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Abstract

Some event managers and ticket resellers offer call options under which a customer can

pay a small amount now for the guaranteed option to attend a future sporting event by

paying an additional amount later. We consider the case of tournament options in which the

identity of the two teams playing in a tournament final such as the Super Bowl or the World

Cup final are unknown at the time that options are sold. We develop an approach by which

an event manager can determine the revenue maximizing prices and amounts of advance

tickets and options to sell for a tournament final. We show that, under certain conditions,

offering options will increase expected revenue for the event and can increase social welfare.

We present a numerical application of our approach to the 2012 Super Bowl.

1 Introduction

The World Cup final, the Super Bowl, and the final game of the NCAA Basketball Tournament

in the United States (a.k.a. “March Madness”) are among the most popular sporting events

in the world. Typically, demand exceeds supply for the tickets for these events, even when the

tickets cost hundreds of dollars. However, since these events are the final games of a tournament,

the identities of the two teams who will be facing each other are typically not known until shortly

before the event. For example, the identity of the two teams who faced each other in the 2010

World Cup final was determined only after the completion of the two semi-final games, five days

prior to the final. Yet, tickets for the World Cup Final are offered for sale many months in

advance. While there may be many fans who are eager to attend the final game no matter who

plays, many fans would only be interested in attending if their favored team – say Germany

– were playing in the final. These fans face a dilemma. If they purchase an advanced ticket,

and Germany does not advance to the final, then they have potentially wasted the price of the

ticket. On the other hand, tickets are likely to be sold out well before it is known who will

be playing in the finals, so if they wait, they may be unable to attend at all. In response to
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this dilemma, some sporting events have begun to offer “ticket options” in which a fan can pay

a small amount up front for the right to purchase a seat later once the identity of the teams

playing is known. Essentially, this is a call option by which the fan can limit her cost should her

team not make the final while guaranteeing a seat if her team does make the final. In this paper,

we address the revenue management problem faced by the event manager of a tournament final

who has the opportunity to offer options for the final. We examine when it is most profitable

to offer options to consumers and how the manager should set prices and availabilities for both

the advance tickets and the options. We also address the social welfare implications of offering

options.

Over the past five years, a number of events and third-parties have begun to offer call options

for sporting event tickets. For example, the Rose Bowl is an annual post-season event in which

two American college football teams are chosen to play against each other based on their records

during the regular season. The identity of the teams playing is not known until a few weeks prior

to the event, however, the Rose Bowl sells tickets many months in advance. In addition to general

“advance tickets”, the Rose Bowl also sells “Team Specific Reservations”. As described on

the Rose Bowl’s web-site (http://teamreserve.tournamentofroses.com/markets/sports/college-

fb/event/2011-rose-bowl):

One Team Specific Ticket Reservation guarantees one face value ticket if your

team makes it to the 2011 Rose Bowl. Face value cost is a charge over and above

the price you pay for your Team Specific Ticket Reservation. If your team doesn’t

make it to the Game, there are no refunds for your purchased Team Specific Ticket

Reservations, and tickets will not be provided.

Offering ticket options has become so popular that there is a software company, TTR that

specializes in selling Internet platforms to teams and events that wish to offer options. In

addition, at least one web site, www.OptionIT.com offers options for a variety of sporting events.

While options can be offered for any sporting event, in this paper, we consider the case of

tournament options, which are sold for a future event in which the two opponents who will face

each other are ex ante unknown. We assume that there are potential customers – “fans” – whose

utility of attending the game is dependent upon whether or not their favored team is playing. In

this case, the tournament option enables a fan to hedge against the possibility that her favored

team is not selected to play in the game of interest – e.g. the World Cup final.

While we derive results that are applicable to more general tournament structures, we pay

particular attention to dyadic tournaments. In a dyadic tournament, the teams can always be

partitioned into two sets, T1 and T2 so that the final will feature a team from T1 facing a team

in T2. The most common example of a dyadic tournament is a single-elimination tournament

in which 2n teams play each other at each stage with 1/2 of the teams being eliminated until

the last remaining two teams play in the final. Another example of a dyadic tournament occurs
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when the winners of two different leagues are chosen to play each other. As an example, prior

to 1988, the Rose Bowl featured the Pac-10 Conference champion against the Big-10 Conference

champion. There are also dyadic tournaments such as those used by the Super Bowl and the

World Cup that combine round-robin and single-elimination structures.

1.1 Literature Review

Research on the use of options for sports events is very scarce. The first attempt to analyze

such options was by Sainam, Balasubramanian and Bayus (2009). The authors devise a simple

analytical model to evaluate the benefits of offering options to sports event organizers. They

show that organizers can potentially increase their profits by offering options to consumers in

addition to advance tickets. The authors also conduct a small numerical study to support their

theoretical findings. However, they do not address the problem of pricing and selling such

options.

This paper addresses a particular case of the classic revenue management problem of pric-

ing and managing constrained capacity to maximize expected revenue in the face of uncertain

demand. Overviews of revenue management can be found in Talluri and van Ryzin (2004a) and

Phillips (2005). While the revenue management literature is vast, there has been relatively little

research considering the specific application of revenue management to sporting events. Barlow

(2000) discusses the application of revenue management to Birmingham FC, an English Premier

League soccer team. Chapter 5 of Phillips (2005) discusses some pricing approaches used by

baseball teams and Phillips et. al. (2006) describe a software system for revenue management

applicable to sporting events. Duran and Swann (2007) and Drake et. al. (2008) consider the

optimal time to switch from offering bundles (e.g. season tickets) to individual tickets for sports

and entertainment industries. None of these works address the use of options.

In the absence of discounting, a consumer call option for a future service is equivalent to a

partially refundable ticket. Gallego and Sahin (2010) show how such partially refundable tickets

can increase revenue relative to either fully refundable or non-refundable tickets and that they

can be used to allocate surplus between consumers and capacity providers. They show that

offering an option wherein an initial payment of p gives the option of purchasing a service for

an additional payment x at a later date can provide additional revenue for sellers. Gallego and

Stefanescu (2011) discuss this as one of several “service engineering” approaches that sellers can

use to increase profitability. The same result holds for a consumer call option in the case when

the identity of the teams is known ex ante. Our work extends their work by incorporating the

correlation structure on ex post customer utilities imposed by the structure of the tournament.
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1.2 Overview

§2 describes how the tournament and consumer demand is modeled. To develop some intuition,

§3 introduces the pricing problems for advance tickets and options. §3.1 analyzes the problem

of pricing advance tickets when no options are offered. Afterwards, the options pricing problem

is defined in §3.2. A dynamic programming formulation of the problem is given in §3.3 and the

CDLP approximation of that formulation is given in §3.4. In §3.5 we introduce an equivalent

formulation of the CDLP, specific to our setting, in which the number of variables and constraints

increase linearly with respect to number of teams in our model. In §4 we give some important

theoretical results when we have symmetry in the tournament, in other words, when the teams

participating the event are identical. §5 explains how offering options to consumers affects their

surplus. An important extension is given in §6 where we analyze how to inhibit a third party

from taking advantage of prices to obtain a risk-free profit. Results of numerical experiments

are given in §7. Finally, §8 concludes with some final remarks.

2 Model

We consider a tournament with N(N ≥ 3) teams, where there is uncertainty about the finalists.

We address the problem of pricing and management of tickets and options for the final game. The

event is held in a venue with a capacity of C seats of uniform quality. Sales are allowed during

a finite horizon T that ends when the tournament starts. Notice that from the organizer’s point

of view seats are perishable assets, that is, unsold seats will not be of value after the tournament

starts since they cannot be sold anymore.

T denotes the set of possible combinations of teams that might advance to the finals. For

example, in the case where any combination of teams may play in the final game, we have

T = {{i, j} : 1 ≤ i < j ≤ N}. In the case of a single-elimination tournament, teams may be

divided in two groups, denoted by T1 = {1, . . . , N/2} and T2 = {N/2 + 1, . . . , N}, in such a

way that the winner of each group advances to the final game. In this case the space of future

outcomes is T = T1 × T2.

The organizer offers N + 1 different products for the event: advance tickets, denoted by A

and options for each team i, denoted by Oi. Advance tickets are paid in advance at a price pa

and guarantee a seat at the match. We assume that all advance tickets are priced uniformly.

An option Oi for team i is purchased at a price pio, and confers the buyer a right to exercise and

purchase the underlying ticket at a strike price pie.

The organizer is a monopolist and can influence demand by varying the price. The organizer

faces the problem of pricing the products, and determining the number of products of each

type to offer so as to maximize her expected revenue. A common practice in sporting events

is that prices are announced in advance, and the promoter commits to those prices throughout
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Figure 1: Sales horizon and actions involved in each period.

the horizon. We adhere to that static pricing practice in our model. However, the organizer

does not commit in advance to allocate a fixed number of seats for each product. Thus, she can

dynamically react to demand by changing the set of products offered at each point in time.

The organizer is assumed to be risk-neutral, and no discounting is performed. All costs

incurred by the organizer are assumed to be sunk, so that there is no marginal cost for additional

tickets sold. Hence, the organizer maximizes its expected revenue. Additionally, no overbooking

is allowed.

The timing of the events is as follows. First, the organizer announces the advance ticket’s

price, and the options’ premium and strike prices for each team. Then, the box office opens, and

advance tickets are sold at a price pa, and options at a price pio for each team i. The sales horizon

concludes when the tournament starts. At this point no more tickets are sold. Afterwards the

tournament is played out, and the two teams playing in the final are revealed. At this point the

holders of options for the finalists decide whether to exercise their rights and redeem their seats

at their respective strike prices. Finally, the final game is played and the fans attend the event.

Figure 1 illustrates the timing of the events.

A probability distribution {qs}s∈T for every possible set of outcome is assumed to be com-

mon knowledge and invariant throughout the sales horizon. The actual probability of team i

advancing to the final is qi =
∑

s∈T :i∈s q
s. Since we sell tickets and options before the tourna-

ment starts, we only require the probabilities to be invariant before the games start. In addition,

tournament participants’ characteristics such as past performance and injury status are gener-

ally common knowledge. This information is used to calculate the betting odds which are also

available to the public, and these in turn can be used to calculate {qs}s∈T . Thus, our common

knowledge assumption regarding probabilities is realistic.

A critical assumption of our model is that tickets and options are not transferrable. This

can be enforced, for instance, by demanding some proof of identity at the entry gate. Non-

transferability precludes the existence of a secondary market for tickets, that is, tickets cannot

be resold and they can only be purchased from the organizer. This assumption, albeit unrealistic,

simplifies the analysis. Later we discuss how this assumption can be relaxed.

Now, let us examine the consumers’ choice behavior under the assumption that the fans are
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risk-neutral and utility maximizing. The market is segmented with respect to team preference,

with N different segments corresponding to each team. We refer to consumers within segment

i as fans of team i. In our model demand is stochastic and price sensitive, with customers

arriving according to independent Poisson processes with intensity λi for segment i. Each

consumer requests at most one available product.

A fan of team i has two sources of utility, (i) attending a final game with his favorite team

playing, and (ii) attending the event with any other team playing. A fan is characterized by

his private valuation for attending his preferred team’s game, denoted by V . Valuations are

random and drawn independently from a distribution with c.d.f F iv(·). We assume that F iv(·) is

time-homogenous, and that fans do not update their valuations with time. As a result, expected

utilities of the possible alternatives remain constant, and the fans do not switch decisions, so

there are no cancelations or no-shows. When his preferred team is not playing, the fan obtains

only a fraction `i ∈ [0, 1] of his original valuation, and his total value for attending the event is

`iV . When `i = 1, fans are indifferent to whether their preferred team is playing or not. In this

case the valuation is mostly derived from attending a game. When `i is to close zero, fans have

a strong preference towards their team, and are willing to attend the game only if their team is

playing. We refer to `i as the “love of the game”. All `, Fv(·), and λ are common knowledge.

At the moment of purchase, a fan of team i has three choices, (i) buy an advance ticket, (ii)

buy an option for his preferred team, or (iii) not purchase anything. The first choice, buying an

advance ticket A, requires the payment of the advance ticket price pa. Then, with probability qi

the fan expects to get a value of V from seeing his team in the final, and with probability 1− qi

she expects to get a value of `iV when his favorite team is not playing. Hence, the fan’s expected

utility for product A given a valuation of V , denoted by U ia(V ), is U ia(V ) = (qi+(1−qi)`i)V −pa.
The second choice, buying the option Oi, requires the payment of the premium price pio at the

moment of purchase. Notice that since valuations are not updated over time, once a fan buys

an option he will always exercise if his team makes the final. Hence, with probability qi his

preferred team advances to the final, and she exercises by paying the strike price pie and extracts

a value V in return. The expected utility for product Oi given a valuation of V , denoted by

U io(V ), is U io(V ) = qiV − (pio + qipie). Finally, the utility of no purchase is set to Un = 0. Table

1 summarizes the expenditures, values and expected utilities related to each decision.

Under our assumptions, a fan makes the decision that maximizes his expected utility. The

actual decision, however, depends on the availability of advance tickets and options at the

moment of arrival to the box office. For instance, assume that a fan arrives and finds both an

advance ticket and an option available for purchase. If both of them provide positive utility,

then the fan will choose the product that maximizes her expected utility. However, if the utility

maximizing product was not available, then the fan will choose the other one.

We note that we are considering team-specific options, that is, a fan can exercise his options

6



Decision Pays Value Ex. Utility

n: don’t buy 0 0 0

a: buy A pa
V w.p. qi

(qi + (1− qi)`i)V − pa
`iV w.p. 1− qi

o: buy Oi
pio + pie w.p. qi V w.p. qi

qiV − (pio + qipie)
pio w.p. 1− qi 0 w.p. 1− qi

Table 1: Expenditures, values and expected utilities related to each decision.

only if his team advances to the final. This is different from a general option that could be

exercised no matter which teams advance to the final. Pricing and capacity management of

general options are addressed in Gallego and Sahin (2010).

Let us now address the problem of characterizing the demand rate of every product subject

to a given set of offered products. We partition the space of valuations for each market segment

into five disjoint sets as shown in Table 2. Iixyz denotes the set of valuations for which decision x

is the most preferred, y is the second most preferred, and z is the least preferred for segment i.

For example, Iiaon corresponds to the set of valuations where an advance ticket is the most highly

preferred product, an option is the second most highly preferred product and buying nothing is

the least preferred choice for segment i. The linearity of the expected utilities implies that these

sets are intervals of R+. Figure 2 illustrates the expected utility for the three choices versus

the realized value of V for the particular market segment i, and the corresponding valuation

intervals. Observe that depending on prices and problem parameters, this graph can take two

forms, either Iin ∪ Iion ∪ Iioan ∪ Iiaon = R+ (the first graph) or Iin ∪ Iian ∪ Iiaon = R+ (the second

graph).

Decision Priorities Valuation Sets

n {V : U ia(V ) ≤ 0, U io(V ) ≤ 0}
on {V : U io(V ) ≥ 0 ≥ U ia(V )}
an {V : U ia(V ) ≥ 0 ≥ U io(V )}
oan {V : U ia(V ) ≥ U io(V ) ≥ 0}
aon {V : U io(V ) ≥ U ia(V ) ≥ 0}

Table 2: Decision priorities and corresponding valuation sets

Using the distribution of valuations in the population, the organizer can compute the proba-

bility that the private valuation of an arriving customer of team i belongs to a particular interval.

The next proposition gives a simple characterization of these probabilities in terms of prices and

the model primitives.
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Figure 2: Graphs showing expected surplus for the three choices. The horizontal axis is divided

in segments matching each decision. For instance, if V falls in the segment oan the fan would

buy an option, and else she would buy an advance ticket.

Proposition 1. The decision priority probabilities are

πin = P{V ∈ Iin} = F iv(min(c, b)),

πion = P{V ∈ Iion} = (F iv(c)− F iv(b))+,

πian = P{V ∈ Iian} = (F iv(b)− F iv(c))+,

πioan = P{V ∈ Iioan} = (F iv(a)− F iv(c))+,

πiaon = P{V ∈ Iiaon} = 1− F iv(max(a, b)),

where a = pa−(po+qpe)
(1−q)` , b = 1

q (po + qpe), and c = pa
q+(1−q)` .

Now we turn to the problem of determining the demand rate for each product when the

organizer offers only a subset S ⊆ S ≡ {A,O1, . . . , ON} of the available products. Under our

model the instantaneous arrival rate of fans of team i purchasing advance tickets when offering

S ⊆ S, denoted by λia(S), is

λia(S) = λi1{A∈S}(π
i
an + πiaon + 1{Oi /∈S}π

i
oan). (1)

The arrival rate for advance ticket purchases is composed of three terms. The first term accounts

for fans that are only willing to buy those tickets. The second term accounts for fans that are

willing to buy the advance tickets, but when they are no longer available will buy the options as

a second choice. Finally, the third term considers fans that prefer options as their first choice,

but may end up buying advance tickets when they are not available. The aggregate arrival rate

for advance ticket purchases when offering subset S is λa(S) =
∑N

i=1 λ
i
a(S).
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Similarly, the arrival rate of fans of team i buying options when offering S, denoted by λio(S),

is

λio(S) = λi1{Oi∈S}(π
i
on + πioan + 1{A/∈S}π

i
aon). (2)

Finally, the arrival rate of fans that decide not to buy anything at the ticket office when offering

S, denoted by λn(S), is

λn(S) =
N∑
i=1

λi
(
πin + 1{A/∈S}π

i
an + 1{Oi /∈S}π

i
on + 1{A/∈S,Oi /∈S}(π

i
aon + πioan)

)
. (3)

Notice that it must be the case that λa(S) +
∑N

i=1 λ
i
o(S) + λn(S) = λ =

∑N
i=1 λ

i for all S ⊆ S.

3 Pricing Problem

3.1 Advance Ticket Pricing Problem

To develop some insight, we first consider the problem where no options are offered, and only

advance tickets are sold. In this case the organizer’s problem is to find the price that maximizes

the expected revenue under the constraint that at most C tickets can be sold. The maximum

expected profit R∗a for the organizer is:

R∗a ≡ max
pa

E [pa min{C,Da(pa)}] (4)

where Da(pa) is the demand for advance tickets under price pa. Da(pa) is a Poisson random

variable with mean Tλa(pa) where λa(pa) denotes the arrival intensity of advance ticket purchase

requests for all teams’ fans under price pa. In turn, using (1) the arrival intensity is

λa(pa) ≡
N∑
i=1

λiP{U ia(V ) ≥ 0} =
N∑
i=1

λiF̄v

(
pa

qi + (1− qi)`i

)
(5)

The exact solution to problem (4) can be given in terms of the elasticity of demand with

respect to price as inBitran and Caldentey (2003). However, we do not follow that path here.

Instead, we approximate the exact solution using the deterministic version of the model (or

certainty equivalent policy) where random variables are replaced by their means, and discrete

quantities are assumed to be continuous. The resulting solution, which is often easier to compute,

is asymptotically optimal to the exact problem.

The maximum revenue under the deterministic approximation, denoted RDa , is

RDa = max
pa
{pa min{C, Tλa(pa)} . (6)

Let us make the following definitions before characterizing the optimal solution to the determin-

istic approximation. The run-out rate, given by λ0
a = C/T , is defined to be the rate of advance
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ticket sales at which the organizer sells all of its seats uniformly over the time horizon T . The

corresponding run-out price, denoted by p0
a, is the price which enables us to achieve the run-out

sales rate and is obtained from λa(p
0
a) = C/T . Also, let λ∗a be the least maximizer of the revenue

rate function λapa(λa). Using this notation, Gallego and van Ryzin (1995) showed that

RDa = T min(p∗aλ
∗
a, p

0
aλ

0
a).

Hence, if the capacity of the stadium is large (C > λ∗aT ), the organizer ignores the problem of

running out of seats and prices at the level that maximizes the revenue rate. In this case the

organizer ends with C − λ∗aT unsold seats. If the seats are scarce (C < λ∗aT ), the organizer can

afford to price higher, and it indeed prices at the highest level that still enables it to sell all the

items. Notice that in the final game of a tournament it is likely that the number of seats will

be scarce. Thus, in most sports events the second situation prevails. As advance ticket prices

increase fans become more sensitive to the finalists. So, intuitively we expect options to be more

attractive when seats are scarce. Indeed, we will later show that this is the case.

Let us now discuss the asymptotic optimality of the deterministic approximation using the

following equation obtained from Gallego and van Ryzin (1995)

1 ≥ R∗a
RDa
≥ 1− 1

2
√

min(C, λ∗aT )
. (7)

From equation (7) we see that the fluid model approximation is asymptotically optimal in two

limiting cases: (i) the capacity of the stadium is large (C � 1) and there is plenty of time to

sell them (C < λ∗aT ); or (ii) there is the potential for a large number of sales at the revenue

maximizing price (λ∗aT � 1), and there are enough seats to satisfy this potential demand

(C > λ∗aT ). Thus, we see that if the volume of expected sales is large, the heuristics perform

quite well.

3.2 Advance Ticket and Options Pricing Problem

We now consider both advance ticket and options’ pricing problem faced by the organizer. Recall

that prices are determined in advance, disclosed at the beginning, and remain constant during

the sales horizon. However, the number of seats allocated to each product are not disclosed in

advance, and thus may be used by the organizer to adjust her strategy as sales realize. The

organizer may dynamically react to the demand by playing with the availability of the products,

and thus control the number of tickets and options sold.

The sequential nature of the decisions involved suggests a partition of the problem into a

two-stage optimization problem. Decision variables are prices in the first stage and product

availability in the second stage. To elaborate, in the first stage the organizer looks for the set

of prices p = (pa, po, pe) that maximize the optimal value of the second-stage problem, which

is the maximum expected revenue that can be extracted under fixed prices p. This partition is
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well-defined because prices are determined before the demand is realized, and are independent of

the actual realization of the random data. The optimal value of the first-stage problem, denoted

by R∗, is

R∗ ≡ max
pa,po,pe

R∗(p)

s.t. pa ≥ 0, po ≥ 0, pe ≥ 0,

where we denote by R∗(p) the optimal value of the second-stage problem.

The second-stage problem takes prices as given, and optimizes the expected revenue by

controlling the subset of products that is offered at each point in time. Notice that the second-

stage decision variable is a control policy over the offer sets, which is determined as the demand

realizes. We refer to this second-stage problem as the Capacity Allocation Problem. Next, we

turn to the problem of determining the optimal value of the second-stage problem under fixed

prices p.

Once prices are fixed, the organizer attempts to maximize her revenue by implementing

adaptive non-anticipating policies that offer some subset S ⊆ S ≡ {A,O1, . . . , ON} of the

available products at each point in time. A control policy µ maps states of the system to

control actions, i.e. the set of offered products. We denote by Sµ(t) the subset of products

offered under policy µ at time t. Let Xa(Sµ(t)) be the total number of advance tickets sold

up to time t. Under our assumptions, Xa(Sµ(t)) is a non-homogeneous Poisson process with

arrival intensity λa(Sµ(t)) as defined in (1). The organizer can thus affect the arrival intensity

of purchase requests by controlling the offer set Sµ(t). An advance ticket is sold at time t if

dXa(Sµ(t)) = 1. Similarly, let Xi
o(Sµ(t)) be the number of options sold for team i up to time t,

and dXi
o(Sµ(t)) = 1 when an option is sold at time t. Again, Xi

o(Sµ(t)) is a non-homogeneous

Poisson process with arrival intensity λio(Sµ(t)) as defined in (2). With some abuse of notation,

we define by Xa = Xa(Sµ(T )) and Xi
o = Xi

o(Sµ(T )) to be the total number of advance tickets

and options sold respectively.

The organizer seeks to maximize her expected revenue, which is given by

E

[
Xapa +

N∑
i=1

Xi
o(p

i
o + qipie)

]
,

where the first term accounts for the revenue from advance ticket sales and the second term

accounts for the revenue from options under the assumption that all options are exercised which

was previously discussed in §2. Notice that because prices remain constant during the time

horizon, the revenue depends on the total number of tickets sold. Moreover, as a result of the

linearity of expectation, the revenue depends only on the expected number of tickets sold.

The second-stage or Capacity Allocation Problem can be formalized as the following stochas-
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tic control problem similar to the one given in Liu and van Ryzin (2008):

R∗(p) = max
µ∈M

E

[
paXa +

N∑
i=1

(pio + qipie)X
i
o

]

s.t. Xa =

∫ T

0
dXa(Sµ(t)), (8)

Xi
o =

∫ T

0
dXi

o(Sµ(t)), ∀i = 1, . . . , N,

Xa +Xi
o +Xj

o ≤ C, (a.s.) ∀{i, j} ∈ T .

where M is the set of all adaptive non-anticipating policies, and R∗(p) is the expected revenue

under the optimal policy µ∗. In the next section we reformulate (8) as a dynamic programming

problem.

3.3 Dynamic Programming Formulation

We informally derive the Hamilton-Jacobi-Bellman equation for the second-stage problem by

considering a small time interval δt. We define the value function V (t,Xa, Xo) as the maximum

expected revenue that can be extracted when t time units are remaining, and Xa number of

advance tickets and Xo number of options have been sold. Hence, the goal is to find R∗(p) =

V (T, 0, 0). Applying the Principle of Optimality,

V (t,Xa, Xo) = max
S⊆S

{
λa(S)δt (pa + V (t− δt,Xa + 1, Xo))

+
∑
i∈So

λio(S)δt
(
pio + qipie + V (t− δt,Xa, Xo + ei)

)
+ (λn(S)δt+ 1− λδt)V (t− δt,Xa, Xo)

}
+ o(δt).

Rearranging terms and letting δt→ 0 we obtain the Hamilton-Jacobi-Bellman (HJB) equation:

∂V (t,Xa, Xo)

∂t
= max

S⊆S

{
λa(S) (pa + V (t,Xa + 1, Xo))

+
∑
i∈So

λio(S)
(
pio + qipie + V (t,Xa, Xo + ei)

)
+ (λn(S)− λ)V (t,Xa, Xo)

}
,

with boundary conditions

V (0, Xa, Xo) = 0 for all Xa, Xo,

V (t,Xa, Xo) = −∞ if Xa +Xi
o +Xj

o > C for some outcome {i, j} ∈ T .

Unfortunately, the resulting HJB equation is a partial differential equation that is in most

cases very difficult to solve. The next section gives an asymptotically optimal deterministic

approximation of (8) which is much easier to solve.
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3.4 Choice-based Deterministic Linear Programming Model

In this section we follow Gallego et. al. (2004), and solve a deterministic approximation of (8) in

which random variables are replaced by their means and quantities are assumed to be continuous.

We denote by ra = pa the expected revenue of selling an advance ticket, and by rio = pio + qipie

the expected revenue of selling an option of team i. Under this approximation, when a subset

of products S is offered, advanced tickets (resp. options for team i) are purchased at a rate of

λa(S) (resp. λio(S)). Since ra (resp. rio) is the expected revenue from the sale of an advance

ticket (resp. option for team i), the rate of revenue generated from the sales of advance tickets

is raλa(S) (resp. rioλ
i
o(S) for options of team i). Additionally, because demand is deterministic

and the choice probabilities are time homogeneous, we only care about the total amount of

time each subset of products is offered and in the order in which they are offered. Thus, we

only need to consider the amount of time each subset S is offered, denoted by t(S), as the

decision variables. Under this notation, the number of advance tickets sold is
∑

S⊆S t(S)λa(S),

while the number options sold for team i is
∑

S⊆S t(S)λio(S). Finally, the total revenue of the

organizer is
∑

S⊆S r(S)t(S), where r(S) = rTλ(S) is the revenue rate when subset S is offered,

and r =
(
ra, r

1
o , . . . , r

N
o

)
is the vector of expected revenues.

Thus, we obtain the following choice-based deterministic LP model (CDLP):

RCDLP (p) ≡ max
t(S)

∑
S⊆S

r(S)t(S) (9)

s.t.
∑
S⊆S

t(S) = T,

∑
S⊆S

t(S)
(
λa(S) + λio(S) + λjo(S)

)
≤ C, ∀{i, j} ∈ T (10)

t(S) ≥ 0 ∀S ⊆ S

where RCDLP (p) denotes the maximum revenue of the CDLP under prices p. Notice that, no

matter which teams advance to the final, the maximum number of options sold is C −Xa.

Both Liu and van Ryzin (2008) and Gallego et. al. (2004) showed that the CDLP provides

an upper bound to the stochastic program (8) and that this bound is asymptotically tight as

the capacity and time horizon are scaled, thus proving the asymptotical optimally of the CDLP.

For completeness we state those results without proof.

Proposition 2. The CDLP provides an upper bound on the stochastic problem:

R∗(p) ≤ RCDLP (p) ∀p ≥ 0

Proposition 3. Let R∗θ(p) the optimal objective of the scaled stochastic problem in capacity θC

and time horizon θT , then:

lim
θ→∞

1

θ
R∗θ(p) = RCDLP (p) ∀p ≥ 0

13



3.5 Efficient Formulation

Since linear program in (9) has one primal variable for each offer subset, it has 2N+1 primal

variables in total. For instance, if the tournament has 32 teams the program would have more

than 8 billion primal variables! Fortunately, by exploiting the structure of our choice model it is

possible to derive an alternative formulation with a linear number of variables and constraints.

Recall that consumers are partitioned into N different market segments, each associated

with a different team. To any given segment i = 1, . . . , N two different products are potentially

offered: (i) advance tickets (A) and (ii) options for the associated team (Oi). We denote by

Si = {A,Oi} the set of products available for market segment i. Demands across segments

are independent, and different segments are only linked through the capacity constraints. Since

each segment has two products, only four offer sets need to be considered. Thus, for each

market segment we only need the following decision variables: (i) the time both advance tickets

and options are offered, denoted by ti
(
{A,Oi}

)
, (ii) the time only advance tickets are offered,

denoted by ti ({A}), (iii) the time only options are offered, denoted by ti
(
{Oi}

)
, and (iv) the

time no product is offered, denoted by ti (∅). Given t(S) ∀S ⊆ S, the value of the new decision

variables can be computed as follows:

ti
(
{A,Oi}

)
≡

∑
S⊆S:A∈S,Oi∈S

t(S), ti ({A}) ≡
∑

S⊆S:A∈S,Oi 6∈S

t(S)

ti
(
{Oi}

)
≡

∑
S⊆S:A 6∈S,Oi∈S

t(S), ti (∅) ≡
∑

S⊆S:A 6∈S,Oi 6∈S

t(S) (11)

Observe that for each segment offer times should sum up to length of the horizon, that is∑
S⊆Si t

i(S) = T . An important observation is that by requiring
∑

S⊆Si\∅ t
i(S) ≤ T we do

not need to keep track of the time in which no product is offered for each segment. What this

requirement tells us is for each segment if the time in which we sell at least one product adds

up to at most the sales horizon T , then we do not need to keep track of the time in which

no product is offered. Additionally, in order for the offer sets to be consistent across market

segments, the total time advance tickets are offered in each segment should be equal, i.e. for

some Ta ≥ 0 it should be the case that ti
(
{A,Oi}

)
+ ti ({A}) = Ta for all i = 1, . . . , N where

Ta denotes the total time advance tickets are offered throughout the sales horizon.

Thus, applying the aforementioned changes we obtain the following market-based determin-
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istic LP (MDLP)

RMDLP (p) ≡ max
ti(S),Ta

N∑
i=1

∑
S⊆Si

ri(S)ti(S) (12)

s.t.
∑
S⊆Si

ti(S) ≤ T ∀i = 1, . . . , N (13)

ti
(
{A,Oi}

)
+ ti ({A}) = Ta ∀i = 1, . . . , N (14)

N∑
k=1

∑
S⊆Sk

tk(S)λka(S)

+
∑
S⊆Si

ti(S)λio(S) +
∑
S⊆Sj

tj(S)λjo(S) ≤ C ∀{i, j} ∈ T (15)

Ta ≥ 0, ti(S) ≥ 0 ∀S ⊆ Si, i = 1, . . . , N,

where ri(S) = paλ
i
a(S) + rioλ

i
o(S) is the revenue rate from market segment i when subset S ⊆ Si

is offered. Notice that the new optimization problem has 3N + 1 variables, which is much less

than the original CDLP, and O(N2) constraints.

The following proposition proves the equivalence between the MDLP and the CDLP.

Proposition 4. The MDLP is equivalent to the CDLP, i.e. RMDLP (p) = RCDLP (p) for all

prices p ≥ 0.

Proof. We first show that RCDLP (p) ≤ RMDLP (p) by showing that any solution of the CDLP

can be used to construct a feasible solution to the MDLP with the same objective value. Let

{t(S)}S⊆S be a feasible solution to the CDLP. First, using the decision variables given by (11),

the total number of advance tickets sold can be written as

Xa =
∑
S⊆S

t(S)λa(S) =
∑
S⊆S

t(S)
N∑
i=1

λi1{A∈S}(π
i
an + πiaon + 1{Oi /∈S}π

i
oan)

=
N∑
i=1

( ∑
S3A,S3Oi

t(S)
)
λi(πian + πiaon) +

( ∑
S3A,S 63Oi

t(S)
)
λi(πian + πiaon + πioan)

=

N∑
i=1

ti
(
{A,Oi}

)
λia
(
{A,Oi}

)
+ ti ({A})λia ({A}) =

N∑
i=1

∑
S⊆Si

ti(S)λia(S), (16)

where the second equality follows from (1), the third from exchanging summations, and the

fourth from (1) again. Similarly, the number of option sold in market segment i can be written
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as

Xi
o =

∑
S⊆S

t(S)λio(S) =
∑
S⊆S

t(S)λi1{Oi∈S}
(
πion + πioan + 1{A/∈S}π

i
aon

)
=
( ∑
S3A,S3Oi

t(S)
)
λi(πion + πioan) +

( ∑
S 63A,S3Oi

t(S)
)
λi(πion + πioan + πiaon)

= ti
(
{A,Oi}

)
λio
(
{A,Oi}

)
+ ti ({A})λio ({A}) =

∑
S⊆Si

ti(S)λio(S), (17)

where the second equality follows from (2), the third from exchanging summations, and the

fourth from (2) again. Thus, the capacity constraint (15) is verified.

Second, the non-negativity constrains and the time-horizon length constraints (13) follow

trivially. Next, for the advance selling market consistency constraints (14) notice that for all

i = 1, . . . , N we have that

ti
(
{A,Oi}

)
+ ti ({A}) =

∑
S⊆S:A∈S,Oi∈S

t(S) +
∑

S⊆S:A∈S,Oi 6∈S

t(S) =
∑

S⊆S:A∈S
t(S) = Ta.

Thus, advance tickets are offered the same amount of time in all markets.

Finally, the next string of equalities show that both solutions attain the same objective value

∑
S⊆S

r(S)t(S) =
∑
S⊆S

rTλ(S)t(S) =
∑
S⊆S

N∑
i=1

(
raλ

i
a(S) + rioλ

i
o(S)

)
t(S)

=
N∑
i=1

∑
S⊆Si

raλ
i
a(S)ti(S) + rioλ

i
o(S)ti(S) =

N∑
i=1

∑
S⊆Si

ri(S)ti(S),

where the third equality follows from (16) and (17).

Next, we show that RCDLP (p) ≥ RMDLP (p) by showing that any solution of the MDLP

can be used to construct a feasible solution to the CDLP with the same objective value. Let{
ti(S)

}
S⊆Si,i=1,...,N

be a feasible solution to the MDLP. In the following we give a simple algo-

rithm to compute a feasible solution {t(S)}S⊆S for the CDLP.

First, we deal with offer sets containing advance tickets, and compute t(S) for all S ∈ S such

that A ∈ S. Let [i]i=1,...,N be the permutation in which teams are sorted in increasing order with

respect to ti
(
{A,Oi}

)
, i.e. t[i]

(
{A,O[i]}

)
≤ t[i+1]

(
{A,O[i+1]}

)
. Consider the following offer sets

S[i] =
{
A,O[i], O[i+1], . . . , O[N ]

}
∀i = 1, . . . , N

S[N+1] = {A}

and associated times t
(
S[i]
)

= t[i]
(
{A,O[i]}

)
− t[i−1]

(
{A,O[i−1]}

)
for all i = 1, . . . , N + 1,

with t[0]
(
{A,O[0]}

)
= 0, and t[N+1]

(
{A,O[N+1]}

)
= Ta. Since teams are sorted with respect

to ti
(
{A,Oi}

)
, then t

(
S[i]
)
≥ 0. Notice that this construction is valid because the market

consistency constraints (14) guarantee that advance tickets are offered the same amount of time

in all markets. Figure 3 sketches a graphical representation of the algorithm.
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S[1] =
{
A,O[1], O[2], . . . , O[N ]

}
S[2] =

{
A,O[2], . . . , O[N ]

}...

S[N ] =
{
A,O[N ]

}
S[N+1] = {A}

{ A,O
[1
]}

{A
}

[1]

{ A,O
[2
]}

{A
}

[2] . . .

{ A,O
[N

]}
{A
}

[N ]
Teams

ti(S) S

Figure 3: Computing a feasible solution for the CDLP (showed on the right) from a feasible

solution from the MDLP (on the left) in the case of offer sets containing advance tickets.

Next, we look at the intuition behind this construction. Although the order is not important,

consider a solution for the CDLP that offers the sets S[i] in sequential order; it starts with S[1],

then S[2], and so forth until S[N+1]. Hence, at first it offers all products, then team 1’s options

are removed, then team 2’s options are removed, and so forth until the end when only advance

tickets are offered. Hence, the optimal policy has a nested structure.

Finally, a similar argument holds for offer sets not containing advance tickets.

4 The Symmetric Case

In this section we consider the symmetric problem, i.e. the case in which all teams have the same

probability of advancing to the final and same arrival rates. Also, we assume that valuations are

i.i.d. across teams and that the love of the game is constant throughout the population. These

assumptions allow us to theoretically characterize the benefits of introducing options. First, we

identify several conditions in which offering options is beneficial to the organizer. Second, we

provide an asymptotic analysis for the case where the number of teams is large. These analysis

will be based on the deterministic approximation of the problem.

Before we start our analysis, let us examine how the symmetry assumption affects the basic

problem structure. In a symmetric problem with N teams, any given team has a probability

q = 2
N of advancing to the final game. The arrival rate of fans of each team is λ

N , where λ

denotes the aggregate arrival rate.

Let us first consider the advance ticket pricing problem under the symmetry assumption.

Using (5) the total arrival intensity under price pa is now

λa(pa) = λF̄v

(
pa

q + (1− q)`

)
.
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Furthermore, we assume that the c.d.f. of V is continuous and strictly increasing. Thus, there

is a one-to-one correspondence between prices and arrival rates, and the function λa(pa) has an

inverse pa(λa) given by

pa(λa) = (q + (1− q)`) F̄v−1
(
λa
λ

)
.

In this setting it is analytically convenient to work with intensities instead of prices as the

decision variables. We assume the value rate

v(λa) = λaF̄v
−1
(
λa
λ

)
to be regular and differentiable. Regularity implies that v is continuous, bounded, concave,

satisfies limλa→0 v(λa) = 0, and has a least maximizer λ∗a.

Let us give some definitions before we obtain a sufficient condition for the concavity of

the value rate. We denote by h(x) = fv(x)/F̄v(x) the failure rate, and by g(x) = xh(x) the

generalized failure rate of V . The random variable V is said to have an increasing failure rate

(IFR) if h(x) is non-decreasing. Similarly, V has an increasing generalized failure rate (IGFR)

if g(x) is non-decreasing. IFR implies IGFR but the reverse does not hold. The next lemma

shows that strict IFR guarantees the value rate to be strictly concave.

Lemma 1. If the valuation random variable has IFR, then the value rate is strictly concave.

Proof. The derivative of the value rate w.r.t. λa is

dv

dλa
(λa) = F̄v

−1
(λa/λ)− λa

λ

1

fv

(
F̄v
−1

(λa/λ)
) .

Composing the derivative with λa(c) = λF̄v(c) we get(
dv

dλa
◦ λa

)
(c) =

dv

dλa

(
λF̄v(c)

)
= c− F̄v(c)

f(c)
= c− 1

h(c)
.

IFR implies that the composite function is increasing in c. Since λa(c) is decreasing, we conclude

that original derivative is decreasing and v strictly concave.

We recast the problem with the arrival intensity as the decision variable; the promoter

determines a target sales intensity λa and the market determines the price pa(λa) based on

this quantity. So, the deterministic approximation of the advance ticket pricing problem (6)

becomes

RDa = max
λa≥0

Tλapa(λa)

s.t. Tλa ≤ C, λa ≤ λ,

= max
λa≥0

T (q + (1− q)`) v(λa) (18)

s.t. Tλa ≤ C, λa ≤ λ,
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where we have written the objective in terms of the value rate. Thus, we obtain a concave

maximization problem with linear inequality constraints. We denote by RDa (λa) the objective

function of (18).

The advance ticket pricing problem (18) is indeed equivalent to the problem of a monopolistic

seller pricing a zero-cost product with limited capacity. Lariviere (2006) and van den Berg

(2006) give sufficient conditions for the uniqueness of the optimal solution and the concavity of

the objective. The weaker condition of strict IGFR is sufficient for all the results that follow in

this section.

Next, we turn to the deterministic approximation of the advance ticket and options pricing

problem. We look for symmetric solutions in which we charge the same expected price ro(po+qpe)

to all teams, and hence sell the same amount of options to all teams. At this point it should be

noted that it is optimal to price products so that we never run out of tickets before the end of

the sales horizon. Else, we leave some unsatisfied demand that can be captured by raising prices,

and thus increase the revenue. As a consequence, we do not need to control the availability of

the products anymore.

From Proposition 1 the aggregate arrival intensity under prices pa and ro can be computed

as

λa(pa, ro) = λF̄v

(
pa − ro
(1− q)`

)
,

λΣ
o (pa, ro) = λ

[
F̄v

(
ro
q

)
− F̄v

(
pa − ro
(1− q)`

)]
,

where we denote by λΣ
o the aggregate arrival intensity of all consumers buying options. Again,

we work with arrival intensities as decision variables. Fortunately, there is a one-to-one corre-

spondence between prices and arrival rates, and the inverse functions are given by

ro(λa, λ
Σ
o ) = qF̄v

−1
(
λa + λΣ

o

λ

)
,

pa(λa, λ
Σ
o ) = qF̄v

−1
(
λa + λΣ

o

λ

)
+ (1− q)`F̄v−1

(
λa
λ

)
.

Let us now look at the advance ticket and options pricing problem. After the change of

variables, the deterministic approximation of the advance ticket and options pricing problem
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(18) becomes

RDo = max
λa≥0,λΣ

o ≥0
RDo (λa, λ

Σ
o ) = Tλapa(λa, λ

Σ
o ) + TλΣ

o ro(λa, λ
Σ
o )

s.t. Tλa + T
2

N
λΣ
o ≤ C,

λa + λΣ
o ≤ λ,

= max
λa≥0,λΣ

o ≥0
T (1− q)`v(λa) + Tqv(λa + λΣ

o ) (19)

s.t. Tλa + T
2

N
λΣ
o ≤ C, (20)

λa + λΣ
o ≤ λ,

where we have written the objective in terms of the value rate similar to the advance ticket

pricing problem. Since the objective function is the linear combination of an affine function and

a concave function, it is concave (see Boyd and Vandenberghe (2004)). Hence, (19) and (20)

represent a concave maximization problem with linear inequality constraints.

We are now in a position to characterize some conditions under which options are beneficial

to the organizer.

Proposition 5. In the symmetric case, when the seats are scarce (C < λ∗aT ) and fans strictly

prefer their own team over any other (` < 1) introducing options increases the revenue of the

organizer (RDo > RDa ). However, when the capacity of the stadium is large (C ≥ λ∗aT ) or fans

are indifferent between any team (` = 1) options do not increase the revenue (RDa ≥ RDo ).

Proof. First, we look at the case where the seats are scarce (C < λ∗aT ). In the advance ticket

pricing problem (18) the organizer can afford to price higher, and prices at the run-out rate

λ0
a = C/T , i.e. the intensity at which all seats are sold over the time horizon. Note that λ0

a is

a constrained global optimum of the advance selling problem, and v′(λ0
a) > 0. Starting from

(λ0
a, 0) in the options pricing problem, we will study the impact in the revenue of increasing the

options’ intensity.

Clearly, (λ0
a, 0) is a feasible solution of (19). Since capacity is binding, to compensate for an

increase in λΣ
o the organizer needs to decrease the intensity of advance tickets. Thus, from (20)

we obtain that dλa
dλΣ

o
= − 2

N = −q. The total derivative of the objective w.r.t. λΣ
o is then

dRDo
dλΣ

o

=
∂RDo
∂λΣ

o

+
∂RDo
∂λa

dλa
dλΣ

o

. (21)

Evaluating (21) at (λ0
a, 0) we obtain

dRDo
dλΣ

o

(λ0
a, 0) = Tqv′(λ0

a)− Tq ((1− q)`+ q) v′(λ0
a)

= Tq(1− q)(1− `)v′(λ0
a) > 0.
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This implies that the current solution can be improved by introducing options.

Second, we consider the case where the capacity of the stadium is large (C ≥ λ∗aT ). In the

advance ticket pricing problem (18) the organizer ignores the problem of running out of seats

and prices according to the revenue maximizer rate λ∗a. Note that λ∗a is an unconstrained global

optimum, and thus v′(λ∗a) = 0. We will show that (λ∗a, 0) is an optimal solution to the options

pricing problem.

Clearly, (λ∗a, 0) is a feasible solution of (19). The gradient of the objective is

∂RDo
∂λa

= T (1− q)`v′(λa) + Tqv′(λa + λΣ
o ),

∂RDo
∂λΣ

o

= Tqv′(λa + λΣ
o ).

Using the fact that v′(λ∗a) = 0, we obtain that the gradient is zero at (λ∗a, 0). Hence, this

solution is an unconstrained local optimum. Finally, concavity of the program implies that any

local optimum is a global optimum. Thus, both problems attain the same objective value, and

RDo = RDa .

Third, we consider the case where fans are indifferent between any team (` = 1). Note that

the objective functions of the advance selling and options pricing problems become RDa (λa) =

Tv(λa), and RDo (λa, λ
Σ
o ) = T (1 − q)v(λa) + Tqv(λa + λΣ

o ) respectively. Let (λa, λ
Σ
o ) be any

feasible solution to (19). We will show λ̃a = λa + qλΣ
o is a feasible solution for (18) with greater

revenue.

Clearly, λ̃a is feasible. Regarding revenues

RDa (λ̃a) = Tv
(
λa + qλΣ

o

)
= Tv

(
(1− q)λa + q(λa + λΣ

o )
)

≥ T (1− q)v(λa) + Tqv(λa + λΣ
o ) = RDo (λa, λ

Σ
o ),

where the inequality follows from concavity of v. Thus, λ̃a always dominates the original solution.

Next, we study the asymptotic behavior of the different pricing schemes as the number of

teams grows to infinity. Notice that this analysis is vacuous when capacity of the stadium is

large, since according to Proposition 5 options do not increase the revenue. Hence, the following

asymptotic analysis holds when seats are scarce.

We show that, when fans obtain a positive surplus from attending a game without their own

team (` > 0), revenue under options pricing converges to the revenue under advance selling as N

grows to infinity. Furthermore, the convergence rate is O
(

1
N

)
. The intuition behind this result

is that, as the number of teams grows, fans are aware that the probability of their own team

reaching the final event decreases. So, in order to keep options attractive for consumers, the

organizer needs to set lower prices, and thus revenues generated by options subside. Because
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fans obtain a positive surplus from attending a game without their own team, as the number of

teams grows, proportionally more consumers choose to buy advance tickets.

Proposition 6. When seats are scarce (C < λ∗aT ) and fans obtain a positive surplus from

attending a game without their own team (` > 0), the revenue under options pricing converges

to the revenue under advance selling as N grows to infinity. Moreover, the convergence rate is

given by

1 ≤ RDo
RDa
≤ 1 +

2

N`

v(λ∗a)

v(λ0
a)
.

Proof. First, observe that since capacity is scarce the optimal solution of the advance ticket

pricing problem (18) is the run-out rate λ0
a = C/T , and it is independent of the number of

teams. Let
{(
λ(N)
a , λ(N)

o

)}
N

be a sequence of optimal solutions to the advance ticket and options

pricing problem (19) indexed by the number of teams. Scarcity of seats together with concavity

guarantee that the capacity constraint (20) is binding at the optimal solution. Since intensities

are bounded from above by λ, this guarantees that limN→∞ λ
(N)
a = λ0

a. As a side note, it is not

necessarily the case that λ(N)
o converges to zero as N goes to infinity.

Second, let us show that the following inequality holds

λ(N)
a ≤ λ0

a ≤ λ(N)
a + λ(N)

o ≤ λ∗a. (22)

The first inequality is a trivial consequence of the capacity constraint (20). For the second

inequality observe that the capacity constraint (20) is binding, and thus λ0
a = λ(N)

a + 2
N λ

(N)
o ≤

λ(N)
a + λ(N)

o . For the third inequality suppose that λ(N)
a + λ(N)

o > λ∗a for some N , and consider

an alternate solution in which the options’ intensity is decreased to λ̃(N)
o = λ∗a − λ

(N)
a . Clearly,

λ̃(N)
o ≥ 0, the new solution satisfies the capacity constraint and the third inequality. Moreover,

RDo
(
λ(N)
a , λ(N)

o

)
= T (1− 2

N
)`v(λ(N)

a ) + T
2

N
v(λ(N)

a + λ(N)
o )

≤ T (1− 2

N
)`v(λ(N)

a ) + T
2

N
v(λ∗a) = RDo

(
λ(N)
a , λ̃(N)

o

)
,

where the first inequality follows since λ∗a is the least maximizer of v. Thus, the new solution is

also optimal. This shows that if the third inequality does not hold for any N , we can construct

a solution
(
λ(N)
a , λ̃(N)

o

)
for which it holds. So, without loss of generality, we can conclude that

the third inequality holds.

Finally, the ratio of optimal revenues can be written as

RDo
(
λ(N)
a , λ(N)

o

)
RDa (λ0

a)
=
T (1− 2

N )`v(λ(N)
a ) + T 2

N v(λ(N)
a + λ(N)

o )

T
[
(1− 2

N )`+ 2
N

]
v(λ0

a)

=
N`− 2`

N`+ 2(1− `)
v(λ(N)

a )

v(λ0
a)

+
2

N`+ 2(1− `)
v(λ(N)

a + λ(N)
o )

v(λ0
a)

≤ v(λ(N)
a )

v(λ0
a)

+
2

N`

v(λ(N)
a + λ(N)

o )

v(λ0
a)

≤ 1 +
2

N`

v(λ∗a)

v(λ0
a)
,
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where the second equation is obtained by algebraic manipulation, the first inequality follows

from bounding the leading factor of the first term by 1 and the leading factor of the second term

by 2
N` , and the second inequality follows from (22) together with the fact that v is non-decreasing

in [0, λ∗a].

In the case where fans obtain zero surplus from attending a game without their own team

(` = 0), the previous discussion no longer holds. Now, options and advance tickets are equivalent

to customers, and they are only interested in one outcome: their own team advancing to the final

game. Because the probability of that outcome converges to zero, the number of sold tickets

converges to zero as well. This observation, combined with the existence of the null price (or

limλa→0 v(λa) = 0), causes the organizer’s revenue to diminish to zero in all pricing schemes as

the number of teams increase. Surprisingly, even though the revenues when only advance tickets

are offered and, when both advance ticket and options are offered converge to zero, they do so

at different rates. The rationale is that when the organizer offers only options each team has

up to C/2 tickets available. Hence, the capacity of the stadium is extended, and for a suitable

large N the organizer may price according to the revenue maximizer rate λ∗a.

Proposition 7. When seats are scarce (C < λ∗aT ) and fans obtain zero surplus from attending

a game without their own team (` = 0), the revenue obtained when both advance tickets and

options are offered strictly dominates the case when only advance tickets are offered. Moreover,

their ratio is given by

RDo
RDa

=
v
(
min

{
λ∗a, λ

0
a
N
2

})
v(λ0

a)

=
v(λ∗a)

v(λ0
a)
> 1 when N ≥ 2

⌈
λ∗a
λ0
a

⌉
.

Proof. If ` = 0 options and advance tickets are equivalent to customers, and customers choose

the product with the lowest price. Thus, we only need to consider the case where the organizer

sells only options the whole time horizon. The options pricing problem is now

RDo = max
λΣ
o ≥0

T
2

N
v(λΣ

o )

s.t. TλΣ
o ≤

N

2
C, λΣ

o ≤ λ.

This problem is similar to the advance selling problem (18) except that capacity is scaled by
N
2 . Scarcity implies that C < λ∗T , and thus the optimal solution is λ(N)

o = min
{
λ∗a, λ

0
a
N
2

}
.

Then, the optimal value is RDo = T 2
N v(min

{
λ∗a, λ

0
a
N
2

}
). Finally, observe that for N ≥ 2

⌈
λ∗a
λ0
a

⌉
the organizer may price according to the revenue maximizer rate λ∗a and RDo = T 2

N v(λ∗a).
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5 Social Efficiency

5.1 General Case

How do the introduction of options affect customers’ surplus? Options allow the fans to hedge

against the risk of watching a team that it is not of their preference. As a consequence, a

larger number of seats will be taken by fans of the teams that are playing in the final. So,

intuitively we expect the introduction of options to increase the total surplus of the fans. In

this section we show how to compute the total consumer surplus of an allocation. We will

see that the surplus can conveniently be expressed in terms of the intersections of the utility

lines as defined in Proposition 1 and the integrated tail of the valuations, which is defined as

Ḡiv(x) = E [(V − x)+] =
∫∞
x F̄ iv(v)dv. In the next section we will characterize some conditions

under which options are beneficial for the consumers in the symmetric case. We will see that

these conditions coincide with the ones we developed previously in Section 4 regarding the

revenue improvement resulting from offering options.

First, consider the surplus rate, which is the instantaneous rate at which surplus is gen-

erated, for team’s i fans who purchase advance tickets. We distinguish whether options are

offered simultaneously or not. In the case when options are not offered, fans purchase ad-

vance tickets when their utility U ia(V ) is non-negative. The arrival rate of such consumers

is λia({A}) = λiP{U ia(V ) ≥ 0}, and their expected utility conditioned on them buying A is

E
[
U ia(V )|U ia(V ) ≥ 0

]
. Hence, the surplus rate is given by

sia({A}) = λiE
[
U ia(V )1{U ia(V ) ≥ 0}

]
= λi(qi + (1− qi)`i)E

[
(V − ci)1{V ≥ ci}

]
= λi(qi + (1− qi)`i)Ḡv(ci). (23)

When advance tickets are offered simultaneously with options, we need to take into account that

fans purchase advance tickets when both U ia(V ) ≥ 0, and U ia(V ) ≥ U io(V ). Now, the surplus

rate is given by

sia({A,Oi}) = λiE
[
U ia(V )1{U ia(V ) ≥ 0, U ia(V ) ≥ U io(V )}

]
= λi(qi + (1− qi)`i)E

[
(V − ci)1{V ≥ max{ai, ci}}

]
= λi(qi + (1− qi)`i)

(
Ḡv(max{ai, ci}) + (ai − ci)+F̄v(a

i)
)
.

The surplus rate for team’s i fans purchasing options can be obtained in a similar way. When

advance tickets are not offered, fans purchase options when their utility U io(V ) is non-negative,

and the surplus rate is given by

sio({Oi}) = λiE
[
U io(V )1{U io(V ) ≥ 0}

]
= λiqiE

[
(V − bi)1{V ≥ bi}

]
= λiqiḠv(b

i).

The last case remaining is when options are offered simultaneously with advance tickets. Here, we

need to take into account that fans purchase options when both U io(V ) ≥ 0, and U io(V ) ≥ U ia(V ).
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The surplus rate is given by

sio({A,Oi}) = λiE
[
U io(V )1{U io(V ) ≥ 0, U io(V ) ≥ U ia(V )}

]
= λiqiE

[
(V − bi)1{bi ≤ V ≤ ai}

]
= λiqi

(
Ḡv(max{ai, bi})− Ḡv(ai) + (ai − bi)+F̄v(a

i)
)
.

As in the case of the revenue rates, we can compute the aggregate surplus rate when offering

a subset S as s(S) =
∑N

i=1 s
i
a(S) + sio(S). Notice that the first summand is nonzero only if

A ∈ S, while the second summand is nonzero if Oi ∈ S. Thus, given an allocation {t(S)}S⊆S
the total expected surplus is

∑
S⊆S s(S)t(S).

5.2 Symmetric Case

In the following we will show that, under some assumptions, the introduction of options increases

the customers’ surplus. Consequently, options can benefit both the promoter and the consumers.

We proceed as in the case of the revenue. First, we obtain the surplus of the advance ticket

pricing problem in terms of intensities as decision variables. Second, we move on to the advance

ticket and options pricing problem, and give a simple expression for the consumer surplus. We

conclude by identifying a sufficient assumption and proving our result.

From equation (23) the total surplus of consumers that will buy an advance ticket when the

arrival intensity is λa, denoted by SDa (λa), is

SDa (λa) = Tλ(q + (1− q)`)Ḡv
(

pa(λa)

q + (1− q)`

)
= T (q + (1− q)`)s(λa)

where the surplus rate is defined as

s(λa) = λḠv

(
pa(λa)

q + (1− q)`

)
= λḠv

(
F̄v
−1
(
λa
λ

))
= λ

∫ ∞
F̄v
−1

(λa/λ)
F̄v(v)dv.

Notice that the surplus rate is defined on [0, λ]. Additionally, it is increasing, continuous,

differentiable, non-negative, and bounded. The monotonicity stems from the fact that F̄v
−1

is

decreasing and Ḡv is non-increasing. Moreover, it satisfies limλa→0 s(λa) = 0, and limλa→λ =

λEV . In contrast to the revenue rate, the maximum is reached when the intensity is set to λ,

or equivalently the price set to zero. Not surprisingly, the total consumer surplus is maximized

when the tickets are given for free at the expense of the promoter’s revenue.

In the advance ticket and options pricing problem two sources contribute to the total con-

sumer surplus. The first source is consumers who choose advance tickets over options. The

second source is consumers who chose options over advance tickets. Some algebra shows that

the total consumer surplus in terms of the arrival intensities, denoted by SDo (λa, λ
Σ
o ), is

SDo (λa, λ
Σ
o ) = T (1− q)`s(λa) + Tqs(λa + λΣ

o ).
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Observe that the formula for consumer surplus is similar to the organizer’s revenue with the

exception that the value rate is replaced by the surplus rate.

Next, we study how introducing options impacts the consumer surplus. Recall that, from

Proposition 5, options are beneficial to the organizer only if capacity is scarce and fans strictly

prefer their own team over any other. Hence, we only need to consider the consumer surplus

under those assumptions, else the organizer has no incentive to sell options. The following

proposition shows that if the surplus rate is convex, options do increase consumer surplus.

Proposition 8. Suppose that the surplus rate is convex. When seats are scarce (C < λ∗aT )

and fans strictly prefer their own team over any other (` < 1) introducing options increase the

consumer surplus (SDo > SDa ).

Proof. First, let (λa, λ
Σ
o ) be the optimal solution to the options pricing problem. Since seats

are scarce, the capacity constraint (20) is binding in the optimal solution. Then λ0
a = C/T =

λa + qλΣ
o = (1 − q)λa + q(λa + λΣ

o ), where we have written λ0
a as a convex combination of λa

and λa + λΣ
o . Consider the convex combination of the same points, denoted by λ̂a, in which we

multiply the first weight by ` and re-normalize. Hence, λ̂a is given by

λ̂a =
(1− q)`

q + (1− q)`
λa +

q

q + (1− q)`
(λa + λΣ

o ).

Notice that λ̂a > λ0
a. This follows from λΣ

o > 0 implying that the second point is strictly greater

than the first, and the weight of this larger point being larger in λ̂a than in λ0
a.

Finally, we have that

SDo = SDo (λa, λ
Σ
o ) = T (1− q)`s(λa) + Tqs(λa + λΣ

o )

≥ T (q + (1− q)`)s(λ̂a) > T (q + (1− q)`)s(λ0
a) = SDa (λ0

a) = SDa ,

where the first inequality follows from the convexity of the surplus rate, the second inequality

from the fact that the surplus rate is increasing and λ̂a > λ0
a, and the last equality from λ0

a

being the optimal solution to the advance selling problem when seats are scarce. Thus, the

introduction of options increases the consumer surplus. As a side note, any feasible solution

to the options pricing problem in which the capacity constraint (20) is binding verifies that

SDo (λa, λ
Σ
o ) ≥ SDo .

Fortunately, the surplus rate turns out to be convex for many distributions. Lemma 2 gives

one sufficient condition, namely the surplus rate is convex when the valuation random variable

has IFR. Thus, options are beneficial for consumers whose valuations have IFR.

Lemma 2. If the valuation random variable has (strict) IFR, then the surplus rate is (strictly)

convex.
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Proof. The derivative of the surplus rate w.r.t. λa is

ds

dλa
(λa) =

λa
λ

1

fv

(
F̄v
−1

(λa/λ)
) .

Composing the derivative with λa(c) = λF̄v(c) we get(
ds

dλa
◦ λa

)
(c) =

ds

dλa

(
λF̄v(c)

)
=
F̄v(c)

f(c)
=

1

h(c)
.

IFR implies that the composite function is non-increasing in c. Because λa(c) is decreasing, we

conclude that original derivative is non-decreasing and s is convex. The proof for the strict case

follows similarly.

6 Extensions

6.1 No-Arbitrage Pricing

We want to exclude the possibility of a third party, the arbitrageur, from taking advantage of

differences in prices to obtain a risk-free profit. For instance, an arbitrageur may simultaneously

offer options to fans and buy advance tickets to fulfill the obligations, or offer options for some

teams while buying options from others.

In the following, we denote by θ = (θa, θ
1
o , . . . , θ

N
o ) ∈ R|S| a portfolio that assigns weight

θi to product i. By convention, a positive value for θi indicates that the arbitrageur is buying

product i from the organizer, while when θi is negative she is selling product i in the market.

Using this notation, today’s market value of the portfolio is given by

pT θ = θapa +
N∑
i=1

θiop
i
o.

Uncertainty is represented by the finite set T of states, one of which will be revealed as true.

When state {i, j} ∈ T realizes, the payoff of the portfolio is −θiopie− θ
j
op
j
e. These can be written

more compactly in matrix notation as Rθ, where R ∈ R|T |×|S| is the matrix of future payoffs.

Notice that exploiting the structure of the problem we can the write payoff matrix as

R =
(

0 −ΛTdiag(pe)
)
, (24)

where Λ ∈ RN×|T | is such that (Λ)is = 1 if in state s team i advances to the final and 0 otherwise.

Finally, in order to fulfill future obligations, the portfolio needs to satisfy θa + θio + θjo ≥ 0

whenever state (i, j) ∈ T realizes. For instance, if the arbitrageur sells one option for team i and

another for team j, then she needs to hold at least two advance tickets for the case that both

teams advance in the final. Similarly, we write the obligation restriction in matrix notation as
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Aθ ≥ 0, where A ∈ R|T |×|S| is the obligation matrix. Again, we may exploit the structure of the

problem, and write the obligation matrix as

A =
(

1 ΛT
)
. (25)

Textbook arbitrage requires no capital and entails no risk. Thus, an arbitrage opportunity

is a transaction that involves no negative cash flow future state and a positive cash flow today.

We formalize this statement in Definition 1.

Definition 1. An arbitrage opportunity is a portfolio θ ∈ R|S| with Aθ ≥ 0 such that pT θ ≤ 0

and Rθ ≥ 0 with at least one strict inequality.

The following theorem characterizes the set of arbitrage-free prices. The requirement that

y is strictly positive for all outcomes is due to our definition of arbitrage. If instead we would

employ a strong arbitrage definition as in LeRoy and Werner (2000), that is, we exclude portfolios

with Aθ ≥ 0 such that pT θ < 0 and Rθ ≥ 0; then we would only require y to be non-negative.

Theorem 1. Prices constitute an arbitrage-free market if and only if there exists z, y ∈ R|T |

such that z ≥ 0, y > 0, and∑
s∈T

zs = pa,
∑

s∈T :i∈s
zs = pio + pie

∑
s∈T :i∈s

ys, ∀i = 1, . . . , N.

Proof. We want to show that there is no portfolio θ with Aθ ≥ 0,

(
−pT

R

)
θ ≥ 0, and(

−pT

R

)
θ 6= 0. Equivalenty, from Tucker’s Theorem of the Alternative Mangasarian (1987)

there exists z, y ∈ R|T | such that RT y + AT z = p, y > 0, and z ≥ 0. The result follows by

exploiting the fact that AT =

(
1T

Λ

)
, and RT =

(
0

−diag(pe)Λ

)
.

Notice that by normalizing in 1, we can interpret z as probability distributions over the set

of outcomes. This suggests that the result can be further simplified by aggregating outcomes,

and considering the probabilities of each team advancing to the final. Indeed, we may rewrite

the arbitrage conditions in terms of zi =
∑

s∈T :i∈s zs, and yi =
∑

s∈T :i∈s ys. It is clear that

every distribution over outcomes induces a distribution over teams, but the converse does not

necessarily hold. Lemmas 3 and 4 identify the set of attainable distributions over teams for

different tournament structures. For example in the case of a single elimination tournament we

require that the teams in both branches sum up to the same value, that is,
∑

i∈T1 y
i =

∑
i∈T2 y

i

and
∑

i∈T1 z
i =

∑
i∈T2 z

i. Hence, after eliminating zi from the system, we obtain that there is
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no arbitrage if there exists that a strictly positive y ∈ RN such that

pa =
∑
i∈T1

pio + yipie =
∑
i∈T2

pio + yipie,∑
i∈T1

yi =
∑
i∈T2

yi.

Lemma 3. Consider a general tournament, and let the cone C =
{
α ∈ RN | α = Λy, y ≥ 0

}
.

Then, α ∈ C if and only if 2αi ≤
∑N

j=1 α
j for all i = 1, . . . , N , and α ≥ 0.

Lemma 4. Consider a single elimination tournament, and let the cone C =
{
α ∈ RN | α = Λy, y ≥ 0

}
.

Then, α ∈ C if and only if
∑

i∈T1 α
i =

∑
i∈T2 α

i, and α ≥ 0.

Proof. For the only if, take any α ∈ C and observe that∑
i∈T1

αi =
∑
i∈T1

∑
s∈T

(Λ)isys =
∑
i∈T1

∑
j∈T2

y(i,j) =
∑
j∈T2

∑
i∈T1

y(i,j) =
∑
j∈T2

∑
s∈T

(Λ)jsys =
∑
j∈T2

αj .

For the if part we proceed by contradiction. If α = 0 the result is trivial, so we assume that

α 6= 0. Since the cone C is closed and convex and α /∈ C, by the Strictly Separating Hyperplane

Theorem there exists an hyperplane that strictly separates them Boyd and Vandenberghe (2004).

Alternatively, there is a vector q ∈ RN such that qTα < qTΛy for all y ≥ 0.

Pick any i′ ∈ T1, and set y such that y(i,j) = αj if i = i′ and 0 otherwise. Evaluating the

right hand side at y we get

qTΛy =
∑
i∈T1

∑
j∈T2

(qi + qj)y(i,j) =
∑
j∈T2

(q′i + qj)αj = q′i
∑
j∈T2

αj +
∑
j∈T2

qjαj =
∑
i∈T1

q′iαi +
∑
j∈T2

qjαj ,

where the last equality follows from the hypothesis. Hence,
∑

i∈T1\i′(q
i − qi′)αi < 0 from the

separating hyperplane theorem, and we conclude that qi
′′
< qi

′
for some i′′ ∈ T1 \ i′ since α ≥ 0.

Repeating the argument with i′′ we obtain that qi
′′′
< qi

′′
< qi

′
for some i′′′ ∈ T1\i′′. Repeatedly

applying the same argument we reach a contradiction.

7 Numerical Examples

In this section we describe numerical experiments conducted to evaluate the revenue improve-

ments from offering options to consumers. We check the sensitivity of revenue improvements

for various distributions of consumer valuation, love of the game, and different levels of arrival

intensity.

Our numerical example is based on Superbowl XLVI which will take place on February 12th,

2012. For the sake of computational simplicity we assume that pricing decisions are made at

the Conference Championship level where only four teams are left and we also assume that

the teams that will play in the finals will be the winners of New Orleans Saints vs. Minnesota
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Vikings, and Indianapolis Colts vs. New York Jets games. Let us note that those teams were

the divisional round winners in the 2009 season. We used the betting odds from Vegas.com to

calculate the probabilities of each team playing in the Superbowl which gave q = (.6, .4, .65, .35)

for (Saints, Vikings, Colts, Jets). We estimated arrival rates arrival rates proportional to the

population of each team’s hometown, λ = (0.1271, 0.0477, 0.0675, 0.7576).

We tried two different distributions for fans’ valuation V , uniform and truncated normal, with

equal means and variances. Also, we checked the sensitivity of our results against different love

of the game parameters and load factors, where the load factor lf is defined by lf = (T ∗λtot)/C.

We tried five different values of `(0.001, 0.1, 0.2, 0.5 and 0.9) and two different values of lf (1 and

3). Each set of parameters is represented by NFLa,b,c where a equals u if the distribution is

uniform and tn if it is truncated normal, b is equal to the load factor and c is equal to `.

The policy that we used in the simulation was to construct the offer sets and times from the

solution of the MBLP, and offer the products according to it. Since MBLP is a deterministic

approximation to our problem, it does not give any information about the ordering of the offer

sets, so we offered the sets randomly. The simulation results were compared to the results of

the deterministic advance selling problem, MBLP and simulated advance selling problem. The

simulation outputs for different sets of parameters are given in Table 3. OPT SIM corresponds to

the average sample path revenue when the policy obtained from MBLP is used and NAIVE SIM

corresponds to the average sample path revenue obtained when all products, advance tickets and

options, are offered throughout the whole sales horizon with prices obtained from the MBLP.

Param. Set ADV DET OPT DET ADV SIM OPT SIM NAIVE SIM

NFLu,3,0.01 $71.92 $80.73 $71.80 $80.62 $80.62

NFLu,3,0.1 $83.84 $87.88 $83.70 $87.74 $87.74

NFLu,3,0.2 $95.68 $98.30 $95.53 $98.13 $98.13

NFLu,3,0.5 $130.41 $130.87 $130.22 $130.67 $94.52

NFLu,3,0.9 $175.53 $175.53 $175.25 $175.25 $142.25

NFLu,1,0.01 $26.97 $28.31 $26.97 $28.31 $26.43

NFLu,1,0.1 $31.44 $31.44 $31.44 $31.44 $26.18

NFLtn,3,0.01 $72.01 $81.95 $71.89 $81.82 $81.82

NFLtn,3,0.1 $83.70 $88.91 $83.55 $88.71 $83.70

NFLtn,3,0.2 $95.29 $99.03 $95.14 $98.86 $98.86

NFLtn,3,0.5 $130.06 $130.06 $129.10 $129.10 $105.90

NFLtn,3,0.9 $173.69 $173.69 $173.42 $173.42 $132.79

NFLtn,1,0.01 $28.88 $30.50 $28.89 $30.51 $29.65

NFLtn,1,0.1 $33.74 $33.74 $33.74 $33.74 $30.59

Table 3: Revenues for different parameters and policies(in millions)
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Let us first analyze how our approximation performs. Table 4 gives the gaps between the

deterministic approximation and simulation results for different load factors. We can see that

all gaps are below 1%. So, our approximation performs very well for both distributions and is

robust for different values of ` and lf .

lf = 3 lf = 1

` Uniform Trunc. Norm Uniform Trunc. Norm

0 0.13% 0.15% 0.00% 0.01%

0.1 0.16% 0.22% 0.00% 0.00%

0.2 0.17% 0.18% 0.00% 0.00%

0.5 0.15% 0.74%

0.9 0.16% 0.15%

Table 4: Optimality gaps for different parameters and distributions

Now, let us examine how offering options affects the organizer’s revenue. Table 5 lists revenue

improvements for different sets of parameters. From the table above we see that offering options

is most beneficial when ` is low. As it is increased the potential benefit the organizer can get

from offering options decreases. This result is intuitive since options target fans who care about

the teams playing in the finals. As ` is increased the utility that the fans get from watching other

teams increases, so fans will care less about the finalists and be more willing to buy advance

tickets. Consequently, options become less attractive for the fans and the organizer does not

benefit as much from offering them. Table 5 also confirms that options are most beneficial when

capacity is scarce which coincides with the results obtained about symmetric tournaments in

§4. It is seen from the table above that once the load factor is decreased, which is equivalent to

making capacity abundant, options do not result in any revenue improvement. In order to keep

options attractive the organizer has to set its sales price lower than the advance ticket price.

Thus, the organizer has to sell multiple options to get the same revenue it does from selling a

single advance ticket. When the capacity is abundant, the total number of advance tickets or

options that the organizer can sell is less than the stadium’s capacity. So, the organizer will

prefer selling advance tickets over options. Lastly, we see that our results do not appear to be

very sensitive to the shape of the distribution.

8 Conclusion

In this paper, we analyzed consumer options that are contingent on a specific team reaching

the tournament final. Offering options, in addition to advance tickets, allows an organizer to

segment fans. The organizer targets fans with a higher willingness to pay, who are less sensitive

to the outcome, with advance tickets, whereas options aim fans who are mostly willing to attend
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lf = 3 lf = 1

` Uniform Trunc. Norm Uniform Trunc. Norm

0 12.24% 13.79% 0.00% 0.01%

0.1 4.83% 6.23% 0.00% 0.00%

0.2 2.74% 3.93% 0.00% 0.00%

0.5 0.35% 0.00%

0.9 0.00% 0.00%

Table 5: Revenue improvements from options for different parameters and distributions

a game with their preferred team playing. Our results show that the organizer can potentially

increase its profits by taking advantage of this segmentation, and offering options is beneficial

for the fans as well.

In this work we specifically addressed the problem of pricing and capacity control of such

options and advance tickets, under a stochastic and price-sensitive demand. The organizer

faces the problem of pricing the tickets and options, and determining the number of tickets

to offer so as to maximize her expected revenue. We propose solving the organizer’s problem

using a two-stage optimization problem. The first stage optimizes over the prices, while the

second the optimizes the expected revenue by controlling the subset of products that is offered

at each point in time using a discrete choice revenue management model. The second-stage

problem is a stochastic control problem, and in most cases is very difficult to solve. Hence, we

propose an efficient deterministic approximation, which is shown to be asymptotically optimal

and numerical results confirm that this approximation turns out to be accurate in our setting.

To develop some insight, we provide a theoretical characterization of the problem in the

symmetric case, i.e., when all teams are equal in terms of arrival rate and other characteristics.

Under some mild assumptions, we show that when the seats are scarce and fans strictly prefer

their own team over any other, introducing options increases both the revenue of the organizer,

and the surplus of the consumers. Surprisingly, we show that the benefits of options subside as

the number of teams grow.

As for future research directions, approaching this problem from a dynamic pricing point of

view should be considered. Dynamic pricing may provide higher revenues at the cost of substan-

tially increased complexity. Two natural extensions are relaxing the no-resale restriction and

allowing secondary markets, and selling tickets after the tournament starts. Relaxing these two

assumptions can affect the fans’ decisions substantially, and deserve special attention. However,

this may result in an intricate model since the fans may now delay their decisions of buying

tickets and options. Lastly, the single quality seat restriction may be relaxed by dividing the

stadium according to seat quality. This has the possibility of complicating the consumer choice

part of the model considerably. Instead of having to choose from at most two products, fans
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now may face a wide array of choices.
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