"Living in a Ghost Town: The Geography of Depopulation and Aging" (Giannone, Miyauchi, Paixão, Pang, Suzuki) Japan Economic Seminar

Discussant: Jingting Fan

February 2, 2024

Summary

- Timely and insightful work on a topic of enormous importance: aging
 - many discussions on aging and its impact on nationwide outcomes
 - but aging hits localities differently. Imperfect mobility + differential impacts \implies welfare consequences across locations
- Main findings
 - aging (de-population) leads to net flows of young people from small to big cities
 - mechanism: lower density \implies lower amenities, especially for the young (who are also more mobile)
 - in the making: implications for welfare and evaluations of policies

The paper breaks three new grounds

- Descriptive analysis on aging and population distribution of Japanese municipalities over past 40 years
 - careful (and painstaking) efforts at data collection and analysis
 - result: young people's out-migrating from small cities accounts for $\frac{3}{4}$ of population decline in these cities

The paper breaks three new grounds

- A revealed preference approach to uncover the reason
 - flow utility difference: the young (25-29) dislike small cities more than the mature (45-49)
 - framework accounts for dynamic and life-cycle motive, important for
 - * recovering flow utility
 - * subsequent counterfactuals
- Extrapolate into the future to evaluate different aging scenarios
 - compared to analysis by demographers, the framework incorporates endogenous migration choice

Measurement

- An advantage of the framework is that it disentangles continuation value from flow utility
 - Intuition: the continuation value $V_t^N(a)$ inherently related to the flow utility of *n* for a + 1, a + 2, ..., *T*, in *future* year t + 1, t + 2, ..., t + T - a, i.e., $u_t^n(a)$, $u_{t+1}^n(a+1)$,... $u_{t+T-a}^n(T)$
 - A naive approach is to overlook the evolution and instead use $u_t^n(a)$, $u_t^n(a+1),...u_t^n(T)$; a even more naive approach is to simply use u^n
 - Both alternatives can be problematic when people of different type value amenities differently or when the economy is non-stationary
- Are housing shares (θ in the model) heterogeneous across locations? Are the share of long-term employment different across cities?

What explains the pattern?

- Common (proportion) amenities for both young and mature, but young's utility loads more heavily on these amenities
- Young prefers different things than the mature and are crowded out in places where the mature is the majority
 - higher old *share* \implies young people move out
- The model takes the first explanation and the paper (appendix) has some analysis on the latter; would be good to engage in the discussion of the two alternative explanations

Validation for the model explanation

- $u^n(a) = \ln I^n(a) \theta \ln R^n \left[\frac{1-\theta}{1-\eta} \ln \left(1 + (P_{NT}^n)^{1-\eta}\right)\right] + \ln X^n(a)$
- T1EV shock implies that when $X^n(a)$ is larger, a decrease in P_{NT}^n affects welfare more
- as a validation: useful to see how much variations there are in ln Xⁿ(a) across cities and age, and how the amenities implied by this particular function form fit the measured amenities across the city size distribution

Final thought

- Vast spatial reallocation in many countries around the world over the past forty years. The broad trend is increasing population concentration.
- Different context-specific explanations: endogenous amenities, communication technologies, the decline in marriage institutions, de-industrialization in developed countries, urbanization and industrialization in developing countries, aging, ...
- How does each of these forces interact with/contribute to the broad trend?

- Thank you for this interesting and insightful paper!
- Looking forward to seeing more policy analysis using the framework