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1 Background and Introduction

Consider the following three pricing situations:

• A global telecommunications company sells its services in North America. The company

sells more than 40 individual services including local, long-distance, data communications,

and corporate network. Different customers request different levels and combinations of

these services. The company sells its services on a contract basis, with the typical term of a

contract being a year. An important segment of the company’s business consists of customers

with annual telecommunications bills of between $10,000 and $10 million. Customers in

this segment are primarily large and medium-sized businesses, educational institutions, and

various state and local government agencies. Prospective customers in this segment typically

submit a Request for Quote (RFQ) to two or more telecommunications companies annually.

Based on the bids received, they determine which company will be their service provider for

the next year. Bids by competing telecommunications companies are usually specified as

discounts from their standard list prices. The problem facing the company is what discount

to quote in response to each RFQ (Phillips, 2005, pp. 264 - 265.).

• The Soundco Radio Company sells aftermarket radios and CD players for automobiles. Its

customers are regional and national electronics retailers, automotive stereo catalog sellers,
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and electronics wholesalers. The dealer base price for one of Soundco’s most popular models,

the CDR-2000 is $109. However, the average price actually paid by customers in 2007

was $67.50. The difference of $41.50 was due to a variety of discounts, promotions, and

concessions that Soundco made on different deals. For example, while the average price

paid by customers for the CDR-2000 was $67.50, there was a wide variation in actual price

paid: about 18% of sales were at $55 or less while 17.5% were at $85 or more. Soundco wants

to know if it is giving the right discounts to the right customers to maximize profitability

and, if not, how it should change its discounting (Marn, et. al. ,2007, pp. 31-33.).

• A medical testing device company sells a gas chromatograph refill cartridge with a standard

list price of $11.85. The refill cartridge is typically ordered in batches. Orders for fewer than

200 units are handled through the company’s website or through a reseller with no discount.

Large orders (more than 1,000 units) are negotiated by a national account manager, usually

as part of a large, bundled sale. Orders for 200 - 1,000 units are handled by a regional

sales staff that has considerable freedom to set discounts. Analysis of historical data showed

that discounts ranged from 0% to more than 30% for some deals. The company wants to

determine the “right” levels of discount to offer for various deals (Agrawal and Ferguson

2007, pg. 220.).

The three cases described above are examples of customized pricing. Customized pricing is most

common in business-to-business settings, although it is also found in consumer lending and insur-

ance. Customized pricing is defined by three characteristics:

1. Customers approach a seller. Each buyer describes a product, or set of products that she

would like to purchase. Often this is specified in a Request for Proposal (RFP) or Request

for Quote (RFQ) or, in the case of insurance or credit, an application. We call such an

inquiry a customer request.

2. The seller must decide how to respond to each customer request. One possibility is not to

respond – that is, pass up the opportunity for the business. If a seller does respond, he needs

to determine what price to quote for each customer request. At the point the price is quoted,

the seller knows the product(s) requested by the buyer, the channel through which the buyer

approached, and at least some information about the buyer. Often in business-to-business

settings, price is quoted in terms of a discount from a list price or tariff.



Customized Pricing. Robert Phillips 3

3. The seller has some freedom to quote different prices for different customer requests based

on the products in the request, the sales channel through which the request is received, and

the characteristics of the buyer.

Each customer request can be characterized by the characteristics of the order (e.g. the number

and configuration of products ordered), the channel through which the request was received (e.g.

Internet versus direct sales), and the characteristics of the customer making the request (e.g.

large manufacturer in the Northeast versus small distributor in the Southwest). The problem

facing the seller at any time is what price to quote for the request currently under consideration.

In the extreme, the seller could quote a different price for each request – this would approach

the ideal of “one-to-one” pricing. More typically, the seller differentiates prices by a finite set of

combinations of order characteristics, customer characteristics, and channel. For example a seller

might define five order-size tiers, with increasing levels of discount by order-size. We use the term

pricing segment to denote each combination of order characteristic, customer characteristic, and

channel for which a seller can set a price.

This chapter focuses on the use of mathematical analysis by a seller to set and update the prices for

a finite set of pricing segments. The idea of using mathematical analysis to optimize prices in this

fashion is relatively new. Several authors such as Friedman (1956), Gates (1967) and Morin and

Clough (1969) describe models in which price is the only criterion used to select a supplier. Talus

Solutions was the first company to develop a software system to optimize customized prices (Boyd,

et. al., 2005). The first detailed treatment of an optimization approach to customized pricing for

segmented markets is Chapter 11 in Phillips (2005). Agrawal and Ferguson (2007) apply a similar

analytical approach to two examples of what they call customised-pricing bid-response models

(CPBRMs) and compare the performance of segmented and unsegmented approaches. Phillips

(2010) describes the application of optimal customized pricing in the specific context of consumer

credit pricing.

2 Business Application of Customized Pricing

A stylized view of the customized pricing sales process is shown in Figure 1. Prospective customers

approach a seller one-by-one through different channels. Each customer describes her desired

purchase to the seller. Based on the combination of the desired purchase, the channel, and the
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(Figure 1 about here.)

Figure 1: A stylized view of the customized pricing sales process.

characteristics of the customer; the seller chooses the price to offer. Once the price is known, the

customer decides whether or not to purchase from the seller. The seller knows the characteristics

not only of the seller’s own customers and their purchases, but also the characteristics of those

potential customers who did not purchase from him – i.e., lost sales. Typically the majority of a

seller’s lost sales went on to purchase from a competitor although some portion of the lost sales

may have decided not to purchase at all.

In many business-to-business markets, a purchase is often initiated when a buyer sends a Request

for Proposal (RFP) or Request for a Quote (RFQ) to one or more competing suppliers describing

the buyer’s needs for goods or services. Each supplier receiving the RFP or RFQ needs to decide

whether or not to bid for the business. A supplier may decide not to bid if they feel that they

cannot satisfy the requirements of the buyer, or if they feel that their probability of making the

sale is not high enough to justify bidding, or for other reasons. If a supplier does bid, he needs

to choose a price. At the highest level, the tradeoff in determining the price is straightforward –

if the seller sets the price high, he will make a high profit if he wins, but has a low probability of

winning; if he sets the price low, he will make less profit if he wins, but he has a higher probability

of winning. The price that maximizes his expected profit optimally balances these two effects.

Customized pricing is commonly used for products that are highly configured. Heavy trucks are

a good example. The 2008 Model 388 Day Cab heavy truck sold by Peterbilt allows the customer

to choose his desired options for 34 different components of the truck ranging from the rear-

wheel mudflap hangers which can be straight, coiled or tubular to 15 different choices for rear

axles to seven different transmissions to the choice between an aluminum or a steel battery box.1

Multiplying the number of options in the Peterbilt list would imply that they could combined in

75×1016 possible ways – each corresponding to a different truck. In practice, not all combinations

are feasible and the actual number of possible trucks is smaller – probably by two or three orders

of magnitude. Each of the options has a list price and the sum of the list prices for the chosen

options plus a base price is the “list price” for the configured truck. However, in the vast majority

of cases, heavy trucks are sold at a discount from this list price. The customized pricing problem

1From the Peterbilt website at http://www.peterbilt.com/trad388dc.4.aspx as accessed in November, 2008.
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is what discount to apply for each quote.

Highly configurable products such as heavy trucks lend themselves to customized pricing for a

number of reasons. First of all, configurability usually implies the existence of a large number

of potential products – as in the case of Peterbilt. One heavy truck manufacturer claimed in

conversation that no two customers had ever independently ordered exactly the same truck.

This means that there is a lot of potential to segment based on product dimensions. Secondly,

configurable products and services are usually “big ticket” items that often involve considerable

interaction between the buyer and the seller during the sales process. This provides an opportunity

for customer-based price differentiation. Finally, options often vary widely in their profitability

to the seller. This variation gives an additional motivation for price differentiation. In the case

of Peterbilt, a truck built of highly profitable options provides much more scope for possible

discounting than a less profitable configuration.

The stylization of customized pricing in Figure 1 should not be interpreted to imply that sellers

are passively waiting for customer requests to arrive. On the contrary, the vast majority of

sellers will be actively engaged in marketing their products and services through advertising and

brand support as well as soliciting business through direct and indirect sales channels. These

sales and marketing activities are often critical in generating business, however they largely (if

not entirely) represent “sunk” costs by the time the final price is quoted. Sales and marketing

activities influence the volume of customer requests that a seller receives and the willingness-to-

pay of potential buyers. A company with strong sales and marketing will have more opportunities

to bid and will be able to bid successfully at higher prices than a competitor with weaker sales and

marketing. The goal of a customized pricing process should be to enable a supplier to determine

the best price to bid for each customer request given the supplier’s strengths and weaknesses

relative to the competition.

Customized pricing is most commonly associated with business-to-business markets: most con-

sumer products and services are priced using list prices combined with various promotions. How-

ever, customized pricing is also common in consumer and small business loans and insurance.

Both lenders and insurance companies typically require applications from prospective customers

describing both the desired product (e.g. size and term of loan) as well as information about the

prospective borrower themselves. Table 1 lists the information required for an on-line application
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Name Zip Code Address

Currently insured? Insured with GEICO in last 6 months? Date of Birth

Gender Marital Status Student?

Employment Status Age drivers license first obtained Education level

Industry Veteran? Field of Occupation

Accidents/Violations/Thefts/Suspensions ? Current Insurance Company Years with Current Company

Table 1: Information required for an on-line auto insurance application with GEICO. Source:

www.geico.com, August 2008.

for auto-insurance from the insurance company GEICO’s website – www.geico.com.2 GEICO

uses the information received with a customer’s application to determine whether or not they will

offer insurance to that customer.3 GEICO can use the information on these applications not only

to determine which customers to accept, but the rate that they want to quote to each customer.

Mortgages, home equity loans, student loans, and auto loans all use a similar process of customer

approach followed by an application with significant disclosure. Loan prices can depend both

on characteristics of the lending product such as term and size of loan and on characteristics

of the customer – particularly the lender’s estimation of the customer’s creditworthiness. Thus,

customers with better credit history are likely to be offered lower rates for auto loans than those

with poor credit. For a fuller discussion of the application of customized pricing to consumer

credit markets see Caufield (this volume) and Phillips (2010).

3 Formulating and Solving the Customized Pricing Problem

The level and type of pricing segmentation that a seller uses is a major determinant of the

effectiveness of customized pricing. If a seller differentiates price by five order size tiers, six

regions, and three channels, then the seller has 5 × 6 × 3 = 90 pricing segments. If the lender

decided to increase the number of order size tiers to 10, then the number of pricing segments

would increase to 180. If, in addition, he decided to differentiate pricing between existing and

new customers, then the number of pricing segments would double to 360. For many sellers,

particularly those with highly configurable or bundled products, the number of pricing segments

2Accessed on November, 4, 2008.
3In the words of Stiglitz and Weiss (1981), both insurance and consumer credit are rationed. There are customers

to whom it is unprofitable to extend credit at any price due to adverse selection in the face of private information

held by the customers. The same holds true of insurance markets as noted by Akerlof (1970).
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(Figure 2 about here.)

Figure 2: Steps in the customized pricing process. (Figure adapted from Phillips [2005]).

can be very large. One mortgage lender in the United States manages over two million prices at

any one time. The number of pricing segments is a measure of the amount of price differentiation

being employed by a lender – the more pricing segments, the greater the level of differentiation.

To formalize the customized pricing problem, let N be the number of pricing segments. For each

segment i, the customized pricing problem is to determine a price pi for i = 1, 2, . . . , N . Define Di

as the number of customer requests that will be received in segment i during some future period.

For the moment, we assume that Di is independent of price, pi. Define ρi(pi) as the bid-response

function for segment i – that is, for a segment i, ρi(pi) is the fraction of customers in segment

that will purchase if the seller bids at price pi. Define fi(pi) be the incremental profit function

for segment i as a function of price. Then, the Unconstrained Customized Pricing Problem is:

max
p

∑N
i=1 Diρi(pi)fi(pi) (1)

s.t. p > 0 (2)

where p = (p1, p2, . . . , pN). In (1), the objective is to maximize the total expected profit from all

customer segments. We will discuss later the situation in which a seller wishes to pursue other

objectives for some or all segments.

We note that this formulation of the problem is quite general with respect to the level of segmen-

tation. Setting N = 1 corresponds to a single price for all customers. At the other extreme, a

seller could define a separate segment for every possible combination of customer characteristics,

channel, and product. For example, a heavy truck manufacturer might wish to set a different

discount for an order of 39 trucks than for one of 40 trucks or 38 trucks. By defining segments

ever more finely, the seller can approach the limit of “market-of-one” pricing. As an example,

each piece of information shown in Table 1 is a potential pricing dimension for GEICO. If GEICO

used all possible values of all of these dimensions in setting their prices, then it would come close

to “market-of-one” pricing.

Effective customized pricing involves solving the problem in (1) for every possible bid request. As

shown in 2, this requires five steps:

1. Segmenting the Market. This involves establishing a set of pricing segments, each of which,
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in theory, could be charged a different price.

2. Estimating Bid-Response Functions. For each pricing segment, a bid-response curve needs

to be estimated that predicts the probability that an order in that segment will accept a

bid as a function of price.

3. Calculating Incremental Profit. For each bid request, the incremental profit that the seller

expects to realize if he wins the bid needs to be determined as a function of price.

4. Optimizing. Given the bid-response function and incremental profit function for a given bid,

the bidder needs to determine the price that is most likely to help him achieve his goals.

Often – but not always – the goal is to maximize expected profitability.

5. Monitoring and Updating. As bid results are received, the seller needs to monitor the

results relative to expectation. Based on the results, he may need to update the market

segmentation and/or the parameters of the bid-response functions.

We discuss each of these steps in more detail in the following subsections.

3.1 Segmenting the Market

In theory, a seller would want to segment his market as finely as possible in order to maximize

his profitability. In practice, several factors limit the amount of market segmentation that a

particular market can support. The most important of these factors are:

• Informational Limits. A seller can only differentiate prices based on information available

at the time of a bid. Even if a seller believes that, say, a customer’s annual income has a

strong influence on her response to his pricing, he cannot use that information in pricing if

he does not know it when he is bidding.

• Infrastructure Limitations. It is not uncommon that the IT infrastructure supporting pricing

limits the level of differentiation that a seller can support. For example, a seller’s pricing

execution system may only support up to three pricing dimensions with five values per

dimension. In this case, the seller cannot support more than 53 = 125 pricing segments.

Infrastructural limits are very real barriers to pricing differentiation for many companies. In

some cases, they can be relaxed by investing in improved IT systems, however, changes to
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price distribution and bid evaluation systems can be expensive and time-consuming and the

benefits from better segmentation need to be weighed against the cost and time of changing

systems.

• Legal and Regulatory Limits. Laws and regulations may limit the types and levels of price

differentiation that a seller can employ. For example, in the United States, the Robinson-

Patman Act of 1936 prohibits manufacturers and resellers from charging different prices

to different retailers under certain circumstances (Marn, Roegner, and Zawada, 2004 pp.

257-258). Laws and regulations on pricing differentiation can vary widely from country to

country. The Fair Lending Act in the United States prohibits lenders from discriminating

among prospective borrowers strictly on the basis of age (Ross and Yinger, 2002). In

contrast, setting loan APR’s on the basis of age is both legal and commonplace in the

United Kingdom.

• Simplicity and Transparency. A seller may refrain from extensive price differentiation be-

cause he believes that there is value in maintaining a simple pricing structure that is fully

disclosed to all customers, particularly when the product is sold through intermediaries.

Resellers and intermediaries often express a desire for “simple” pricing, although evidence

is often lacking that they are willing to accept higher prices for a simpler structure.4

• Arbitrage. The ability of a seller to differentiate pricing among different customers may be

limited due to the potential for arbitrage – customers offered a low price could purchase

more than they need and resell the surplus to other customer segments, undercutting the

seller. The threat of arbitrage is particularly great for standardized products with low trans-

portation costs. It often limits the extent to which companies selling easily transportable

products can charge different prices through different channels, to different customer seg-

ments, or to different countries. Services and highly customized products are not as subject

to arbitrage and often support higher levels of customer segmentation.

• Fairness Concerns. A seller may be reluctant to differentiate prices along a certain dimension

due to concerns about fairness. These concerns can be of two types: the seller may believe

4The passenger airlines present a case of an industry in which customers have often complained about the

complexity of the fare structure, but there is no evidence that any group of customers systematically chooses

higher priced flights offered by airlines with simpler fare structures. The perception that customers – especially

intermediaries – will reject complex or non-transparent pricing remains quite high in many industries, often with

little or no concrete evidence.
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(Figure 3 about here.)

Figure 3: An example bid-response curve.

that differentiating price along a certain dimension is unfair. Alternatively, the seller may

be concerned that differentiating along a certain dimension may be perceived by customers

as unfair. This could lead to resentment on the part of the customers and, ultimately, lower

demand. See Maxwell (2008), Chapter 13 in Phillips (2005), and Özer and Zheng (this

volume) for some of the “perception of fairness” issues encountered in pricing.

Due to these limitations most sellers operate in a world of finite customer segmentation well below

the theoretical limit of one-to-one pricing.

3.2 Estimating the Bid-Response Function

A key element in customized pricing is the supplier’s uncertainty about how a prospective buyer

will respond to a bid price. Presumably a supplier who bids on a piece of business believes that

he has a non-zero probability of winning – otherwise he would not waste the time and effort to

bid.5 It is also reasonable to assume that the seller’s estimate of the probability that his bid will

win should be a decreasing function of price – that is, the higher the price that he bids, the lower

his probability of winning. For each bid, the bid-response function specifies the seller’s probability

of winning as a function of the price that he bids. A typical bid-response function is shown in

Figure 3. In this figure, the horizontal axis is price, the vertical axis is the probability of winning

the bid and the bid-response function is a decreasing function of price.

The bid-response function shown in Figure 3 is analogous to the more familiar “price-response”

or “demand” curves found in many discussions of price theory such as Phillips (2005) and van

Ryzin (this volume). The bid-response function represents the seller’s probability that he will win

a particular bid as a function of price while a demand curve represents the total demand that a

seller would expect to receive if he posted a fixed price in some market for some period of time. In

a customized pricing setting, the seller will be responding one-at-a-time to different bids with the

5This is not strictly true. A supplier might decide to make a bid that he knows will not win simply to signal his

willingness to do business with the buyer in order to be included in future bid opportunities. Or he might decide

to bid to “keep the competition honest” – that is, to provide the buyer with some leverage that the buyer could

use to force a competitor to lower his price.
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freedom to set a different price for each bid if he so desires. Since each bid is likely to be different

(different bundles of products and services on order, different customers, different competitors,

different channels), the supplier could, in theory, have a different bid-response function for each

bid.

In general, the bid-response curve for a particular bid must incorporate two types of uncertainty:

1. Competitive Uncertainty. Typically a seller will not know details of competing bids – in-

cluding prices. In many cases a seller will not know who is bidding against him or how many

competing bids he is facing.

2. Uncertainty on Buyer Preferences. Even if a seller knew with certainty both the identity of

his competitors on a particular bid and the prices that all of the competitors were bidding,

he still may not be able to predict with certainty whether or not his bid would win at a

given price. The seller will usually not know the preferences or the exact process by which

the buyer will choose a winning bid. In most cases, the buyer is not certain to choose the

lowest-price bid.6

We can conceive of many different ways in which a seller might estimate the bid-response curve for

a particular customer request. For a particularly important bid, a seller might invest considerable

time and effort in preparing its bid. For example, a large airline seeking to purchase aircraft for

its fleet is likely to solicit proposals from both Boeing and Airbus. If the order is sufficiently large,

both manufacturers will devote substantial amounts of time and thought to all elements of their

proposals – including price. Typically each manufacturer will convene an internal group of people

who have knowledge of the particular deal, experience with the customer, understanding of the

competition, and experience with similar bidding situations in order to derive the best possible

understanding of how the potential customer is likely to respond to the price associated with the

deal. When a sale involving hundreds of millions or billions of dollars is at stake, it is not unusual

for companies to devote many man-months – even man years – to developing their proposals.

The ultimate price offered in the proposal will be determined as the result of long discussions,

competitive role playing, and complex calculations. The final price for the transaction may be

only determined after many rounds of negotiation.

6As an exception, some government procurements are required by law to select the lowest-price bid. As a result,

government RFP’s tend to be exceptionally detailed in order to minimize non-price differences among bids.
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While each very large customer request can be treated as unique and subjected to in-depth

analysis, there are many situations in which the following three conditions hold:

1. The seller makes many relatively small quotes – in many cases thousands or tens of thousands

– during the course of a year.

2. The seller retains historic “win/loss” data. That is, the seller retains full information on the

details of each quote including the product requested, the customer, the channel, the price

quoted, and the outcome of the bid – i.e. if the business was won or lost.

3. The seller offers a menu of standardized products. This is in contrast to fully customized

services such as architecture, construction or management consulting where each job is

unique and it is difficult to establish comparability.

Under these three conditions, a seller can use statistical regression to estimate bid-response func-

tions that can be used to determine the optimal prices for all pricing segments.

When the rate of incoming customer requests is high, it is typically too expensive or difficult

for the seller to devote substantial amounts of time or effort to analyzing each deal. Auto F&I

(finance and insurance) executives requesting a quote for an auto-loan typically require a response

within a few seconds. Given that an auto-lender may be receiving hundreds or thousands of such

requests daily it is infeasible for them to convene a corporate task force to determine the rate to

quote for each one. They need a more rapid and automated approach. Fortunately, a high rate

of incoming quotes usually implies a large volume of historical data that can be used to estimate

stable and predictive bid-response functions that can be applied to future bids.

If sufficient historic win/loss data is available, a bid-response function can be estimated based on

historical win/loss data using techniques of binary regression. The target data for binary regression

consist of ones and zeroes. In estimating the coefficients of a bid-response function, the target data

is the history of “wins” and “losses” that the seller has experienced in the past. In this case, a one

can be used to indicate a win and a zero a loss. The covariates of the model include all of the other

information available with the past bids including the price, the characteristics of the product or

products ordered, the characteristics of the customer, and which channel the request was received

through. Table 3.2 illustrates the bid history data available for a manufacturer of printer ink

cartridges. This manufacturer sells three grades of cartridge: silver, gold, and platinum, to four



Customized Pricing. Robert Phillips 13

Request Characteristics Customer Characteristics

No. W/L Price Grade Size New? Type BusLevel

1 W $7.95 S 1,259 N Res 0

2 L $9.50 P 655 E Gov $153,467

3 L $9.75 P 790 E Gov $1,402,888

4 W $8.50 G 840 N Ret 0

5 L $8.47 G 833 E Ret $452,988

6 L $9.22 P 540 E Edu $55,422

7 W $8.61 G 850 N Ret 0

. . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Sample historic bid data available to a printer ink cartridge seller. “No.” is an arbitrary bid number. W indicates

that the bid was won, L that it was lost. “Price” is the unit price bid. “Grade” indicates the grade of the product ordered:

S = Silver, G = Gold, P = Platinum. “Size” is the number of units in the order. N indicates a new customer, E an existing

customer. The seller services four types of customer: Res. = Reseller, Gov = Government, Ret = Retailer, Edu = Educational

Institution. “Business Level” is the total amount of business sold to this customer over all business lines in the previous 12

months.

types of customers: resellers, government agencies, educational institutions, and retailers. The

manufacturer has kept track of the outcome of each bid and the amount of business that it has

done with each customer over the previous year. This information has been stored in a database

and can be retrieved in a format similar to that shown in Table 3.2.

The challenge facing the cartridge manufacturer is how to use the data in Table 3.2 to estimate

bid-response functions. This typically requires four steps: 1) segmenting the market, 2) deter-

mining the model structure, 3) estimating the coefficients of the model based on historic data,

and 4) measuring the quality of the model. This is a classical problem of model specification

and estimation – not different in principle from similar problems faced in promotion response

estimation as discussed in Blattberg and Briesch (this volume). We will give a broad introduction

to some of the issues involved in developing bid-response models, more detailed discussions of

statistical modeling can be found in any standard text on statistical modeling.

Model specification, and model estimation typically proceed iteratively – that is, market segments

and model structure will often be sequentially “tweaked” until the model fit meets some criteria

or until additional tweaking fails to make improvements. To illustrate this process, consider the

example shown in Table 3.2 and define the following notation:

• GRADES = 1 if Grade is Silver, 0 otherwise; GRADEG = 1 if Grade is Gold, 0 otherwise;
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GRADEP = 1 if Grade is Platinum, 0 otherwise;

• PRICE = price;

• SIZE = order size;

• NEW = 1 if customer is new, NEW = 0 if customer is existing;

• RES = 1 if the customer is a reseller, 0 otherwise; GOV = 1 if the customer is a government

agency, 0 otherwise; RET = 1, 0 otherwise; if the customer is a retailer, and EDU = 1 if

the customer is an educational institution, 0 otherwise7;

• BUSLEV EL = total amount of business done in the last 12 months.

A bid-response model using this data would specify the probability of winning a bid as a function

of the price p and all of the other information available with the order. For the printer cartridge

manufacturer, this information is grade, size, customer status, customer type, and level of business

sold to the customer. Denote all of these non-price characteristics as a vector x. One extremely

popular function for bid-response modeling (and, in fact for binary response models in general)

is the logit function, which is given by:

ρ(p, x) = 1/(1 + eg(p,x)) (3)

where g(p, x) is an affine function of price and the (possibly transformed) non-price characteristics

of a bid. The logit function is popular both because it is easily tractable and because statistical

packages such as SAS and R include extensive support for it. The logit is a member of a larger

category of statistical models known as Generalized Linear Models (GLMs). Other commonly

used GLM forms include the probit and the linear.

7The variables indicating which grade and type the order falls into are called categorical variables. Since, by

assumption, the order can only be for one grade of cartridge, than exactly one of GRADES, GRADEG, and

GRADEP can be 1 with the other two 0. A similar property holds for the variables indicating type. Experienced

modelers will recognize that, when there are n ≥ 2 categorical variables, that only n − 1 need to be included in the

model since the value of the missing variable can be inferred from the values of the others. For example, in the

example, if GRADES and GRADEG are both equal to zero, than GRADEP must equal 0. If either GRADES or

GRADEG are equal to one, then GRADEP must equal 0. This means that GRADEP = 1−GRADES−GRADEG.

In other words, GRADEP is co-linear with GRADES and GRADEG and does not need to be included as an

explanatory variable. In what follows, we will ignore this and continue to include all of the variables in the model

formulation.
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Once the choice has been made to use the logit, the next step is to estimate the coefficients of

the variables in the function g(p, x). One obvious choice is simply to include all of the available

variables in their raw form. In the case of the printer cartridge manufacturer, this would result

in a specification of the form:

g(p, x) = β0 (4)

+ β1 × PRICE

+ β2 × GRADES + β3 × GRADEG + β4 × GRADEP

+ β5 × SIZE

+ β6 × NEW

+ β7 × RES + β8 × GOV + β9 × RET + β10 × EDU

+ β11 × BUSLEV EL.

Equations 3 and 4 specify a statistical model for bid response. Once a model has been specified,

the next task is to determine the values of the coefficients – in this case, the values of β0 through

β11 – that best fit the historic data. This is a standard problem of binary regression which we will

not address in detail here except to note that most common statistical packages such as SAS and

R include routines for estimating the coefficients of a logit model. They will also calculate various

measures of statistical fit such as Concordance and the Akaike Information Criterion (AIC) that

estimate how well the chosen model actually fits the data. How binary regression can be used

to estimate the coefficients for a logit bid-response model is discussed in more detail in Phillips

(2005), pages 284-287. Some good additional references on the properties and estimation of GLMs

are McCullagh and Nelder (1989), Lindsey (2000) and Dobson and Barnett (2008).

Equation (4) is not the only possible formulation of a bid-response model using the data from

Table 3.2. For example, (4) includes the term β5 × SIZE. This term specifies the effect of order

size on the probability that the seller will win a bid, all else being equal. In many situations,

order size has a strong influence on the probability that a bid will be won at a particular price

– typically, customers placing larger orders tend to be more price-sensitive. The model specified

in Equation (4) represents this dependence as linear in the size of the order. In many cases –

particularly when order size can span a very large range – the strength of bid-response may be

more closely correlated with the logarithm of order size. This would suggest a model in which the

term β5 × SIZE is replaced with β5 × log(SIZE). The supplier might also want to consider a
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model in which the product of price and order size influences the probability of winning a bid, in

which case he could add an additional term of the form β12 × PRICE × SIZE. Determination

of the best statistical model for bid-response is partly art and partly science. The process usually

proceeds by sequentially trying different models and keeping the one that best fits the data. By

sequentially comparing alternative models and choosing winners, an experienced modeler can

usually develop a predictive and stable model.

We note that the statistical procedure described here is only one possible approach to estimating

the bid-response curve and, indeed, is only feasible when the seller has retained historic win/lose

information and there is sufficient historic data to support the estimation. Our experience has

been that when these two conditions are satisfied, standard binary regression approaches such as

maximum likelihood estimation can deliver stable, significant and highly predictive estimates of

the bid-response curve. However, there are a number of factors that can confound the estimation,

particularly the presence of endogeneity. Endogeneity occurs when the price offered to a customer

is influenced by variables correlated with his price sensitivity that are not included in the data.

For example, a car salesperson may use how well a customer is dressed as an indication of the

willingness of the customer to accept a higher price. To the extent the salesperson is correct,

the price offered to customers is not independent of their willingness-to-pay and, as a result

binary regression will tend to underestimate price sensitivity. The effect of endogeneity can be

significant8. To the extent that the magnitude of endogeneity is understood, the regression can be

adjusted to account for it. Alternatively, random price tests can be used to generate observations

that are free from any potential taint of endogeneity.

There are also cases in which sufficient historic data may not be available (as in the introduction

of a new product) or in which the seller has not preserved a record of wins and losses. In these

cases, alternative approaches such as judgmental estimation of the bid-response curves must be

used. In any case, the initial estimation of the bid-response curve should always be updated over

time as customer response to new bids is observed.

8In a meta-analysis of price-estimation studies, Bijmolt et. al. (2005) found that the treatment of endogeneity

had a major effect on the estimates of price elasticity across industries.
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3.3 Calculating Incremental Profit

The objective function in the Unconstrained Customized Pricing Problem in (1) specifies that

the seller is seeking to maximize total expected profit, which is calculated as the product of the

probability of winning a bid and the incremental profitability if the bid is won. Incremental

profitability is calculated as the total expected profitability of the seller if the bid is won minus

the expected profitability if the bid is lost. In many cases, the incremental profitability of a

transaction is simply the price charged minus the unit cost, that is, fi(d, p) = d(p − ci) where p

is the price charged, ci is the unit (incremental) cost per sale in segment i, and d is the order

size. This definition of incremental profitability assumes that unit cost is fixed and independent

of both the selling price and the number of units sold. In this case, the unit cost ci should be

calculated so that the total cost of the order dci is equal to the difference between the total cost

that the company will incur if it makes the sale minus the total cost that the company will incur

if it doesn’t make the sale.

There are cases where the simple linear relationship fi(d, p) = d(p− ci) does not apply. In some

cases, a seller is bidding to provide an unknown level of products or services to a buyer for future

business. For example, UPS competes with FedEx in the package express business. Typically a

potential customer will request bids from both companies. A typical bid by UPS or FedEx would

be to serve all of the package express business generated by that customer for the coming year. At

the time of the bid, neither UPS nor FedEx nor the customer can perfectly forecast its shipping

needs for the next year. In this and similar cases, incremental profitability is a random variable

and optimization is over expected incremental profitability.

The level and composition of products or services that will be demanded from a supplier un-

der a contract may not only be uncertain, they may depend on the price. For example, many

manufacturers contract with less-than-truckload (LTL) trucking companies such as Roadway or

Yellow Freight to transport their products to distributors or retailers. A common practice is to

choose two or three LTL companies as preferred suppliers from ten or more who bid on an annual

contract. Under this arrangement, the shipper commits to use one of the preferred suppliers for

every shipment. The shipper may also guarantee a minimum level of business to each preferred

supplier. However, when it comes time to move a particular shipment, the shipper is more likely

to choose the supplier who has bid the lowest price for that type of shipment. Even if a trucking

company wins the right to be a preferred supplier, the amount of business that it will receive will
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(Figure 4 about here.)

Figure 4: Calculating expected profitability as a function of price. Expected profitability is the

product of bid-response and incremental profit. The profit-maximizing price is shown as p∗.

be a decreasing function of price. More detail on the LTL trucking industry can be found in Kintz

(this volume).

Finally, as noted by Phillips (2010), in consumer credit markets, incremental cost is typically an

increasing function of price due to adverse selection. This means that, as the prices offered by a

lender increase, the loss rates for the loans that it funds will also increase. This will occur even

if the lender does not change its underwriting guidelines – that is, it does not change the criteria

by which it chooses which applicants it will lend to. As the prices offered by a lender rise relative

to the competition, customers with a lower probability of default will defect to other lenders at

a higher rate than those with a higher probability of default – who have fewer alternatives. A

similar phenomenon occurs in insurance markets. In these cases, the unit cost of serving segment

i, ci cannot be treated as a constant, but must be represented as a function of price – that is, as

ci(p). More detail on the effect of adverse selection on pricing in consumer lending can be found

in Phillips and Raffard (2010).

3.4 Optimization

Once the bid-response function and the incremental profit function have been determined for each

pricing segment, the next step is to determine the optimal price for each segment. If the seller is

seeking to maximize expected profitability and does not wish to apply any constraints, then this

is equivalent to finding the set of prices that solves the optimization problem in (1). Since this

problem is separable, the optimal price for each segment can be determined independently. The

optimization problem for a single segment is illustrated graphically in Figure 4. In this figure, the

dashed downward-sloping curve is the bid-response function and the upward sloping solid line is

the incremental profit function. The product of bid-response and incremental profit is expected

profit which is the hill-shaped curve in Figure 4. In the absence of any constraints, a seller who

seeks to maximize expected profit would choose the price at the “top of the hill”, labeled p∗ in

Figure 4.

For most realistic bid-response curves and incremental profit functions, expected profitability is
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well-behaved in the sense that it is a smooth function of price with a single peak.9 This is the

case in Figure 4. This means that, in the absence of constraints, that the optimal price can be

calculated using standard “hill-climbing” approaches such as gradient ascent.

3.4.1 Optimality Condition

While the unconstrained customized pricing problem in (1) can be easily solved using numerical

techniques, it is useful to observe that the optimal price for a segment obeys a standard price-

optimality condition. For each segment, define the bid price elasticity as the percentage change

in the probability of winning a bid divided by the percentage change of price:

εi(p) = |ρ′i(pi)pi/ρi(pi)|, (5)

εi(pi) in Equation 5 is the analog of the familiar concept of own-price elasticity which is defined

as the percentage reduction in demand resulting from a 1% increase in price. It should be noted

that, in the unconstrained case, Equation 5 implies that the optimal price for segment i must

satisfy:

ei(p
∗

i ) =
f ′

i(p
∗

i )p
∗

i

fi(p
∗

i )
. (6)

Note that if fi(pi) = pi − ci – that is, incremental profit is equal to price minus unit cost – then

condition 6 reduces to

ei(p
∗

i ) = p∗i /(p∗i − ci).

This is the “elasticity equals the reciprocal of unit margin” condition for price optimality (See

Phillips [2005], pp 64-65 and van Ryzin, this volume). Equation (6) is the extension of this

well-known condition to the case in which incremental profit is a more complex function of price.

3.4.2 Constrained Problems

The optimization problem in (1) is unconstrained. In most business applications, the seller will

wish to set constraints on prices. Examples of typical constraints include:

9Most standard bid-response functions such as probit, logit, or linear satisfy a property known as the Increasing

Failure Rate (IFR) property (Barlow and Proschan, 1965). If the bid-response functions ρi(p) demonstrate the

Increasing Failure Rate (IFR) property and all the incremental profit functions fi(p) are increasing, continuous,

and concave, it can be shown that a unique optimal price will exist for each segment. This uniqueness property

was apparently first identified by the econometrician Theil (1948) in his Master’s Thesis.
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• Bounds: Typically, user-specified upper and lower bounds, p+
i and p−i are applied on each

price by specifying constraints of the form p+
i ≥ p∗i and p∗i ≥ p−i for each segment i. Price

bounds can be applied for a number of different reasons. They may be used in order to

maintain some level of price stability by making sure that the new price does not deviate

too much from a previous one. For example, an auto manufacturer may want to make sure

that the per-unit price quoted to its fleet customers for an order is never more than 10%

higher than the last price quoted previously to the same customer. Bounds are also applied

to ensure that recommended prices are within the region of statistical reliability of the bid-

response curve calculation. In other cases, regulations may require a cap on the maximum

rate that can be quoted to a particular pricing segment. For example, usury laws in some

states specify a maximum interest rate that can be charged for consumer loans.

• Monotonicity Constraints: In many cases, sellers want to ensure that prices consistently

increase or decrease along certain dimensions. A seller might want to ensure that, for

otherwise identical customer requests, the unit price bid for a larger order should never be

higher than the unit price bid for a smaller order – otherwise customers could get a lower

price by breaking a large order into several smaller orders. As another example, sellers

often require that an order from an existing customer should never be priced higher than

an identical order from a new customer.

• Business Performance Constraints: A seller may wish to maintain certain minimum levels

of total sales or revenue, even at the expense of profitability. Management might give

a directive such as; “we want to maximize contribution, but we can’t allow sales to fall

below $10 million for our flagship product during the next quarter or analysts are likely to

downgrade our stock.” This can be imposed by adding a constraint of the form:

∑

i∈I

Diρi(pi)pi ≥ $10, 000, 000

where I is the set of segments that include the flagship product.

• Price banding. A seller may want prices in a particular region or through a particular channel

to maintain some relationship to prices in other regions or channels. For international

companies, such price bands are often necessary to prevent arbitrage. A semiconductor

manufacturer may need to specify that chips cannot be sold in Brazil for less than two cents

per unit less than they are sold in the United States, otherwise it would be profitable for



Customized Pricing. Robert Phillips 21

arbitrageurs to purchase chips at the lower price in Brazil and resell them in the United

States.

• Channel constraints. Sellers often wish to maintain relationships among the prices charged

through different channels. For example, a seller might want to ensure that the price quoted

through the Internet for a customer request should never be higher than the price quoted

for the same request received through a call center.

Each of the conditions described above can be imposed by adding one or more constraints to the

optimization problem specified in (1). From a technical point-of-view, adding constraints usually

makes the pricing optimization problem harder to solve. However, as long as the constraints define

a convex feasible region, standard solution approaches can be used to solve for optimal prices.

From a business point-of-view, adding and managing constraints can be more problematic. In

particular, care needs to be taken that users do not over-constrain the problem.

3.5 Monitoring and Updating

As shown in Figure 2, an effective customized pricing process needs to include a mechanism

for monitoring the market and updating prices over time. No matter how carefully crafted, a

set of prices cannot be optimal forever. Prices need to be adjusted in response to changes in

the macroeconomic environment, changes in costs, shifting customer preferences, and competitive

actions. Depending upon the market and velocity of transactions, prices might need to be updated

daily, weekly or monthly. Most companies using an analytical approach to customized pricing

update prices on a fixed periodic basis with interim ad hoc changes in response to external events.

Not only prices, but model coefficients also need to be updated. That is, the values of β0, β1, . . . , β11

estimated by the printer cartridge manufacturer for the model in (4) will need to be monitored

periodically and refined. Typically, model coefficients are updated much less frequently than the

prices themselves. Prices need to be changed whenever market conditions change, costs change,

or the business goals and constraints change. Depending upon the market, coefficients might

be updated monthly, bi-monthly or even semi-annually. A seller should periodically monitor the

performance of the statistical model relative to actual results. If the predictions of his model

begin to deviate significantly from reality, then it is a good idea to re-estimate the coefficients.

One way to update the coefficients is to append the most recent win/loss observations to the data
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file and re-run the regression. This is typically done with weighting the most recent observations

more heavily than the historic data. Alternatively, various Bayesian approaches can be used. With

Bayesian updating, new observations are used directly to update the values of the parameters10

Updating is particularly important early in the adoption of an analytic approach in order to

ensure that the initial set of coefficients has been estimated accurately. It is also important in

markets with rapidly changing costs.

4 Enhancements and Extensions

The previous sections have described the application of an analytical approach to customized

price optimization in the “plain vanilla” case in which the seller seeks to maximize expected

profitability, each customer request contains only one product, the prices offered by competitors

are not available, and the bid price is not negotiated. In most real-world applications, one or more

of these conditions will not hold. We now briefly discuss the effects of relaxing these conditions.

4.1 Alternative Objective Functions

The customized pricing problem as specified in Equation (1) maximizes expected contribution.

This is consistent with a corporate goal of maximizing expected short-run profitability. However,

it is often the case that a seller might wish to maximize expected revenue rather than expected

profitability for one or more segments. For certain segments, a seller may wish to hold or increase

its market share for strategic reasons and is willing to give up some profitability to do so. In that

case, the objective function in (1) would be replaced with:

max
p

[
∑

i∈I1

Diρi(pi)fi(pi) +
∑

i∈I2

Diρi(pi)pi].

where I1 is the set of pricing segments for which expected contribution is to maximized and I2 is

the set for which revenue is to be maximized.

Maximizing revenue always results in lower prices than maximizing profitability. Intuitively, this

occurs because the “profit maximizing price” is an increasing function of the unit cost and the

revenue-maximizing price is the same as the profit-maximizing price with a unit cost of 0. When

unit cost is greater than 0, the additional revenue generated by the revenue-maximizing price

10Gill (2008) provides an introduction to the use of Bayesian statistics.
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(Figure 5 about here.)

Figure 5: An efficient frontier. The frontier represents all points at which profit is maximized subject

to a minimum revenue requirement or, equivalently, revenue is maximized subject to a minimum profit

constraint. The firm is currently operating within the frontier at point A Point B maximizes profit at

current revenue and Point C maximizes revenue at current profit. Any point on the frontier between B

an C achieves both higher profit and higher revenue than point A. Point D maximizes profit, but at lower

revenue than Point A.

comes at the expense of profitability – this is often described as “buying market share”. One way

to visualize the tradeoff between contribution and revenue (or market share) is through the use of

an efficient frontier as illustrated in Figure 5. The efficient frontier shows all of the combinations

of prices at which profit is maximized subject to achieving at least a certain level of revenue.

Points inside the frontier can be achieved by changing prices; points outside the frontier cannot

be achieved by changing prices. It could be argued that a firm would always wish to be operating

at a point on the efficient frontier. If it is operating inside the efficient frontier, it could increase

both revenue and profitability simply by changing prices. Thus, a firm currently operating at

Point A in Figure 5 could achieve the same level of profitability but higher revenue by moving to

Point B. Alternatively, it could maximize profitability at the same level of revenue by moving to

Point C. Points between B and C on the efficient frontier all represent points at which the firm

could increase both revenue and profitability relative to operating at Point A.

The efficient frontier enables the seller to calculate how much profit it would lose by meeting

any particular revenue target. This can be a valuable insight since it allows management to set

revenues with a full understanding of the implications for reduced profit.

4.2 Incorporating Competitive Information

So far, we have ignored competition. At first glance, this might appear to be a major lapse.

After all, most companies would likely nominate “what the competitor is charging” as a major

determinant of whether or not they will win a bid. In fact, there is no theoretical difficulty in

incorporating competitive prices into the bid-response function. If competitive prices are known at

the time bids are made, they can (and should) be incorporated into the bid-response function. To

see how this is done, assume that the printer cartridge seller has two competitors. Let pA denote

the price bid by the first competitor and pB the price bid by the second competitor. Then, the
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model specified in 4 could be supplemented with the two additional terms β12 × pA and β13 × pB.

The values of β12 and β13 can be determined using regression in the same fashion as the other

coefficients and used as predictors for future bid-response.

The rub is that in the majority of customized pricing settings, competing prices are typically

not known when the price for a bid must be determined. A seller responding to an RFP or an

on-line order inquiry will typically not know the identity or even the number of competitors he

is facing – much less what prices they are bidding. In fact, in most cases, the seller will not have

full information about competitive pricing even if he wins a bid. Thus, there will be little or no

competitive price information in the historical win/loss data. In this case, the best option open to

the seller may be to use a bid-response model that does not explicitly include competitive pricing

terms.

Note that excluding competitive pricing terms from the bid-response curve is not the same as

“ignoring competition”. Rather, it is equivalent to assuming that competitors will set prices in

the future in the same way as they have done in the past. Even though they do not contain explicit

competitive price terms, the bid-response curves implicitly incorporate within them the effect of

past competitive pricing. The results of running a regression may be to show that a particular

segment seems to be highly price-sensitive. This could be because customers in that segment are

intrinsically more sensitive to price. However, it could also indicate that one or more competitors

typically price “aggressively” (i.e. low) in this segment. As long as competitive pricing in this

segment does not change, the predicted level of price sensitivity should be stable and predictive

of the future. If a competitor changes its pricing strategy for a segment – say by raising price, a

supplier will find that it is winning more deals in that segment than it forecasted. This should

be a trigger to re-estimate the model coefficients. The updated coefficients will reflect the new

competitive strategy.

4.3 Segment Selection

The formulation of the Unconstrained Customized Pricing Problem in (1) implicitly assumes that

some price will be quoted to all customer segments. There are situations in which this is not the

case, that is, the seller does not want to sell to every segment. The most obvious case is lending

and insurance – as noted before, due to risk, there are some customers who are unprofitable at any

price and therefore cannot obtain credit at all. However, there are other cases in which a seller
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might not wish to sell to every potential customer segment. It may be unprofitable to sell certain

items through certain channels or to certain regions. It is not uncommon to set minimum order

size restrictions on small, inexpensive items and so on. This suggests that the formulation of the

Unconstrained Customized Pricing Problem in (1) should be expanded to enable simultaneous

pricing and segment selection:

max
p,x

∑N
i=1 Dixiρi(pi)fi(pi) (7)

s.t. p > 0

x ∈ {0, 1}

where x = (x1, x2, . . . , xn) is a vector such that xi = 1 means that the seller should sell into

customer segment i and xi = 0 means that he should not sell into that segment. The unconstrained

version of the problem shown in (7) is not difficult to solve: simply solve the Unconstrained

Customized Pricing Problem in ( 1) and set xi = 1 for all segments whose maximum profit is

greater than 0 and set xi = 0 for all segments with maximum profit less than 0. A similar approach

can be used when the only constraints are price bounds. However, if there are many constraints

applied, the problem can become quite difficult because the constraints may force some segments

to be served at unprofitable prices in order to meet the constraints.

4.4 Multi-dimensional Prices and Bundled Products

In many cases, there is more than one “price” required for a bid. In the United States, lenders

typically charge a number of up-front fees to obtain a mortgage. In addition, the mortgage may

have “points” associated with it, where the points are a fee paid by the borrower expressed as

a percentage of a loan. Points can enable a borrower to obtain a lower APR by paying a fee

expressed as a percentage of the amount they wish to borrow. For example, a $100,000 mortgage

might be available at 7.9% with $1,000 in fees and .5 points. The .5 points would be an additional

fee of .5%×$100, 000 = $500. Since fees and points are usually rolled into the initial balance, the

borrower is actually borrowing $101,500 at a 7.9% APR and her monthly payment is computed

accordingly. All three components – APR, fixed fees, and points – are part of the “price” of the

mortgage. All three can influence the buyer’s decision whether or not to accept the mortgage as

well as the seller’s profitability if the mortgage is chosen.

As another example, many business-to-business service providers such as telecommunications
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companies price based on an “n-part” tariff in which the total cost to the buyer is based on a

periodic base price plus a usage cost that depends on the level of service used – the higher the

level of service, the lower the per-unit usage cost. Typically the per-unit cost is a step-function

of usage, thus the charge might be a base cost of $100 per month plus $.02 per minute for the

first 300 minutes per month, $.015 per minute for the next 100 minutes, and $.01 per minute for

any usage above 400 minutes. A bid must specify the base cost as well as all the per-unit costs

as well as the breakpoints. In theory, a supplier could specify a personalized n-part tariff for each

bid. In practice, most sellers tend to maintain a few standard tariff structures. When they bid,

they specify the tariff structure and a discount to be applied. The problem facing the bidder is

to determine which structure and what level of discount level to bid for each request.

Another example of multi-dimensional pricing is provided by business-to-business software licenses

that often specify timed payments. For example, a software license might specify a payment to

be made upon signing, a further payment to be made upon installation, and additional support

and maintenance fees to be paid annually for five years. Each of these payment amounts is a

component of the overall “price”.

There are several approaches to optimizing multi-dimensional prices. One is to compute an

“aggregate price” which ideally reflects the metric that buyers are using to choose among bids.

For example, it is not unreasonable to assume that borrowers use monthly payment as the “pricing

metric” that they use to compare alternative mortgages. A lender might then consider monthly

payment to be a logical choice for the “aggregate price” of a mortgage. A software company

might consider the Net Present Value of payments to be the aggregate price of its software. Let

p = (p1, p2, . . . , pm) be the elements of price and let qi(p) be the aggregate price for segment i.

Then, the customized pricing problem with aggregate prices can be written:

max
p

∑N
i=1 Diρi(qi(p))Si(p)

where Si(p) : R
m → R

1 is a function that specifies incremental profitability for segment i as a

function of the various price elements. The aggregate price can be used as an explanatory variable

within binary regression in order to estimate the bid-response functions ρi(qi(pi)).

While the aggregate price approach has the advantage of being simple, it assumes that buyers in

all segments are indifferent among options with the same aggregate price. However, in most cases,
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it is likely that different buyers weight price elements differently and that no single aggregate price

measure holds for all buyers. For companies purchasing software licenses, some may face short-

run budget constraints that make them very sensitive to the up-front cash outlay while other

buyers may be quite willing to accept a higher up-front cash payment in return for a lower overall

cost of ownership. This suggests the alternative approach of including each pricing dimension

independently in the regression and allowing the regression to determine their weights. For the

software license example, p1 might be the up-front cash payment, p2 the total license fee, and

p3 the annual support and maintenance. By including p1, p2, and p3 as covariates in the binary

regression, the seller could, in theory, determine how different segments weight each of the pricing

elements in their pricing decisions and determine the corresponding bid-response curves as a

function of all three elements.

As usual in regression, the best approach will depend upon the situation. The aggregate price

approach is more parsimonious because it collapses all of the pricing elements into a single ag-

gregate price. However, as discussed, the aggregate price chosen may not accurately reflect how

buyers actually compare alternatives. Several different aggregate prices may need to be consid-

ered. While the approach of incorporating all of the pricing elements in the regression is more

flexible, it also has drawbacks. It requires much more data for stable estimation since a coefficient

needs to be estimated for each pricing element. Choosing among approaches may require several

rounds of trial-and-error and comparison of the results of different approaches.

4.5 Bundled Products

A problem similar to multi-dimensional pricing is faced by sellers who are selling bundled products

or highly configured products. In many cases, a price (possibly quoted as a discount from list

price) must be quoted individually for every element of the order. For example, automotive fleet

RFP’s often include several different types of vehicles – for example, 10 cars, 5 pick-up trucks,

and 5 panel vans. If the bid is indivisible – that is, the buyer firmly commits to purchase all of

the vehicles from the same seller – then the best strategy is to determine the optimal price to

quote for the entire bid. If, on the other hand, the bid is divisible in the sense that the buyer

may choose to purchase the cars from one supplier, the trucks from another, and the panel vans

from a third; then the optimal strategy is to treat the bid as three independent bids – that is,

determine the optimal bid for the cars, the optimal bid for the pick-up trucks, and the optimal bid
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(Figure 6 about here.)

Figure 6: Setting bounds for guide price negotiation. pL and pU are the prices at which expected profit is

$13,500: 10% lower than the optimal expected profit of $15,000 which is achieved at p∗ = $150. Any price

between pL and pU will result in expected profit within 10% of the optimal.

for the panel vans. While these two extreme cases are straightforward, many bidding situations

fall between these extremes. In particular, a buyer may express a preference for purchasing from

a single supplier but reserve the right to purchase from two or more. In this case, the allocation

of the total price among the vehicle categories becomes important – the price allocated to each

vehicle category may need to be chosen to be “competitive” – that is not too far out-of-line with

expected competitive bids. More discussion of bundled pricing can be found in Chapter 11 of

Phillips (2005) as well as in Oren (this volume) and Gallego and Stefanescu (this volume).

4.6 Negotiated Deals

The discussion so far has assumed a “take it or leave it” pricing situation – that is, the buyer

describes her needs, sellers quote their prices, and the buyer then chooses which seller (if any)

from which to purchase. The price quoted by each seller is final – the only decision facing the

buyer is which bid (if any) to accept. While this reasonably characterizes many customized

pricing situations, there are cases in which the final price is the product of one or more rounds of

negotiation between the buyer and the seller. The prevalence of negotiation in customized pricing

differs widely from industry to industry and even from segment-to-segment within an industry.

For example, in the US auto-lending market, negotiation is relatively rare in prime markets but

almost universal in sub-prime markets. Negotiation is generally more common for larger deals. It

is also more common in face-to-face selling situations (whether direct or indirect) than telesales

or Internet channels. For those situations in which negotiation is likely, an effective approach

should provide more than simply a single optimal price – it should also provide some guidance

regarding an acceptable range of prices and, ideally, some idea of the tradeoffs between price and

other aspects of the deal.

A common approach to support negotiated pricing is to use the expected profit function to help

define a range of acceptable prices. The basic idea is illustrated in Figure 6. Here, the unit

price that maximizes expected profit is $150, at which price the expected profitability from the
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bid under consideration is $15,000. A lower price and an upper price have been set so that the

expected profitability is $13,500 at both pL and pU . At any price between pL and pU , the expected

profit will be within 10% of the optimum. This range along with the target price can be used by

the seller to guide sequential rounds of negotiation and ensure that the final outcome is within a

desired range.

The approach illustrated in Figure 6 is often used to support a combined centralized/decentralized

approach to negotiated pricing. The target price p∗ and the upper and lower bounds pL and pU

can be calculated centrally consistent with corporate goals and business constraints. The local

sales person has the freedom to negotiate the best price he can within the specified bounds.

This approach can deliver the best of both worlds: all of the data available to the corporation

is used to calculate the bid-response curves and set pricing ranges for each segment based on

overall corporate strategy while local knowledge of individual customers can be used to negotiate

the best deal within the specified range. In many cases, the local sales person will have specific

customer or competitive knowledge of the deal under consideration that can lead to better overall

performance than using the same optimal price for all deals within a segment.

Of course, in many negotiated settings, price is not the only element of the deal in play. An auto

lender might be willing to offer a lower APR if the borrower is willing to put more money into the

down payment. A heavy truck manufacturer might be willing to lower the price if the buyer agrees

to purchase an extended warranty. An enterprise software vendor selling a multi-year license deal

might be willing to lower the price if the buyer agrees to pay more cash up front. Complex

negotiations can involve multiple rounds of give and take and a full discussion of the “art and

science of negotiation” is well beyond the scope of this section – Raiffa, et. al. (2003) provides

an introduction to the topic. However, the analytic concepts behind price optimization can also

provide invaluable guidance to negotiation. In particular, they give insight into the central ques-

tions: If we change this non-price characteristic of the deal, what will be the effect on incremental

profitability? How, then, should we change price in order to maximize expected profitability given

the new profitability level? A number of customized pricing optimization software systems enable

users to perform these computations in order to help support the negotiation process.
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5 The Future of Customized Pricing

The primary focus of this article has been on the technical and mathematical aspects of pricing

optimization. The problem is of sufficient complexity that, for sellers selling multiple products to

many different customer segments, automated software systems are often used to set customized

prices and update them over time. Whether or not the size and complexity of the customized

pricing problem facing a seller is sufficiently great to justify implementing a software system, many

companies have the opportunity to improve their pricing by implementing a consistent process of

learning and improvement such as the one illustrated in Figure 2.

Of course, the primary motivation for adopting an analytical approach to customized pricing is

usually to increase profitability. The package shipper UPS reported a profitability increase of

more than $100 million per year in North America through use of a software system to optimize

customized prices (Boyd, et. al. 2005). The sub-prime auto lender AmeriCredit saw a $4 million

increase in profitability within three months of implementing a customized pricing optimization

system (Phillips, 2010.). Results such as these provide strong motivation for companies utilizing

customized pricing to invest in improving both the processes and the systems that they use to set

prices. There is at least anecdotal evidence that an increasing number of firms using customized

pricing are applying analytic approaches to setting their prices. The Wall Street Journal described

the benefits resulting from introduction of more analytical approaches to customized pricing at

industrial parts manufacturer, Parker Hannifin (Aeppel, 2007). A number of companies such as

Nomis Solutions and Zilliant offer automated pricing optimization solutions to companies facing

customized pricing situations.

Customized pricing also offers a number of promising research opportunities. Relative to its

importance in the economy, it has been relatively less studied than other pricing mechanisms

such as auctions or list pricing. There at least two promising areas for future research. One

is the estimation of customer price-sensitivity information from historical data, especially the

elimination of endogeneity effects as described in Section 3.2. The identification and use of

instrumental variables to address endogeneity as in Berry et. al. (1995) holds promise but its use

has not been documented in a customized pricing setting. The other area for additional research

is in the area of optimal segmentation – when the ability to segment is limited, how should a

seller choose and price to segments in order to maximize expected profitability? Both of these
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represent areas where research breakthroughs could lead to substantial improvements in practice.
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