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1. Introduction

One of the key challenges of revenue management systems is to accurately forecast demand

when one has only access to observed sales data that may be censored. It is well known in the

area that common uncensoring techniques and their interaction with the iterative application of

forecasting and revenue optimization routines may prevent these systems from making optimal

decisions in a dynamic setting; c.f., Boyd et al. (2001) and Cooper et al. (2006). In this paper, we

propose a tractable and intuitive approach for incorporating and uncensoring sales data into the

demand forecast based on maximum entropy (ME) distributions that leads to asymptotically

optimal control decisions.

A prototypical problem where the above effect has been observed is that of dynamic airline

capacity allocation decisions. In its simplest form this problem is described as follows: an airline

has a fixed capacity for a flight to sell to the market; there is a low-fare and a high-fare class, and

low-fare demand is realized before the high-fare demand; the key decision is to select how many

units of capacity to “reserve” for the high-fare demand (i.e., make them unavailable for the low-

fare demand that gets realized first) so as to maximize the total expected revenue per flight. The
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manager does not have accurate demand information, and uses the sales observations in each

flight to update the respective demand forecasts for the two fare classes. Demand observations

may be censored, when the low-fare demand depletes the capacity that is made available to

it, or when the high-fare demand depletes the remaining capacity for the flight; in both cases

the manager does not know how much extra demand could have been realized in each of these

two classes if there was extra capacity to be allocated. As Boyd et al. (2001) highlighted and

later on Cooper et al. (2006) demonstrated analytically, many common forecasting and demand

uncensoring methods generate a sequence of forecasts and protection levels that “spirals down”

to a suboptimal level. There are two underlying issues: a) the interpretation of censored demand

data, and b) the interaction between control and forecasting, and specifically that the choice

of a control at any given iteration (flight) serves the joint purpose of revenue optimization and

demand learning. A simple illustration of the first issue is the following: suppose that at a

particular flight, the manager has 50 units of capacity available for the high-fare demand, and

that all of this capacity ends up being sold. What was the true high-fare demand for this flight?

Was it 50? Was it more? By how much? A naive approach is to treat the demand as being

exactly 50, but this would lead to an underestimation of the true demand, since the actual

observation was the event {High-fare demand ≥ 50}. There are numerous other heuristics that

try to reallocate this sales observation to some other demand level that is greater or equal to

50, but, as Cooper et al. (2006) show, many of them do not achieve the desired result.

This paper describes a demand forecasting algorithm based on ideas from ME distributions

that can readily incorporate censored sales data, which correspond to fractile observations of the

form shown above. The proposed demand forecasting algorithm leads to control decisions (in the

form of capacity protection levels) that converge to the optimal ones for the actual underlying

demand distribution.

Background on Maximum Entropy distributions: The entropy of a random variable

X with probability mass function pj for all j on some some support set J is defined by

H(X) := −
∑

j∈J

pj ln pj;

it is also common to use the base 2 logarithm in the above definition. Entropy is non-negative

and is a concave function of the probabilities pj. Entropy is a measure of average uncertainty or

disorder or randomness of the random variable. It is also a measure descriptive complexity of the
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random variable, i.e., how much information one needs to describe it. As a concept, entropy is

of central focus in the area of information theory, and plays important roles in communications

theory, physics, computer science, probability theory, statistics, and economics. The book by

Cover and Thomas (1991) offers a thorough introduction to the topic of information theory and

explores its connections and the abovementioned fields.

Entropy has also played a central role in estimation theory. In particular, maximum entropy

distributions are a useful and intuitive tool in fitting unknown distributions to partial information

about the underlying random variables. The most celebrated example comes from statistical

mechanics, where Maxwell and Boltzmann showed that the distribution of velocities in a gas at

a given temperature is the maximum entropy distribution that corresponds to the temperature

constraint that itself fixes the variance of the distribution. In this setting, the maximum entropy

solution arises naturally as the correct underlying distribution. In other settings, such as the one

that is motivating this study, one may have access to partial information about the underlying

distribution, for example specifications of the moments of the distribution, of its fractiles, etc.

The decision maker is faced with the question of fitting a model that satisfies these specifications,

and in such contexts the maximum entropy criterion provides an approach for how to do that.

This approach was advocated to be used in a broad context by Jaynes (1982).

Given a set of specifications of the form
∑

j ri(j)pj = bi for appropriate choices for the

functions ri(·), the canonical ME estimation problem is:

max
p







−
∑

j∈J

pj ln pj :
∑

j∈J

ri(j)pj = bi for i = 1, . . . ,m,
∑

j∈J

pj = 1, p ≥ 0







, (1)

and its solution is

p∗j = eλ0+
∑m

i=1
λi ri(j) j ∈ J , (2)

where λi is the Lagrange multiplier associated with the linear constraint
∑

j ri(j)pj = bi, and

λ0 is the normalization constant such that
∑

j∈J p∗j = 1. Inequality constraints of the form
∑

j ri(j)pj ≤ bi can also be added in the above formulation, which is a tractable concave max-

imization problem that can be solved efficiently even in large problem instances. Fractile con-

straints that are of particular interest to this paper can be added by setting ri(j) = 1{j≥k},

where 1{j≥k} is the indicator function which is equal to 1 for all j ≥ k, and k is the position for

which the decision maker has fractile information. For continuous distributions the summations
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Constraint ME Distribution

Range = S = [a, b] U [a, b]
Mean = µ exp(1/µ)

Mean = µ, variance = σ2 N(µ, σ2)

Table 1: Common constraints and the associated ME distributions.

in the objective function and the constraints are replaced by integration. Some commonly used

distributions are the ME distributions that correspond to appropriate constraints (see Table 1

for examples of continuous maximum entropy distributions that admit discretized analogues).

ME distributions are of the parametric form given in (2). The parametric degree of the ME dis-

tribution depends on the specifications that one starts with. This modeling flexibility is in stark

contrast with the common approach of fixing a priori the parametric form of the distribution,

e.g., uniform, exponential, gamma, etc., and then searching for the best possible match from

within that family; it is easy to see that the latter approach may not even satisfy the problem

specifications and introduce significant model selection bias, which is not the case when fitting

the ME distribution.

Proposed solution: Returning to the motivating problem for this paper, the key issue faced

by the firm is that of building a good demand forecast using sales data that may be censored. As

explained earlier, censored observations correspond to fractile information. The policy proposed

in this paper is to form a demand forecast by fitting a ME distribution to the observed sales

data, which can be formulated as a set of fractile conditions that the demand distribution needs

to satisfy. The resulting ME demand distribution provides a tractable and intuitive way of

“unconstraining” the sales observations. The firm then uses the resulting demand forecast as

if it is the “true” demand distribution, and accordingly computes its protection level for the

next flight. A new sales observation is recorded, and the process is repeated. It is worth noting

that the proposed policy is “passive” or “myopic” in that it does not choose its controls in a

way that jointly optimizes immediate expected revenues with the ability to learn the demand

distribution and therefore extract high revenues in future flights. This is done for two reasons:

practical considerations, and analytic tractability.

The main analytical contribution of this paper is to establish that the sequence of protection

levels generated by the above approach converges to the optimal control that the firm would

select if it knew the true underlying demand distribution. The latter is defined by an appropriate

critical fractile of the demand distribution, which depends on the relative magnitude of the high
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and low prices offered by the firm. The intuition behind the convergence result is fairly simple.

Suppose that after the first k observations, the firm is underestimating the critical fractile of the

demand distribution, e.g., it thinks it corresponds to the point where the demand is equal to 30

when the correct fractile position is at the point where the demand is equal to 35. Then, firm

will protect 30 units of capacity for the high-fare demand stream, and will sell-out with a higher

probability than it is optimal. In this case, the ME demand forecast will reallocate some of the

censored sales observation to higher demand points, driving the critical fractile point towards

a higher value. A similar argument applies for the case where the firm is overestimating the

critical fractile. In addition to providing a method for asymptotically computing the optimal

protection level, the ME forecast is also shown to converge to the correct demand distribution at

all points below the critical fractile. For ease of exposition, we assume the low-fare class demand

is ample. However, we briefly illustrate in §5, without proof, how the results generalize to any

low-fare demand distribution; while this distinction does not affect the optimal protection level,

it does affect the learning algorithm since in some instances the unprotected capacity will not

be sold out to the low fare demand, and as such the firm will be able to sell more than the

original protection level to the high fare demand. We also provide an an interesting extension

that allow for the low-fare customers to “buy up” and purchase the high-fare product when the

low-fare product is sold out.

Finally and importantly, although the results of the paper are related to a specific motivating

problem, the approach of using maximum entropy distributions to uncensor sales observations,

and to incorporate other information on the underlying distribution that one may have is of

broader interest. In the concluding section we give a brief illustration how it could be used in

the context of fitting a willingness-to-pay distribution that can then be used for making pricing

decisions.

Literature survey: This paper is directly motivated by the observation in Boyd et al. (2001)

and the analysis in Cooper et al. (2006). Another paper by Weatherford (2002) has also showed

that most heuristic uncensoring techniques do not avoid the “spiral-down” effect. van Ryzin

and McGill (2000) propose an adaptive, Robins-Monro, algorithm that controls via appropriate

feedback signals the protection levels depending on whether the allocated capacity for some fare

class (or set of nested fare classes) is sold out or not; it increases the protection level when

the capacity is sold out, and decreases it otherwise. They prove that the proposed algorithm

converges to the optimal protection levels, and as such avoids the spiral down phenomenon. A
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closely related paper is by Kunnumkal and Topaloglu (2009).

There are a set of related papers that develop adaptive inventory ordering policies for the

newsvendor problem when the demand distribution is unknown; see, e.g., the papers by Burnetas

and Smith (2000), Godfrey and Powell (2001) and Huh and Rusmevichientong (2008). The above

sets of papers take the approach of directly adjusting the protection levels or the inventory

ordering decisions, bypassing the demand estimation step that is central in our approach. In

contrast, our paper provides an explicit algorithm for demand estimation based on censored

observations, which is then applied to the airline capacity control problem, but may of more

general interest.

The closest paper to our work is the one by Huh et al. (2009) that proposes to use the demand

estimation procedure based on the non-parametric Kaplan-Meier estimator, and then select the

control based on that estimated demand distribution. They analyze their approach in the

context of the newsvendor model, and prove that their inventory ordering decisions converge to

the optimal newsvendor quanitity defined by a critical fractile. They also show that their demand

estimation procedure asymptotically characterizes correctly the unknown demand distribution

up to the critical fractile position. The results in their paper mirror many of our findings, but

the demand estimation procedures based on the Kaplan-Meier estimator and Maximum Entropy

distributions, respectively, are quite different in their structure the type of information that they

can incorporate in their formulation, such as additional information about the moments of the

distribution, and their potential applications.

A subtle point that underlies our work as well as that in Kunnumkal and Topaloglu (2009),

Huh et al. (2009) is what happens when the realized sales volume is equal to the firm’s capacity,

which could happen if the demand was equal to the capacity, or if the demand was larger than the

allowed capacity and the resulting demand observation was censored. The above papers assume

that the seller can observe whether the demand observation was censored, i.e., when the “sales =

capacity” the seller can differentiate between the two cases “demand = capacity” and “demand

> capacity.” This assumption can be fairly restrictive in many operational settings. Without

this assumption, the above algorithms will converge to the “optimal capacity - 1.” While this

difference may be of small significance in practical settings, it does raise the question of whether

one can do better. One possible way of circumventing this assumption while achieving the

desired learning, is to allow the algorithm to “experiment” around what seems to be the optimal

capacity level. This will allow the seller to observe some uncensored observations at the optimal
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capacity level and as such be able to make a crisp determination of the demand distribution

up to the optimal capacity level and correctly deduce the value of the optimal capacity control.

We motivate one possible choice for the degree of experimentation, which seems to lead to fast

learning and convergence to the correct optimal control. Given the non-stationary nature of

demand in many real applications, this seems like a reasonable and practical solution. We do

not address the issue of what is the minimal level of experimentation that would still allow us

to deduce the optimal control, but refer to a recent paper by Besbes and Muharremoglu (2010)

that address this point for a related model in the context of an appropriate asymptotic analysis.

The analytical results of this paper make use of standard results from adaptive algorithms and

stochastic approximations. The particular references that are useful for our work are Kushner

and Yin (2003) and Benveniste et al. (1990), and the key result that we use in our paper is

reproduced (without proof) in Appendix A.

One of the few papers that deal with “maximum entropy” in revenue management literature

belongs to Bilegan et al. (2004) who simply formulate a dual geometric program for the convex

ME problem for capacity allocation and demonstrate how to solve it in a short paper. To the

best of our knowledge the operations management and revenue management literatures have

not explored the use of ME techniques to approximate unknown demand or willingness-to-pay

distributions.

Finally, we conclude this section by listing a few references that are partially related to our

work. First, there is a significant body of literature that studies capacity control or newsven-

dor problems with uncertain demand distributions using some form of a worst case criterion.

Examples in this area include the papers by Gallego and Moon (1993), Bertsimas and Thiele

(2004), Perakis and Roels (2006), and Ball and Queyranne (2009). The above papers do not

involve learning. Second, there is a growing literature in joint learning and price optimization,

which is somewhat related to the motivating problem and the demand estimation procedure

of this paper. Incorporation of partial information is typically done in a Bayesian setting un-

der some parametric assumptions for the willingness to pay distribution and using conjugate

pairs of distributions to maintain tractability; see, e.g., Lobo and Boyd (2003), Aviv and Pazgal

(2005), Araman and Caldentey (2005), Farias and Van Roy (2006), and the references therein.

Assuming a parametric family of distributions for the unknown demand runs the risk of model

mis-specification due to the arbitrariness of that assumption. A non-parametric approach that

is asymptotically optimal is due to Besbes and Zeevi (2009).
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2. Single-resource capacity control with two fare-classes

We study a repeated version of Littlewood’s two-period capacity allocation problem, where the

distributions for the two classes of potential demand are unknown, but where the seller can

try to learn the demand distributions from (potentially censored) sales observations. We first

describe the static version of Littlewood’s problem under full demand information, and then

proceed to pose the repeated version of this problem with no prior demand information.

2.1 Littlewood’s model: Full information, static benchmark

A firm has C identical units of a good to sell over two time periods to two demand classes indexed

by i = 1, 2. The class-2 demand, denoted by D2, arrives first and pays a price of p2, followed by

the class-1 demand, denoted by D1, which pays p1 > p2. The salvage value is assumed without

loss of generality to be 0. The two demands are discrete random variables that are independent

of each other, and independent of any capacity control decisions made by the system manager,

drawn from some distributions Fi for i = 1, 2. The firm controls whether to accept or reject each

class-i request for one unit of its capacity, and its objective is to allocate the available capacity

to the two demand streams described above so as to maximize its total expected revenue over

the entire selling horizon. It is well known that the structure of the firm’s optimal policy takes

the form of a threshold, or protection level, denoted by L, which sets the number of units of

capacity to be reserved for the high-fare class demand, D1. That is, class 2 demand requests are

accepted as long as it the remaining capacity left for period 1 for the high-fare demand stream

is greater than L, and are rejected otherwise. In summary, the firm’s problem is to choose the

protection level L to maximize its expected revenue

max
0≤L≤C

E
[

p1min(D1, max(C −D2, L)) + p2min(D2, C − L)
]

, (3)

where the expectation is taken with respect to the two demand distributions. The term min(D2, C−
L) is the sales for the low-fare class, which arrives first; and consequently, the high-fare class

sales is the minimum of demand D1 and the remaining number of seats C −min(D2, C − L) =

max(C −D2, L). If D1 and D2 were continuous random variables, then the optimal protection-

level L∗ would be given by the following equality

p1 P(D1 ≥ L∗) = p2 if and only if F1(L
∗) = γ := 1− p2/p1. (4)

9



This condition is commonly referred to as Littlewood’s rule. The left hand side of the above

expression equates the marginal expected revenues from an immediate sale at price $p2 versus

a potential sale in the next period at the higher price $p1. For discrete demand distributions,

the optimal protection level satisfies

p2 < p1 P(D1 ≥ L∗) and p2 ≥ p1 P(D1 ≥ L∗ + 1) ⇔ γ > F1(L
∗ − 1) and γ ≤ F1(L

∗) (5)

That is optimal protection level is given by

L∗ = inf{L : F1(L) ≥ γ}, (6)

Equation (5) highlights an additional challenge for the discrete version of the problem that was

highlighted in the introduction: for a given protection level L, the sales event D1 ≥ L provides

a censored observation, and yields information for the underlying high fare demand only up to

L − 1. As a consequence, to identify the optimal level L∗, either one needs to sample at level

L∗ + 1, or assume that one can distinguish events D1 = L∗ and D1 > L∗ when high fare sales

occur at L∗. Going forward we will assume we cannot distinguish events D1 = L and D1 > L

for any given protection level L, and consequently that D1 ≥ L is a censored observation. To

overcome this challenge and learn the fractile information at L∗ so as to be able to correctly

identify it as the optimal control, we will sample at L + 1 with probability q defined below.

We find this to be a more natural approach that is closer to real business practice, e.g. airlines

occasionally open up their protection levels to better sample underlying demand distribution.

Specifically, we propose and analyze a randomized policy, whereby the seller will protect L∗

units with probability 1 − q∗ and protect L∗ + 1 with probability q∗ where q∗ chosen to satisfy

(1− q∗) F1(L
∗ − 1) + q∗ F1(L

∗) = γ.

One motivation for the above choice of the randomization parameter q∗ is as follows: If

the support of the demand distribution as well as the optimal L∗ are large and the cumulative

distribution F1 is well behaved, then it is plausible that the objective in (3) is well approximated

by a linear function around L∗, in which case q∗ would be the optimal randomization parameter.

This argument is, of course, heuristic, and indeed one could use any value for the randomization

parameter q greater than 0 and less than 1 and still guarantee the convergence result that we

will derive in the next section.
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2.2 Repeated Littlewood’s problem with unknown demand distributions

The model analyzed in this paper is a repeated version of Littlewood’s problem in settings

where a) the distribution of the high-fare demand, D1, F1(·) is unknown, and b) the seller can

estimate the unknown distribution based on sales observations; the distribution for the low-fare

demand D2 may also be unknown, but as explained above is not needed for the characterization

of the optimal protection level L∗. In broad terms, the seller can estimate the high-fare demand

distribution given past sales observations. The goal is to describe an estimation procedure and

an associated control policy that will converge to the optimal protection level L∗. The core of

the problem is that the sequence of protection levels affect the sequence of observations, and

thus the resulting estimation output. As was highlighted in the introduction this may lead to

sub-optimal estimation and control outcomes.

In more detail, we consider a sequence of instances of the two-period Littlewood problem

defined above, which we index by k = 1, 2, . . .. In each instance k, the seller applies the capacity

control Lk, the realized demands areDk
i , and the realized sales are given by Sk

2 = min(C−Lk,Dk
2 )

and Sk
1 = min(Lk+xk,Dk

1 ), for the low-fare and high-fare demand stream respectively, and where

xk = (C − Lk − Dk
2 )

+ is the unused capacity from the low-fare class. The realized revenue is

min(C − Lk,Dk
2 ) · p2 +min(Lk + xk,Dk

1 ) · p1.

We make the following assumptions on the demand distributions:

Assumption 1: Dk
2 ≥ C with probability 1 for all k.

Assumption 2: Let S denote the size of the support of F1, and πj = P (D1 = j) for

j = 0, 1, . . . , S − 1. Then, πj > ǫ for some ǫ > 0 for j = 0, . . . , L∗ and S ≥ 1/ǫ+ 1.

It is well established that lower price demand does not effect the choice of optimal protection

level in Littlewood’s setup, so one would expect a similar result in this setting. Assumption 1

corresponds to the most aggressive censoring of high fare sales, and proving our result under this

conservative assumption allows us to ease notation in formal exposition below and to discuss

its extension to general case later briefly in §5. Under assumption 1, xk = 0 and the realized

revenue is (C −Lk) · p2 +min(Lk,Dk
1 ) · p1, for all k. Assumption 2 is an optional mild technical

condition that can always be satisfied by selecting S to be sufficiently large, and is used to prove

Proposition 3 in the appendix.

The observation history is {(L1, S1
1 , S

1
2), (L2, S2

1 , S
2
2), . . . , (L

k, Sk
1 , S

k
2 )}. Under assumption
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1, Sk
2 = C−Lk for all k, and thus all information is captured in the sequence Ik := {(Li, Si

1)}ki=1.

As discussed previously, we assume that the event Dk
1 = Lk, which results in Sk

1 = Lk, provides

a censored observation.

Problem formulation: For all k ≥ 1, given the information set Ik, find a control Lk+1 : Ik →
[0, S] for k ≥ 1, such that Lk → L∗ almost surely as k → ∞, for L∗ identified in (6).

Once convergence of the protection levels Lk to L∗ has been established, one could switch

to a more refined criterion that studies some measure of revenue loss from that obtained under

L∗, or some full information benchmark where the firm would observe the demand realization

as opposed to the potentially censored sales observations. We will not pursue this in this paper.

3. Proposed policy based on Maximum Entropy distributions

The structure of the proposed solution is motivated from what is typically observed in practice,

for example in the airline industry, where a two-step procedure is adopted: a) build some type

of a forecast for Dk
1 based on Ik, and b) compute a protection level Lk given that forecast. Let

FIk denote the estimated high-fare class demand distribution after the first k observations. The

type of policies that we will consider are “passive” or “myopic” in the sense that at every point

in time they select the protection level Lk+1 as if FIk was the correct demand distribution. This

essentially reduces the joint estimation and control problem posed above to one of estimation of

a critical fractile of a demand distribution based on censored observations.

The demand forecasting procedure we propose makes use of a more aggregated form of the

observed information, which is independent of the sequence of the various sales observations.

Specifically, given Ik, the uncensored and censored information recorded thus far is summarized

by the vectors Kk ∈ R
S and Jk ∈ R

S, where

Kk
j = # of uncensored observations at position j, and,

Jk
j = # of censored observations at position j;

clearly
∑

j(K
k
j + Jk

j ) = k for all k. We will summarize this aggregated observation history by

θk ∈ R
S×2 defined as follows

θk := (κk, ζk) := (Kk/k, Jk/k); (7)
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κkj and ζkj are frequencies of uncensored and censored observations at position j, respectively.

The proposed policy fits a maximum entropy (ME) distribution to the observation history,

which in itself provides a systematic way in which to “re-allocate” the censored sales obser-

vations into possible (higher) demand realizations. The intuition behind this policy is that

censored observations offer fractile information that can be readily incorporated in picking the

ME distribution that best fits the sales observations θk.

Let ηkj = κkj + ζkj be the frequency of observations at j if one does not distinguish between

censored and uncensored observations. Let p ∈ R
S
+, z ∈ R

S×S
+ , where pj is the probability

assigned to observing a demand realization in position j, and zij denotes the probability mass

allocated to position j due to censored observations in position i ≤ j. The ME distribution that

corresponds to the observation vector θk is computed as follows:

max
p, z

−
∑

j

pj ln pj (8)

s.t. pj = κkj +
∑

i≤j

zij , ∀j (9)

∑

j≥i

zij = ζki , ∀i (10)

zij = 0, ∀i < j, zij ≥ 0, ∀i, j (11)
∑

j

pj = 1 , (12)

This is simplified in the following result (the proof is given in the Appendix B). Specifically, if

we define the auxiliary vector κ̃ ∈ R
S
+ as follows: κ̃kj = κkj for j = 0 . . . S − 2, and κ̃kS−1 = ηS−1,

then (8)-(12) can be reduced to:

min
p

∑

j

pj ln pj (13)

s.t. pj ≥ κ̃kj , ∀j (14)
∑

i≥j

pi ≥
∑

i≥j

ηki if ζkj > 0 (15)

∑

j

pj = 1. (16)

The algorithm we propose can be summarized as follows:
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Algorithm 1: Maximum entropy capacity allocation for two fare-classes

1. At each observation k, update the vector θk := (κk, ζk) according to (7)

2. Given θk, compute the ME probability mass function pθk through (13)-(16); denote the cor-

responding distribution function as Fθk(·).

3. Set L(θk) = min{L | Fθk(L) ≥ γ}.

4. Implement L(θk) with probability 1−q(θk), and L(θk)+1 with probability q(θk), where q(θk)

is the unique solution to

(1− q(θk)) Fθk(L(θk)− 1) + q(θk) Fθk(L(θk)) = γ . (17)

5. Observe new sales in period k + 1 and go to step 1.

To ease exposition going forward, we will use the shorthand notation Lk := Lθk := L(θk)

and qk := qθk := q(θk) depending on the context. The “passive” or “myopic” structure of the

proposed policy is reflected in steps 3 and 4 above that treat the high-fare distribution estimate

Fθk(·) as if it is the correct demand distribution in every iteration.

4. Convergence analysis of the ME capacity allocation policy

This section proves that Algorithm 1 yields a sequence of controls {Lk} that converges to the op-

timal level L∗. In addition to correctly identifying the γ-fractile of the high-fare distribution, the

ME demand estimation approach will correctly approximate the entire high-fare class demand

distribution up to L∗. As a byproduct of our approach one can also show that the estimates of

the probabilities that the high-fare demand will be equal to j, denoted by pkj = PF
θk
(D1 = j),

converge to the correct probabilities πj for all j ≤ L∗; i.e., the forecasting procedure based on

ME distributions “learns” the demand distribution correctly below L∗.
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4.1 Preliminaries

Let π ∈ [0, 1]S represent the probability mass distribution of the actual high-fare class demand.

Through the ME algorithm, the vector (Kk, Jk) evolves recursively as

(Kk+1, Jk+1) = (Kk, Jk) + (W k+1, Qk+1) (18)

where W k+1, Qk+1 ∈ R
S are random vectors satisfying

P(W k+1
j = 1) =



























πj for j < Lk

qk πLk for j = Lk

0 otherwise

, P(Qk+1
j = 1) =



























(1− qk)
∑

i≥Lk πi for j = Lk

qk
∑

i>Lk πi for j = Lk + 1

0 otherwise,

for j = 0 . . . S−1; i.e., vectors W k+1 and Qk+1 track the realization of uncensored and censored

observations at step k + 1. Recall that θk = (Kk, Jk)/k and define

f(θk) := (E(W k+1),E(Qk+1)), and g(θk) := f(θk)− θk, (19)

where the expectation is taken with respect to the (unknown) true demand distribution for the

high-fare class demand so that

E(W k+1
j ) =



























πj for j < Lk

qk πLk for j = Lk

0 otherwise

, E(Qk+1
j ) =



























(1− qk)
∑

i≥Lk πi for j = Lk

qk
∑

i>Lk πi for j = Lk + 1

0 otherwise.

(20)

Dividing both sides of (18) by 1/(k + 1), we get that

θk+1 =
k θk

k + 1
+

(W k+1, Qk+1)

k + 1

=
k θk

k + 1
+

(W k+1, Qk+1)− f(θk)

k + 1
+

f(θk)

k + 1

= θk +
(W k+1, Qk+1)− f(θk)

k + 1
+

f(θk)− θk

k + 1

= θk +
1

k + 1
δMk +

1

k + 1
g(θk), (21)
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where δMk := (W k+1, Qk+1)−f(θk) are bounded martingale differences for each k, and g(θk) =

f(θk)− θk is the deterministic function governing the mean drift of the process. The martingale

properties of δMk follows from the definition of f(θk), and the fact that the components of both

(W k+1, Qk+1) and f(θk) are bounded by 1.

Equation (21) describes an adaptive algorithm, whose asymptotic properties can be ana-

lyzed using standard techniques from stochastic approximations. We will follow the so called

“ODE (Ordinary Differential Equation) approach” (see Kushner and Yin (2003)) that relies

on an asymptotic analysis of appropriate continuous approximations to the process {θk}. By

establishing convergence of θk to an appropriate limit point, we will be able to conclude that a)

the ME probability estimates for different demand realizations converge to the correct probabil-

ities πj for all j ≤ L∗, and b) that the protection level computed using Algorithm 1 converges

to L∗. The main intuition behind it is that the effect of random martingale difference terms

δMk vanishes as k gets larger, and the process can be approximated accurately by the limit

paths of the continuous ODE θ̇(t) = g(θ(t)), where θ(t) is a continuous approximation to the

discrete process θk, and θ̇(t) is the time derivative of this approximation. That is, intuitively,

as 1/(k +1) → 0, θk changes slowly, and, in the absence of the δMk terms, equation (21) yields

roughly

g(θk) =
θk+1 − θk

1/(k + 1)
≈ θ̇ |θk .

The continuous approximations to the discrete process {θk} help make the above intuition exact.

We refer the reader to Kushner and Yin (2003) for a rigorous development of this approach.

Our argument will use Theorem 2.1 (Ch. 5, pg. 127) from Kushner and Yin (2003), which we

state for the special case of bounded {θk} process with bounded martingale differences in the

Appendix A together with its necessary conditions (A.4.3.1), and (A.5.2.1)-(A.5.2.6). Below we

provide the outline of our argument for establishing limk→∞Lk = L∗:

1. Section 4.2 studies the asymptotic behavior of the continuous, deterministic dynamical

system governed by the ODE θ̇(t) = g(θ(t)).

2. Section 4.3 verifies that the conditions (A.4.3.1), and (A.5.2.1)-(A.5.2.5) needed by Kush-

ner and Yin’s theorem are satisfied by the process {θk} and the ODE, and invokes their

result to complete our proof.
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4.2 Analysis of the ODE

Denote the domain of problem (13) as D(θ) ∈ R
S for any given θ = [κ, ζ]. Let pθ ∈ D(θ) be

the optimal solution of problem (13) for a given θ, and let [κθ, ζθ] denote the corresponding

vectors of reallocated uncensored and censored observation frequencies at this solution such

that κθ = κ and pθ,j = κθ,j + ζθ,j for all j. Hence, pθ is the probability mass function of the

ME distribution implied by any given θ through problem (13), and Fθ(·) is the corresponding

cumulative distribution function. Hence, the corresponding protection level produced by the ME

algorithm is L(θ) := min{L | Fθ(L) ≥ γ}, and qθ is the associated randomization probability

specified in (17).

We start with some preliminary lemmas that establish some of the necessary structural

properties of the ODE θ̇(t) = g(θ(t)); their proofs are given in Appendix B.

Lemma 1 D(θ) is a continuous correspondence.

Lemma 2 The maximum entropy distribution computed in Algorithm 1, denoted by pθ, is con-

tinuous in θ.

Lemma 3 The function g(θ) defined in (19) is continuous in θ.

As mentioned above, the limit paths of the continuous (mean direction) ODE θ̇(t) = g(θ(t))

and the process {θk} show similar asymptotic behavior. In fact, if the process {θk} converges

to a unique equilibrium point, say θs, this point would be the unique stationary solution of

the continuous ODE equation θ̇(t) = g(θ(t)), i.e. θ(t) = θs, ∀t ≥ 0, under some regularity

conditions. However, in our case, the process {θk} converges to a stable set Θ identified below

rather than a unique point. The ODE can still have a unique stationary solution in this case,

and it turns out it has indeed one in our setup. However, this does not mean that θs is the

only limit point of the ODE over all initial conditions. The set of limit paths of the ODE over

all initial conditions is a subset of Θ in this case. Therefore, identifying this unique stationary

solution is not essential in our case, as a consequence, we present it in Propositions 2 and 3 in

the appendix, proofs of which are lengthy and omitted for brevity.

We next characterize the candidate limit set Θ of the process {θk}; and show that it is
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globally asymptotically stable1 for the ODE θ̇(t) = g(θ(t)). This will be needed to prove

convergence of {θk} further below. The proof is given in Appendix B. We use the candidate

Lyapunov function

V (θ) =
∑

j<L∗

||κj − πj ||+ (γ −
∑

j<L∗

πj − κL∗)+, (22)

where ||x|| :=
√
x2 is the L2 norm on R, and x+ = max{x, 0} is the positive part of x. This

function is continuous everywhere and continuously differentiable almost everywhere, and the

left and right partial derivatives are strictly negative at breakpoints of the gradient for each

component of θ.2. Observe that for all θ such that V (θ) = 0, L(θ) = L∗.
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Figure 1: Protection levels produced by the ME algorithm, the empirical distribution, and
the uncensored actual demand histogram at each iteration are compared. For the example,
p2/p1 = 1− γ = 0.5, S = 200, D1 ∼ U [50, 80].

Proposition 1 Under assumptions 1 and 2, the set Θ := {θ | κj = πj , ∀j < L∗, γ −
1Stability theory studies properties of solutions for dynamic systems expressed through differential equations.

Let Nδ(θ) be a δ-neighborhood of θ. In broad terms, a set A ⊂ H is locally stable if for each δ > 0 there is a δ1 > 0
such that all trajectories θ(t) of ODE θ̇(t) = g(θ(t)) starting in Nδ1(A) never leave Nδ(A). If the trajectories
ultimately go to A, then A is locally asymptotically stable in the sense of Lyapunov. If this holds for all initial
conditions then the set A is said to be globally asymptotically stable for the ODE. See Khalil (1996) for detailed
explanations of these stability concepts.

2Lyapunov functions act as potential (or penalty) functions for the state of dynamical systems. Lyapunov’s
second stability theorem states that if there is function V : RS → R satisfying V (θ(t)) ≥ 0 with equality if and
only if θ(t) ∈ A and V̇ (θ(t)) ≤ 0 with equality if and only if θ(t) ∈ A then A is globally asymptotically stable in
the sense of Lyapunov for the system governed by ODE θ̇(t) = g(θ(t)) where V̇ (θ(t)) denotes the time derivative
of the function V (θ(t)). The intuition behind Lyapunov’s theorem is that the existence of such a function implies
that the potential of the system must strictly decrease in time eventually reaching to 0.
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∑

j<L∗ πj ≤ κL∗} is globally asymptotically stable for the ODE θ̇(t) = g(θ(t)).

Note that under assumptions 1 and 2 we have Lθ = L∗ for ∀θ ∈ Θ as

∑

j<L∗

pθ,j =
∑

j<L∗

πj < γ and
∑

j≤L∗

pθ,j ≥
∑

j<L∗

πj + κL∗ ≥ γ, (23)

satisfying the optimality condition for the protection level for discrete demand distributions

stated in (5).

4.3 Proof of convergence

Finally, having established a candidate limit set that is asymptotically stable in which the desired

result for the protection level is guaranteed, we show that the process {θk} indeed converges to

this set Θ by using a theorem provided by Kushner and Yin (2003).

Theorem 1 Under assumptions 1 and 2, limk→∞Lk = L∗ almost surely.

Proof: The proof follows from Kushner and Yin’s (Kushner and Yin, 2003) Theorem 2.1 (Ch.

5, pg. 127) for identifying limits of adaptive algorithms making use of continuous time ordinary

differential equations (ODE). This theorem and its conditions, (A.4.3.1) and (A.5.2.1)-(A.5.2.5),

are supplied in Appendix A.

In our case the process {θk} is bounded in the hyperrectangle H := [0, 1]S×2 with probability

1 by construction; hence condition (A.4.3.1) is satisfied. For the ME algorithm, we have that

βk = 0 and ǫk = 1/k, and E[Y k | θ0, Y i, i < k] = g(θk) = f(θk) − θk. Consequently,

conditions (A.5.2.2), (A.5.2.4) and (A.5.2.5) are trivially satisfied. We also satisfy condition

(A.5.2.3) as shown in Lemma 3 above. Condition (A.5.2.1) is satisfied as supk E |Y k|2 ≤ S < ∞
by construction. Also, we have shown in Proposition 1 that the set AH := Θ is globally

asymptotically stable stable in the sense of Lyapunov for θ̇(t) = g(θ(t)). Consequently, applying

Theorem 2.1 of Kushner and Yin, we conclude that limit points of the process {θk} are in Θ

with probability 1. However, as shown before in equation (23) above, we have that Lθ = L∗ for

all θ ∈ Θ. 2

In addition, Theorem 1 and Proposition 1 together yield the following result, which states

that the ME algorithm also asymptotically provides the correct values of the underlying discrete
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demand distribution up to level L∗. (This follows from the convergence of θ to a limit set Θ, in

which κkj must be converging to πj.)

Corollary 1 pkj → πj for all j < L∗.

Figure 1 provides an example of the ME algorithm and the spiral-down effect. As illus-

trated, the protection levels attained by the empirical distribution of observations spiral down

as predicted by Cooper et al. (2006). The protection levels Lk provided by the ME algorithm

converge to the correct level. Also, observe that the controls obtained by accumulating the true

(uncensored) demand observations, which corresponds to the (first) best case for the firm, seem

to converge almost at the same rate as those provided by the ME algorithm. The uncensored

full information controls seem to under protect for the high-fare class demand while approaching

the optimal level; whereas the protection levels {Lk} over protect.

5. Extensions

5.1 Stochastic low-fare demand

A straightforward extension would allow for the low-fare demand to be drawn according to

probability mass function π2
j for j = 0, . . . , S2 − 1 for some support S2 > 0. In this case, given

a protection level Lk, the amount of unused capacity made available to the high-fare demand

is Lk +max(C − Lk −Dk
1 , 0); i.e., if D

k
1 < C − Lk, then the available capacity to the high-fare

demand is greater than Lk, allowed the firm to collect uncesnored demand observations even for

positions j > Lk when Dk
1 < C− j. Intuitively, this should be helpful in the demand forecasting

procedure.

Algorithm 1 is still applicable in this setting. The only difference is that the function g(θ)

in the convergence proof needs to be adjusted; this has a consequence on the evolution of the

state vector θk. Note that an uncensored observation at level j ≥ Lk = Lθk can occur only when

low-fare demand is sufficiently low, i.e., Dk
2 < C − j. The resulting vector of uncensored mass
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in equation (20) becomes

E(W k+1
j ) =



























πj for j < Lθk

πL
θk
(qθk + (1− qθk)

∑

i<C−L
θk

π2
i ) for j = Lθk

πj
∑

i<C−j π
2
i otherwise

. (24)

The structural results of Lemmas 1, 2, and 3 remain valid. In fact, we can show that

Proposition 1 is also valid in this case with the same set Θ and using the same Lyapunov

function in equation (31). The only difference in the proof, due to equation (24) above, is that

the function g(θ) in equation (33) now satisfies

g(θ) =



























πj − κj for j < Lθ

πLθ
(qθ + (1− qθ)

∑

i<C−Lθ
π2
i )− κLθ

for j = Lθ

πj
∑

i<C−j π
2
i − κj otherwise

. (25)

Given Proposition3 1, Theorem 1 also applies to the case with stochastic low-fare demand.

This result is in line with the fact that the Littlewood’s formula in (4) is independent of the

distribution of the low-fare demand.

5.2 Model with buy-up

In practical settings, if the low-fare capacity is depleted, low-fare customers may still be willing

to “buy-up” and purchase the high-fare product. A model commonly studied within the capacity

allocation setting is the so called “buy-up” model. The sequence of events is similar in that the

low-fare class demand Dk
2 arrives before the high-fare class demand Dk

1 . However, if the capacity

allocated for the low-fare class customers runs out, i.e. C − Lk < Dk
2 , some of these customers

are assumed to upgrade their demand and request high-fare seats. A common assumption in

literature is that each such customer is likely to upgrade with some constant probability α.

Hence, at each iteration there is an additional source possible demand for high-fare seats that

3The function g(θ) has extra terms only for j ≥ Lθ. The gradient of the Lyapunov function in (32) is equal to
0 for components j < L∗. Using this observation, one can extend the proof of Proposition 1 for the case with Lθ >

L∗. Also, for Lθ < L∗, the inequalities (34) and (35) remain valid and the subsequent steps of proof are unchanged.
Finally, for Lθ = L∗, equation (44) takes the form V̇ (θ) = −

∑
j<L∗ ||κj−πj ||+κL∗−πLθ

(qθ+(1−qθ)
∑

i<C−Lθ
π2

i ),
which is less than the value of the right hand side in equation (44) for any given θ, and hence the drift inequalities
remain valid in this case as well.
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has a binomial distribution ofXk = min(Bin((Dk
2−C+Lk)+, α), Lk). The capacity that is made

available to high-fare customers is equal to Lk + (C − Lk −Dk
2 )

+ −Xk, where (C −Lk −Dk
2 )

+

is the unused low-fare capacity and (C − Lk −Dk
2)

+ > 0 implies that Xk = 0.

The sequence of observations are the following: a) min(Dk
2 , C − Lk) low-fare sales; b) Xk

buy-ups due to excess low-fare demand, c) min(Dk
1 , L

k + (C −Lk −Dk
2)

+ −Xk) high-fare sales.

To illustrate the application of the ME approach in this setting we will work in the simplest

setting where the firm knows α but does not know the discrete demand distributions for two

fare-classes Fi.

It is relatively easy to show that the optimal protection level L∗ is defined through the

following condition

L∗ = inf{L : P(D2 +X(L) ≤ L) ≥ γ}, (26)

for X(L) = min(Bin((D2 − C + L)+, α), L). To simplify the subsequent exposition we will

assume that the buy-ups will not consume all of the protected capacity for the high-fare class.

In this case, Xk = Bin((Dk
2 − C + Lk)+, α). The firm makes direct observations of high-fare

sales that can be embedded in the ME demand estimation procedure proposed in §3 and refined

in §5.1. The low-fare demand observations give rise to low-fare sales and high-fare buy-ups.

Whenever the low-fare sales equal C − Lk, i.e., the capacity made available to be sold at the

lower price p2 is depleted, the firm has to use the observed number of buy-ups given by Xk,

which may potentially be equal to zero, to infer probabilistically what are the possible values of

Dk
2 ≥ C − Lk that could have given rise to the observation of C − Lk low-fare sales followed by

Xk buy-ups. This is done as follows. Let bk = C−Lk, and n = Dk
2 −bk. Then, Xk ∼ Bin(n, α).

Then,

P(Dk
2 = d | Xk, α) =

P(Dk
2 = d,Xk, α)

P(Xk, α)

=
P(Dk

2 = d,Xk, α)
∑

d≥C−Lk P(Bin(d− bk, α) = Xk)
.

The latter expression can be easily evaluated, and thus the firm can allocate each observation of

Xk buy-ups (which may be potentially zero) to different Dk
2 levels with appropriate probabilities.

The result can produce an empirical distribution for D2.
4

4The above calculation assumes that α is sufficiently small such Xk < Lk. In this case the resulting Dk
2

“observations” are never censored. If we allow for the possibility that Xk may consume Lk units of capacity, then
one could apply the ME algorithm to unconstrain the sales observations.
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We will not offer the proof that the above procedure produces demand forecasts and pro-

tection levels that converge to the optimal choice L∗, but just offer a numerical illustration of

sample paths of protection levels generated by the algorithm for different values of α. As illus-

trated by Figure 2, the algorithm seems to be performing well, and as expected the protection

levels are non-decreasing in α.

Figure 2: Protection levels produced by the ME algorithm with “buy-up” from low-fare class.
D1 ∼ U [51, 80], D2 ∼ U [101, 200], C = 200, γ = 0.5. Buy-up probabilities for each case are
given by α = 0.1, 0.4 and 0.7 respectively.

6. Concluding remarks

The two main contributions of the paper are the following: first, to demonstrate how Maximum

Entropy distributions can offer an intuitive way to unconstrain censored observations of a random

variable of interest -in our setting a demand distribution; second, show how ME distributions

can be used successfully in the context of forecasting-optimization loops in a way that converges

23



to optimal control decisions even when one starts with no information about the underlying

demand distribution.

Specifically, censored information corresponds to fractile information on the demand distri-

bution that can be readily incorporated in the calculation of the ME distribution. Other types of

information that could be incorporated in that forecasting step could be upper and lower bounds

on the mean of the unknown distribution, information about its second moment, specific infor-

mation about the probability of specific events, etc. In the context of capacity control of the

type studied in this paper, these could be due to side information available to the forecaster or

“expert” assessments to be added in the forecast.

A similar approach based on the use ME distributions may be applicable in many other

settings. One example arises in the context of estimating a willingness-to-pay distribution to be

used in pricing and product design decisions, where the seller may have past sales observations

at different price points (fractile information), moment conditions (“expert” assessment), price

sensitivity and price elasticity conditions (extracted from limited price experimentation and

marketing surveys), etc.5 Such disparate and partial information is hard to incorporate in many

commonly used parametric families of distributions, such as the uniform, exponential, logit,

and the normal. In contrast, the ME distribution provides a tractable and intuitive way to

incorporate and exploit this information in demand modeling and optimization of pricing and

product design decisions. 6

A. Theorem 2.1 of Kushner and Yin (2003), (Ch. 5, pg. 127)

Kushner and Yin consider an adaptive process {θk} on some compact set H ∈ R
n that follows

the equation θk+1 = θk + ǫkY k + ǫkZk, where ǫk is the step size, ǫkZk are correction terms that

take the process back to the nearest point in the set H when θk + ǫkY k is out of this set, and

Y k are random variables satisfying the conditions given below.

The compact set H and the corresponding correction terms are allowed to take one of several

5For example, price sensitivity information at a point j would specify the probability pj that the willingness-
to-pay of a typical customer is equal to j. An elasticity measurement ǫ at j is equivalent to the linear constraint
ǫ(
∑

k≥j
pk) = pj × j. Inequality constraints on the price sensitivity and/or the elasticity measurements are also

easy to incorporate as linear inequality constraints on the probabilities pj .
6It is also possible to formulate ME distribution estimates even when the measurements that the decision

maker is considering are noisy, by allowing the constraints in (1) to be violated but striving to keep the degree of
violation small.
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specific forms in their Theorem 2.1. The {θk} process in our problem satisfies a much simpler

structure in that it is bounded with probability 1 on a hyperrectangle. Hence, no correction

terms ǫkZk are necessary, and the simplest specification for set H, which is stated below, is

sufficient. Therefore, we adopt and state the theorem below in a simpler form as it applies to

our setting, with only the conditions that are required for our specific structure.

• (A.4.3.1) H is a hyperrectangle, i.e., ∃ ai < bi i = 1, . . . , n such that H = {θ : ai ≤ θ ≤
bi, ∀i}.

• (A.5.2.1) supk E |Y k|2 < ∞

• (A.5.2.2) There is a measurable function g(·) of θ and random variables βk such that

E[Y k | θ0, Y i, i < k] = g(θk) + βk.

• (A.5.2.3) g(·) is continuous.

• (A.5.2.4)
∑

i(ǫ
i)2 < ∞

• (A.5.2.5)
∑

i(ǫ
i) |βi| < ∞ w.p.1.

Theorem 2.1 of Kushner and Yin (2003) If {θk} is bounded with probability one, then

the process converges with probability one to the set of limit trajectories of the mean limit ODE

θ̇(t) = g(θ(t)). If AH ⊂ H is a set that is locally asymptotically stable in the sense of Lyapunov

for θ̇(t) = g(θ(t)), and θk is in some compact set in the domain of attraction of AH infinitely

often with probability ≥ ρ, then the process θk → AH with at least probability ρ.

B. Proofs

Proof that (8)-(12) is equivalent to (13)-(16): Denote the feasible set for problem (8)-(12)

as P1, and similarly, the feasible region for problem (13)-(16) as P2. We need to show that i)

∀(p, z) ∈ P1, p ∈ P2; and ii)∀p ∈ P2, ∃z ∈ R
S2

+ such that (p, z) ∈ P1.

i) We first show for each (p, z) ∈ P1, we have p ∈ P2. Given any (p, z) ∈ P1, using (9), we
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get that

pj = κkj +
∑

i≤j

zij ≥ κkj = κ̃kj , j = 0 . . . S − 2, and

pS−1 = κkS−1 + zS−1 S−1 = κkS−1 + ζkS−1 = ηkS−1 = κ̃kS−1,

hence, p satisfies the first set of constraints (14) in P2.

Also, using constraints (9) and (10) in P1, we have that

∑

i≥j

pi =
∑

i≥j

κki +
∑

i≥j

∑

m≤i

zmi =
∑

i≥j

κki +





∑

m<j

∑

i≥j

zmi +
∑

m≥j

∑

i≥m

zmi





=
∑

i≥j

κki +





∑

m<j

∑

i≥j

zmi +
∑

m≥j

ζkm



 ≥
∑

i≥j

ηki , (27)

which shows that p satisfies (15) in P2. As
∑

j pj = 1, the last constraint (16) also obviously

holds, and therefore, we have p ∈ P2.

ii) Next, we show that for all p ∈ P2, there exists a z such that (p, z) ∈ P1. Given any p ∈ P2,

define dj = pj − κkj for all j. Observe
∑

j dj =
∑

j pj −
∑

j κ
k
j = 1 − ∑

j κ
k
j =

∑

j ζ
k
j . Also,

note that constraints (14) and (15) imply
∑

i≥j pi ≥
∑

i≥j η
k
i for all j. Therefore, we have that

∑

i<j pi ≤
∑

i<j η
k
i , and hence,

∑

i<j di ≤
∑

i<j ζ
k
i . Now, let us define a transportation network

flow problem as follows: there are S origin nodes each of which has supply ζkj for j = 0 . . . S−1,

and S destination nodes each of which has demand dj for j = 0 . . . S − 1. The variables, zij

denote the flow from origin node i to destination node j for all i, j. We impose an upper bound

of zero on flows whenever i < j. We minimize the cost c z where c is any vector in RS×2
+ . That

is we solve the problem

min
z







c z |
∑

i≤j

zij = dj ∀j,
∑

j≥i

zij = ζki ∀i, zij = 0 ∀i < j, zij ≥ 0







. (28)

As
∑

i<j di ≤
∑

i<j ζ
k
i , i.e., the cumulative demand is less than the supply and therefore can

be met, and as
∑

j dj =
∑

j ζ
k
j , i.e., the transportation problem is balanced, the above problem

is feasible and bounded for all c ∈ RS×2
+ . For any feasible solution z to the above transportation

problem, the corresponding vector (p, z) ∈ P1 by construction. 2
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Proof of Lemma 1: We first show D(θ) is upper semi-continuous. Denote the universal space

of all possible parameters as ΘU . Consider a generic open set V of the form V = {p | pj >

κj − ǫj, ∀j, ∑

i≥j pi >
∑

i≥j κi + ζi − δj if ζj > 0 ,
∑

j pj = 1}, so that D(θ) ⊆ V

for any ǫj, δj ≥ 0. Now, for any ǫj, δj ≥ 0 and V , define the open set U = {p | pj >

κj − ǫj
K1

, ∀j, ∑

i≥j pi >
∑

i≥j κi + ζi − δj
K2

if ζj > 0 ,
∑

j pj = 1}, where K1, K2 > 1 are

sufficiently large numbers. Then, if θ′ = [κ′, ζ ′] ∈ U ∩ ΘU , we have that κ′j > κj − ǫj and

κ′i + ζ ′i > κi + ζi − δj , which yields D(θ′) ⊆ V . Therefore, D(θ) is upper semi-continuous at

∀θ ∈ ΘU .

Next we show that D(θ) is also lower semi-continuous. Fix some θ = [κ, ζ] ∈ ΘU , and let V

be an open set satisfying V ∩ D(θ) 6= ∅, and let p ∈ V ∩ D(θ). As V is open, there exists some

δ > 0, satisfying p̄ = [δ, 0, . . . , 0,−δ] + p ∈ V as well.

Define the “ǫ-neighborhood” of θ as Nǫ(θ) = {x | ||x− θ|| < ǫ}, where || · || is the L2 norm.

Now by contradiction suppose that there is no neighborhood of θ such that V ∩ D(θ′) 6= ∅
for all θ′ in the neighborhood. Let {ǫn} → 0 be a sequence of positive reals, and pick some

θn ∈ Nǫn(θ) such that V ∩ D(θn) = ∅. Note that we can find such θn by the contradictory

assumption. Then, using definitions of V , p̄ and Nǫn(θ), we have that p̄j −κnj → pj−κj > 0 and
∑

i≥j p̄i −
∑

i≥j κ
n
i + ζni → ∑

i≥j p̄i −
∑

i≥j κi + ζi > 0. Consequently, we have that p̄ ∈ D(θn)

for some large n, which yields a contradiction as p̄ ∈ V and V ∩D(θn) = ∅. This completes the

proof of the lemma. 2

Proof of Lemma 2: The optimal solution in problem (13) is pθ ∈ D(θ) for any given θ . Note

that the objective function
∑

j pj ln pj is strictly convex in p. As shown in Lemma 1, D(θ) is a

continuous correspondence, which is also easily seen to be convex and compact valued. Then,

the result follows from the “The Maximum Theorem under Convexity” (see, e.g., Sundaram

(1996), Theorem 9.17.3), which states that under these conditions pθ is a continuous function

in θ.2

Proof of Lemma 3: f(θ) = (E(W k+1),E(Qk+1)) satisfies

E(W k+1
j ) =



























πj for j < Lθ

qθ πLθ
for j = Lθ

0 otherwise

and E(Qk+1
j ) =



























qθ
∑

i≥Lθ
πi for j = Lθ

(1− qθ)
∑

i>Lθ
πi for j = Lθ + 1

0 otherwise .

(29)

27



By equation (17), the randomization probability qθ for the ME algorithm satisfies

qθ =
γ −∑

j<Lθ
pθ,j

pθ,Lθ

. (30)

As pθ is continuous in θ, qθ is continuous whenever Lθ does not change value. Note that, in

the case the value of Lθ changes, which can do so only by plus or minus one, qθ changes value

between 0 and 1; but, the vectors E(W k+1) and E(Qk+1) are still continuous as their definitions

are anchored on the value of Lθ. Hence, f(θ) and g(θ) are continuous in θ. 2

Proposition 2 Under assumptions 1 and 2, θ̇(t) = g(θ(t)) has a unique stationary solution

point θs which satisfies:

L(θs) = L∗, and q(θs) =
(γ −∑L∗−1

i=0 πi)(min{S, Sw} − L∗ + 1)

1−∑L∗−1
i=0 πi

, where

Sw =
1−∑L∗−1

i=0 πi
√

πL∗(γ −∑L∗−1
i=0 πi)

+ L∗ − 1.

Proposition 3 θs ∈ Θ.

Proof of Proposition 1: Define θ(t) = (κ(t), ζ(t)) and consider the candidate Lyapunov

function V : RS×2 → R+, where

V (θ(t)) =
∑

j<L∗

||κj(t)− πj||+ (γ −
∑

j<L∗

πj − κL∗(t))+. (31)

It is easy to see that V is continuous everywhere and continuously differentiable almost every-

where with respect to the vector θ ∈ RS×2. Observe that Θ = {θ | V (θ) = 0}, and that for all

θ ∈ Θ, we have Lθ = L∗.

In order to establish the stability of the ODE θ̇(t) = g(θ(t)) it suffices to show that

dV (θ(t))/dt < 0 for all t such that θ(t) /∈ Θ and that dV (θ(t))/dt = V (θ(t)) = 0 for all t

such that θ(t) ∈ Θ. In the sequel, we will drop the time argument and denote dV (θ(t))/dt

as V̇ (θ). It suffices to show that V̇ (θ) = ∇V (θ)′g(θ) < 0 for all θ /∈ Θ, and that V̇ (θ) =

∇V (θ)′g(θ) = V (θ) = 0 for all θ ∈ Θ.

Let sign(x) = 1 if x > 0, sign(x) = 0 if x = 0 and sign(x) = −1 otherwise. Then, the
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gradient of the Lyapunov function can be written as follows:

∇V (θ) =[(sign(κ0 − π0), . . . , sign(κL∗−1 − πL∗−1), − sign(γ −
∑

j<L∗

πj − κL∗), 0, . . . , 0),

(0, . . . , 0)].

Alternatively, using the fact that the Lyapunov function contains no ζj term, and hence, ignoring

the last S components with value 0, with a slight abuse of notation, we can rewrite ∇V (θ) and

g(θ) as

∇V (θ) =



sign(κ0 − π0), . . . , sign(κL∗
−1 − πL∗

−1), − I(γ −
∑

j<L∗

πj − κL∗ > 0), 0, . . . , 0



 (32)

g(θ) = ((π0 − κ0), . . . , (πLθ−1 − κLθ−1), (qθ πLθ
− κLθ

), − κLθ+1, . . . ,−κS−1) .

The analysis of the derivative V̇ (θ) will be split in three cases.

Case 1: Lθ > L∗. In this case V̇ (θ) satisfies

V̇ (θ) = −
∑

j<L∗

||κj − πj||+ I(γ −
∑

j<L∗

πj > κL∗)(κL∗ − πL∗) .

First, observe that V̇ (θ) is less than or equal to 0 since clearly −∑

j<L∗ ||κj − πj|| ≤ 0, and

the term I(γ −∑

j<L∗ πj > κL∗)(κL∗ − πL∗) is also non-positive as γ −∑

j<L∗ πj ≤ πL∗ by the

definition of L∗. Second, note that V̇ (θ) = 0 would imply
∑

j≤L∗ pθ,j =
∑

j<L∗ πj + pθ,Lθ
≥

∑

j<L∗ πj + κL∗ ≥ γ, which contradicts the assumption that Lθ > L∗. Consequently, we have

that

V̇ (θ) < 0 for θ with Lθ > L∗ . (33)
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Case 2: Lθ < L∗. In this case V̇ (θ) satisfies

V̇ (θ) =−
∑

j<Lθ

||κj − πj||+ sign(κLθ
− πLθ

) (qθπLθ
− κLθ

)−
∑

Lθ<j<L∗

sign(κj − πj) κj

+ I(γ −
∑

j<L∗

πj > κL∗) κL∗

= Γ(θ)−
∑

Lθ<j<L∗

sign(κj − πj) κj + I(γ −
∑

j<L∗

πj > κL∗) κL∗

≤ Γ(θ) +
∑

Lθ<j<L∗

πj + I(γ −
∑

j<L∗

πj > κL∗) κL∗ (34)

< Γ(θ) +
∑

Lθ<j<L∗

πj + γ −
∑

j≤Lθ

πj = Γ(θ) + γ −
∑

j≤Lθ

πj . (35)

where the function Γ(θ) is defined as

Γ(θ) := −
∑

j<Lθ

||κj − πj||+ sign(κLθ
− πLθ

) (qθπLθ
− κLθ

) . (36)

Define the maximum amount of mass that can be reallocated by the ME algorithm at position

Lθ for any fixed θ as pu(θ) := min{1−
∑

i<Lθ
κi

S−Lθ
, 1
S
}, which is less than πLθ

as by assumption 2

S > 1/ǫ > 1/πLθ
.

Then, we have that pθ,Lθ
= max{κLθ

, pu(θ)}, and we can rewrite Γ(θ) as

Γ(θ) =−
∑

j<Lθ

||κj − πj ||+ sign(κLθ
− πLθ

) (qθπLθ
− κLθ

)

=−
∑

j<Lθ

||κj − πj ||+ sign(κLθ
− πLθ

)

(

γ −∑

i<Lθ
pθ,i

pθ,Lθ

πLθ
− κLθ

)

=−
∑

j<Lθ

||κj − πj ||+ I(κLθ
≥ πLθ

)

(

γ −∑

i<Lθ
pθ,i

κLθ

πLθ
− κLθ

)

+ I(pu(θ) < κLθ
< πLθ

)

(

κLθ
−

γ −∑

i<Lθ
pθ,i

κLθ

πLθ

)

+ I(κLθ
≤ pu(θ))

(

κLθ
−

γ −∑

i<Lθ
pθ,i

pu(θ)
πLθ

)

.

Hence, we analyze Case 2 by further conditioning for different values of κLθ
.

Case 2(a): Lθ < L∗ and κLθ
≤ pu(θ). Note that, we have pθ,Lθ

= pu(θ) in this case, and

also, as
∑

i≤Lθ
pθ,i ≥ γ, we have

∑

i<Lθ
pθ,i ≥ γ − pu(θ) > γ − πLθ

>
∑

i<Lθ
πi. Now, fix some
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constant M >
∑

i<Lθ
πi, and consider the following parameterized optimization problem

max
κj , j<Lθ







−
∑

j<Lθ

||κj − πj|| :
∑

j<Lθ

pθ,j = M







(37)

which has the solution

κj = πj +
M −∑

j<Lθ
πj

Lθ − 1
with optimal objective value

∑

j<Lθ

πj −M =
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j.

Therefore, we have for κLθ
≤ pu(θ),

Γ(θ) =−
∑

j<Lθ

||κj − πj||+
(

κLθ
−

γ −∑

j<Lθ
pθ,j

pu(θ)
πLθ

)

≤
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +

(

κLθ
−

γ −∑

j<Lθ
pθ,j

pu(θ)
πLθ

)

≤
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +

(

pu(θ)−
γ −∑

j<Lθ
pθ,j

pu(θ)
πLθ

)

≤
∑

j<Lθ

πj − γ + pu(θ)

<
∑

j≤Lθ

πj − γ (38)

The first inequality follows from the optimization problem (37). The second follows from the fact

that the term in parenthesis is increasing in κLθ
which is less than pu(θ) by the case assumption.

The third inequality follows from the fact that the right hand side of the inequality is increasing

in
∑

j<Lθ
pθ,j < γ as pu(θ) < πLθ

. And, the last inequality follows as pu(θ) < πLθ
by assumption

2. As a result, we have that V̇ (θ) < 0 for all θ with Lθ < L∗ and κLθ
≤ pu(θ) by combining

inequalities (35) and (38) above.

Case 2(b): Lθ < L∗ and pu(θ) < κLθ
< πLθ

. Here, we have again
∑

i<Lθ
pθ,i > γ − πLθ

>
∑

i<Lθ
πi. And again, fixing some constant M >

∑

i<Lθ
πi, and considering the optimization

problem (37), we have the same optimal objective value of
∑

j<Lθ
πj −

∑

j<Lθ
pθ,j. Therefore,
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in a similar reasoning, we have the following inequalities in this case

Γ(θ) =−
∑

j<Lθ

||κj − πj||+
(

κLθ
−

γ −∑

j<Lθ
pθ,j

κLθ

πLθ

)

≤
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +

(

κLθ
−

γ −∑

j<Lθ
pθ,j

κLθ

πLθ

)

<
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +

(

πLθ
−

γ −∑

j<Lθ
pθ,j

πLθ

πLθ

)

=
∑

j≤Lθ

πj − γ (39)

where the strict inequality follows from the fact that the term in parenthesis is increasing in

κLθ
< πLθ

for every fixed value of
∑

j<Lθ
pθ,j. As a result, we have that V̇ (θ) < 0 for all θ with

Lθ < L∗ and pu(θ) < κLθ
< πLθ

by combining inequalities (35) and (39) above.

Case 2(c): Lθ < L∗ and κLθ
≥ πLθ

. In this case,
∑

i<Lθ
pθ,i ≤ ∑

i<Lθ
πi is possible.

However, the optimal solution to problem (37) remains κj = πj +
M−

∑
j<Lθ

πj

Lθ−1 , j < Lθ, but the

optimal objective value is now −||∑j<Lθ
πj −

∑

j<Lθ
pθ,j||. Therefore, we have that

Γ(θ) =−
∑

j<Lθ

||κj − πj||+
(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

≤− ||
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j||+
(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

(40)

Consequently, if κLθ
≥ πLθ

and
∑

i<Lθ
pθ,i <

∑

i<Lθ
πi above, we have that

Γ(θ) ≤ − ||
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j||+
(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

=
∑

j<Lθ

pθ,j −
∑

j<Lθ

πj +

(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

≤
∑

j<Lθ

pθ,j −
∑

j<Lθ

πj +





γ −∑

j<Lθ
pθ,j

γ −∑

j<Lθ
pθ,j

πLθ
− (γ −

∑

j<Lθ

pθ,j)





=2
∑

j<Lθ

pθ,j −
∑

j<Lθ

πj + πLθ
− γ

<
∑

j≤Lθ

πj − γ (41)

where the second inequality follows from the fact that the term in big parenthesis is strictly
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decreasing in κLθ
and κLθ

= pθ,Lθ
≥ γ−∑

j<Lθ
pθ,j must hold by definition of Lθ in this region.

The strict inequality follows from the case assumption
∑

i<Lθ
pθ,i <

∑

i<Lθ
πi and assumptions

1 and 2. As a result, we have that V̇ (θ) < 0 for all θ with Lθ < L∗, κLθ
≥ πLθ

and
∑

i<Lθ
pθ,i <

∑

i<Lθ
πi by combining inequalities (35) and (41) above.

On the other hand, if κLθ
≥ πLθ

and
∑

i<Lθ
πi ≤

∑

i<Lθ
pθ,i < γ − πLθ

, we have that

Γ(θ) ≤ − ||
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j||+
(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

=
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +

(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

≤
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +





γ −∑

j<Lθ
pθ,j

γ −∑

j<Lθ
pθ,j

πLθ
− (γ −

∑

j<Lθ

pθ,j)





=
∑

j≤Lθ

πj − γ (42)

where the second inequality follows from the fact that the third term in line two is strictly

decreasing in κLθ
, and that κLθ

= pθ,Lθ
≥ γ −∑

j<Lθ
pθ,j > πLθ

must hold by definition of Lθ

in this region. As a result, we have that V̇ (θ) < 0 for all θ with Lθ < L∗, κLθ
≥ πLθ

and
∑

i<Lθ
πi ≤

∑

i<Lθ
pθ,i < γ − πLθ

by combining inequalities (35) and (42) above.

Lastly, if κLθ
≥ πLθ

and
∑

i<Lθ
pθ,i ≥ γ − πLθ

, we have that

Γ(θ) ≤ − ||
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j||+
(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

=
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +

(

γ −∑

j<Lθ
pθ,j

κLθ

πLθ
− κLθ

)

≤
∑

j<Lθ

πj −
∑

j<Lθ

pθ,j +

(

γ −∑

j<Lθ
pθ,j

πLθ

πLθ
− πLθ

)

≤γ −
∑

j<Lθ

pθ,j

≤
∑

j≤Lθ

πj − γ (43)

where the second inequality follows again from the fact that the term in big parenthesis is

strictly decreasing in κLθ
and κLθ

= pθ,Lθ
≥ γ − ∑

j<Lθ
pθ,j must hold by definition of Lθ in

this region. As a result, we have that V̇ (θ) < 0 for all θ with Lθ < L∗, κLθ
≥ πLθ

and
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∑

i<Lθ
πi ≤

∑

i<Lθ
pθ,i < γ − πLθ

by combining inequalities (35) and (43) above.

We have covered all three cases, 2(a), 2(b), and 2(c) for θ with Lθ < L∗, and showed that

V̇ (θ) < 0 for such θ. Combining with Case 1 for Lθ > L∗, so far we have shown that V̇ (θ) < 0

for θ with Lθ 6= L∗.

Case 3: Lθ = L∗ and θ /∈ Θ. The derivative V̇ (θ) in this case satisfies

V̇ (θ) = −
∑

j<L∗

||κj − πj || − I(γ −
∑

j<L∗

πj > κL∗)(qθ πL∗ − κL∗) .

We study two sub-cases depending on the value of the indicator function.

Case 3(a): Lθ = L∗, θ /∈ Θ, and κL∗ ≥ γ − ∑

j<L∗ πj. Remember that by definition

of Θ and V (·), we have that Θ = {θ | V (θ) = 0}. Hence, for θ /∈ Θ satisfying Lθ = L∗ and

κL∗ ≥ γ−∑

j<L∗ πj , we have that V (θ) =
∑

j<L∗ ||κj−πj|| > 0 by construction of the Lyapunov

function. Consequently, in this case, we have V̇ (θ) = −∑

j<L∗ ||κj − πj || = −V (θ) < 0.

Case 3(b): Lθ = L∗, θ /∈ Θ, and κL∗ < γ − ∑

j<L∗ πj. When κL∗ < γ − ∑

j<L∗ πj, for

Lθ = L∗ to hold, θ /∈ Θ needs to satisfy
∑

j<Lθ
κj =

∑

j<L∗ κj >
∑

j<L∗ πj by definition of Lθ

and L∗. Hence, in this case, we have

V̇ (θ) = −
∑

j<L∗

||κj − πj||+ κL∗ − qθ πL∗ (44)

≤ −||
∑

j<L∗

κj −
∑

j<L∗

πj ||+ κL∗ − qθ πL∗

= −
∑

j<L∗

κj +
∑

j<L∗

πj + κL∗ −
γ −∑

j<L∗ κj

pL∗

πL∗

≤ −γ −
∑

j<L∗

πj + κL∗

< 0, (45)

where the first inequality follows due to the triangle inequality. Under Assumptions 1, 2, and

3, pL∗ < πL∗ holds, as previously discussed above, and consequently, the right hand side of the

second equality is increasing in
∑

j<L∗ κj < γ, which yields the second inequality by replacing
∑

j<L∗ κj with γ. The strict inequality follows from the case assumption, yielding V̇ (θ) < 0

for this case. As a result, we have that V̇ (θ) < 0 for θ /∈ Θ satisfying Lθ = L∗ and κL∗ <

γ −∑

j<L∗ πj.
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We have analyzed all cases for θ /∈ Θ and shown that V̇ (θ) < 0. Also observing that

V̇ (θ) = V (θ) = 0 if and only if θ ∈ Θ, we conclude that Θ is globally asymptotically stable. 2
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