin .003 Comparative advantage .0025 in L-intensive sectors .002 "East Asian Miracle" .0015 Export-led growth, .2 .4 .6 .8 N Industrialization, ... Skill Intensity of Industry in the US (share)

Note: Export share is the share of total export in 4-digit SIC code in each country (from Comtrade). Skill intensity is the non-production worker payroll share out of total payroll in the US (from US NBER CES). The lines are Kernel-weighted local polynomial smoothing with bandwidth = 0.2. Regressions are unweighted.

• "Developing" countries: Low-skill abundant .004 -Conventional view: (share) .0035 Heckscher–Ohlin Export Share .003 Comparative advantage .0025 in L-intensive sectors .002 "East Asian Miracle" .0015 Export-led growth, Industrialization, ...

Note: Export share is the share of total export in 4-digit SIC code in each country (from Comtrade). Skill intensity is the non-production worker payroll share out of total payroll in the US (from US NBER) CES). The lines are Kernel-weighted local polynomial smoothing with bandwidth = 0.2. Regressions are unweighted.



Automation can Change Comparative Advantage

- This paper: Automation changes comparative advantage
 - L-scarcity \rightarrow (L-replacing) automation -e.g. Japan, Germany,...
 - Endogenous comparative advantage against factor-endowment
 - \rightarrow Expand (and may even specialize in) L-intensive sectors

- Can weaken/reverse L-abundant countries' CA in L-intensive sectors
 - Developing countries cannot specialize in L-intensive sectors as much

What I do

- Reduced-form: Bilateral HO-gravity guided by Theory
 - Decoupling/Reversal of Skill and Comparative Advantage
 - Associate with robot use

• Theory: Multi-sector, multi-factor Armington + Task Framework - Automation \rightarrow Comparative Advantage, Structural Change

Quantitative: Estimate Bilateral HO-gravity in Model and Compare to Data Without automation, HO would have survived

Contribution

- New facts on the weakening connection between skill and CA
 - Tests: Davis & Weinstein (2001), Romalis (2004), Nunn (2007), Levchenko (2007) etc.
- Simple Framework for Automation in Trade
 - Automation: Zeira (1998), Acemoglu & Restrepo (2018, 2020, 2021, 2022,...) etc
 - Tech. in Trade: Epifani and Gancia (2008) Acemoglu (2003), Acemoglu et al (2015) etc.
- North Technology on South Specialization/Structural Change via Trade
 - Structural change with Trade: Matsuyama (2009), Uy et al (2013), Matsuyama (2019) etc
 - Premature deindustrialization: Rodrik(2016), Fujiwara and Matsuyama (2021) etc

Today's Plan

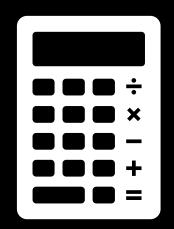
1. Empirical Evidence

2. Theoretical Framework

3. Two-country Illustration

4. Quantitative Results

23 E



Testing Skill Endowment as a Source of CA

Model-consistent gravity-like regression

$$\ln X_{i,j,s,t} = \beta_t \left[\alpha_{s,t}^L \times \ln \left(-\frac{1}{2} \right) \right]$$

- Units: i-j country pairs (58*58), s sectors (SIC 4-digit, 397 mfg.), year t
- $\ln X_{i,i,s,t}$: bilateral exports (i, j, s), in log
- $\alpha_{s,t}^L$: sector-s's production labor share in the US
- $L_{i,t}/H_{i,t}$: country-i's low-skill endowments
- PPML for each year t separately (t=1980,...,2015) to estimate β_t

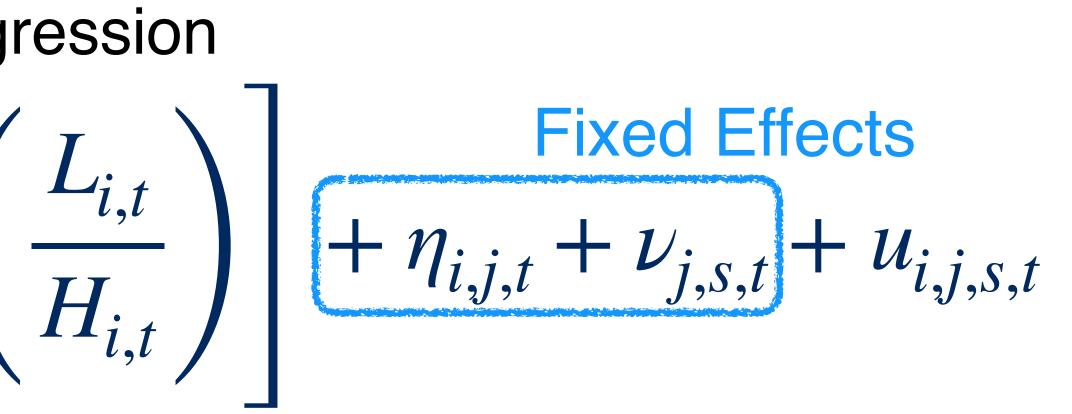
$\left(\frac{L_{i,t}}{H_{i,t}}\right) + \eta_{i,j,t} + \nu_{j,s,t} + u_{i,j,s,t}$

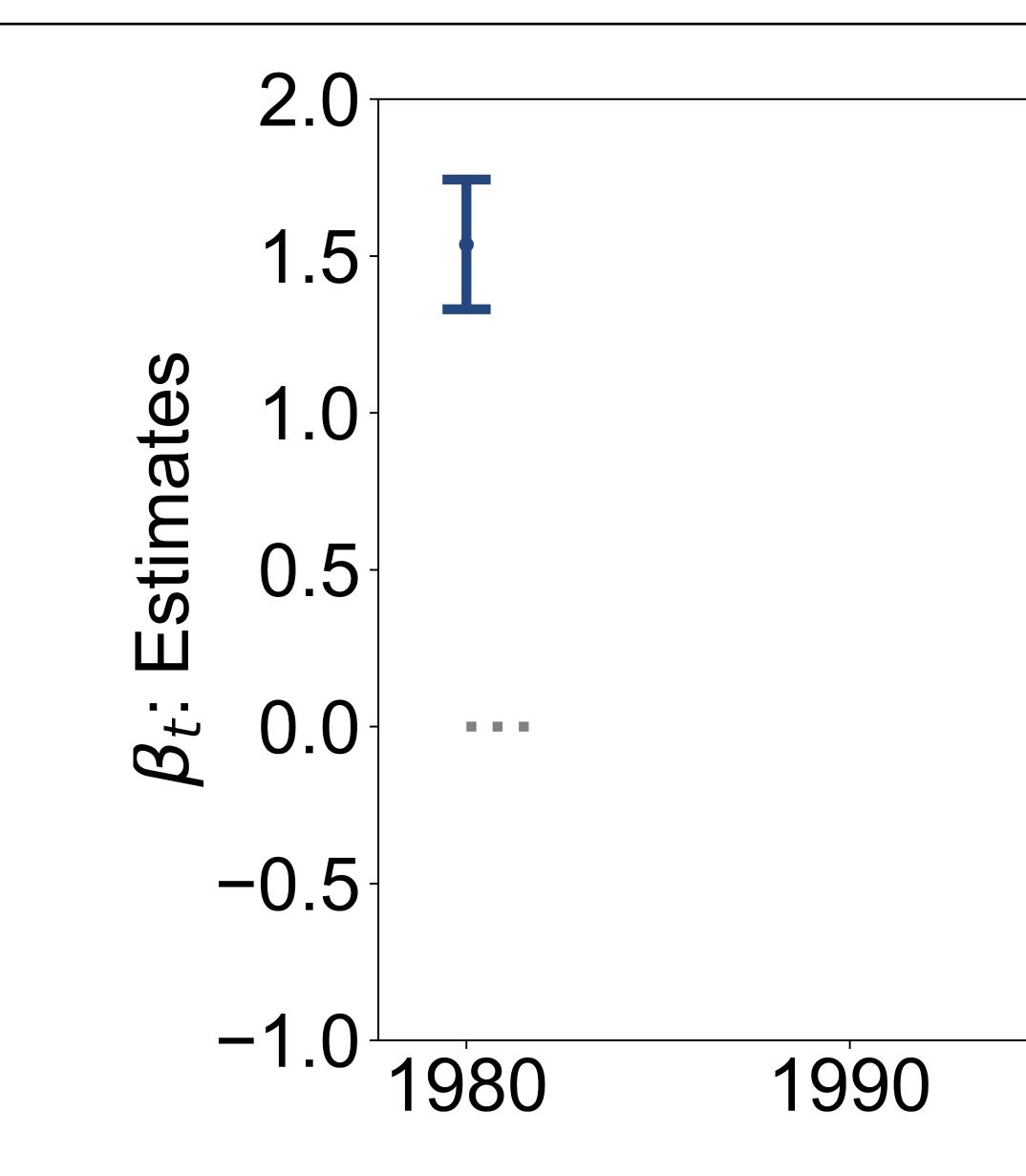
Testing Skill Endowment as a Source of CA

Model-consistent gravity-like regression

$$\ln X_{i,j,s,t} = \beta_t \quad \alpha_{s,t}^L \times \ln \left(-\frac{1}{2} \right)$$

- Units: i-j country pairs (58*58), s sectors (SIC 4-digit, 397 mfg.), year t
- $\ln X_{i.i.s.t}$: bilateral exports (i, j, s), in log
- $\alpha_{s,t}^L$: sector-s's production labor share in the US
- $L_{i,t}/H_{i,t}$: country-i's low-skill endowments
- PPML for each year t separately (t=1980,...,2015) to estimate β_t

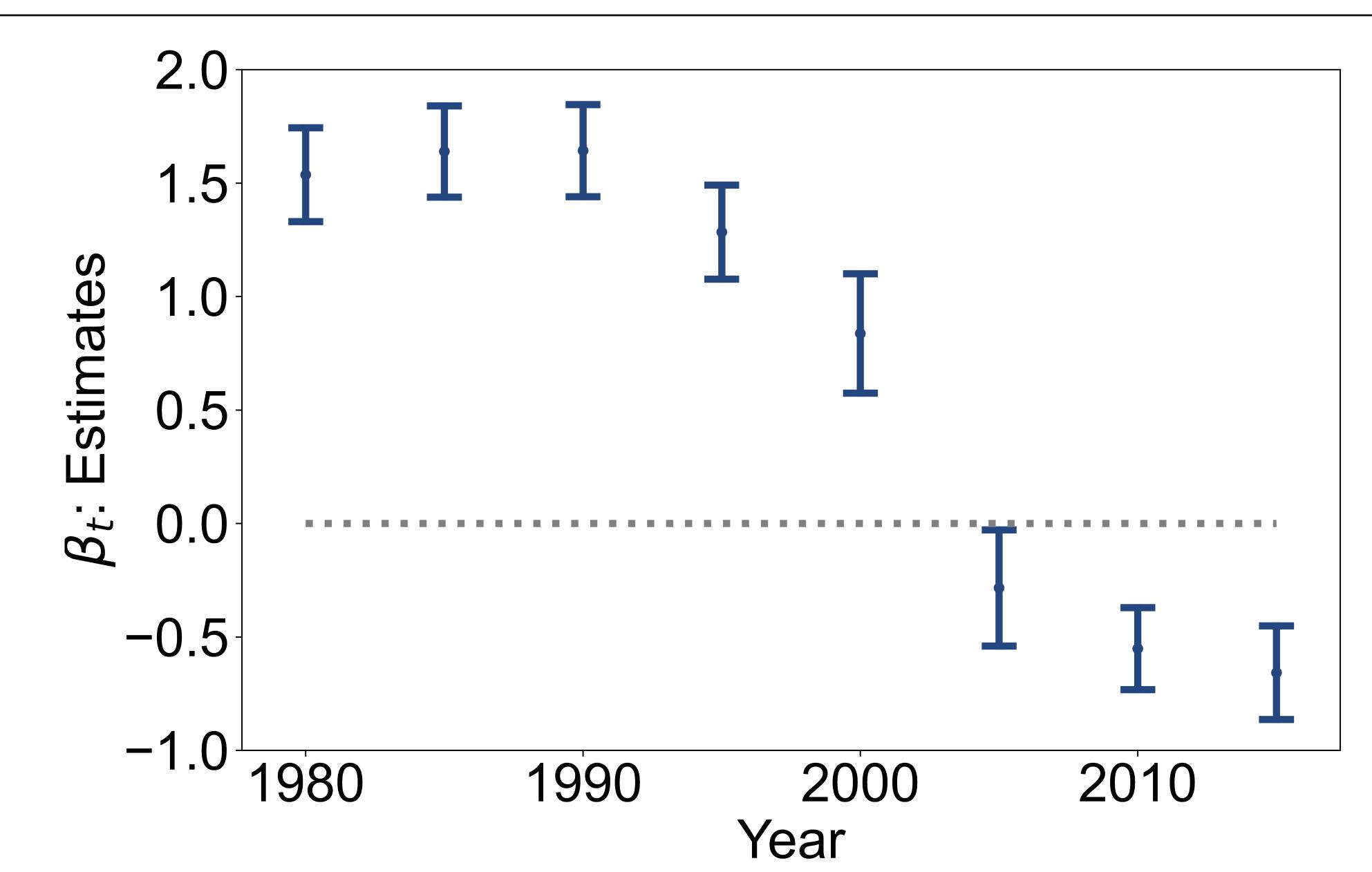


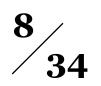


2000 2 Year

2010

Results: Skill Endowments Become Less Important





Robustness

- Industry aggregation: 2-digit or 3-digit; instead of 4digit
- Data: World Input Output Table; instead of Comtrade
- Control: K/L intensity and/or institution terms (Nunn, Levchenko)
- More two-way fixed effects: Add TWFE of (2-digit industry) X origin country
- Sample: Dropping China or more strict criteria
- Skill-endowment measure instead of $H_{i,t}/L_{i,t}$
 - $H_{i,1980}/L_{i,1980}$ (fixing rank of skill-abundance)
 - Secondary vs Non-Secondary, High- vs Middle-skill
- More data-driven approach (Country FEs+ML), associating with robot use

Sub-sample Analysis: High robot vs Low robot

Re-estimate within each group

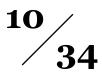
2-digit sector # of

High Robot Automobile + Elec.

Low Robot The rest mfg.

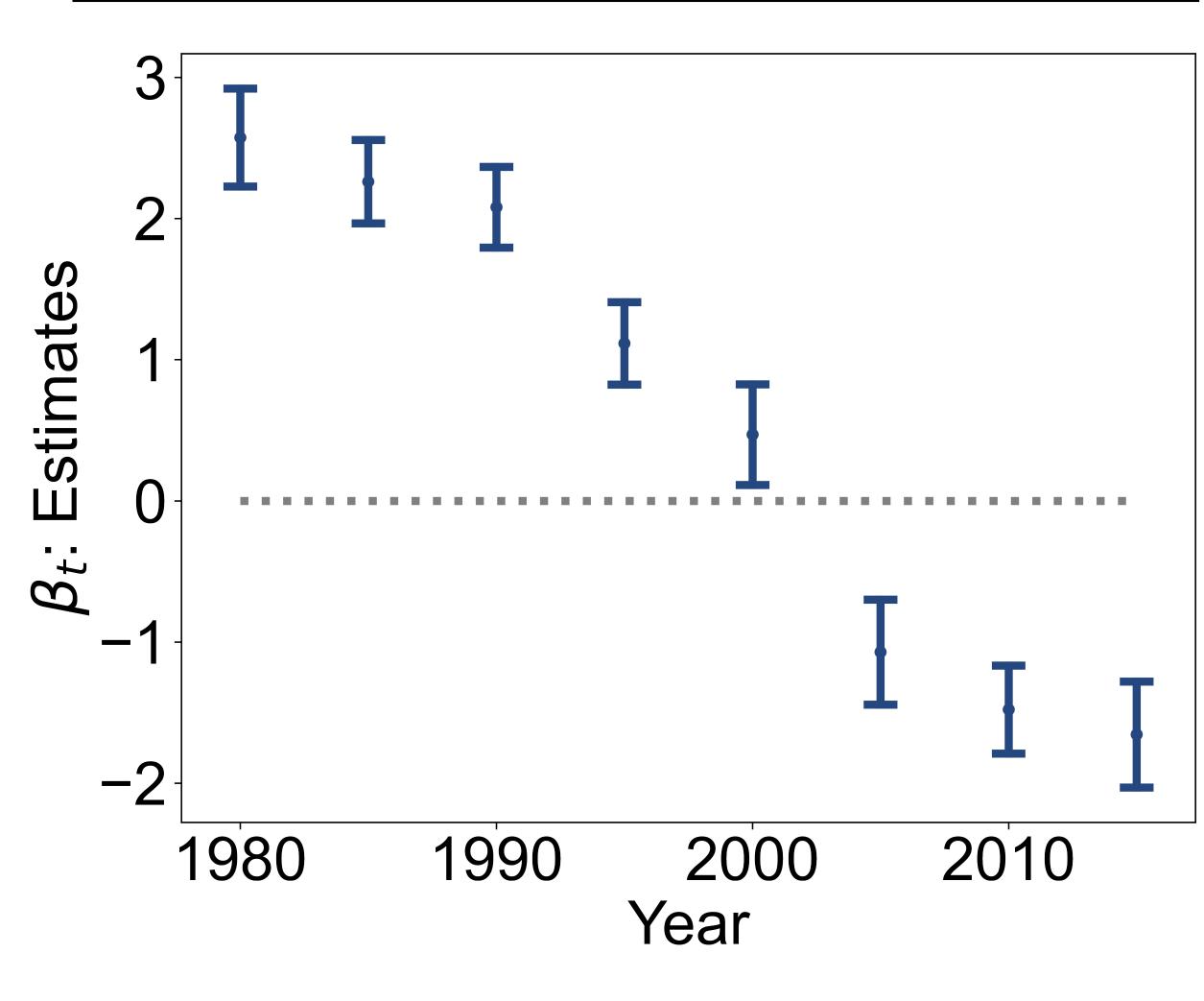
Note: Trade volume is the share of world total export share in 4-digit SIC code in each group of sectors in 1980 (from Comtrade). Robot density is the number of the total number of robot installments over 1995-2015 across the world (from IFR), normalized by the number of production workers in the US.

industries	Trade	Robots/1K US em
56	42%	326
341	58%	42

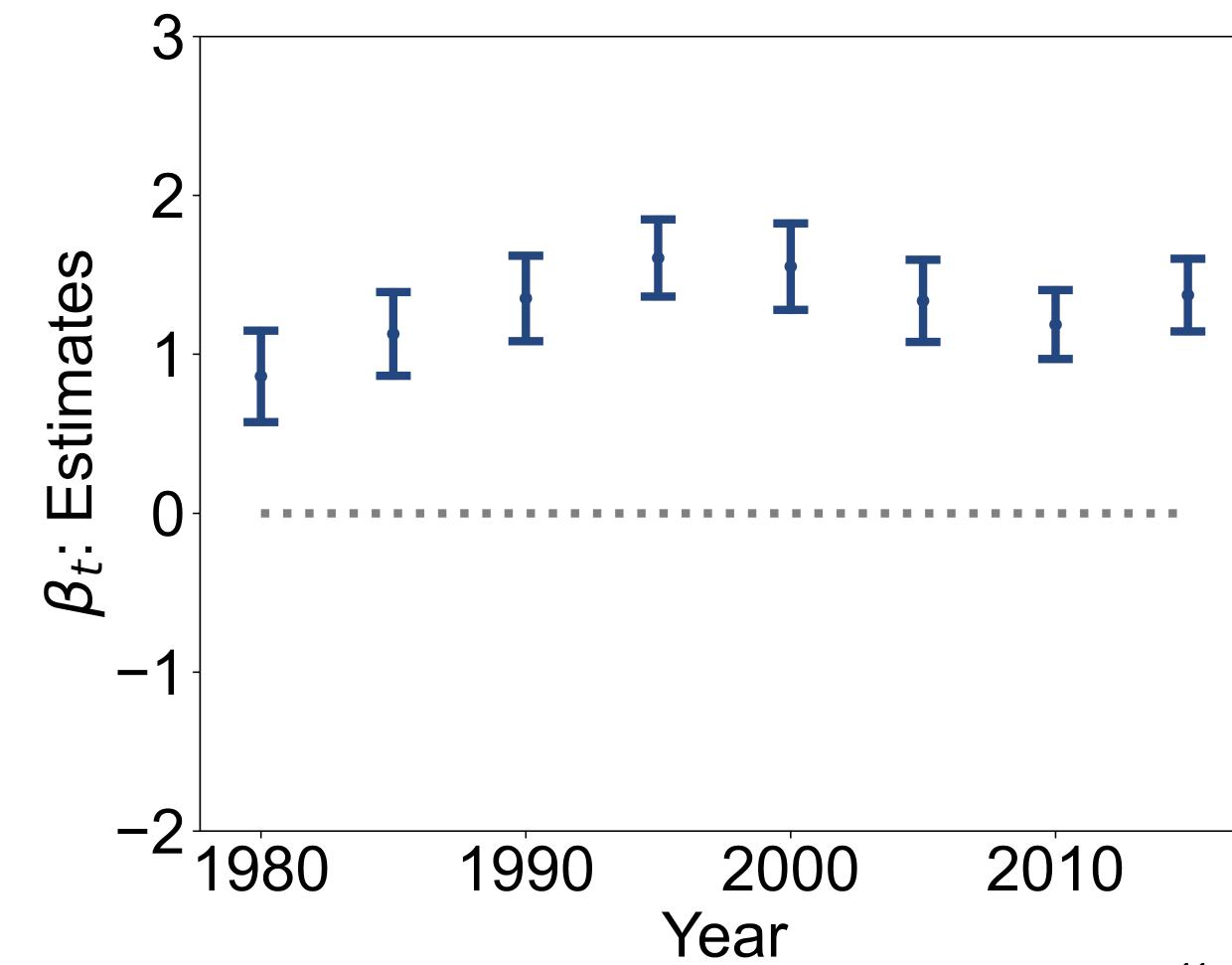


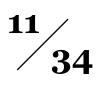
Subsample: Action Only within High-Robot Sectors

Within High-Robot Sectors



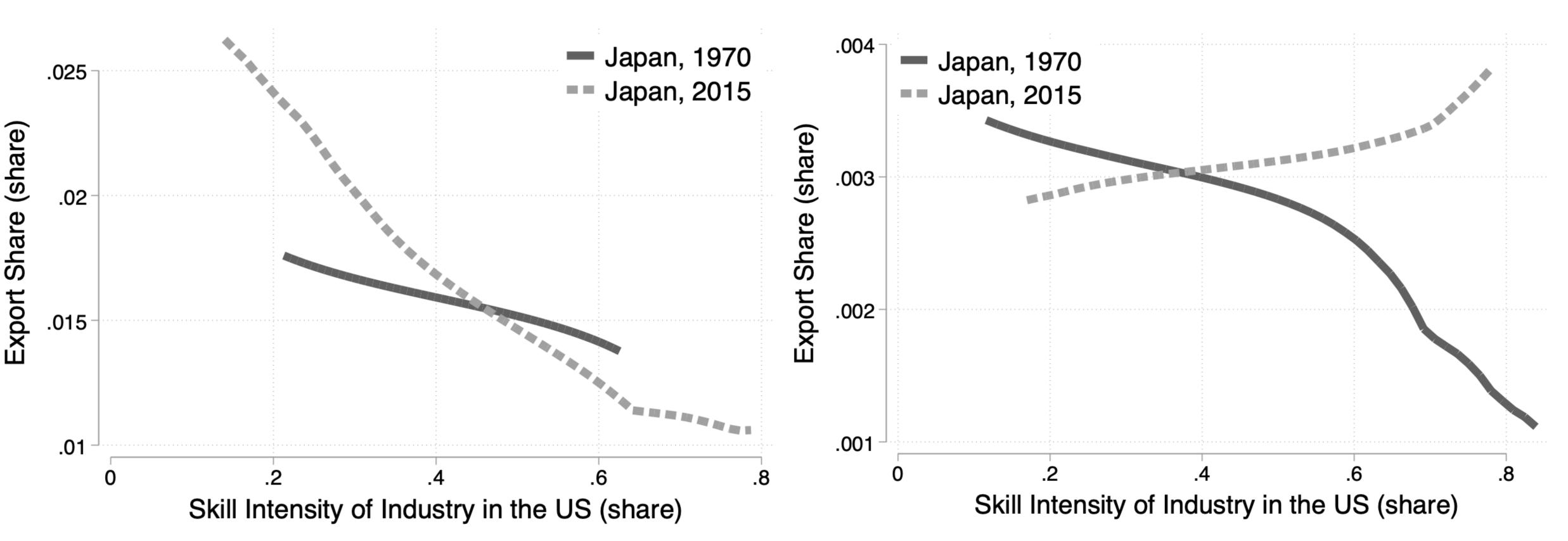
Within Low-Robot Sectors





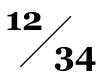
Japan Specializes in L-int. Industries within High Robot Sectors

Within High-Robot Sectors



Note: Export share is the share of total export in 4-digit SIC code in each country in each year (from Comtrade). Skill intensity is the nonproduction worker payroll share out of total payroll in the US in each year (from US NBER-CES). The lines are Kernel-weighted local polynomial smoothing with bandwidth = 0.2. Regressions are unweighted. High robot industries (42 SIC 4-digit industries under Electronic and Automobile sectors) share 40% of total exports in 1980.

Within Low-Robot Sectors



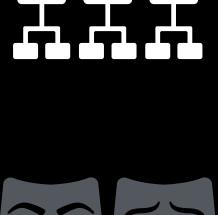
Today's Plan

1. Empirical Evidence

2. Theoretical Framework

3. Two-country Illustration

4. Quantitative Results



_	_	-	
	_		
		-	

Model (1/2): Environment and Preference

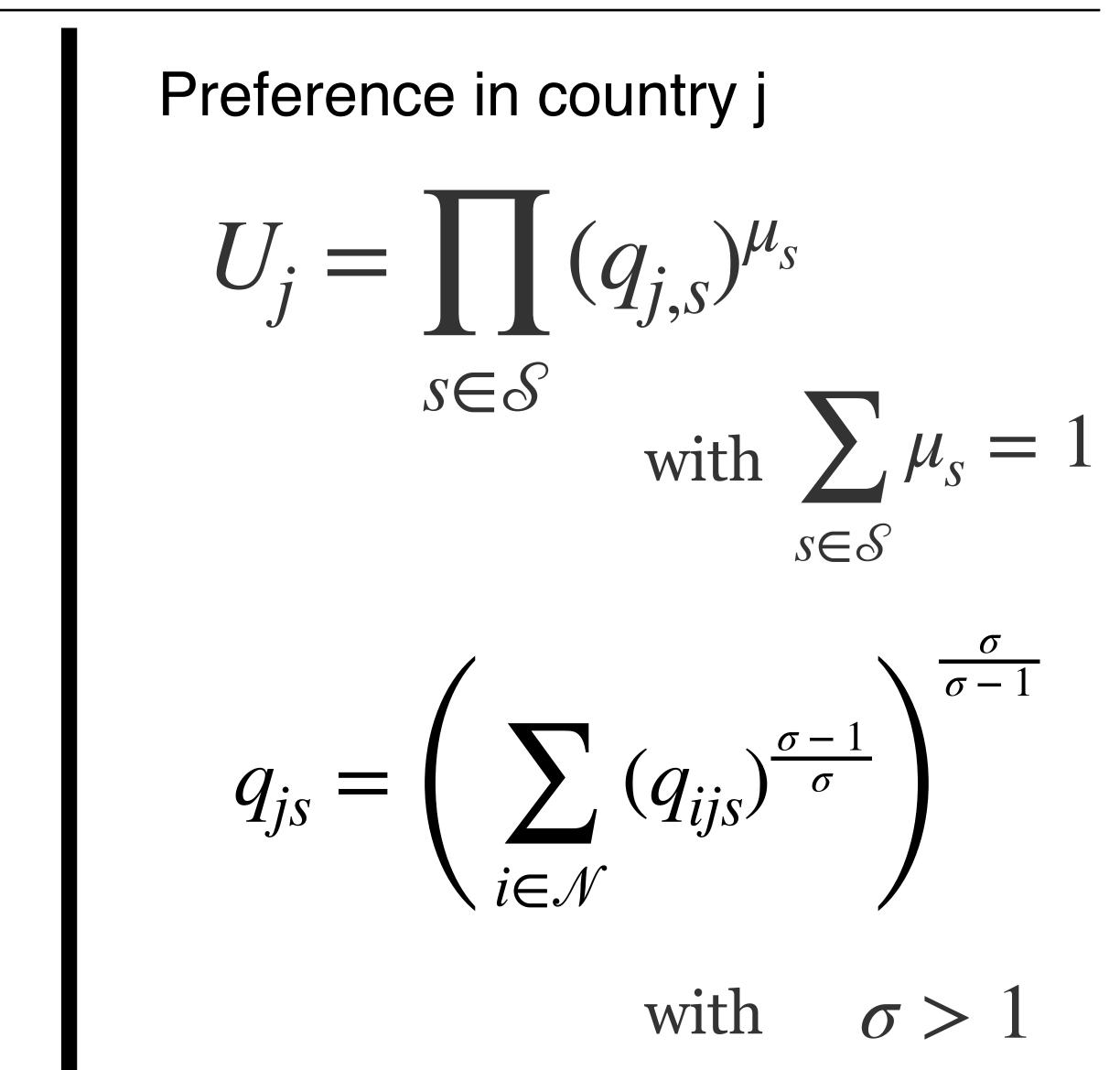
Multi-sector, multi-factor Armington

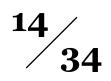
 \mathcal{N} country (i, j), \mathcal{S} sector (s)

Factor endowments H_i, L_i

Trade with iceberg trade cost

$$p_{ijs} = c_{is} \tau_{ijs} \qquad \tau_{ijs} \ge 1$$



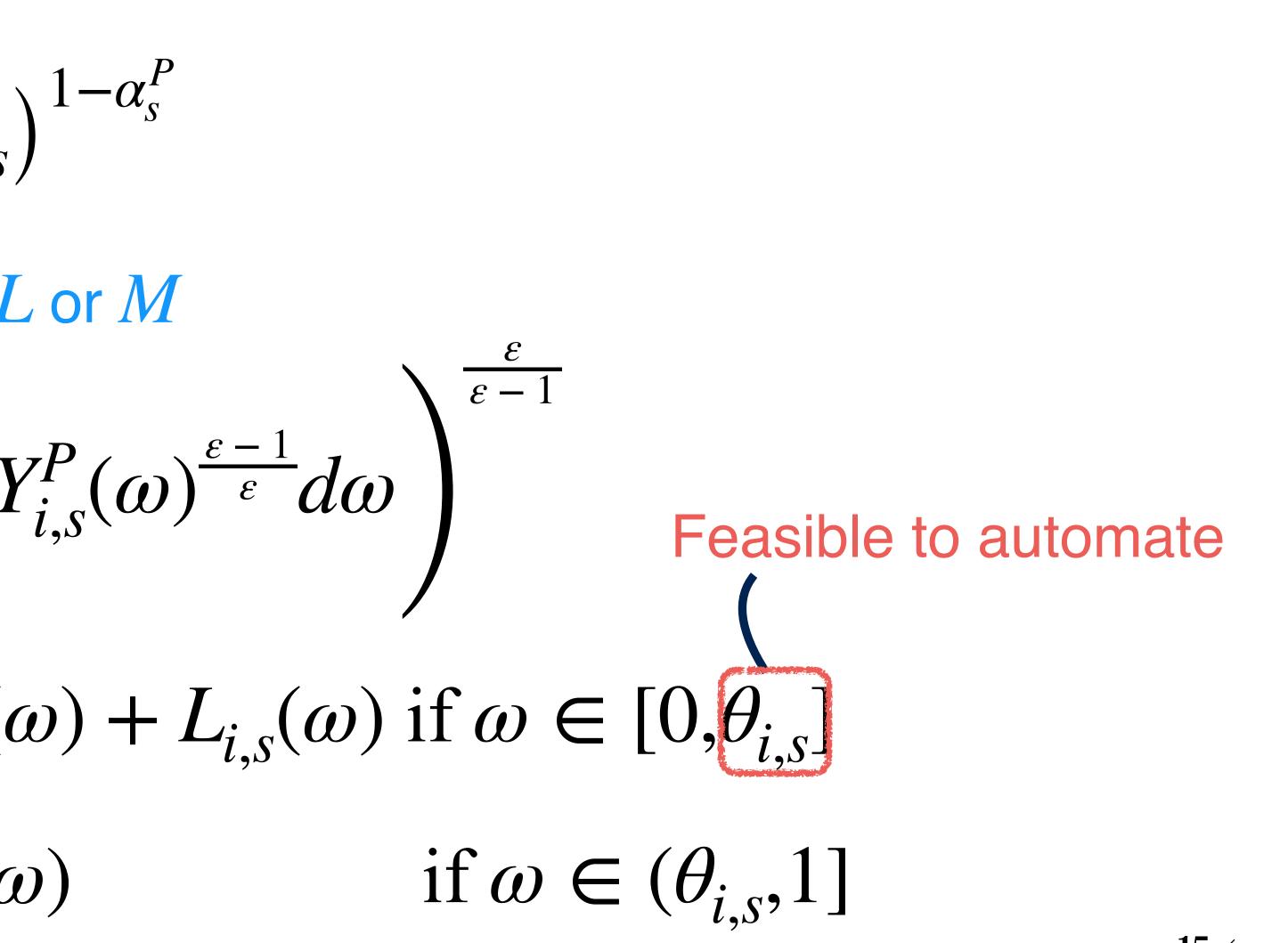


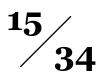
Model (2/2): Production (Task Framework)

Production function

$$Y_{i,s} = \left(Y_{i,s}^{P}\right)^{\alpha_{s}^{P}} \left(H_{i,s}\right)^{1-1}$$

Intermediates by *L* or
$$I = \left(\int_{0}^{1} Y_{i,s}^{P}\right) = \left(\int_{0}^{1} Y_{i,s}^{P}\right)^{1-1}$$
$$Y_{i,s}^{P}(\omega) = K_{i,s}(\omega)$$
$$Y_{i,s}^{P}(\omega) = K_{i,s}(\omega)$$





Automation and Unit Cost

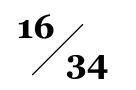
• Unit cost function: cost of producing one unit of final goods in (i, s)

$$c_{i,s} = \lambda_s \left(\theta_{is}(r)^{1-\varepsilon} + (1-\theta_{is})(w_i^L)^{1-\varepsilon} \right)^{\frac{\alpha_s^P}{1-\varepsilon}} \left(w_i^H \right)^{1-\alpha_s^P}$$

• Assume $\theta_{is} = \theta$ and $r < w_i^L$ (just for expositional simplicity)

- more in high α_s^P sector
 - Larger gains in L-intensive sectors more for L-scarce countries

- Prop. When θ increases, high w_i^L countries decrease log unit cost



Today's Plan

1. Empirical Evidence

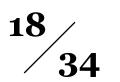
2. Theoretical Framework

3. Two-country Illustration

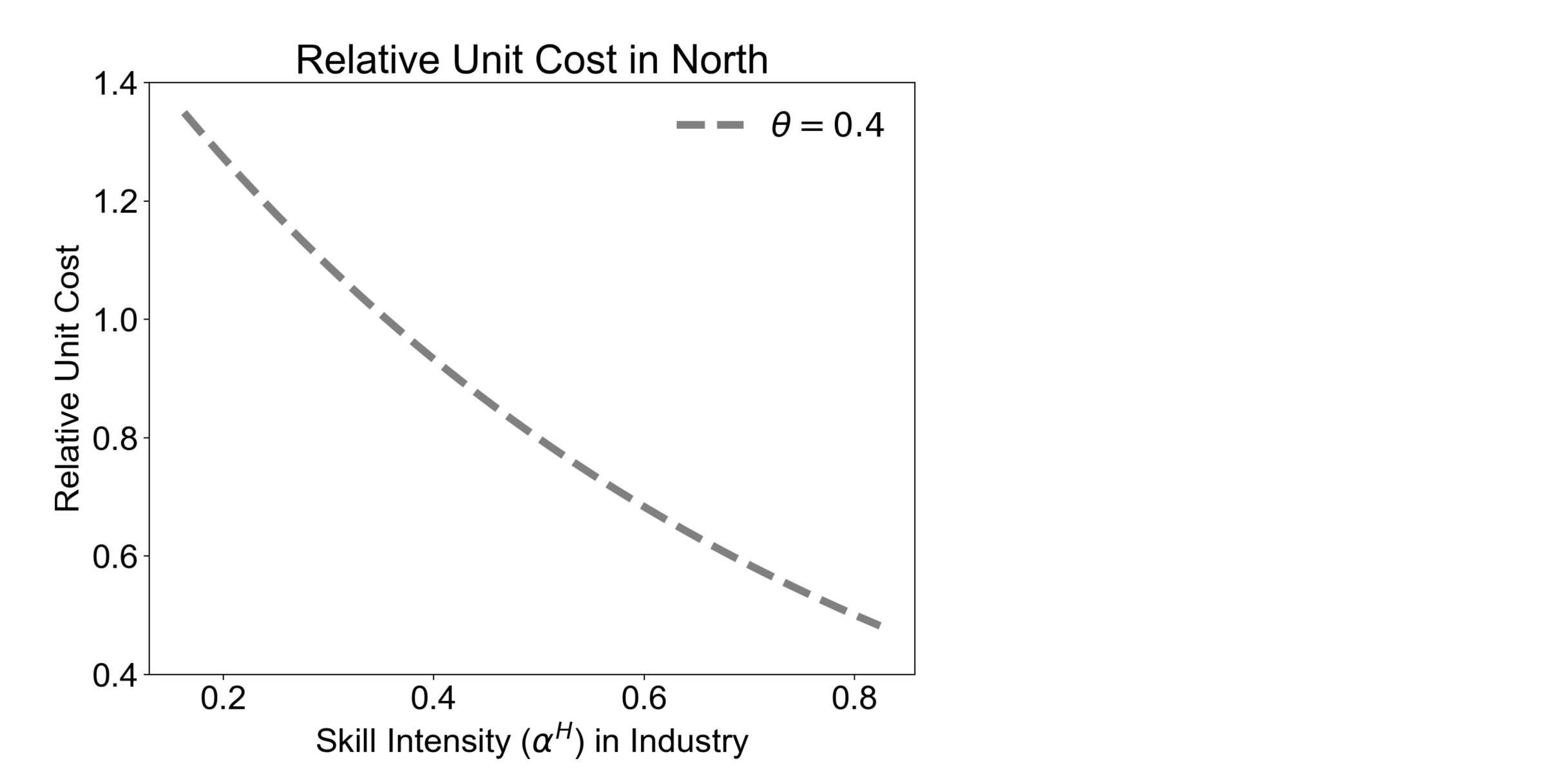
4. Quantitative Results

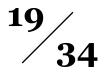
Two-Country Numerical Illustration

- North (H-abundant) and South (L-abundant)
 - Differences (values directly taken from data):
 - Across countries: skill endowment H_i/L_i
 - Across sectors: skill intensity α_s^H and value-added share μ_s
- Experiments:
 - 1. Change θ and see comparative advantage
 - 2. Change g_{θ} (growth rate of θ) and see structural change

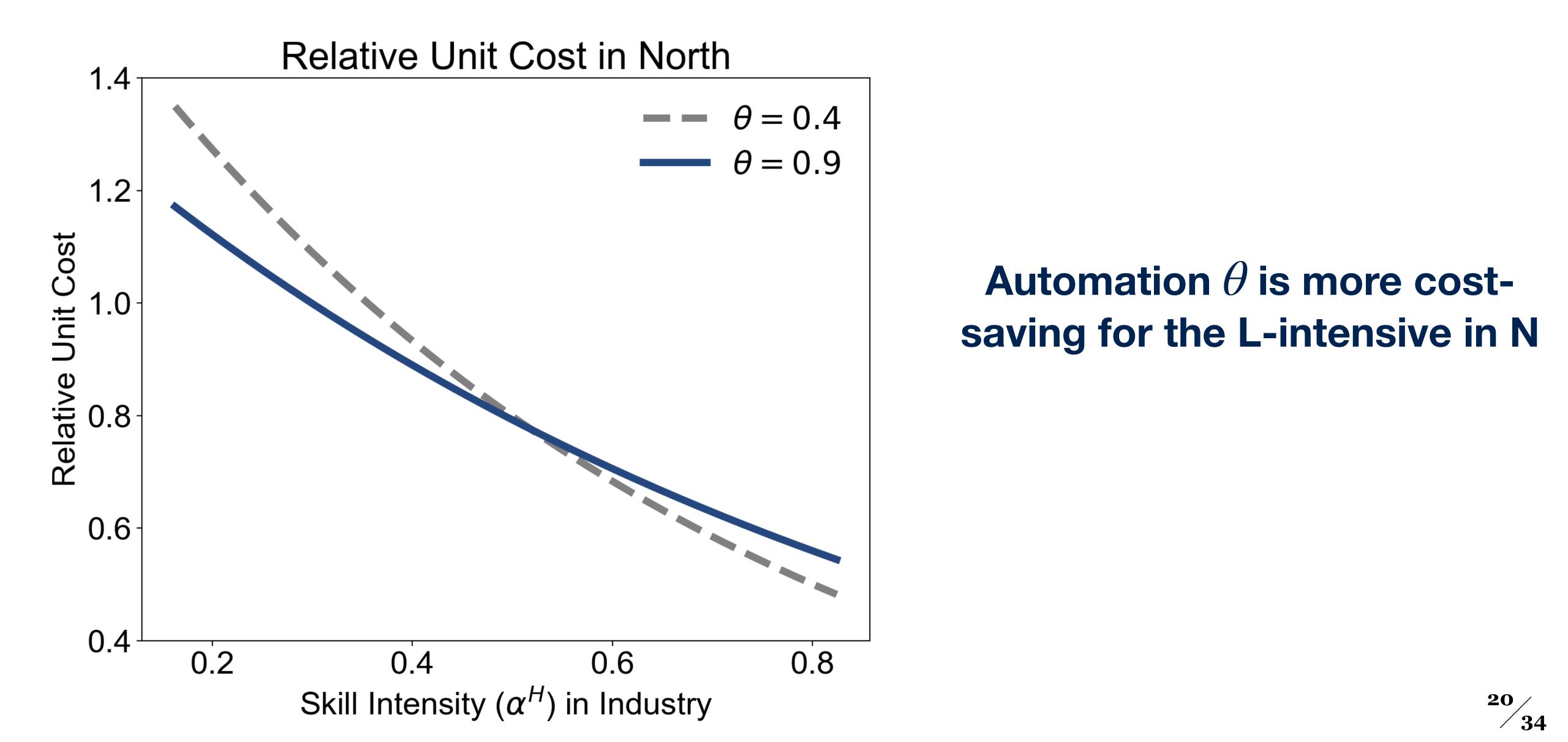


South's Comparative Advantage in L-intensive Sectors

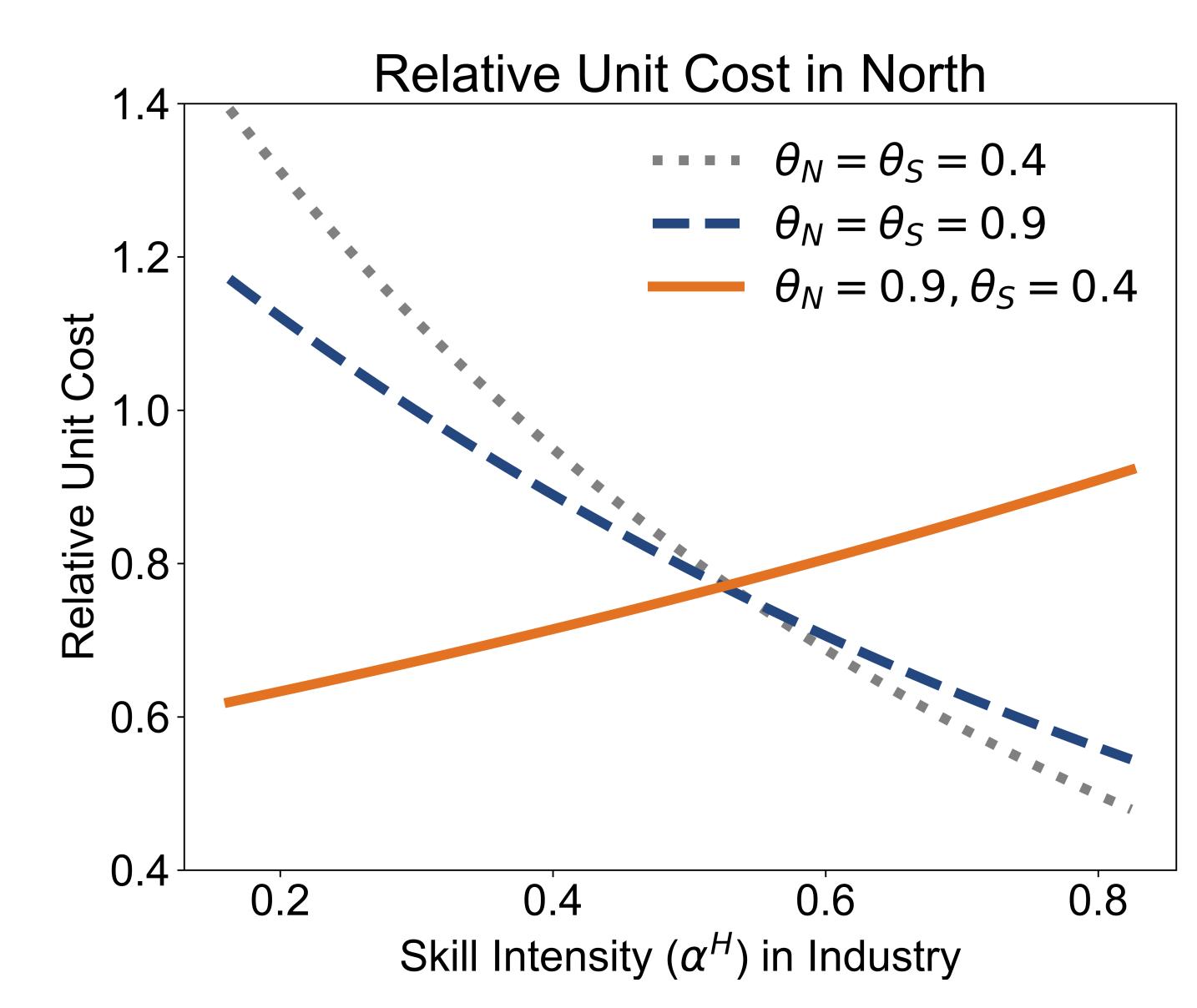




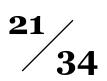
Comparative Advantage is Weakened...



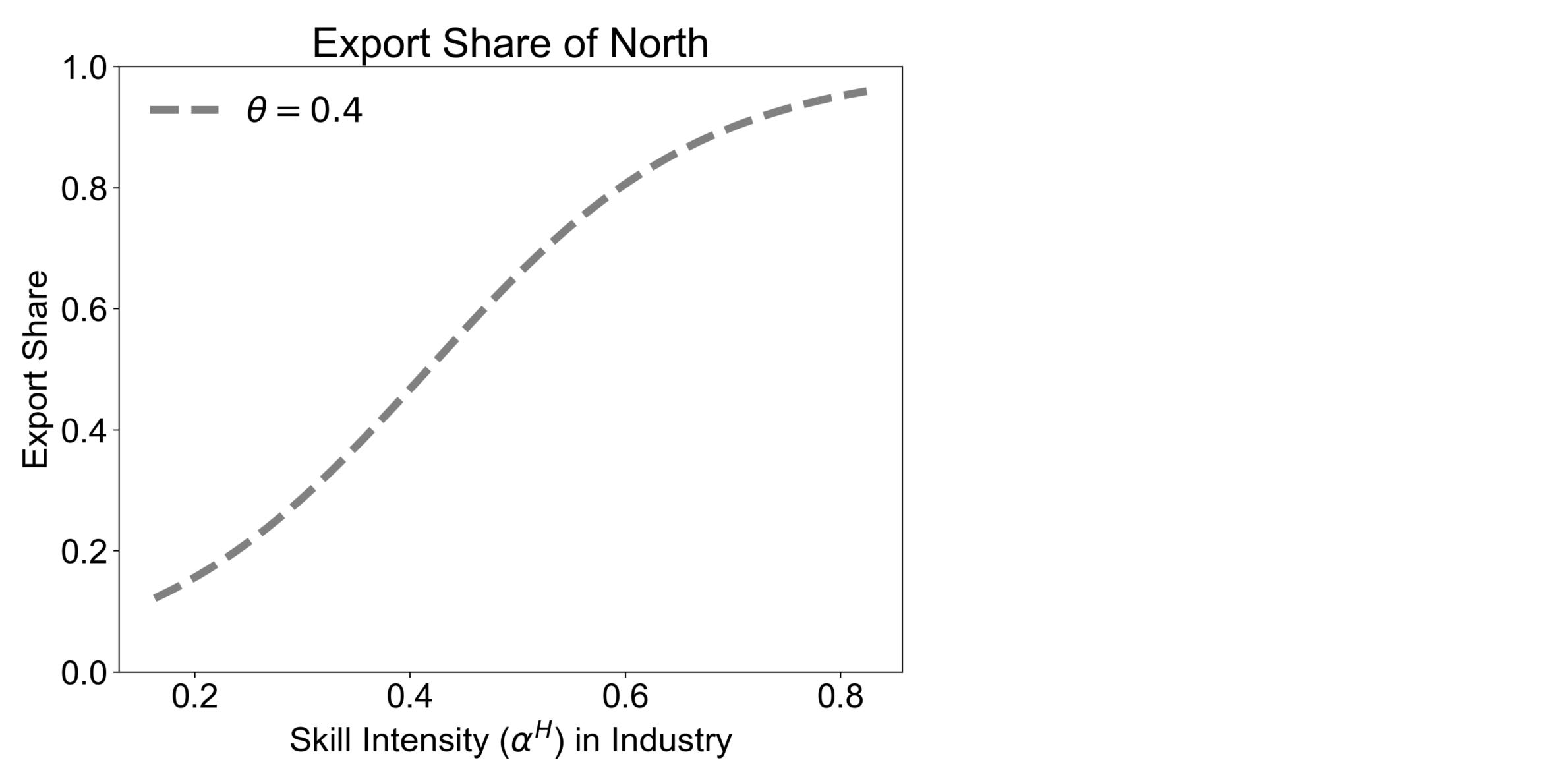
... or Even be Reversed

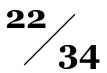


North's relative unit cost is **lower in L-intensive sectors**

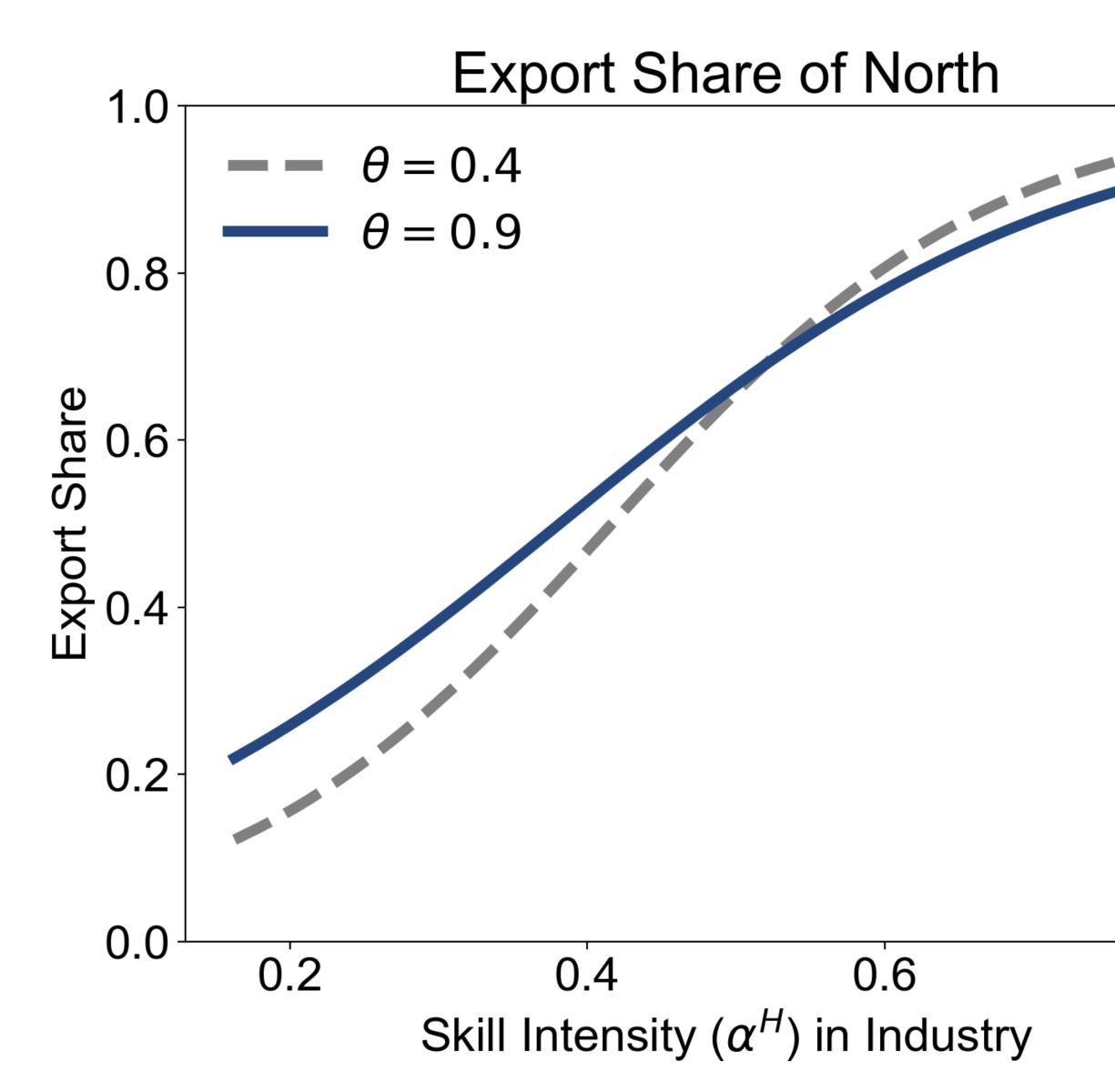


Export share: South's CA in L-intensive Sectors

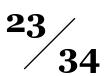




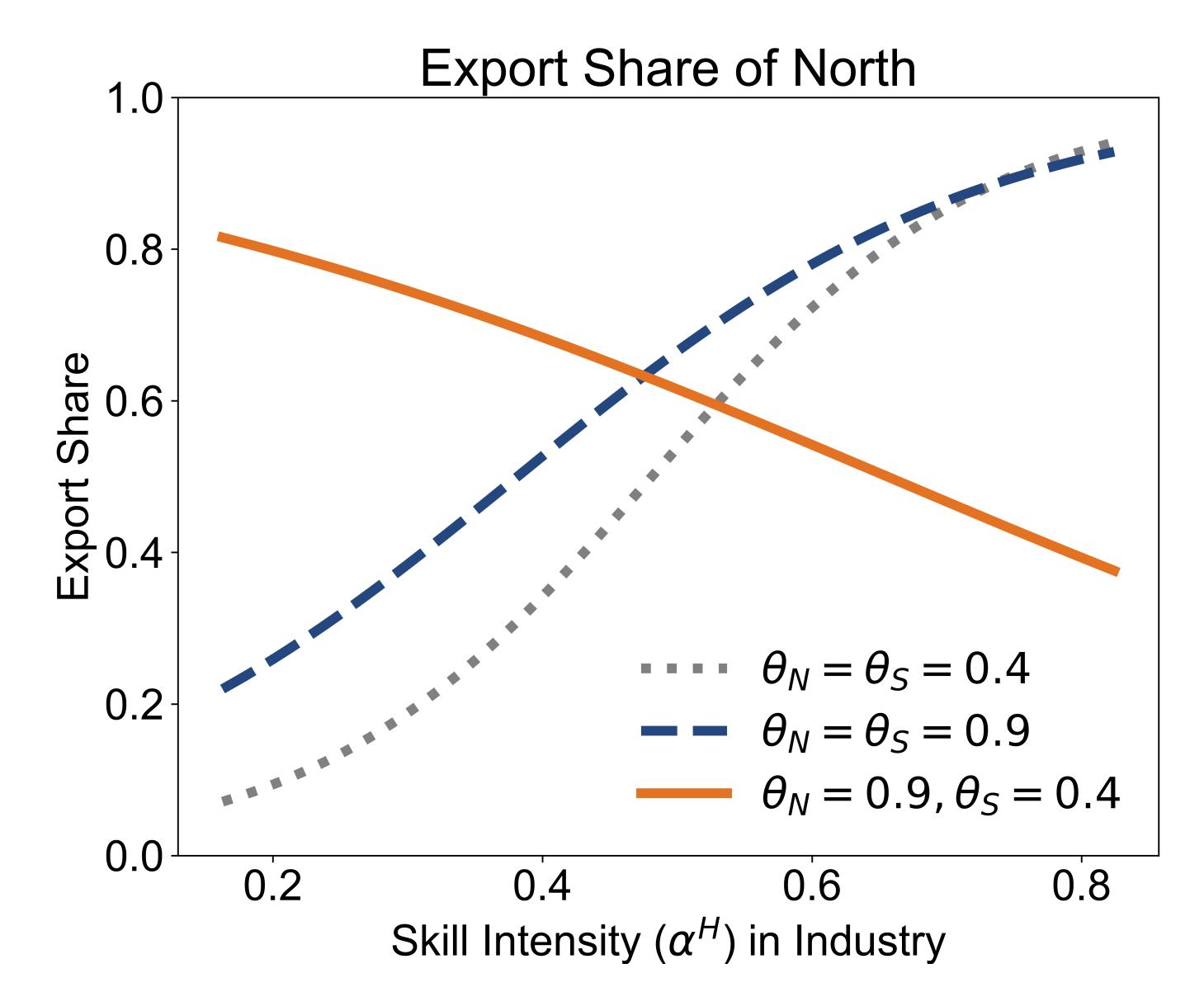
Export share: Comparative Advantage Weakens



Mirror image to cost: N increases L-intensive export



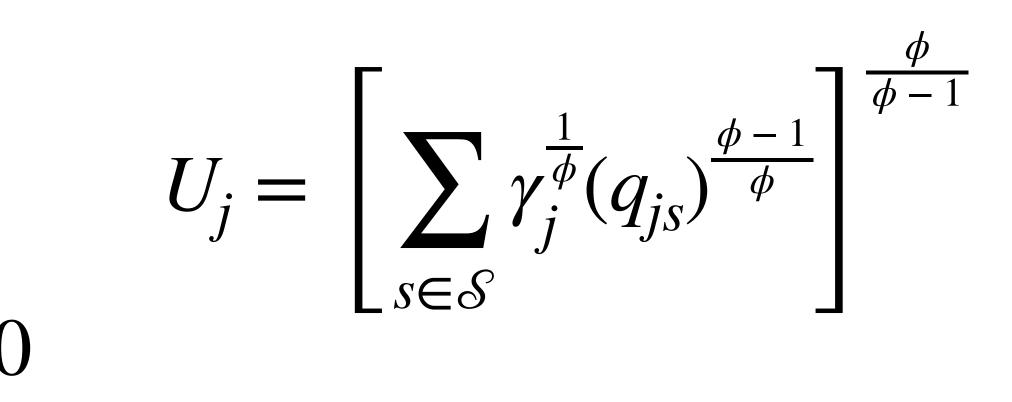
... or Even be Reversed



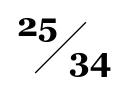
North now specialize in Lintensive sectors

North Automation to South Structural Change

- 3 sectors: $\mathcal{S} = \{A, M, S\}$
- Slight generalization
 - Complement: $\phi < 1$
 - TFP growth $g_A > g_M > g_S > 0$

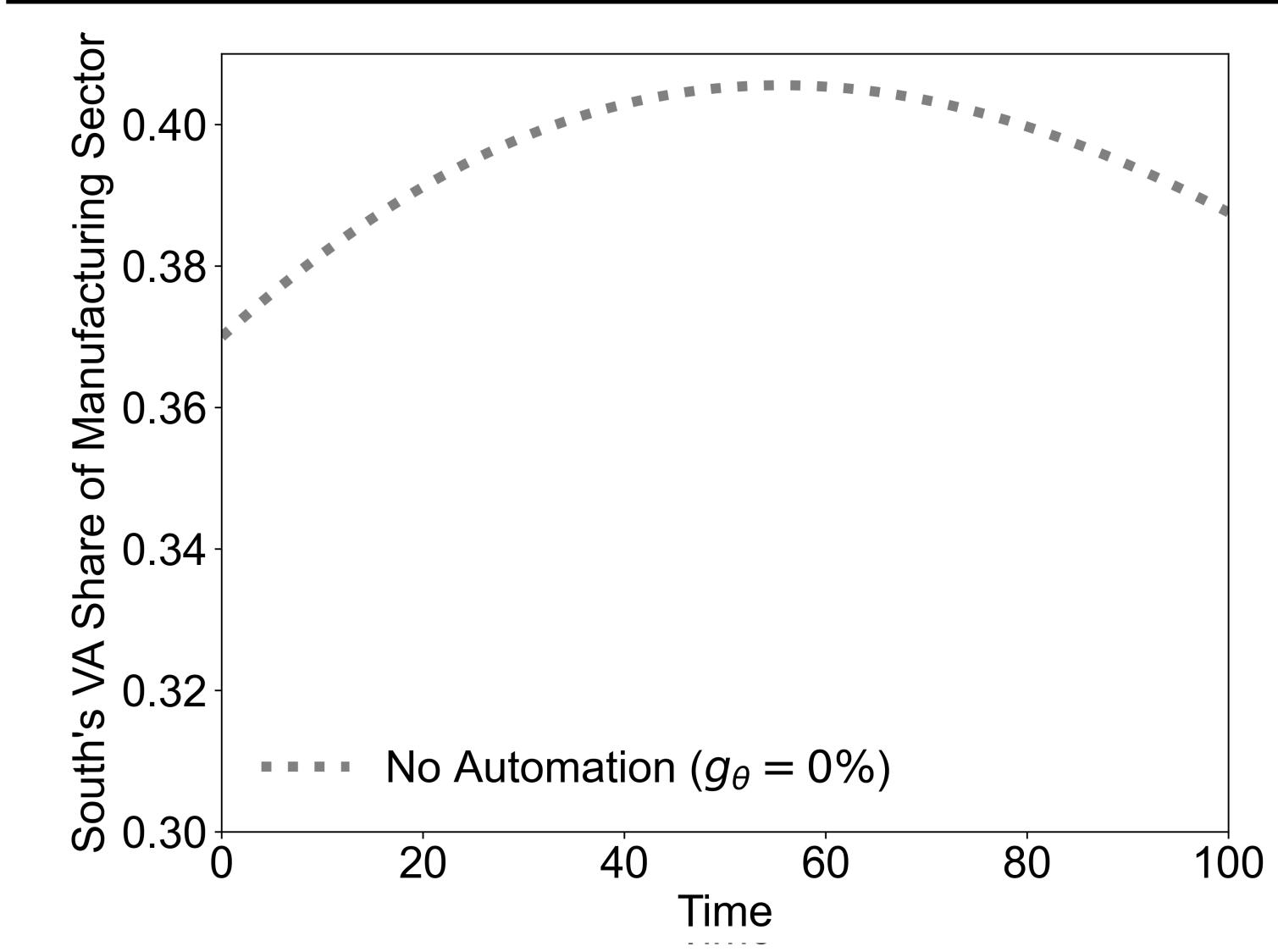


- South's VA share over time with different growth rate of automation g_{A}



Premature Deindustrialization in South

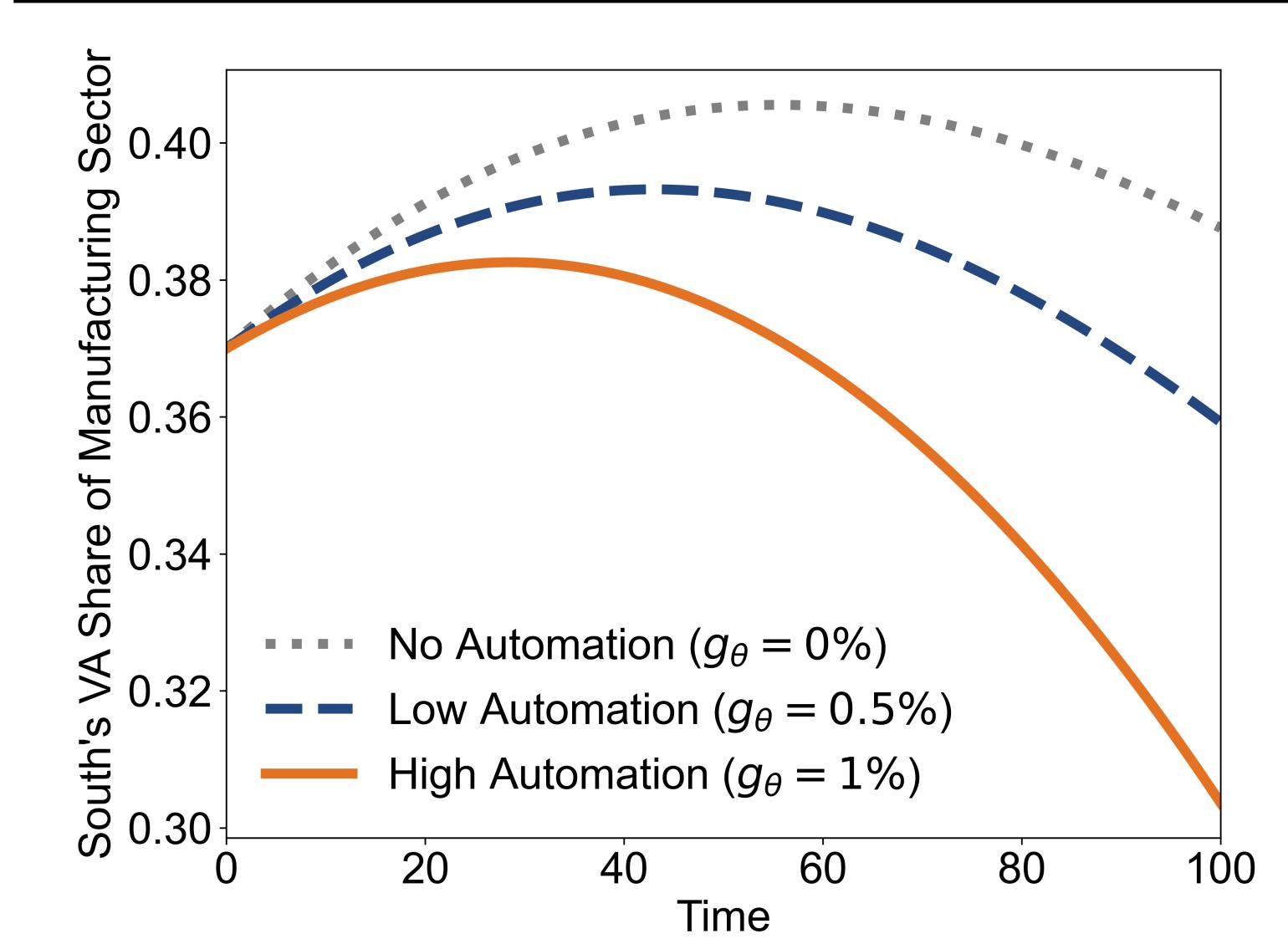
South's Value-Added Share in Manufacturing

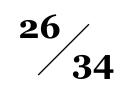




Premature Deindustrialization in South

South's Value-Added Share in Manufacturing





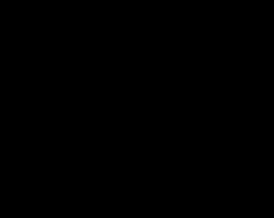
Today's Plan

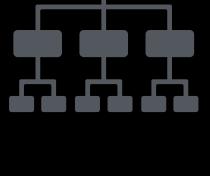
1. Empirical Evidence

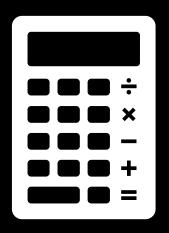
2. Theoretical Framework

3. Two-country Illustration

4. Quantitative Results

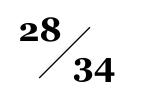






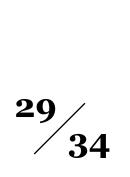
Quantitative Analysis

- Question: How much is automation responsible for the decoupling?
- Calibration: 38 countries, 18 manufacturing industries (2-digit)
- Experiment:
 - Feed θ_{ist} , Match the US labor share to get $\theta_{US,s,2010}$
 - Extrapolate to $\theta_{i,s,t}$ using robot_{*i*,*s*,*t*} (IFR after 1995)
 - Solve the model, and estimate the same gravity equation

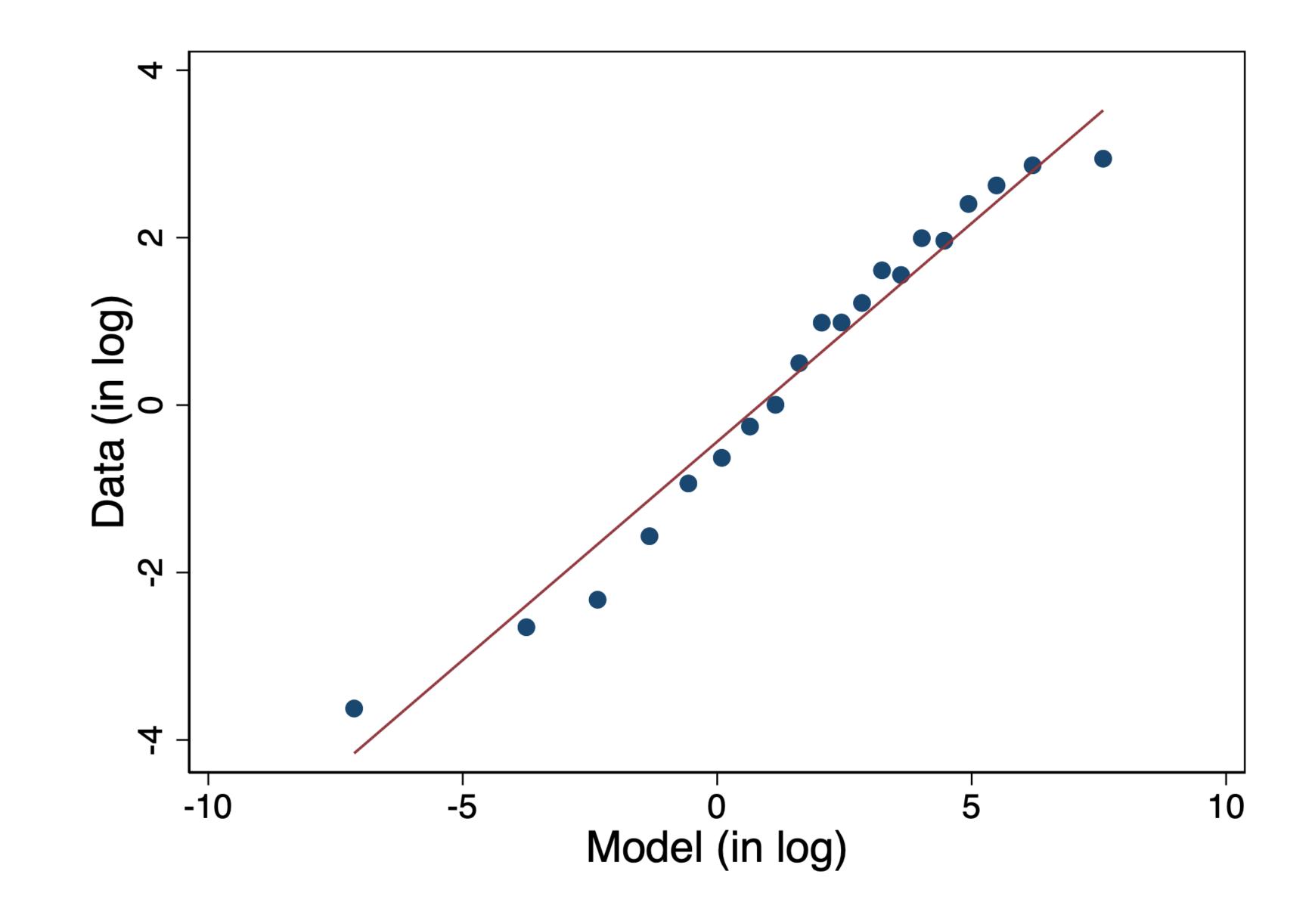


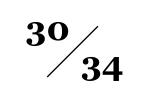
Parameters

	Description	Source, Value, Target
μ_{s}	Value-added share of sector	World IO Table, 2000
α_s^H	Non-production-labor share	US NBER CES 2000
8	EoS across Task	0.49 (Humlum, 2021)
r	Capital Price	0.1
σ	Trade Elasticity (+1)	6 (Head & Mayer 2013)
$ au_{ijs}$	Trade cost	Head and Reis (2001)
$(H/L)_i$	Skill Endowment (college-educated)	Barro-Lee Data set

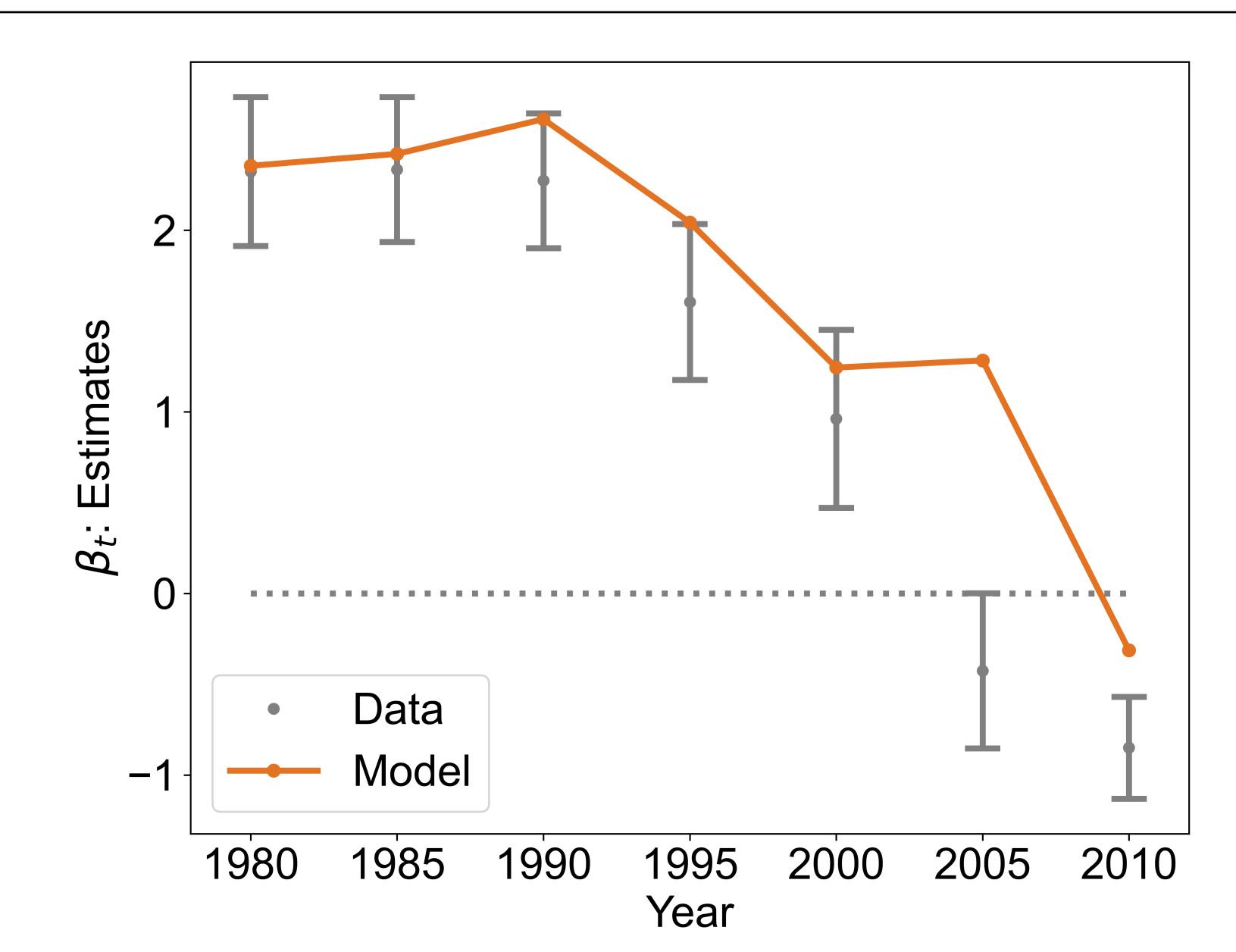


Model fit: Bilateral Trade Flow $\ln X_{ijs}$ in 2000





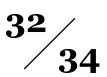
Automation and Comparative Advantage



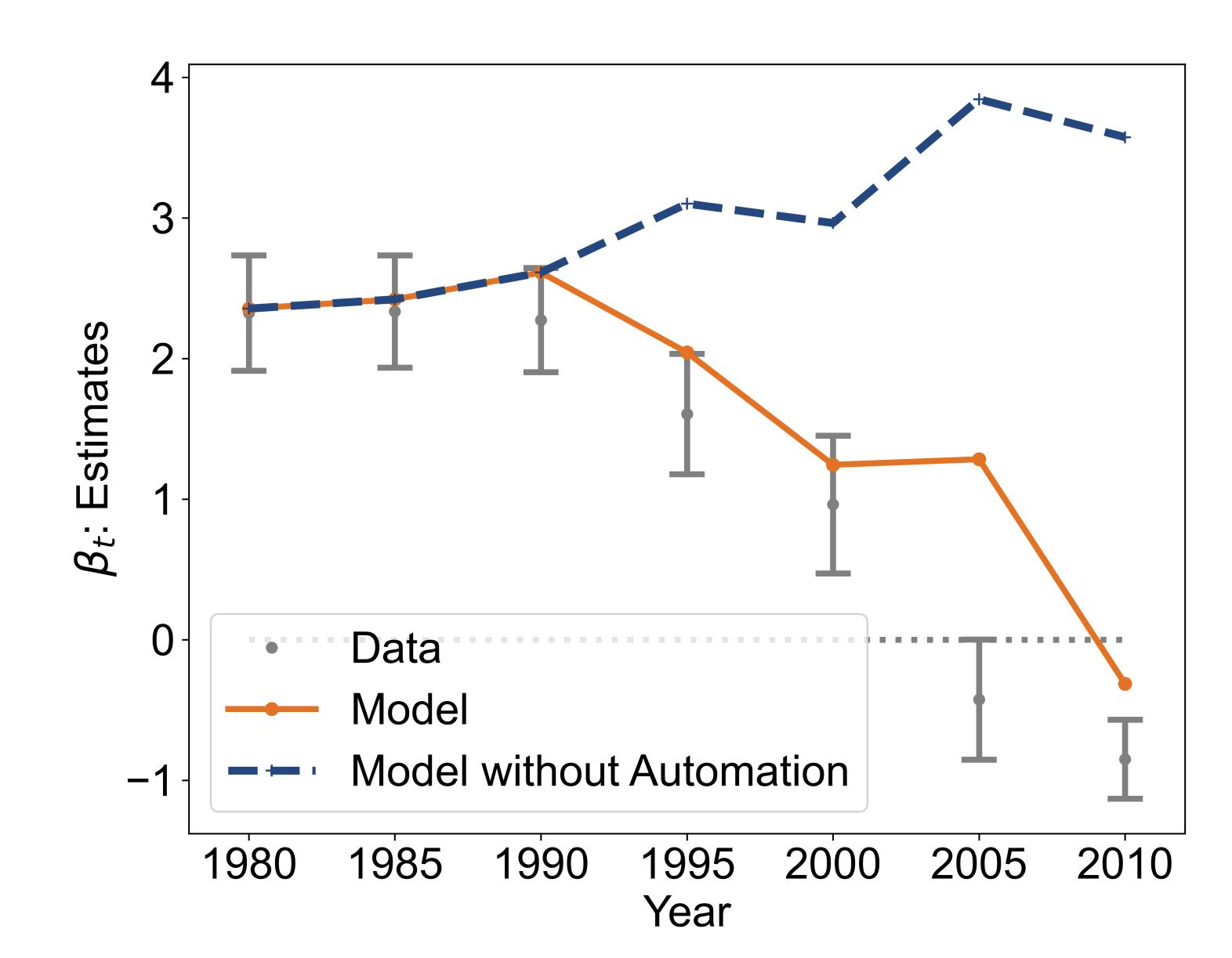
Counterfactual: No Automation

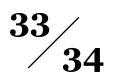
- Previous figure: Feeding $\{\theta_{ist}\}$ can replicate the pattern
 - Matched the US production labor share in 2010
 - Extrapolate using relative robot stock
 - Using IFR (robot) data after 1995

- Counterfactual: Fix θ_{ist} to be the 1980-1990 level and redo the analysis



Without Automation, Skills Would Have Still Mattered

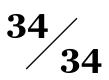




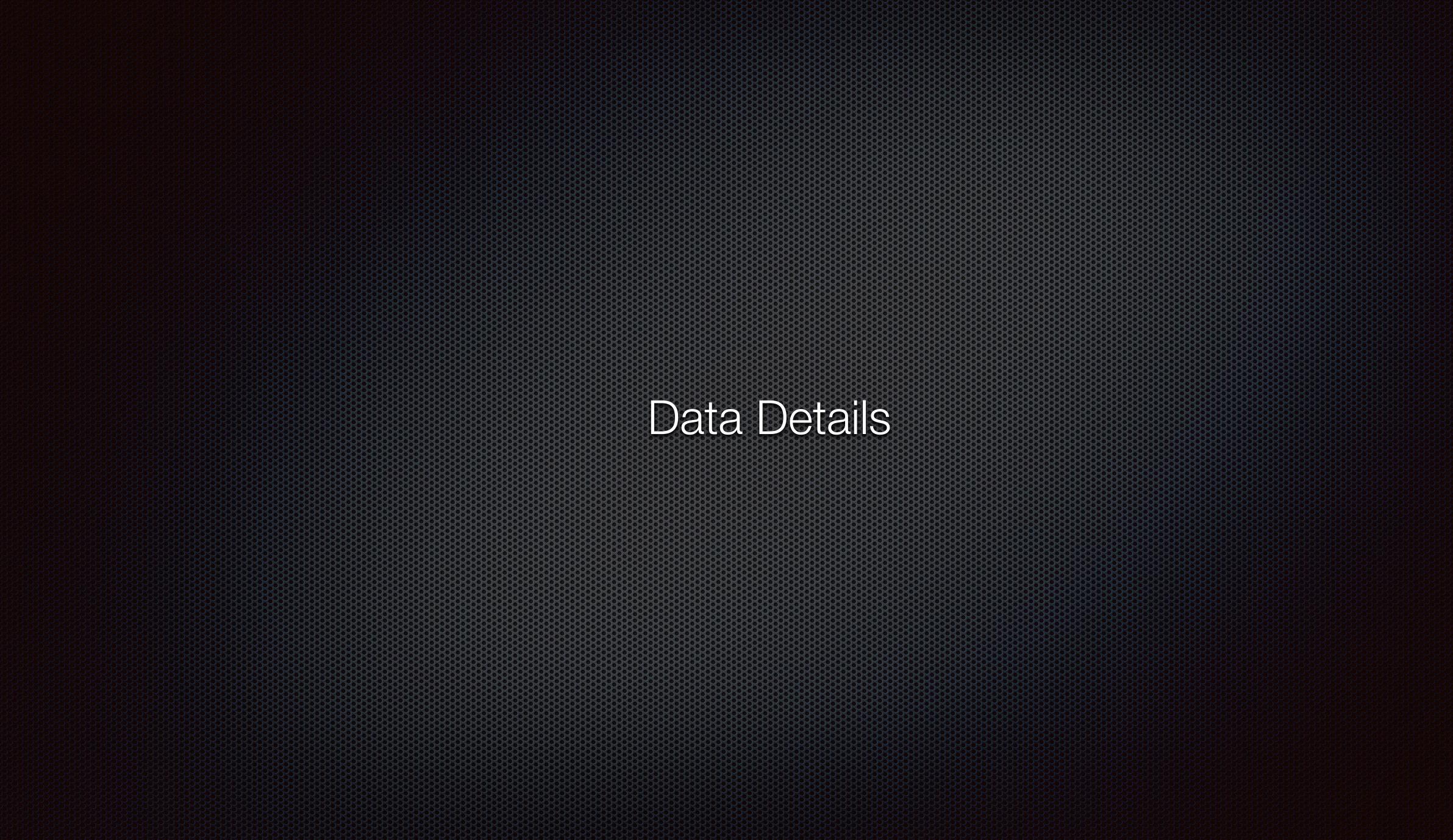
Conclusion

- Skill endowments become less important for comparative advantage
- Automation can weaken or reverse the comparative advantage
- Quantitatively, automation can explain the decoupling/reversal well

- Next Steps:
 - Quantitative analysis on structural change
 - More counterfactuals: trade cost, China, ...



Back-up slides

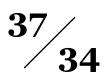


Define Industry-level Skill Factor Share

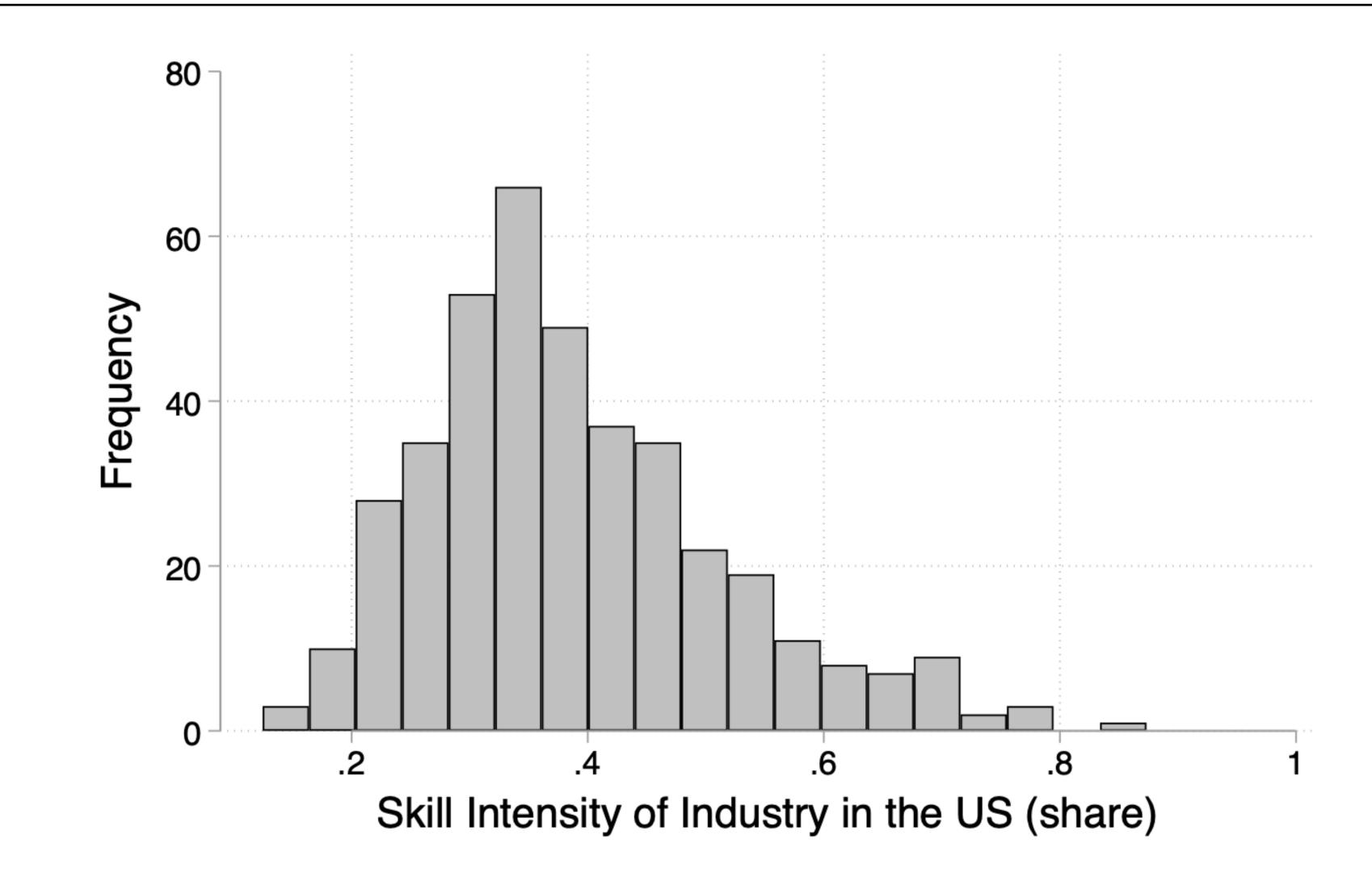
- Skill share: defined in 397, SIC4-digit manufacturing sector (s)
 - $\alpha_s^H (\equiv 1 \alpha_s^L)$: Factor payment to H / factor payment to H & L
 - Data: US NBER-CES data in each year

Most skill-intensive sectors α_s^H 3571: Electronic Computers0.773661: Telephone0.753826: Lab. Ana. Instrument0.753761: Guided Missiles Veh.0.75

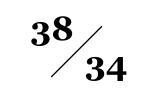
Least skill-intensive sectors	α_s^H
2436: Softwood Veneer	0.13
2281: Yam Spinning Mills	0.15
3221: Glass Containers	0.15
3641: Electric Lamp Bulbs	0.16



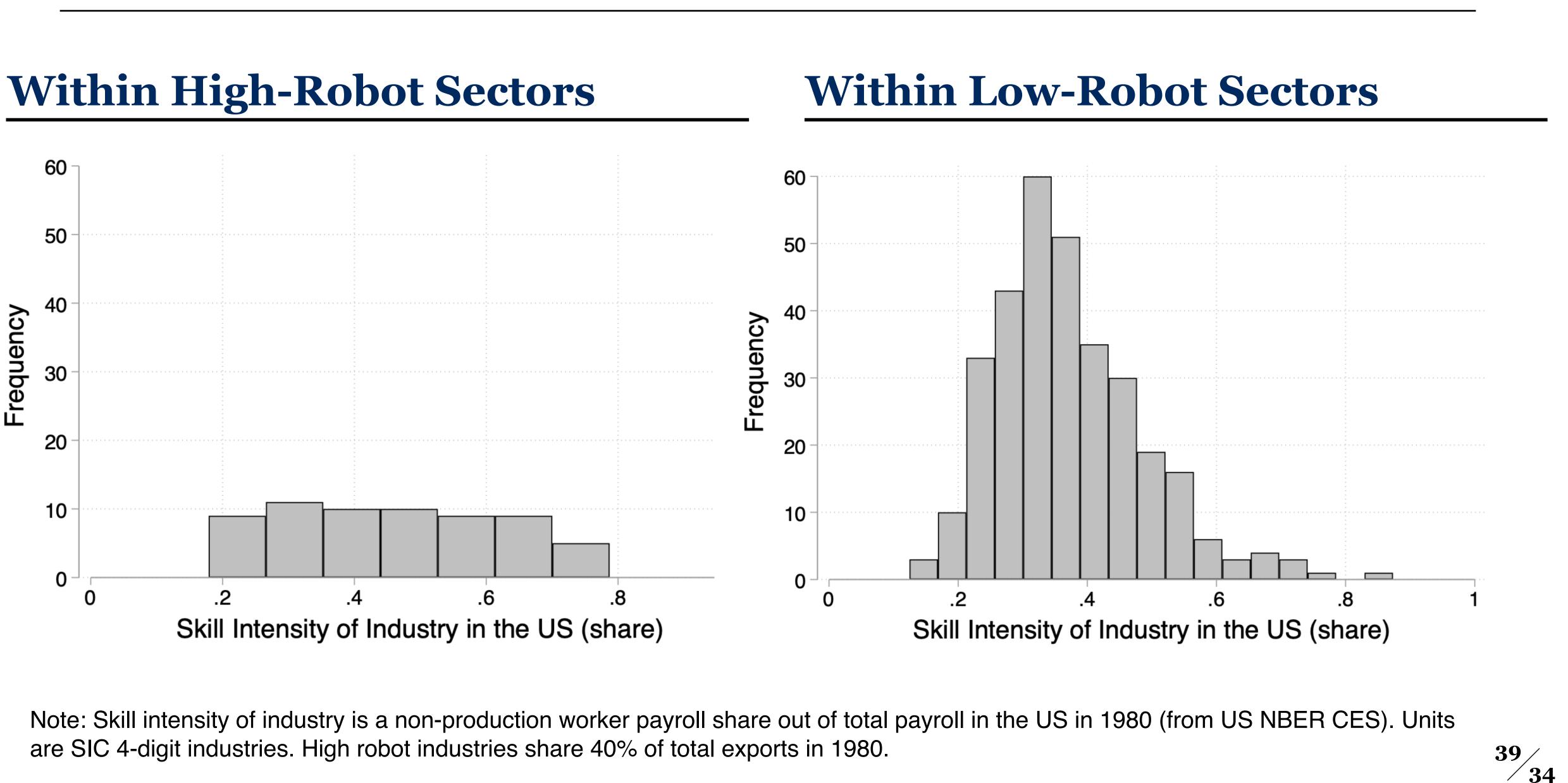
Factor Intensity across Sectors



Note: Skill intensity of industry is a non-production worker payroll share out of total payroll in the US in 1980 (from US NBER CES). Units are 397 SIC 4-digit industries



Factor Intensity across Sectors within Groups

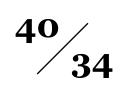


Define Country-level Skill Endowment

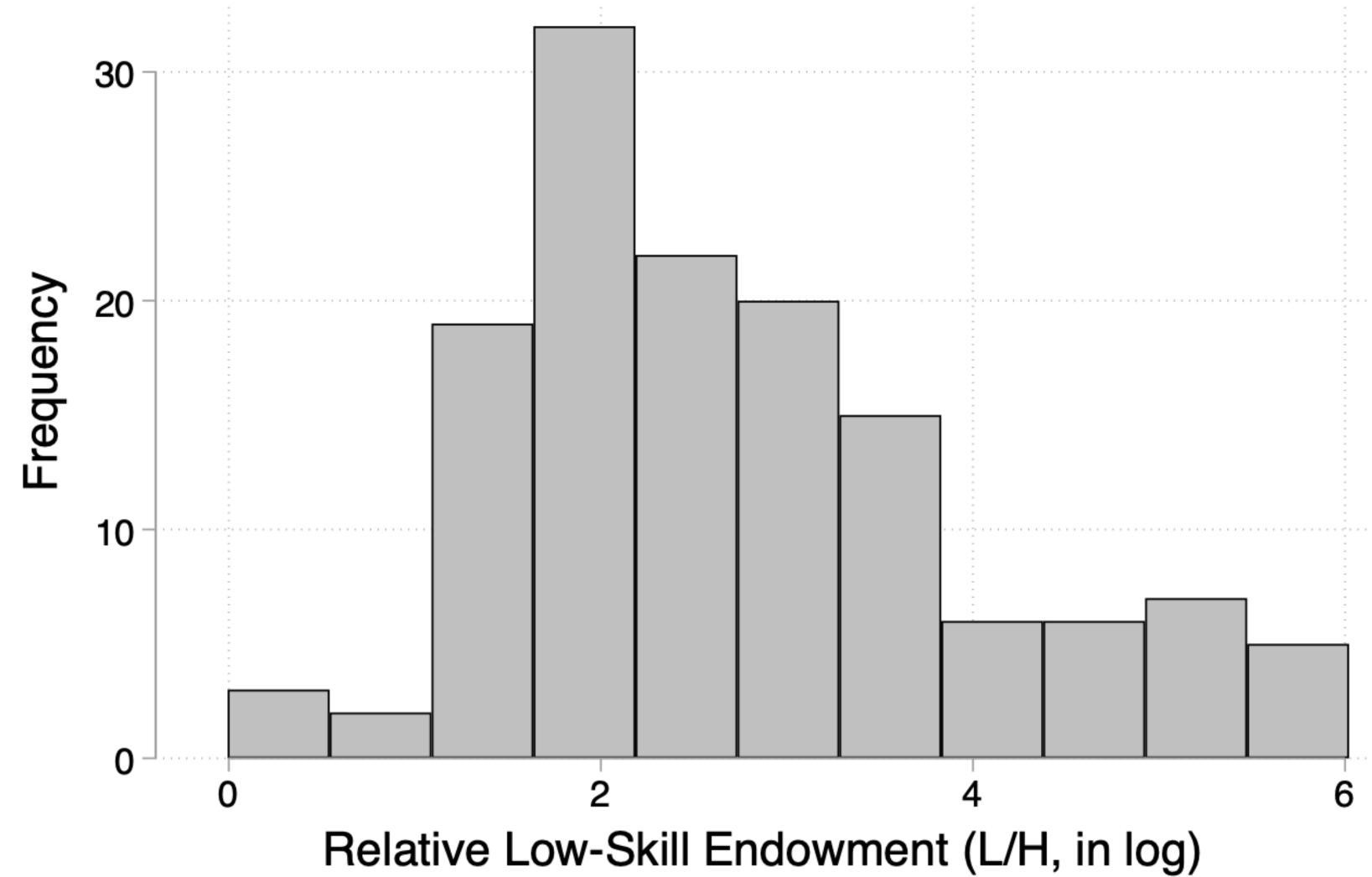
- Country-level skill endowment: $\ln (H_{i,t}/L_{i,t})$
 - Baseline: Tertiary vs Non-tertiary for age 25-64
 - Data: Baroo-Lee Data
 - Robustness:

 - Data-driven using country dummies (later)

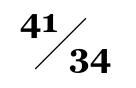
Other measures (year of schooling, secondary vs not, aged 15-64)



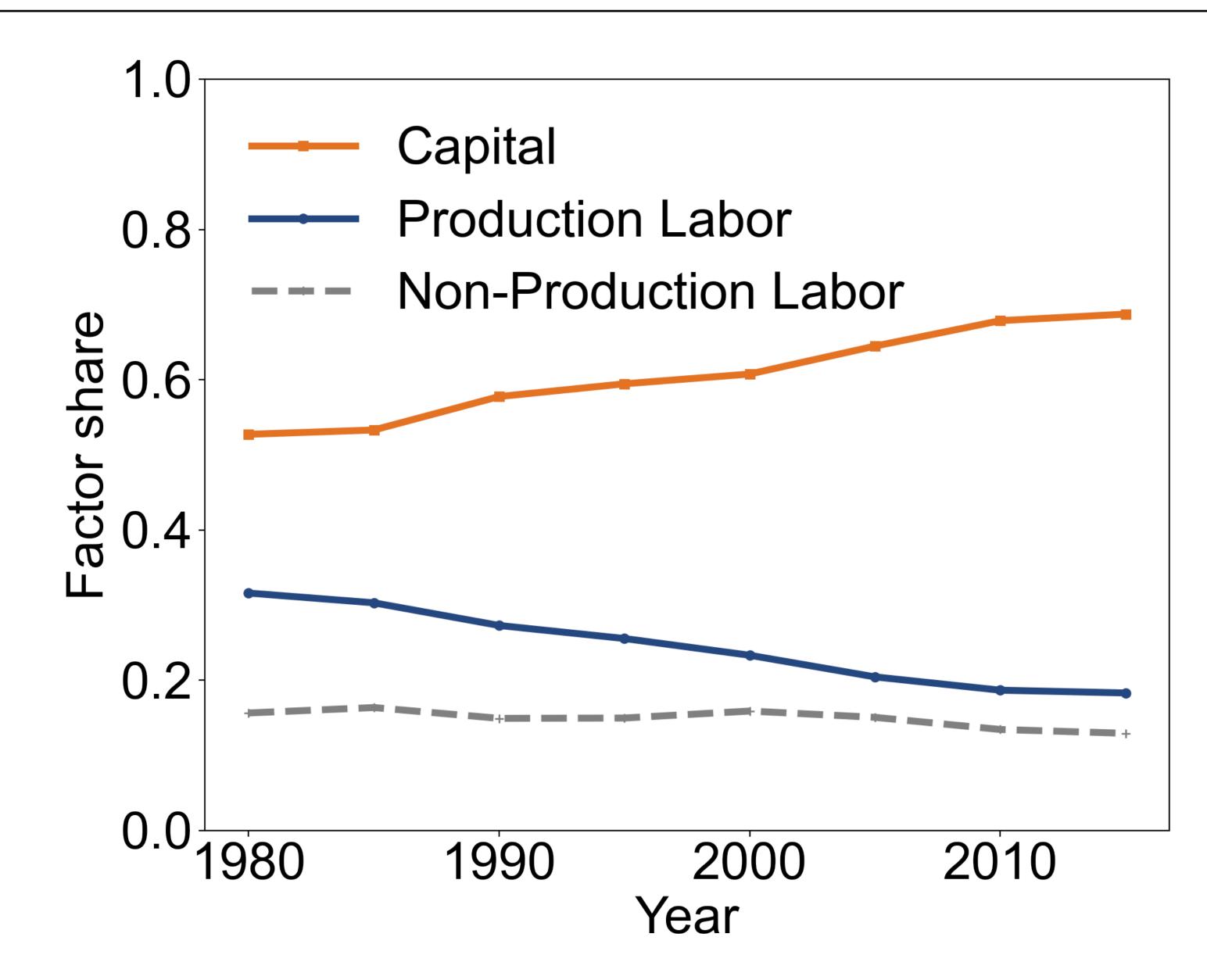
Factor Endowments across Countries



Note: Relative low-skill endowment is the log ratio between the number of non-college workers to the number of college workers in each country in 1990 (from Barro-Lee Data)



US Factor Share in Manufacturing Sector





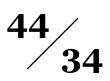
Another empirical specifications

More Data-Driven Approach

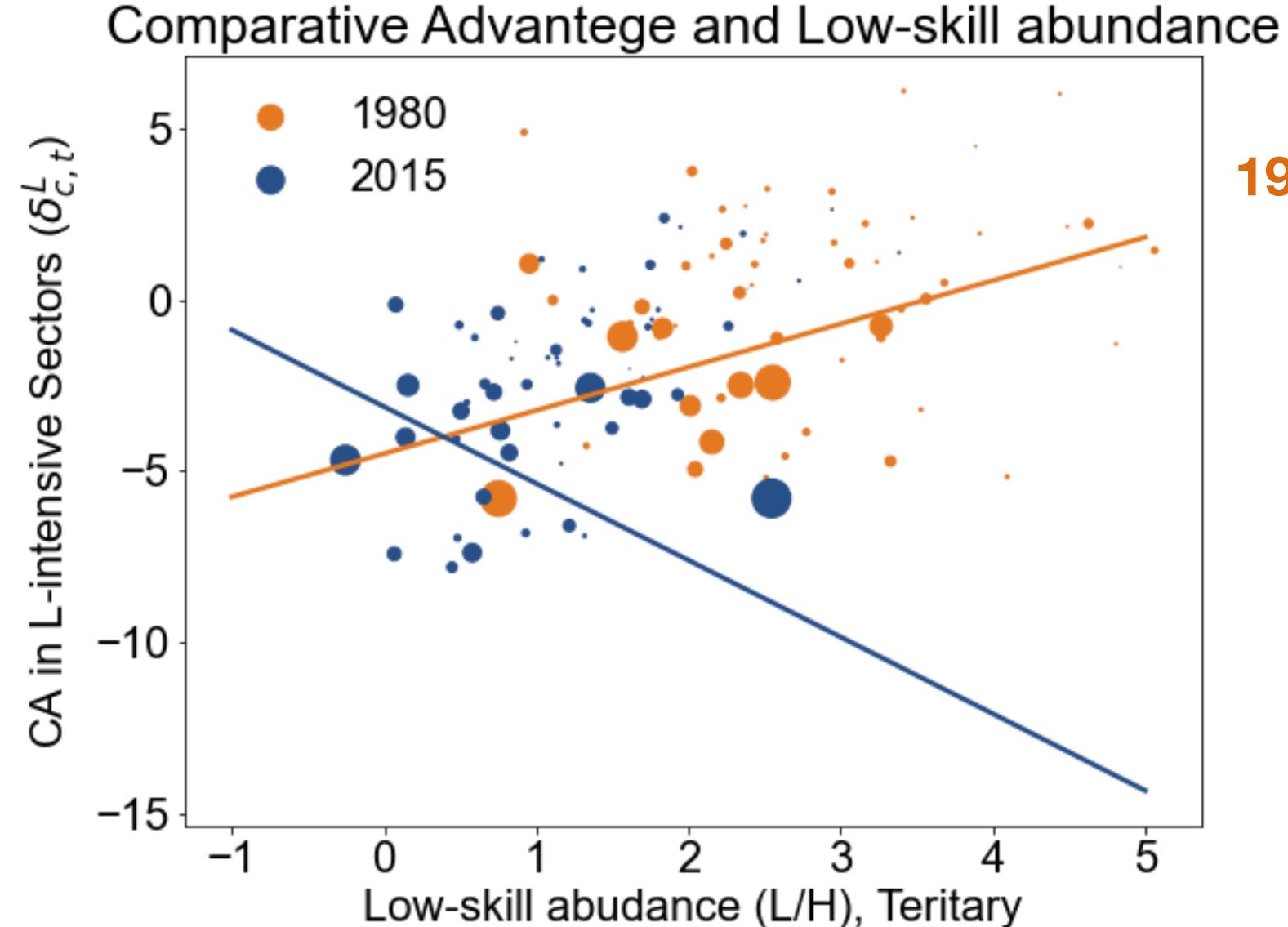
Instead of having country-level skill share, estimate the following

$$\ln X_{i,j,s} = \sum_{c} \delta_{c,t}^{L} \left[1_{i=c} \times \alpha_{s}^{L} \right] + \nu_{i,j} + \eta_{j,s} + u_{i,j,s}$$

- $1_{c=i}$: dummy for each country *c*
- $\delta_{c,t}^L$: "estimated" comparative advantage in L-intensive sectors
- Issue: $\delta_{c,t}^L$ is high-dimensional \rightarrow need shrinkage
 - Penalized PPML using plug-in lasso (Belloni et al., 2016)
 - Select 44 countries out of 58 countries in 1980 (and fix them)



Factor-Endowment-Based CA is Reversed



1980: L-abundant countries had CA in L-intensive sectors

2015: Reversed.

Changes in CA and Robot Adoption

Can define "Changes in CA in L-intensive sectors"

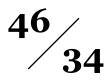
$$\Delta \hat{\delta}^L_{c,t,t'}$$

Regress changes in CA on robot adoption at country level

$$\Delta \hat{\delta}_{c,t,t'}^{L} = \beta \Delta \ln \text{Robot}_{c,t,t'} + \Gamma' X_{c,t,t'} + \mu_t + \varepsilon_{c,t}$$

- Control: Initial CA, Changes in skill-endowment, demographics
 - Long-difference: 1995-2015
 - 10-year stacked difference: 1995-2005, 2005-2015

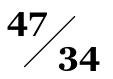
$$\equiv \hat{\delta}^{L}_{c,t'} - \hat{\delta}^{L}_{c,t}$$



Robot Adoption Associates with Changes in CA

Chan Long-Log Robot Adoption 0.32 (0.10)CA in 1995 Num. of Countries 44 **Country Covariates Country Fixed Effects Decade Fixed Effects**

iges in CA	Change	Changes in CA	
-difference	10 year sta	10 year stacked diff.	
(2)	(3)	(4)	
0.28	0.14	0.17	
(0.10)	(0.02)	(0.03)	
-0.26	-0.11		
(0.11)	(0.04)		
44	88	88	
Yes	Yes		
		Yes	
	Yes	Yes	



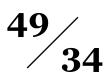
Calibration Details

Challenge: Calibrating Trade Cost

- Factor shares change \rightarrow cannot use hat algebra
- Too big to invert
- Head and Reis (2001): Assuming free intra-trade and symmetric trade cost:

$$\left(\tau_{ijs}\right)^{1-\sigma} = \sqrt{\frac{X_{ijs}X_{jis}}{X_{iis}X_{jjs}}}$$

Data from World Input Output Table in 2000

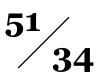


Implications for Growth and Inequality

Automation and Growth/Inequality

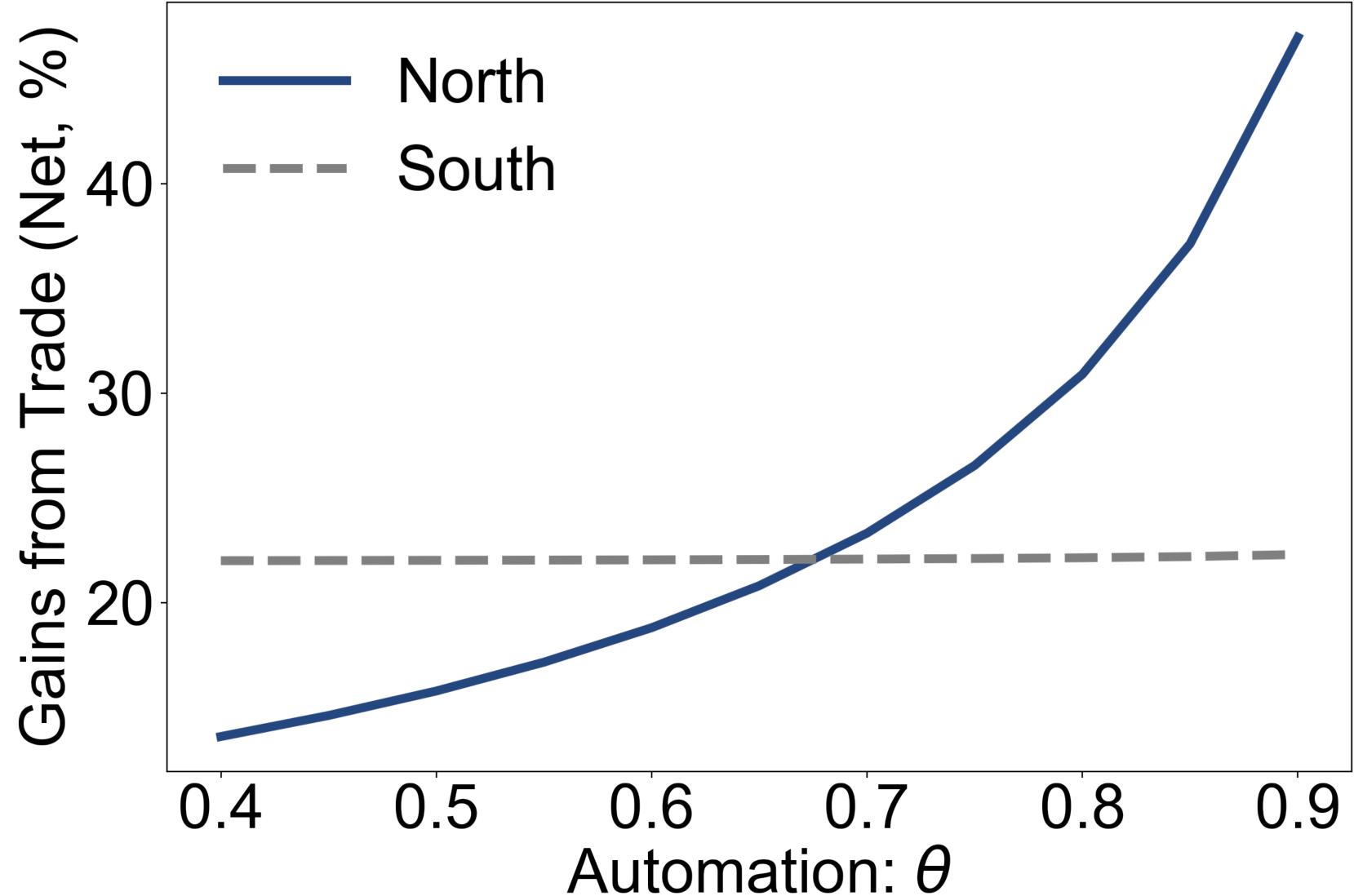
Automation affects comparative advantage...

- This mechanism can also explain...
 - Gain from Trade (Welfare gains relative to autarky)
 - Cross-country Inequality (Income differences)
 - Within-country Inequality (Rise in skill premium)



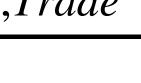
Automation Disproportionally Benefits North

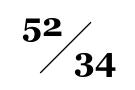
Gains from Trade



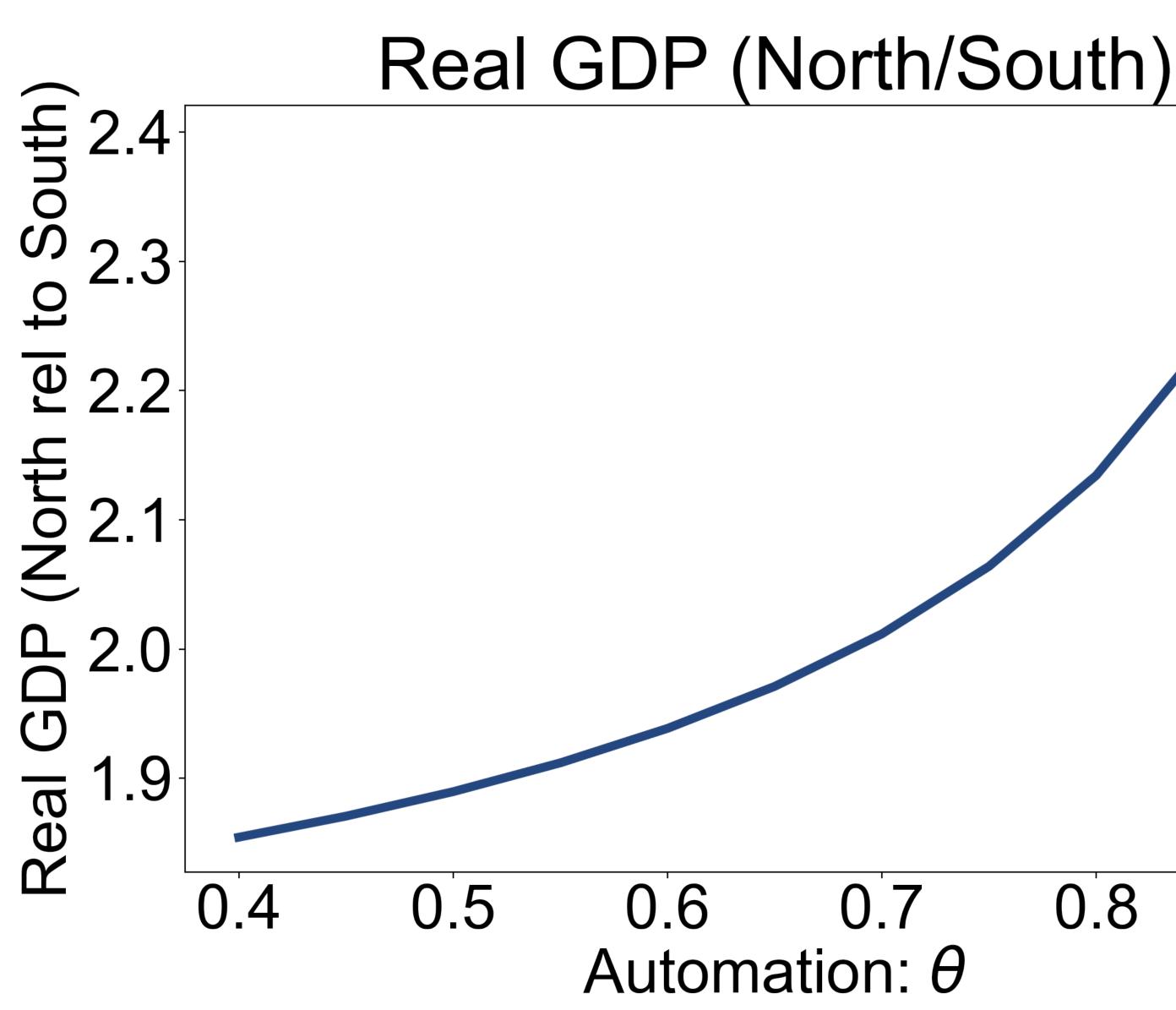
High θ disproportionally increases GT of North

Welfare_{i,Trade} Welfare_{i,Autarky} Gain from trade \equiv –



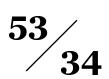


Automation Amplifies Cross-Country Inequality



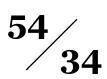
High θ expands across-country inequality

0.8 0.9



Automation Amplifies Within-Country Inequality Skill Premium 5 South Skill Premium (W^H/W^L) 5 5 North High θ expands within-country inequality 0.5 0.6 8.0 0.9 0.7

Automation: θ



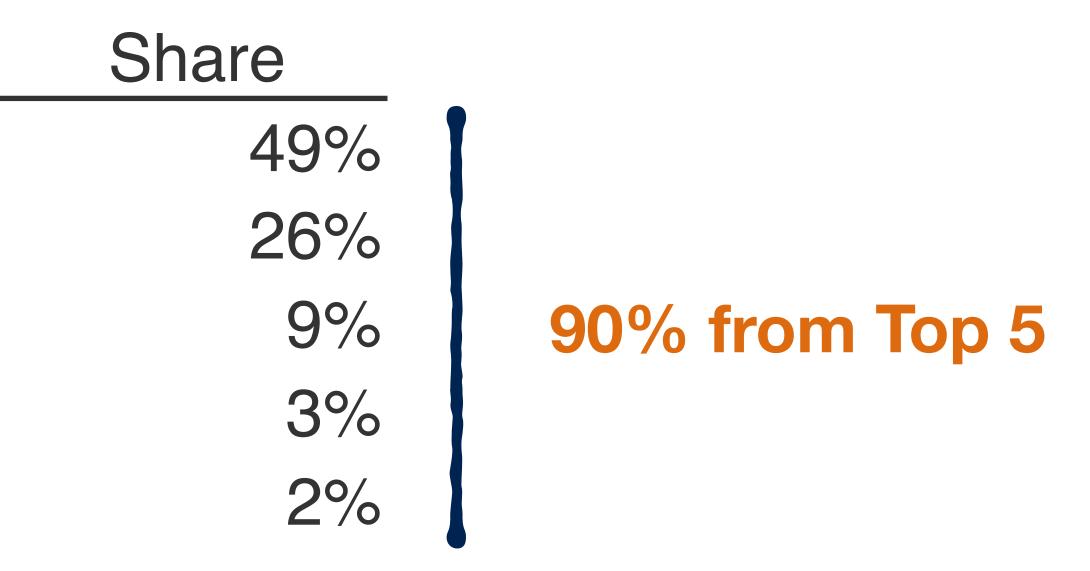
Endogenous Automation

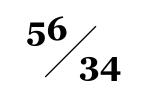
Extension: Endogenous Automation Technology

- Fact: Only a few countries develop automation technology
 - Number of granted patents related to automation, 1990-2015, USPTO

Country USA Japan Germany South Korea Taiwan

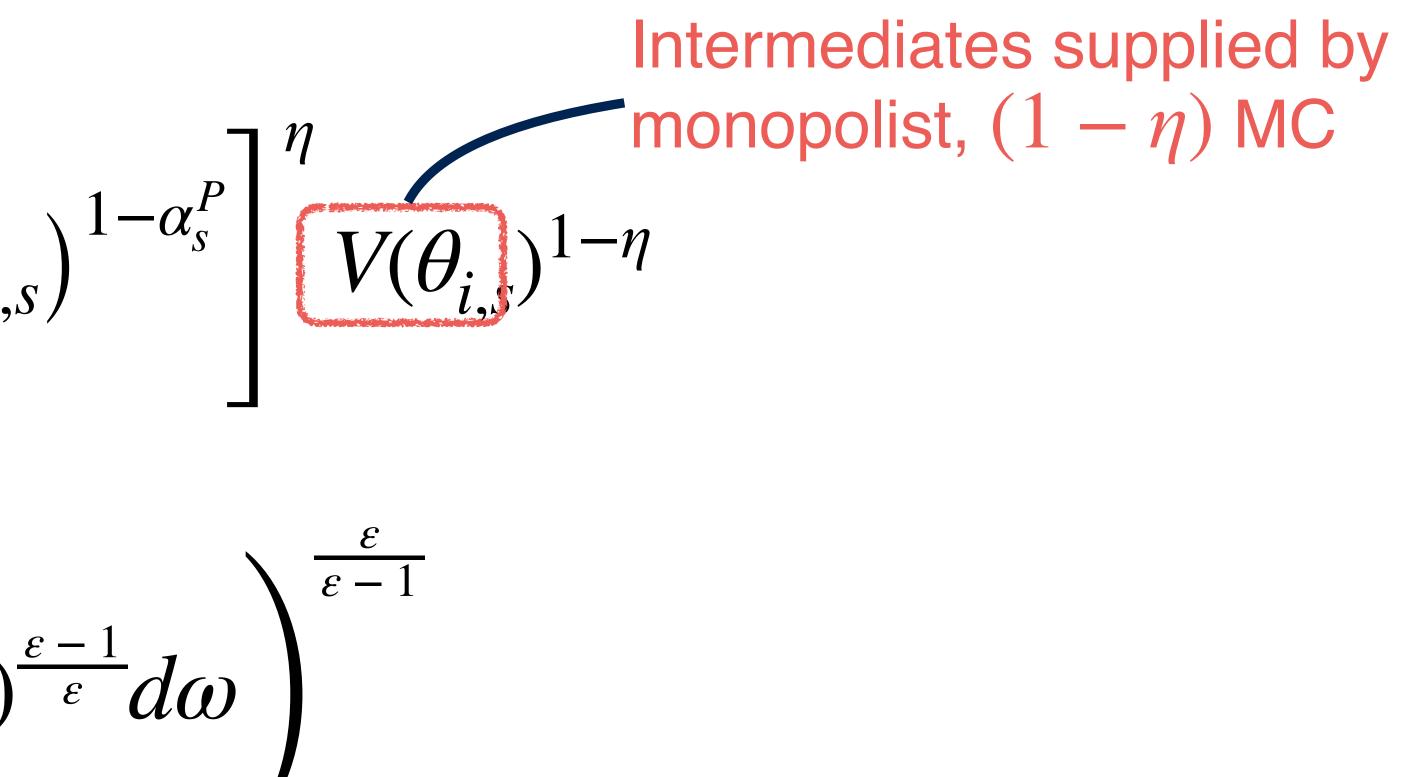
Theory: Acemoglu-Restrepo (2022): "L-scarcity leads to automation"





Production function

$$Y_{i,s} = \frac{\eta^{-\eta}}{1 - \eta} \left[\left(Y_{i,s}^P \right)^{\alpha_s^P} \left(H_{i,s} \right) \right]$$
$$Y_{i,s}^P = \left(\int_0^1 Y_{i,s}^P (\omega)^{\frac{\varepsilon}{-\varepsilon}} \right]$$
$$Y_{i,s}^P (\omega) = K_{i,s}(\omega) + L_{i,s}$$
$$Y_{i,s}^P (\omega) = L_{i,s}(\omega) \text{ if } \omega$$



 $s(\omega)$ if $\omega \in [0,\theta_{i,s}]$

 $o \in (\theta_{i,s}, 1]$

Technology monopolist

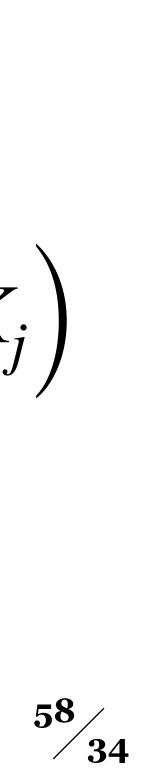
- - Monopoly pricing \rightarrow Profit of (1
 - Assume cost to be proportional to profit (for algebra)
- Net profit

$$\frac{1-\eta}{2-\eta}(c_{is})^{2-\sigma} \left(1-\phi_{i}(\theta_{is})\right) \sum_{j} \frac{(\tau_{ijs})^{1-\sigma}}{\sum_{l} (c_{ls}\tau_{ljs})^{1-\sigma}} \mu_{js} \left(w_{j}^{L}L_{j}+w_{j}^{H}H_{j}+rK_{j}^{L}\right) + \frac{1-\eta}{2-\eta} \left(w_{j}^{L}L_{j}+w_{j}^{L}H_{j}+rK_{j}^{L}\right) + \frac{1-\eta}{2-\eta} \left(w_{j}^{L}L_{j}+w_{j}^{L}H_{j}+rK_{j}^{L}\right) + \frac{1-\eta}{2-\eta} \left(w_{j}^{L}L_{j}+w_{j}^{L}H_{j}+rK_{j}^{L}H_{j}\right) + \frac{1-\eta}{2-\eta} \left(w_{j}^{L}L_{j}+w_{j}^{L}H_{j}\right) + \frac{1-\eta}{2-\eta} \left(w_{j}^{L}$$

 $\phi_i(\theta_{is})$: Cost function, convex

Let a technology monopolist in each (i, s) develops $\theta_{i,s}$ (no diffusion)

$$1 - \eta)/(2 - \eta)c_{is}Y_{is}$$



Comparative Statics: Endogenous Automation

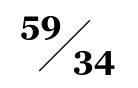
Profit maximization

$$\max_{\theta_{is} \in [0,1]} \ln \pi^{M}(i) = (2 - 1)^{M}$$

- \rightarrow Increasing differences in θ_{is} and w_i^L
 - More automation in L-scarce countries
- \rightarrow Decreasing differences in θ_{is} and α_{s}^{H}
 - More automation in L-intensive sectors

Efficiency Gain $\sigma) \ln c_{is}(\theta_{is}) + \ln(1 - \phi_i(\theta_{is}))$

> **Counteract L-wage increases** from L-scarcity

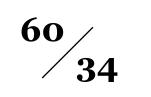


Two-Country Numerical Example

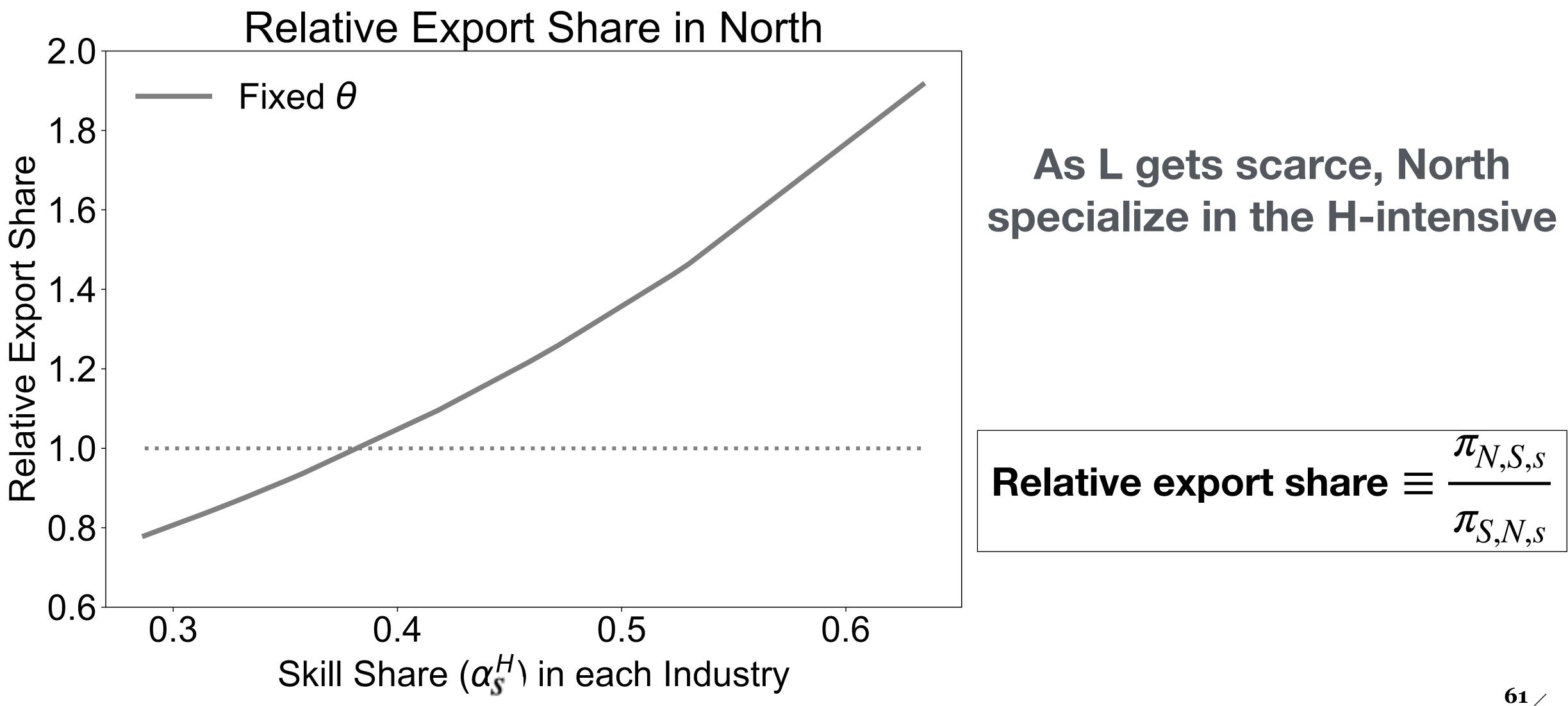
- Parametrize cost of automation to b
 - Larger ρ_i : Easier to automate in country i (scientists, organizational capital)

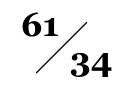
- Experiment: Ex-ante identical North & South
 - Now, North becomes L-scarce: L-share from 80% to 70%
 - Benchmark: If L gets scarce, L-intensive sector shrinks (Rybczyński)
 - but technology was exogenous in these models...

be
$$\phi_i(\theta) = 1 - (1 - \theta^2)^{\frac{1}{\rho_i}}$$

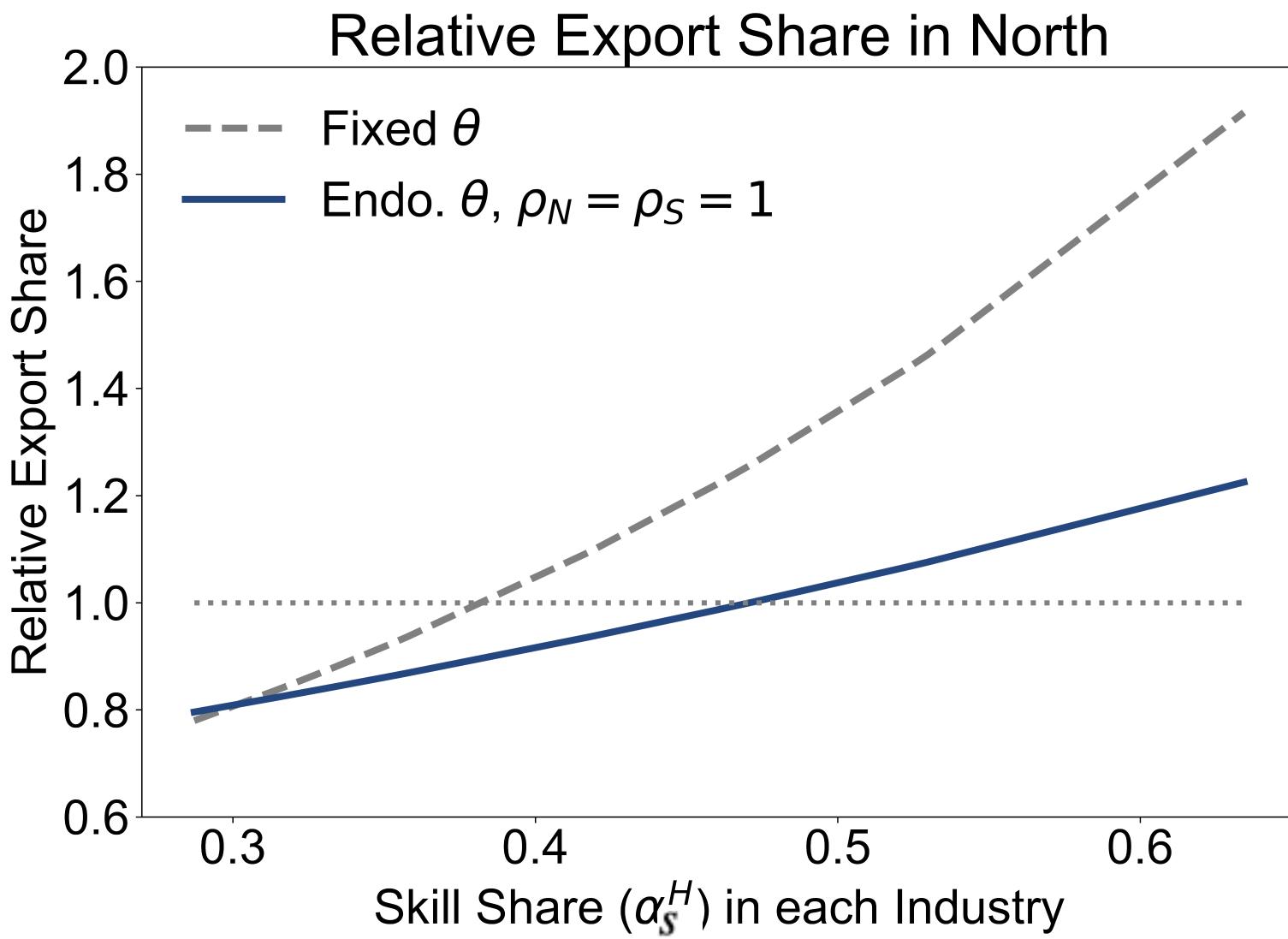


Rybczyński: L gets Scarce, Specialize in H-Intensive



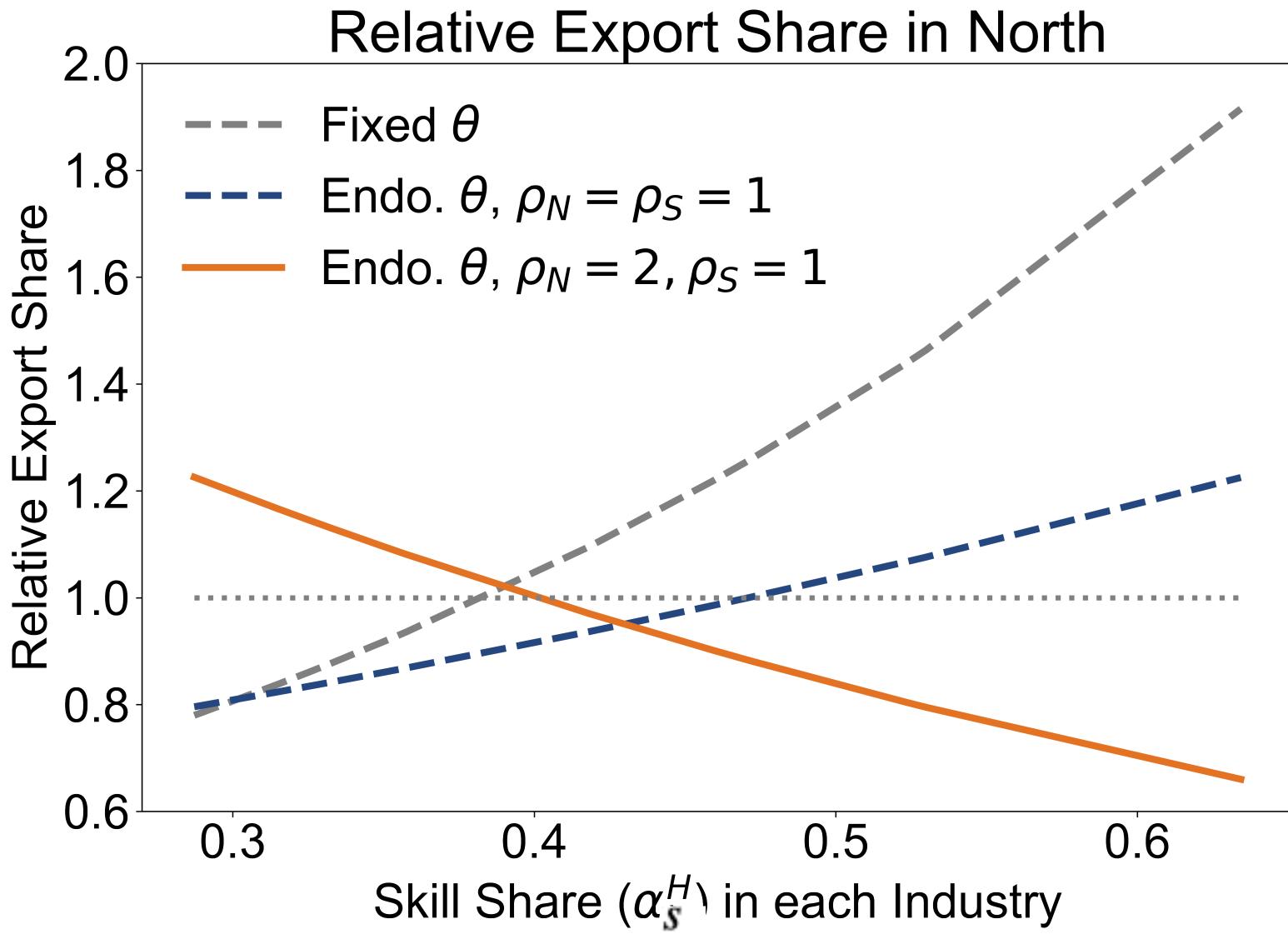


Endogenous Automation Attenuates Rybczyński



Automation attenuates sectoral shifts

Endogenous Automation can Even Reverse Rybczyński



North gets L-scarce, but expands L-intensive sectors

