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Abstract

This paper addresses two concerns with the state of the art in network revenue man-
agement with dependent demands. The first concern is that the basic attraction model
(BAM), of which the multinomial model (MNL) is a special case, may overestimate re-
capture in certain cases. The second concern is that the choice based deterministic linear
program (CBLP), currently in use to derive heuristics for the stochastic network revenue
management (SNRM) problem, has an exponential number of variables. We introduce
a generalized attraction model (GAM) that has both the BAM and the independent
demand model (IDM) as special cases. We also provide an axiomatic justification for
the GAM and an E-M to estimate its parameters. As a choice model, the GAM should
be of interest to those seeking a model that is not as optimistic as the BAM nor as
pessimistic as the IDM in estimating recaptured demand. Our second contribution is
a new formulation called the Sales Based Linear Program (SBLP) for the GAM. This
formulation avoids the exponential number of variables in the CBLP and is essentially
the same size as the formulation for the IDM. The SBLP should be of interest to revenue
managers (even if their preferred choice model is the BAM) as it dramatically reduces
the number of variables. Together these two contributions move forward the state of the
art for network revenue management and allow for a wide range of effects including: par-
tial demand dependencies, multiple time periods, inventory sharing across cabins, and
competitive effects. In addition, the formulation yields new insights into the assortment
problem that arises when capacities are infinite.

1 Introduction

One of the leading areas of research in revenue management (RM) has been incorporating
demand dependencies into forecasting and optimization models. Developing effective models
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for suppliers to estimate how consumer demand is redirected as the set of available products
changes is critical in determining the revenue maximizing set of products and prices to offer
for sale. In the airline industry, several terms are used to describe different types of demand
redirection. First-choice demand denotes the ‘natural’ demand for a product and price given
a wide range of competing choices. However, when a product-price alternative is unavailable,
its first-choice demand is redirected to other available alternatives (including the ‘no-purchase’
one). From a supplier’s perspective, this turned away demand for a product-price can result
in two possible outcomes: ‘spill’ or ‘recapture’. Spill refers to redirected demand that is lost
to a competitor (or the no-purchase alternative). Recapture refers to redirected demand that
results in the sale of a different product-price on the same supplier. The work presented in
this paper provides a mechanism to incorporate these effects into the RM optimization process
through use of customer-choice models.

An early motivation for studying demand dependencies came from the airline industry
which was concerned with incorporating a special type of recapture known as ‘upsell demand’;
upsell is recapture from closed discount fare classes into open, higher valued ones on the same
flight (also called ‘same-flight upsell’). More specifically, there was a perceived need to model
the probability that a customer would buy up to a higher fare class if his preferred fare was
not available. The inability to account for upsell demand makes the independent demand
model (IDM) too pessimistic, resulting in too much inventory offered at lower fares and in a
phenomenon known as ‘revenue spiral down’; see Cooper et al. [7]. To our knowledge, the first
authors to account for upsell potential in the context of a single resource were Brumelle et al.
[6] who worked out implicit formulas for the two fare class problem. More explicit formulas
were proposed by Belobaba and Weatherford [3] who made fare adjustments while keeping
the assumption of independent demands. Gallego et al. [10] developed improved heuristics
that combined fare adjustments with dependent demand structure for multiple fares. Their
work and alternative approaches by Belobaba [2] suggest that considering same-flight upsell
has significant revenue impact, leading to improvements ranging from 3-6%.

For network models, in addition to upsell, it is also important to consider ‘cross-flight
recapture’ that occurs when a customer’s preferred choice is unavailable, and he selects to
purchase a fare on a different flight instead of buying up to a higher fare in the same flight.
Authors that have tried to estimate upsell and recapture effects include Andersson [1], Ja et al.
[15], and Ratliff et al. [22]. In markets in which there are multiple flight departures, recapture
rates typically range between 15-55% [15]. Other authors have dealt with the topic of demand
estimation from historical sales and availability data. The most recent methods use maximum
likelihood estimation techniques to estimate primary demands and market flight alternative
selection probabilities (including both same-flight upsell and cross-flight recapture); for details,
see Vulcano et al. [31] and Meterelliyoz [21].

Most of the optimization work in network revenue management problem with dependent
demands is based on formulating and solving large scale linear programs that are then used as
the basis to develop heuristics for the stochastic network revenue management (SNRM) prob-
lem; e.g. Bront, Mendez-Diaz and Vulcano [5], Fiig et al. [8], Gallego et al. [12], Kunnumkal
and Topaloglu [17], [18], Liu and van Ryzin [20], and Zhang and Adelman [34]. Our paper
addresses two significant concerns with the current state of the art. The first concern is with
the limitations of the multinomial choice model (MNL) which is universally used to handle
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demand dependencies. The MNL is a special case of the basic attraction model (BAM) that
states that the demand for a product is the ratio of the direct attractiveness of the product
divided by the sum of the direct attractiveness of the available products (including a no pur-
chase alternative). This means that closing a high demand product will result in spill, and a
significant portion of that spill may be recaptured by other available products. In practice,
however, we have seen situations where the BAM overestimates the relative attractiveness
of alternative products thus leading to underestimation of spill to the competitor and no-
purchase alternatives. In a sense, one could also say that the BAM tends to be too optimistic
about recapture. Our goal in demand modeling is to develop a more general attraction model
(GAM) that is less pessimistic than the IDM but not as optimistic as the BAM. Indeed, under
the GAM the choice probabilities depend both on the products offered and the products not
offered; this approach provides more flexibility in terms of handling product-level spill. More-
over, the GAM includes both the IDM and the BAM as special cases. The GAM is justified in
this paper by slightly modifying one of the axioms that gives rise to the BAM. It can also be
justified by studying the BAM under competition allowing for different mean utilities for the
same product at different locations but assuming that customers have the same idiosyncratic
noise associated with their valuations at different locations.

The second concern addressed in this paper is that the linear programming formulation for
the BAM, known as the Choice Based Linear Program (CBLP), has an exponential number
of variables [12]. This is because the model strives to find the amount of time each subset
of products is offered, and each subset requires a variable. The number of products itself is
usually very large; for example, in airlines, it is the number of origin-destination fares (ODFs),
and the number of subsets is two raised to the number of ODFs for each market segment. This
forces the use of column generation and makes resolving frequently or solving for randomly
generated demands impractical. Our goal here is to reformulate the Choice Based Linear
Program (CBLP) to avoid using an exponential number of variables. For this purpose we
propose an alternative formulation called the sales based linear program (SBLP), which we
show is equivalent to the CBLP not only under the BAM but also under the GAM. Due to a
unique combination of demand balancing and scaling constraints, the new formulation has a
linear number of variables and constraints. The SBLP allows for direct solution without the
need for large-scale column generation techniques. This has the benefit of enabling more effi-
cient heuristics for the SNRM problem and providing interesting insights into the assortment
problem (a special case that arises when capacities are infinite).

The remainder of this paper is organized as follows. In §2 we present the GAM as well
as a justification of the model from first principles and then present an E-M to estimate
its parameters. In §3 we present the stochastic, choice based, network revenue management
problem. The choice based linear program is reviewed in section §4. The new, sales based
linear program is presented in §5 as well as examples that illustrate the use of the formulation.
The infinite capacity case gives rise to the assortment problem and is studied in §6. An upgrade
model is presented in §7, sales of flexible products in §8, and our conclusions and directions
for future research are in §9.
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2 Generalized Attraction Model

There is considerable empirical evidence that the basic attraction model (BAM)1:

πj(S) =
vj

v0 + v(S)
, (1)

where v(S) =
∑

j∈S vj may be too optimistic in estimating recapture probabilities when the
customer’s first choice is not part of the offer set S. Here πj(S) is the probability that a
customer will select j ∈ S when the offer set is S, and in addition to S the customer can
select the no-purchase alternative, denoted by 0. The vj values are the direct attractiveness
of the different choices. One could more formally write πj(S+), where S+ = S ∪ {0}, instead
of πj(S) since the customer is really selecting from S+. However, we will refrain from this
formalism and follow the convention of writing πj(S) to mean πj(S+). Since the model with
attractiveness αv results in the same probabilities, it is customary to normalize the model by
setting α = 1/v0, resulting after rescaling in v0 = 1.

The BAM assumes that even if a customer prefers j /∈ S+, he must select among k ∈ S+.
This ignores the possibility that the customer may look for products j /∈ S+ elsewhere or at a
later time. As an example, suppose that a customer prefers a certain wine, and the store does
not have it. The customer may then either buy one of the wines in the store, go home without
purchasing, or drive to another store and look for the wine he wants. The BAM precludes
the last possibility; it implicitly assumes that the search cost for an alternative source of
product j /∈ S+ is infinity. Gallego, Li and Ratliff [10] addressed this concern in part through
use of ad-hoc adjustments to the null alternative attractiveness. Although this approach was
effective in varying recapture rates, the v0 corrections affected all the alternatives in the choice
set, and no specific guidance was provided as to the size of the adjustments required. This
motivated us to find an improved approach that allows for alternative-specific dependencies
rather than aggregate ad-hoc adjustments.

As an example, suppose that the consideration set is N = {1, 2} and that the direct
attractiveness values are v0 = v1 = v2 = 1, so πk({1, 2}) = 1/3 for k = 0, 1, 2. Under the
BAM, eliminating choice 2 results in πk({1}) = 50% for k = 0, 1. Suppose, however, that
product 2 is available across town and that the customer’s attraction for product 2 from the
alternative source is w2 = 0.5 ∈ [0, v2]. Then his choice set, when product 2 is not offered, is
in reality S = {1, 2′} with 2′ representing product 2 in the alternative location with switching
attractiveness w2. From the point of view of the store the probabilities are now:

π0({1}) = 1.5

2.5
= 60%, π1({1}) = 1

2.5
= 40%.

This formulation may also help mitigate the optimism of the traditional attraction model in
inter-temporal models where a choice j /∈ S+ may become available at a later time. In this
case w2 is the switching attractiveness of choice 2 discounted by time and the risk that it may
not be available in the future.

1The BAM arises, for example, from the multinomial model where the direct attractiveness vj = e(ρuj) for
utilities uj where ρ > 0 is a parameter that is inversely related to the variance of the Gumbel distribution.
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This idea can be used to revisit the red-bus, blue-bus paradox, see Ben-Akiva and Lerman
[4], where a person has a choice between driving a car and taking either a red or blue bus
(it is implicitly assumed that both buses have ample capacity and depart at the same time).
The paradox emerges because the probability of selecting to drive the car decreases when
the second bus is added. Let v1 represent the direct attractiveness of driving a car and let
v2, w2 represent the direct and switching attractiveness of the two buses. If w2 = v2 then the
probabilities are unchanged if one of the buses is removed (as one intuitively expects). The
model with w2 = 0 represents the case where there is no second bus.

To formally define the GAM we assume that in addition to the direct attraction values
vk, k ∈ N = {1, . . . , n}, there are switching attraction values wk ∈ [0, vk], k ∈ N such that for
any subset S ⊂ N

πj(S) =
vj

v0 + w(S ′) + v(S)
j ∈ S, (2)

where S ′ = {j ∈ N : j /∈ S} and for any R ⊂ N , w(R) =
∑

j∈Rwj . For the GAM,

π0(S) =
v0+w(S′)

v0+w(S′)+v(S)
is no-purchase probability. The case wk = 0, k ∈ N recovers the BAM,

while the case wk = vk, k ∈ N recovers the independent demand model (IDM). As for the BAM
it is possible to normalize the parameters so that v0 = 1. We will later describe how to estimate
the parameters of the GAM from data. The parsimonious formulation wj = θvj ∀j ∈ N for
θ ∈ [0, 1] can serve to test the competitiveness of the market, e.g., H0 : θ = 0 or H0 : θ = 1
against obvious alternatives to determine whether one is better off deviating from either the
BAM or the IDM.

There is an alternative, perhaps simpler, way of presenting the GAM by using the following
transformation: ṽ0 = v0 + w(N) and ṽk = vk − wk, k ∈ N . For S ⊂ N , let ṽ(S) =

∑
j∈S ṽj .

With this notation the GAM becomes:

πj(S) =
vj

ṽ0 + ṽ(S)
∀j ∈ S and π0(S) = 1− πS(S). (3)

where πS(S) =
∑

j∈S πj(S). For S ⊂ T we will use the notation πS+(T ) =
∑

j∈S+
πj(T ).

We now revisit the Luce Axioms, see [19], that give birth to the BAM and then suggest a
generalization of one of the axioms to show that the GAM satisfies the resulting set of axioms.
The original Luce axioms are:

• Axiom 1: If πi({i, j}) ∈ (0, 1) for all i, j ∈ T , then for any R ⊂ S+, S ⊂ T

πR(T ) = πR(S)πS+(T ).

• Axiom 2: If πi({i, j}) = 0 for some i, j ∈ T , then for any S ⊂ T such that i ∈ S

πS(T ) = πS−{i}(T − {i}).

The most celebrated consequence is that πi(S) satisfies the Luce Axioms if and only if πi(S)
follows the basic attraction model (1). Axiom 1 holds trivially for R = ∅ since π∅(S) = 0 for
all S ⊂ N . For ∅ �= R ⊂ S the formula can be written as

πR(T )

πR(S)
= πS+(T ) = 1− πT−S(T ),
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so the right hand side is independent of R, and it is the complement of the probability of
selecting T − S when T is offered. We want to generalize Axiom 1 so that the ratio remains
independent of R for any non-empty R ⊂ S ⊂ T but in such a way that we have more control
over how much of the relative demand is lost by adding alternatives T − S to S. Indeed,
empirical evidence suggests that the BAM allows too much of this demand to be lost, and the
flip side of the coin is that too much of the demand πT−S(T ) will find its way to R ⊂ S when
T − S is removed from T . This suggests the following generalization of Axiom 1.

• Axiom 1’: If πi({i, j}) ∈ (0, 1) for all i, j ∈ T , then for any ∅ �= R ⊂ S ⊂ T

πR(T )

πR(S)
= 1− πT−S(T ) +

∑
j∈T−S

θjπj(T )

for some set of values θj ∈ [0, 1], j ∈ N .

Notice that the special case θj = 0 for all j recovers Axiom 1 and therefore results in the
BAM. On the other hand, the case θj = 1 for all j makes the right hand side equal to one,
so πR(S) is independent of S for all S containing R, corresponding to the IDM. We will call
the set of Axioms 1’ and 2 the Generalized Luce Axioms (GLA). The next result states that
a choice model satisfies the GLA if and only if it is a GAM.

Theorem 1 A choice model πi(S) satisfies the GLA if and only if it is of the GAM form.

A proof of this theorem may be found in the Appendix. The GAM can also be justified
from the multinomial logit under competition. A detailed justification of this construction is
provided in Appendix.

2.1 Limitation and Heuristic Uses of the GAM

One limitation of the GAM as we propose it is that, in practice, the utility associated with
the products at different locations may depend on a set of covariates that may be customer
or product specific. This can be dealt with either by assuming a latent class model on the
population of customers or by assuming a customer specific random set of coefficients to
capture the impact of the covariates. Another limitation is that we are implicitly modeling
customers who visit the store first. This can be fixed by dividing the customers among market
segments and having another GAM model for customers who visit the competitor’s store first.
The issues also arise when using the BAM. In fact, often a single BAM is used to try to
capture the choice probabilities of all customers whether they visit the store first or not. This
stretches the limits of the BAM and of the GAM, as this should really be handled by adding
market segments. However the GAM can cope much better with this situation as the following
example illustrates.

Example 1: Suppose there are two stores (denoted l), and each market store attracts
half of the population. We will assume that there are two products (denoted k) and that the
GAM parameters vlk and wlk for the two stores are as given in Table 1:
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v10 v11 v12 v20 v21 v22
w11 w12 w21 w22

1 1 1 1 0.9 0.9
0.9 0.8 0.8 0.7

Table 1: Attraction Values (v, w)

With this type of information we can use the GAM to compute choice probabilities πj(S,R)
that a customer will purchase product j ∈ S from Store 1 when Store 1 offers set S, and Store
2 offers set R.

Suppose Store 1 has observed selection probabilities for different offer sets S conditional
on Store 2 offering R = {1, 2} as provided in Table 2:

S 0 1 2
∅ 100% 0% 0%

{1} 82.1% 17.9% 0%
{2} 82.8% 0.0% 17.2%
{1, 2} 66.7% 16.7% 16.7%

Table 2: Observed πj(S,R) for R = {1, 2}

To estimate these choice probabilities using a single market GAM we seek to find vk, wk, k =
1, 2 with v0 = 1 to minimize the sum of squared errors of the predicted probabilities. This
results in the GAM model: v0 = 1, v1 = v2 = 0.25, w1 = 0.20 and w2 = 0.15. This model
perfectly recovers the probabilities in Table 2. When limited to the BAM, the largest error is
1.97% in estimating π0({1, 2}).

A similar situation arises when demand comes from a mixture of the BAM and the IDM.
In this case, the two extreme models (BAM and IDM) fit the overall data very poorly, but
the GAM can do a reasonable job of approximating the choice probabilities.

2.2 GAM Estimation and Examples

It is possible to estimate the parameters of the GAM by refining and extending the Expectation
Maximization method developed by Vulcano, van Ryzin and Ratilff (VvRR) [31] for the BAM.
The details of the estimation procedure are given in the Appendix. Here we present three
examples to illustrate how the procedure works when w = 0, w = θv and w ≤ v. These
examples are based on Example 1 in VvRR. The examples involve five products and 15
periods where the set N = {1, 2, 3, 4, 5} was offered in four periods, set {2, 3, 4, 5} was offered
in two periods, while sets {3, 4, 5}, {4, 5} and {5} were each offered in three periods. Notice
that product 5 is always offered making it impossible to estimate w5. On the other hand,
estimates of w5 would not be needed unless the firm planned to offer other products in the
absence of product 5.
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The parameters of Example 1 of VvRR are λ = 50, v0 = 1, and v = (1.0, 0.7, 0.40, 0.20, 0.05),
resulting in share s = v(N)/(1 + v(N)) = .71. To construct a GAM-version of the original
VvRR problem, we assume the true parameter for the parsimonious GAM is θ = 0.2, and the
true parameters for the non-parsimonious GAM are w = (0.25, 0.35, 0.05, 0.05). In their pa-
per, VvRR present the estimation results for a specific realization of sales zt, t = 1, . . . , T = 15
corresponding to the 15 offer sets St, t = 1, . . . , 15. We instead generate 500 simulated in-
stances of sales, each over 15 periods, and then compute our estimates for each of the 500
simulations. We report the mean and standard deviation of λ, v and either θ or w over the
500 simulations. We feel these summary statistics are more indicative of the ability of the
method to estimate the parameters. We report results when s is assumed to be known, as in
[31], and some results for the case when s is unknown2.

Estimates of the model parameters tend to be quite accurate when s is known and the
estimation of λ and v become more accurate when w �= 0. The results for s unknown tend to
be accurate when w = 0 but severely biased when w �= 0. The bias is positive for v and w and
negative for λ. Since it is possible to have biased estimates of the parameters but accurate
estimates of demands, we measure how close the estimated demands

λ̂π̂i(S) = λ̂
v̂i

1 + v̂(S) + ŵ(S ′)
i ∈ S, S ⊂ N

are from the true expected demands λπi(S), i ∈ S, S ⊂ N and also how close the estimated
demands λ̂p̂i(St) i ∈ St, t = 1, . . . , T are from sales zti, i ∈ St, t = 1, . . . , T . These measures
are reported, respectively, as the Model Mean Squared Error (M-MSE ) and the Data Mean
Squared Error (D-MSE). Surprisingly the results with unknown s, although strongly biased
in terms of the model parameters, often produce M-MSEs and D-MSEs that are similar to
the corresponding values when s is known. Nonetheless, due to the strong bias, we suggest
the fitting a GAM with unknown s is as an area for future research.

Example 2 (BAM) In the original VvRR example, the true value of w is 0. Assuming
s is known, our estimates of λ and v based on 500 simulations had means λ̂ = 50.265 and
v̂ = (0.9875, 0.6969, 04003, 0.1996, 0.0491) with respective bias 0.53% and (−1.25%, 0.44%,
− 0.07%,−0.20%, 1.80%). The standard deviation among the 500 estimates was 3.2862 for
λ and (0.1001, 0.0765, 0.0576, 0.02921, 0.0114) for v. The D-MSE and the M-MSE were re-
spectively 253.42 and 47.57. We also tried our method when s is unknown and obtained
λ̄ = 51.2589, v̄ = (1.2117, 0.8183, 0.4485, 0.2190, 0.0535) with respective bias 2.518% and
(21.77%, 16.90%, 12.13%, 45.50%, 7.00%). The standard deviation among the 500 estimates
was 11.4116 for λ and (0.7581, 0.4674, 0.2216, 0.0871, 0.0215) for v. The mean share was
s̄ = 0.7015 and the standard deviation of the share was 0.0951. Finally, the D-MSE and
the M-MSE were respectively 247.50 and 58.44

Example 3 (Parsimonious GAM) For this example v is the same as above but w = θv with
θ = 0.20. Assuming s is known, our estimates of λ, v and θ based on 500 simulations had mean
λ̂ = 50.1248, v̂ = (0.9988, 0.7022, 0.3973, 0.2010, 0.0507) and θ̂ = 0.2384 with respective bias
0.25%, (−0.12%, 0.31%,−0.68%, 0.50%, 1.45%), and 19.2%. The standard deviations among
the 500 estimates was 4.3897 for λ, (0.1110, 0.0786, 0.0624, 0.0361, 0.0142) for v and 0.2167 for

2The authors are grateful to Anran Li for coding the EM procedure and conducting the experiments.
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θ. Finally, the D-MSE and the M-MSE were respectively 226.2 and 50.37. We also tried our
method when s is unknown and obtained severely biased estimates of the parameters so they
are not reported. However, the D-MSE and M-MSE with s unknown were respectively 228.54
and 53.84.

Example 4 (GAM) We tried the same example but with w = (0.25, 0.35, 0.15, 0.05, 0.05).
Assuming s is known, our estimates of λ, v and w based on 500 simulations had mean λ̂ =
50.1883, v̂ = (0.9935, 0.7001, 0.4036, 0.2023, 0.0506) and ŵ = (0.3213, 0.2881, 0.1858, 0.1064,
0.0101), with respective bias .38%, (−0.65%, 0.01%, 0.90%, 1.15%, 1.20%) and (28.50%,−17.69%,
23.86%, 112.76%,−79.77%). The standard deviation among the 500 estimates was 3.9776 for
λ, (0.1025, 0.0793, 0.0558, 0.0349, 0.0142) for v and (0.2819, 0.2518, 0.1796, 0.1021, 0.0028) for
w. Finally, the D-MSE and the M-MSE were respectively 204.71 and 48.56. We also tried
our method when s is unknown and obtained hugely biased results so they are not reported.
However, the D-MSE and M-MSE with s unknown were 203.70 and 54.33 with a surprisingly
good fit to expected demands.

The results from these experiments suggest that the EM method devised for the GAM
improves the estimates of λ and v when s is known and w �= 0. The results for s unknown
result in parameter estimates that are severely biased when w �= 0. However, the fit to the data
and to the model is almost as good as the case when s is known. This can be best appreciated
by reporting the largest absolute relative error in estimating demands λπi(S) i ∈ S, S ⊂ N for
a randomly generated sales instance of each of the three examples. For the GAM examples,
the largest relative error was only 2% higher for s unknown than for s known.

The BAM has been universally used over the last few years in revenue management (RM)
as an alternative to the pessimistic IDM that ignores upsell and recapture. Our experience,
however, reveals that the BAM can suffer from being overly optimistic. As the GAM allows
greater flexibility and has both the BAM and the IDM as special cases, we feel that it is a
more appropriate model for network revenue management. In sections 3, 4 and 5, applications
of the GAM to the network revenue management problem will be discussed in detail.

3 Stochastic Revenue Management over a Network

We will assume that there are L customer market segments and that customers in a particular
market segment are interested in a specific set of itineraries and fares3 from a set of origins to
one or more destinations. For example, a market segment could be morning flights from New
York to San Francisco that are less than $500, or all flights to the Mexican Caribbean. Notice
that there may be multiple fares with different restrictions associated with each itinerary. At
any time the set of origin-destination-fares (ODFs) offered for sale to market segment l is a
subset Sl ⊂ Nl, l ∈ L = {1, . . . , L} where Nl is the consideration set for market segment l ∈ L
with associated fares plk, k ∈ Nl. If the consideration sets are non-overlapping over the market
segments then there is no need to add further restrictions to the offered sets. This is also true
when consideration sets overlap if the capacity provider is free to independently decide what

3The airfare value used in the RM optimization may be adjusted to account for other associated revenues
(e.g. baggage fees) or costs (e.g. meals or in-flight wireless access charges).
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fares to offer in each market. As an example, different fares are offered for round-trips from
the US to Asia depending on whether the customer buys the fare in the US or in Asia. If
the provider cannot make independent decisions by market segment, then he needs to post
a single offer set S so that the projection subsets Sl = S ∩ Nl for all l are offered for sale.
Customers in market segment l select from Sl and the no-purchase alternative. We will abuse
notation slightly and write πlk(Sl) to denote the probability of selecting k ∈ Sl+ from market
segment l. For convenience we define πlk(Sl) = 0 if k /∈ Sl+.

The state of the system will be denoted by (t, x) where t is the time-to-go and x is an
m-dimensional vector representing remaining inventories. The initial state is (T, c). For ease
of exposition we will assume that customers arrive to market segment l as a Poisson process
with time homogeneous rate λl. We will denote by V (t, x) the maximum expected revenues
that can be obtained from state (t, x). The Hamilton-Jacobi-Bellman (HJB) equation is given
by

∂V (t, x)

∂t
=

∑
l∈L

λl max
Sl⊂Nl

∑
k∈Sl

πlk(Sl) (plk −ΔlkV (t, x)) (4)

where ΔlkV (t, x) = V (t, x)− V (t, x− Alk), where Alk is the vector of resources consumed by
k ∈ Nl. The boundary conditions are V (0, x) = 0 and V (t, 0) = 0. Talluri and van Ryzin [28]
developed the first stochastic, choice-based, dependent demand model for the single resource
case in discrete time. The first choice-based, network formulation is due to Gallego, Iyengar,
Phillips and Dubey [12].

4 The Choice Based Linear Program

An upper bound V̄ (T, c) on the value function V (T, c) can be obtained by solving a determin-
istic linear program. The justification for the bound can be obtained by assuming a perfect
foresight model, arguing that the objective is concave on the realized demands and then using
Jensen’s inequality. Approximate dynamic programming with affine functions can also be
used to justify the same bound.

We now introduce additional notation to write the linear program with value function
V̄ (T, c) ≥ V (T, c). Let πl(Sl) be the nl = |Nl|-dimensional vector with components πlk(Sl), k ∈
Nl. Clearly πl(Sl) has zeros for all k /∈ Sl. The vector πl(Sl) gives us the probability of sale for
each fare in Nl per customer when we offer set Sl. Let rl(Sl) = p′lπl(Sl) =

∑nl

k=1 plkπlk(Sl) be
the revenue rate per customer associated with offering set Sl ⊂ Nl where pl = (plk)k∈Nl

is the
fare vector for segment l ∈ L. Notice that πl(∅) = 0 ∈ �nl and rl(∅) = 0 ∈ �. Let Alπl(Sl)
be the consumption rate associated with offering set Sl ⊂ Nl where Al is an identity matrix
with columns Alj associated with ODF j ∈ Nl.
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The choice based deterministic linear program (CBLP) for this model can be written as

V̄ (T, c) = max
∑

l∈L λlT
∑

Sl⊂Nl
rl(Sl)αl(Sl)

subject to
∑

l∈L λlT
∑

Sl⊂Nl
Alπl(Sl)αl(Sl) ≤ c ∀∑

Sl⊂Nl
αl(Sl) = 1 l ∈ L
αl(Sl) ≥ 0 Sl ∈ Nl l ∈ L.

(5)

The decision variables are αl(Sl), Sl ⊂ Nl, l ∈ L which represent the proportion of time that
set Sl ⊂ Nl is used. The case of non-homogeneous arrival rates can be handled by replacing
λlT by

∫ T

0
λlsds. There are

∑
l∈L 2

nl decision variables. The CBLP is due to Gallego, et al.
[12]. They showed that V (T, c) ≤ V̄ (T, c) and proposed a column generation algorithm for a
class of attraction models. This formulation has been used and analyzed by other researchers
including Bront, Mendez-Diaz and Vulcano [5], Kunnumkal and Topaloglu [17], [18], Liu and
van Ryzin [20] and Zhang and Adelman [34].

5 The Sales Based Linear Program for the GAM

In this section we will present a linear program that is equivalent to the CBLP but is much
smaller in size (essentially the same size as the well known IDM) and easier to solve as it
avoids the need for column generation. The new formulation is called the sales based linear
program (SBLP) because the decision variables are sales quantities. The number of variables
in the formulation is

∑
l∈L(nl + 1), where xlk, k = 0, 1 . . . , nl, l ∈ L represents the sales of

product k in market segment l. Let Dl = λlT, l ∈ L (or
∫ T

0
λlsds if the arrival rates are time

varying). With this notation the formulation of the SBLP is given by:

R(T,c)= max
∑

l∈L
∑

k∈Nl
plkxlk

subject to

capacity :
∑

l∈L
∑

k∈Nl
Alkxlk ≤ c l ∈ L

balance : ṽl0
vl0
xl0 +

∑
k∈Nl

ṽlk
vlk

xlk = Dl l ∈ L
scale : xlk

vlk
− xl0

vl0
≤ 0 k ∈ Nl l ∈ L

non-negativity: xlk ≥ 0 k ∈ Nl l ∈ L

(6)

Theorem 2 If for each market segment πlj(Sl) is of the form (2) then V̄ (T, c) = R(T, c).

We demonstrate the equivalence of the CBLP and SBLP formulations by showing that the
SBLP is a relaxation of the CBLP and then proving that the dual of the SBLP is a relaxation
of the dual of the CBLP. Full details of this proof may be found in the Appendix.
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The intuition behind the SBLP formulation is as follows. Our decision variables represent
the amount of inventory to allocate for sales across ODFs for different market segments. The
objective is to maximize revenues. Three types of constraints are required. The capacity
constraints limit the sum of the allocations. The balance constraints ensure that the sale
allocations are in certain hyperplanes, so when some service classes are closed for sale, the
demand for the remaining open service classes (including the null alternative) must be modified
to offset the amount of the closed demands. The scale constraints operate on the principle
that demands are rescaled depending on the availability of other items in the choice set.

The decision variables xl0 play an important role in the SBLP. Since the null alternative
has positive attractiveness and is always available, the dependent demand for any service class
is upper bounded based on its size relative to the null alternative. The scale constraints imply
that xlk ≤ vlkxl0/vl0. Therefore, the scale constraints favor a large value of xl0. On the other
hand, the balance constraint can be written as

∑
k∈N ṽlkxlk/vlk ≤ Dl − ṽl0xl0/vl0, favoring a

small value of xl0. The LP solves for this tradeoff taking into account the objective function
and the capacity constraint. We will have more to say about xl0 in the absence of capacity
constraints in Section 6. The combination of the balance and scale constraints ensures that
GAM properties are represented and that the correct ratios are maintained between the sizes
of each of the open alternatives.

The special case of the SBLP with ṽlk = vlk for all k ∈ Nl, l ∈ L reduces to the BAM. For
the BAM the demand balance constraint simplifies to xl0 +

∑
k∈Nl

xlk = Dl. For the GAM,
the balance constraint can alternatively be written as xl0 +

∑
k∈Nl

xlk +
∑

k∈Nl
wlk(xl0/vl0 −

xlk/vlk) = Dl. Since the third term of this equation is non-negative on account of the scale
constraints, it follows that for the GAM xl0 +

∑
k∈Nl

xlk ≤ Dl. For the independent demand
case ṽlk = 0 for all k ∈ Nl and ṽl0 = vl0 +

∑
k∈Nl

vlk, so the balance constraint reduces
to xl0 = (vl0/ṽl0)Dl, and the scale constraint becomes xlk ≤ (vlk/ṽl0)Dl, k ∈ Nl, so clearly
xl0 +

∑
k∈Nl

xlk ≤ Dl.

A major advantage of the SBLP formulation is that it neatly avoids the usual non-linearities
associated with calculating dependent demands under the general attraction model. The
SBLP allows us to determine which flight service classes should be open versus closed for sale.
Based on the specific pattern of open versus closed classes, the demands will vary (due to same-
flight upsell and cross-flight recapture effects). The compact formulation of the SBLP makes
practical the use of randomized linear programming (RLP) to obtain tighter upper bounds on
revenues and robust bid-price controls by repeatedly solving the SBLP for simulated demands
and averaging the objective function and the dual variables of the capacity constraints. See
Talluri and van Ryzin [29] for more on the RLP for the independent demand model as well
as Talluri [27] who proposes a concave programming method for general choice models.

Most modern RM optimization models for handling dependent demands require special
transformations of fare inputs and/or pre-calculation of ‘maximum demands’ (conditional on
closure of lower valued classes). Weatherford et al. [32] discusses several of these approaches
(e.g. DAVN-MR and choice-based EMSR); however, the required fare and demand transfor-
mations complicate both the optimization and real-time control processing. An important
practical benefit of the SBLP formulation is that it does not require any special transforma-
tions of the original inputs; the special structure of the demand, scale and balance constraints
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enforces automatic rescaling of the dependent demands and correctly models the associated
revenues (inclusive of upsell and recapture effects) in the LP.

Another point worth noting is that the CBLP and SBLP formulations remain equivalent
even if the market segments have products that overlap. The caveat is that both formulations
assume in this case that each market segment will be managed independently. This works
only if the capacity provider has the ability to offer a product for a market segment without
offering it to other market segments. On the other hand, if a fare cannot be offered in one
market without offering to other markets then both the CBLP and the SBLP formulations
are upper bounds that can be tightened by adding additional constraints. This approach was
used by Bront et al. [5] for the CBLP. They use column generation assuming that each market
segment follows a BAM and show that the column generation step is NP-hard.

We remark that the CBLP and therefore the SBLP can be extended to multi-stage prob-
lems since the inventory dynamics are linear. This allows for different choice models of the
GAM family to be used in different periods. The different GAMs may reflect time heterogene-
ity and the products that planners expect competitors to be offering. Thus, the probabilities
may be of the form πj(S,R

i) for t ∈ Ti if R
i is the set of products offered by competitors over

the time interval Ti.

5.1 Feasibility, Sub-optimality and Numerical Examples

In this section we present two results that relate the solutions to the extreme cases w = 0 and
w = v to the case 0 ≤ w ≤ v. The proofs of the propositions are in the Appendix.

The reader may wonder whether the optimistic solution that assumes wj = 0 for all j ∈ N
is feasible when wj ∈ (0, vj) j ∈ N . The following proposition confirms and generalizes this
idea.

Proposition 1 Suppose that αl(Sl), Sl ⊂ Nl, l ∈ L is a solution to the CBLP for the GAM
for fixed vlk, k ∈ Nl+, l ∈ L and wlk ∈ [0, vlk], k ∈ Nl, l ∈ L. Then αl(Sl), Sl ⊂ Nl, l ∈ L is a
feasible, but suboptimal, solution for all GAM models with w′

lk ∈ (wlk, vlk], k ∈ Nl, l ∈ L.

An easy consequence of this proposition is that if αl(Sl), l ∈ L is an optimal solution for
the CBLP under the BAM, then it is also a feasible, but suboptimal, solution for all GAMs
with wk ∈ (0, vk].

As mentioned in the introduction, the IDM underestimates demand recapture. As such
optimal solutions for the SBLP under the IDM are feasible but suboptimal solutions for the
GAM. The following proposition generalizes this notion.

Proposition 2 Suppose that xlk, k ∈ Nl, l ∈ L is an optimal solution to the SBLP for the
GAM for fixed vlk, k ∈ Nl+ and wlk ∈ [0, vlk], k ∈ Nl, l ∈ L. Then xlk, k ∈ Nl+, l ∈ L is a
feasible solution for all GAM models with w′

lk ∈ [0, wlk], k ∈ Nl, l ∈ L with the same objective
function value.
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An immediate corollary is that if xlk, k ∈ Nl, l ∈ L is an optimal solution to the SBLP under
the independent demand model then it is also a feasible solution for the GAM with wk ∈ [0, vk]
with the same revenue as the IDM.

Example 5: The following example problem was originally reported in Liu and van Ryzin
[20]. There are three flights AB,BC and AC. All customers depart from A with destinations
to either B or C. The relevant itineraries are therefore AB,ABC and AC. For each of these
itineraries there are two fares (high and low) and three market segments. Market segment 1
are customers who travel to B. Market segment 2 are customers who travel to C but only at
a high fare. Market segment 3 are customers who travel to C but only at the low fare. The
six fares as well as vlj, j ∈ Nl and vl0 for l = 1, 2, 3 are given in Table 3. Assume that market
sizes are λ1 = 6, λ2 = 9, λ3 = 15 and that capacity c = (10, 5, 5) for flights AB, BC and AC.

1 2 3 4 5 6 0
Products ACH ABCH ABH ACL ABCL ABL Null
Fares $1,200 $800 $600 $800 $500 $300

(AB, v1j) 5 8 2
(AChigh, v2j) 10 5 5
(AClow, v3j) 5 10 10

Table 3: Market Segment and Attraction Values v

In this example we will consider the parsimonious model wlj = θvlj for all j ∈ Nl, l ∈
{1, 2, 3} for some global parameter θ ∈ [0, 1]. We are interested in seeing how robust are the
solutions to the two extreme cases θ = 0 and θ = 1 to situations where θ ∈ (0, 1).

The extreme case θ = 0 corresponds to the BAM. The solution to the CBLP for the
BAM is given by α({1, 2, 3}) = 60%, α({1, 2, 3, 5}) = 23.3% and α({1, 2, 3, 4, 5}) = 16.7%
with α(S) = 0 for all other subsets of products. Equivalently, the solution spends 18, 7
and 5 units of time, respectively, offering sets {1, 2, 3}, {1, 2, 3, 5} and {1, 2, 3, 4, 5}. The
solution results in $11,546.43 in revenues.4 By Proposition 1, the solution α({1, 2, 3}) = 60%,
α({1, 2, 3, 5}) = 23.3%, α({1, 2, 3, 4, 5}) = 16.7% is feasible for all θ ∈ (0, 1] with a lower
objective function value. The corresponding SBLP solution is shown in Table 4 and provides
the same revenue outcome as the CBLP.

The case θ = 1 corresponds to the IDM. The solution to the SBLP for the IDM and the
corresponding revenue is given in Table 5. By Proposition 2, the solution to the IDM is a
feasible solution for all θ ∈ [0, 1) with the same objective value function.

Figure 1 shows how the two extreme solutions (CBLP for θ = 0) and (SBLP for θ = 1)
perform compared to the optimal solution for the GAM for θ ∈ (0, 1). A couple of observations
are in order. First, the BAM solution does well only for small values of θ, say θ ≤ 20% and
performs poorly for large values of θ. This result is intuitive because the modified problem with
θ treats the competitor alternatives much differently than the (uncorrected) BAM assumes; in

4This result is a slight improvement on the one reported in Liu and van Ryzin [20] for which we calculate
a profit of $11,546.20 based on an allocation of 16.35, 2.48, 10.3 and 0.87 units of time, respectively, on the
sets {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 4, 5}.

14



1 2 3 4 5 6 0
Products ACH ABCH ABH ACL ABCL ABL xl0 Profit
(AB, x1j) 4.29 1.71 $2,571.43

(AChigh, x2j) 4.50 2.25 2.25 $7,200.00
(AClow, x3j) 0.50 2.75 11.75 $1,775.00

Total 4.50 2.25 4.29 0.50 2.75 0.0 15.71 $11,546.43

Table 4: SBLP Allocation Solution for BAM with (θ = 0)

1 2 3 4 5 6 0
Products ACH ABCH ABH ACL ABCL ABL xl0 Profit
(AB, x1j) 2.00 3.00 0.80 $2,100.00

(AChigh, x2j) 4.50 2.25 2.25 $7,200.00
(AClow, x3j) 0.50 2.75 6.00 $1,775.00

Total 4.50 2.25 2.00 0.50 2.75 3.00 9.05 $11,075.00

Table 5: SBLP Allocation Solution for IDM with (θ = 1)

practice, ad-hoc increases to the size of the null alternative would be required in the BAM to
avoid overstating expected recapture rates. Left uncorrected (which is what these results are
based on), the BAM solution gives up about 10% of the optimal profits at the extreme value of
θ = 1. Second, the solution for the IDM gives up significant profits only for small values of θ. In
particular, the IDM solution loses over 4% of the optimal profits for θ = 0 but less than 0.25%
of profits for θ ≥ 40%. Finally, the optimal value function for the GAM is only marginally
better than the maximum of the (GAM-estimated) value functions for the BAM and the IDM.
Indeed, a heuristic that uses the BAM for θ ≤ 20% and the IDM for θ > 20% works almost as
well as the GAM. Please note that these results apply to the special case where all items in the
choice set have had their attractiveness downgraded by the same relative amount. The more
typical application of the GAM in practice is that at most a few of the items in the choiceset
would be modified (because they are especially competitive relative to the rest of the set),
so the revenue differences between the BAM and GAM results wouldn’t be quite as large.
Nonetheless, the example does highlight the asymmetry of revenue performance associated
with overestimating versus underestimating the attractiveness of competitor offerings. A
related finding was reported by Hartmans [14] of Scandinavian Airlines; his simulation studies
showed clear positive revenue potential of including sellup effects, but assuming strong sellup
in cases where it doesn’t really exist led to revenue loss.

Example 6: We continue using the running example in Liu and van Ryzin but we now assume
that demand is governed by the specific GAM presented in Table 6. The model reflects positive
w values for lower fares. The optimal revenue under this model is $11,225.00, and the optimal
allocations are given in Table 7. We know from Proposition 1 that the CBLP solution for the
BAM is feasible for this GAM. The resulting revenue is $11,185.86. The solution to the IDM
for the SBLP is also feasible for the GAM and results in revenue $11,075.00. It is clear that in
this case the BAM performs better than the IDM solution, and both are slightly worse than
the GAM.
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Figure 1: GAM, BAM and IDM Revenue for Different θ Values

5.2 Non-Linear Objective Functions

Recently, Topaloglu, Birbil, Frenk, and Noyan [30] extended the results in this paper to deal
with non-linear objective functions for the BAM. They do this by showing how to construct
a primal solution to the CBLP from the SBLP. Here we present how to construct a primal
solution to the CBLP for the GAM to allow also for non-linear objective functions5: Suppose
that xlk is an optimal solution to the SBLP. For each market segment, sort the items in
decreasing order of xlk/vlk, so that

xl0/vl0 ≥ xl1/vl1 ≥ . . . ≥ xlnl
/vlnl

where nl is the cardinality of Nl. Then form the sets Sl0 = ∅ and Slk = {l1, . . . , lk} for
k = 1, . . . , nl. For k = 0, 1, . . . , nl set

αl(Slk) =

(
xlk

vlk
− xl,k+1

vl,k+1

)
ṽ(Slk)

Dl

,

where for convenience we define xl,nl+1/vl,nl+1 = 0. Set αl(Sl) = 0 for all Sl ⊂ Nl not in the
collection Sl0, Sl1, . . . , Slnl

. It is then easy to verify that αl(Sl) ≥ 0, that
∑

Sl⊂Nl
αl(Sl) = 1

and that
∑

Sl⊂Nl
αl(Sl)πlk(Sl) = xlk. Applying this to the CBLP we can immediately see

that all constraints are satisfied and the objective function coincides with that of the SBLP.
Notice that for each market segment the set of offered sets Slk, k = 0, 1 . . . , nl are nested

5The authors are indebted to Huseyin Topalogulu for suggestions this result.
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1 2 3 4 5 6 0
Products ACH ABCH ABH ACL ABCL ABL Null
Fares $1,200 $800 $600 $800 $500 $300

(AB, v1j , w1j) (5, 0) (8, 1) 2
(AChigh, v2j , w2j) (10, 2) (5, 1) 5
(AClow, v3j, w3j) (5, 1) (10, 0) 10

Table 6: Market Segment and Attraction Values (v, w)

1 2 3 4 5 6 0
Products ACH ABCH ABH ACL ABCL ABL xl0 Profit

Market 1 (AB) 3.75 1.50 $2,250.00
Market 2 (AChigh) 4.50 2.25 2.25 $7,200.00
Market 3 (AClow) 0.50 2.75 10.25 $1,775.00

Total 4.50 2.25 2.01 0.50 2.75 2.99 9.84 $11,225.00

Table 7: SBLP Allocation Solution with GAM (w > 0)

Sl0 ⊂ Sl1 ⊂ . . . ⊂ Slnl
and that set Slk is offered if and only if xlk/vlk > xl,k+1/vl,k+1. In many

situations the sequence looks like:

xl0/vl0 = xl1/vl1 = . . . = xlk/vlk > xl,k+1/vl,k+1 > 0 = xl,k+2/vl,k+2 = . . . = xlnl
/vlnl

.

In this case only the set Slk and Sl,k+1 are offered for positive amounts of time. In this case
fare k+1 is the marginal fare for market segment l. Unlike the BAM and the IDM the sorting
order is not necessarily in decreasing order of fares. This is because fares that face more
competition (wlj close to vlj) are more likely to be offered even if the corresponding fare plj is
low. We will have more to say about sort ordering when we discuss the Assortment Problem
in the next section.

6 The Assortment Problem

As a corollary to Theorem 2, the infinite capacity formulations for the SBLP and CBLP are
equivalent. With infinite capacity the problem separates by market segment so it is enough
to study a single market segment. To facilitate this we will drop the subscript l both in the
formulation and in the analysis. The resulting problem can be interpreted as the that of
finding the assortment of products S ⊂ N and the corresponding sales xk, k ∈ N to maximize
profits from a market segment of size D that makes decision based on a GAM choice model.
Under this interpretation the pk values are gross unit profits, net of unit costs.
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R(T) = max
∑

k∈N pkxk

subject to

balance : ṽ0
v0
x0 +

∑
k∈N

ṽk
vk
xk = D

scale : xk

vk
− x0

v0
≤ 0 k ∈ N

non-negativity: xk ≥ 0 k ∈ N+

(7)

The problem is similar to a bin-packing problem with constraints linking the xk’s to x0.
An analysis of the problem reveals that the allocations should be in descending order of the
ratio of pk to ṽk/vk. This ratio can be expressed as pkvk/ṽk. For the BAM the allocation is in
decreasing order of price. Including lower priced products improves sales, but it cannibalizes
demands and dilutes revenue from higher priced products. As such, the allocation of demand
to products needs to balance the potential for more sales against demand cannibalization.
The sorting of products for the GAM depends not only on price but on the ratio vk/ṽk, so a
low priced product with a high competitive factor θk = wk/vk may have higher ranking than
a higher priced product with a low competitive factor. To explain how to obtain an efficient
allocation of demand over the different products we will assume that the products are sorted
in decreasing order of pkvk/ṽk. Let Xj = {1, . . . , j} and consider the allocation xk = vkx0/v0
for all k ∈ Xj and xk = 0 for k /∈ Xj. Solving the demand constraint for x0 we obtain

x0 =
v0

ṽ0 + ṽ(Xj)
D, (8)

xk = πk(Xj)D k ∈ Xj, (9)

and revenue
Rj =

∑
k∈Sj

pkπk(Xj)D. (10)

Now consider the problem of finding the revenue Rj+1 for set Xj+1 = Xj ∪ {j + 1}. It
turns out that Rj+1 can be written as a convex combination of Rj and pj+1Dvj+1/ṽj+1. This
implies that Rj+1 > Rj if and only if Rj < pj+1Dvj+1/ṽj+1. Thus the consecutive set Xj with
highest profit has index

j = max{j ≥ 1 : pj ≥
∑
k∈Xj

pkπk(Xj)(1− θj)}. (11)

The following proposition whose proof can be found in the Appendix establishes the opti-
mality6 of Xj.

Theorem 3 The assortment Xj with j given by equation (11) with xk, k ∈ Xj given by (9)
is optimal.

6H. Topaloglu at Cornell independently found the same sorting for the GAM. Personal communication.
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Notice that j in equation (11) is independent of D. This means that products 1, . . . , j are
offered for all demand levels D > 0 and products j+1, . . . , n are closed regardless of the value
of D. Products j + 1, . . . , n are inefficient in the sense they do not increase sales enough to
compensate for the demand they cannibalize. Table 4 illustrates precisely this fact as product
5 priced at $105 is inefficient because p5/(1 − θ5) < R4. Notice that in this example it was
better to keep product 1 at $100 fare with a competitive factor θ1 = 0.9 than the higher
product 5 at $105 with competitive factor θ5 = 0. The intuition behind this is that closing
product 5 is more likely to result in recapture than closing fare 1 (whose demand will most
likely be lost to competition or to the no purchase alternative).

k pk vk θk xk pkxk

0 1 0.0233
1 $100 15 0.9 0.3488 $34.88
2 $110 6 0.8 0.1395 $15.35
3 $115 9 0.7 0.2093 $24.07
4 $120 12 0.6 0.2791 $33.49
5 $105 9 0 0.0000 $0.00

Total $107.79

Table 8: Example Assortment Problem

If the problem consists of multiple market segments and each market segment is allowed
to post its own available product set Xlj then the problem reduces to sorting the products
for market segment l in decreasing order of plk/(1 − θlk), where θlk = wlk/vlk, and then
computing j(l) using (11) for each l. The resulting sets Xlj(l), l ∈ L are optimal. If, however,
a single assortment set S is to be offered to all market segments then the problem is NP-hard,
see Rusmevichientong et al. [23], even if there are only two market segments and the choice
model is the BAM. However, the problem for the BAM is somewhat easier to analyze since the
preference ordering for all the market segments is p1 > p2 > . . . > pn whereas the preference
ordering for the GAM may be different for different market segments. Assuming the order
p1 > p2 > . . . > pn, [23] provide a two market segment example where it is optimal to offer
X1 = {1} to market segment one, to offer X2 = {1, 2} to market segment two and to offer
X = {1, 3} to a composite of 50% of each of the two market segments. Given the NP-hardness
of the assortment problem with overlapping sets, the research activity has concentrated on
bounds, heuristics and performance warranties. We refer the reader to the working papers
by Rusmevichientong, Shen, and Shmoys [24] and Rusmevichientong and Topaloglu [25]. If
prices are also decision variables, with choices reflecting price sensitivities, then the problem
involves finding the offer sets and prices for each market segment. We refer the reader to
Schön [26] who allows for price discrimination, e.g., to offer different prices and offer sets to
different market segments. The problem of offering a single offer set and a single vector of
prices for all the market segments is again NP-hard.
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7 Extension to Multiple Cabins and Planned Upgrades

In many revenue management applications temporal mismatches between supply and demand
are addressed, at least in the short run, by serving the customer with an alternative product;
Gallego and Stefanescu [11]. When the mismatch between supply and demand results in
excess demand for a lower quality product and excess supply for a higher quality product,
customers may be upgraded to allow for more sales without altering the fare structure. In
airline applications the upgrade can be to a higher valued cabin within the same flight or to
a more convenient non-stop flight. In cruises, the upgrade can be to a cabin in a higher deck,
to a large cabin or to a cabin with a view. In hotels the upgrade can be to a deluxe room and
in car rentals to a larger car.

To improve utilization and correct cases of excess capacity relative to demand, the SBLP
formulation can be extended to accommodate planned upgrades. We will first provide a
formulation where upgrades are given at no extra cost to the consumer. Later we will discuss
how providers can plan for upgrades by charging nominal fees for desirable upgrades, or,
alternatively, they can plan for downgrades by reimbursing customers for the inconvenience
of serving them with another product.

To handle the network revenue management problem with planned upgrades it is conve-
nient to first solve the problem without upgrades and then to look at the dual variables of the
capacity constraints. It may be, for example, that a certain flight or a certain cabin class is
severely constrained whereas some alternative, nominally superior, services are unconstrained.
As an example, the coach class on a certain flight may be severely constrained while the busi-
ness class has slack capacity. As a second example, a leg in a connecting flight may be severely
constrained while a non-stop flight may be unconstrained. In car rentals, compact cars may
be severely constrained while full size cars are not. In these cases selective upgrades can be
given to alleviate the capacity constraint and improve revenues and profits.

As an example, the coach cabin on a certain flight may be severely constrained while the
business cabin may have slack capacity. As a second example, a leg on a connecting flight may
be severely constrained while a non-stop flight may be unconstrained. In car rentals, compact
cars may be severly constrained while full size cars are not. In these cases, selective upgrades
can be given to alleviate the product-specific capacity constraints and improve revenues and
profits.

7.1 Free Upgrades

Suppose a customer from market segment l selects product k ∈ Nl that is capacity constrained.
This means that the customer preferred product k at price plk over other, higher-priced prod-
ucts offered in Nl, say j, at price plj. This preference may be due to the combined effect of
the desirability of the product and the disutility of the prices. Moreover, the selection may
vary from customer to customer due to their idiosyncratic preferences. For example, in the
context of the MNL, decisions are based on the product attributes, the product prices and
the draw of independent Gumbel random variables. However, if the provider were to offer a
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nominally superior product j ∈ Nl at the lower price plk instead of plj then the customer may
revise his choice. We will define Vlk as the set of sufficiently desirable upgrades at price plk.
Let ρlkj denote the conditional probability that a customer who originally selected k ∈ Nl will
select a superior product j when offered at plk. This probability can be computed from the
choice model; see [11]. The maximum number of customers who actually accept the upgrade
is a binomial random variable with parameters xlk and ρlkj. For planning purposes one can
put upper bounds on the number of upgrades from k to j that are conservatively below the
expected number xlk · ρlkj of people who would agree to take the upgrade. Thus, our decision
variable xlk is comprised of customers accommodated in product k or upgrades from product k
to superior ones. In most cases the actual number of upgrades needed to significantly improve
profits (compared to the solution without upgrades) is relatively small. Moreover, a customer
may be offered an alternative upgrade, say j′ if he rejects j, so the bounds discussed here are
rarely a problem in terms of finding people willing to take the upgrades.

To model the problem with upgrades we will assume that the capacity vector c has sufficient
granularity to take into account different cabin classes. With this understanding the problem
can be modeled by adding variables zlk,mj which are the number of upgrades from customers
who book product k ∈ Nl to an upgrade product j ∈ Nm. Notice that we are allowing here
m �= l as it may be that product j ∈ Nm is not in the initial consideration set of customers
in market segment l. As an example, suppose that market segment l consists of people who
want to fly from A to C and pay a low fare. The consideration set for this market may consist
of a low fare for a non-stop flight AC or a low fare in a connecting flight A − B − C. For a
customer who selected the connecting flight, the set of upgrades can consist of the low fare
in the non-stop flight or a higher fare in the same flight (which was not part of his initial
consideration set). We will denote by Vlk the set of upgrade products that can potentially be
used to fulfill requests from customers who select k ∈ Nl. For convenience we include lk in the
set Vlk. Then the formulation has the same objective function, demand balance and demand
scaling constraints as the formulation without upgrades. What changes is how the capacity
constraint is handled through the use of the variables zlk,mj, mj ∈ Vlk. The new capacity
constraint is given by ∑

l∈L

∑
k∈Nl

∑
mj∈Vlk

Amjzlk,mj ≤ c

To complete the formulation it is necessary to include the linking constraints

xlk =
∑

mj∈Vlk

zlk,mj

and to add upper bounds to the variables zlk,mj

zlk,mj ≤ xlk · ρlkj
Note that we assume that the maximum number of upgrades allowed is less than the expected
number of customers willing to use the free upgrade (otherwise we would need to tighten our
bounds).

A special case of the above formulation that occurs commonly in practice is when upgrades
are limited to higher-valued cabins on the same-flight. The formulation remains unchanged,
but it is simpler to manage because the dimensionality of the z variables is reduced from zlk,mj
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to only zlk,lj (where j is an upgrade from k). Another belief is that, in practice, most of the
upgrade benefit can be gained by simply managing to the LP allocations (x) and bid prices
(flight leg dual values) without requiring explicit z variable bounds in the reservations system.
Strictly speaking, the full benefit depends on the demand order of arrival, but the negative
impact of not enforcing the z upper bounds is mitigated with frequent re-optimization.

7.2 Paid Upgrades

The previous formulation allows for the typical case of upgrades to higher-valued products,
but it does not allow for upsells where the customer is charged for a desirable upgrade. The
formulation also does not allow for downgrades. As an example, consider a provider who is
forced to reject high fare demand because capacity was previously sold at a low fare. The
provider could improve his profits if he could displace some of the low fare demand customers
into alternative products. To avoid the ill-will associated with such a practice, the provider
can offer price sensitive customers a compensation for the right to assign such customers to
one among several prespecified alternatives. The combination of offering upgrades, upsells
and to compensate customers for their flexibility can result in a more efficient allocation of
capacity.

To do this we need to expand the definition of Vlk and have associated fees flk,mj (in addition
to the base price plk) that change hands if and when the customers agrees to a change to mj.
If non-negative, f is the upgrade fee that customers agreed to pay for an upgrade to mj ∈ Vlk.
If non-positive, f can be the pre-agreed fee paid to customers fulfilled with mj ∈ Vlk (this may
be used as a mechanism to buy flexibility from customers). The bounds on zlk,mj may then
be a conservative estimate of the number of people willing to upgrade to mj or the number of
people who agreed to be compensated when switched to mj. The constraints for this problem
remain the same but the objective is now modified to include the sum of the flk,jmzlk,jm terms.

8 Extension to Flexible Products

The SBLP also allows for the sale of flexible products. Flexible products were introduced by
Gallego and Phillips [9] for a single leg model and by [12] for a network model. A flexible
product, such as a morning flight from New York to San Francisco, gives the capacity provider
the option of fulfilling its obligation with any of a set of pre-specified products. Flexible
products allow the provider to buy flexibility from flexible customers and use this to have
more capacity available for customers willing to pay high fares. Flexible products can be
either be sold at an upfront discount or customers can select an pay for a specific product and
agree to be reallocated to an alternative in a pre-specified set with and compensated only if
they are reallocated.

For ease of exposition we will formulate the case where flexible products are sold at a
discount. We will also assume a single market segment for specific and flexible products. The
extension to non-overlapping market segments is straightforward. Let N = {1, . . . , n} be the
set of specific products. The firm also offers f flexible products F = {1, . . . , f}. Each flexible
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product j consists of a set Fj ⊂ N of pre-specified alternatives. Every customer purchasing
flexible product j must agree to be assigned to any of the products in Fj . The capacity
provider has the obligation to fulfill every sale of flexible product j with exactly one of the
fj = |Fj| alternatives in the set Fj . The assignment occurs at the end of the horizon. We
assume that the sale probability vectors π(S) and ρ(S) for any S ⊂ N ∪F are such that π(S)
(of dimension n) depends only on S ∩ N and ρ(S) (of dimension f) depends only on S ∩ F .
We also assume that each of the choice models (for specific and flexible products) follows a
GAM. For an extension to the case where the demand for specific and flexible products can
depend on all the products offered we refer the reader to [12]. We complete the specification
of the problem by letting p and q be the vectors of fares for the flexible and specific products
and by letting Ds and Df represent aggregate arrival rates over the sales horizon for specific
and flexible products, respectively.

We will present the formulation of the SBLP directly. Let Bj be the sub-matrix of A
corresponding to the columns of the specific products in Fj and let B = (B1, . . . , Bf). U be a

matrix with f rows and f [1, f ] =
∑f

j=1 fj columns consisting of zeros except for ones in the

entries (i, k) such that f [1, i − 1] + 1 ≤ k ≤ f [1, i] for i = 1, . . . , f , where f [1, i] =
∑i

j=1 fj
and sums over empty sets are zero. With this notation the SBLP is given by:

R(T,c)= max
∑

k∈N pkxk +
∑

j∈F qjyj

subject to

capacity : Ax+Bz ≤ c

y− Uz = 0

balance(s) : ṽ0
v0
x0 +

∑
k∈N

ṽk
vk
xk = Ds

scale(s) : xk

vk
− x0

v0
≤ 0 k ∈ N

balance(f) : ν̃0
ν0
y0 +

∑
j∈F

ν̃j
νj
yj = Df

scale(f) :
yj
νj
− y0

ν0
≤ 0 j ∈ F

non-negativity: xk ≥ 0 k ∈ N+

non-negativity: yj ≥ 0 j ∈ F+

(12)

The vector y denotes the sales of flexible products. The vector z reallocates sales of flexible
products to specific products. Bid-price heuristics for flexible products are described in detail
in [12].

9 Conclusions and Future Research

The general attraction model formulation is a new variation of the basic attraction model.
We have presented an E-M algorithm to estimate the parameters that is an extension and
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refinement of [31]. Work is currently underway to develop techniques to estimate the pa-
rameters in situations where the arrival rates λlt are driven by a set of covariates such as
day-of-the-week, seasonality indices, and other factors that may affect demand. One known
problem in applying the BAM to typical airline problems is that the IIA property can be
violated in cases where there are large differences in the departure times of alternate flight
services; in such cases, the recapture rates between these widely spread departures would be
overestimated. This problem can be mitigated by segmenting customers by their preferred
departure time. However, more elegant solutions may exist to handle this problem, and an
area of future research is to incorporate features of the GAM into other commonly used types
of customer choice models (e.g. nested logit or generalized extreme value).

One limitation of our model is that it provides only an upper bound when there are
overlapping market segments, and only a single offer set can be posted at any given time.
However, the SBLP formulation is more amenable to adding cuts and to finding polynomial
time approximation algorithms to handle commonality constraints. We are currently working
on these extensions for both the assortment problem and the case of finite capacities. It
is also possible to extend the results in this paper to other objective functions given the
equivalence of the solutions space for the CBLP and the SBLP7. The SBLP provides the basis
for many heuristics for the stochastic network revenue management problem. Since the size
of the problem is essentially the same as that of the independent demand model, applying the
randomized linear program (RLP) of Talluri and van Ryzin [29] becomes viable for the GAM
model. Other heuristics such as those proposed by Gallego et al. [10], by Jasin and Kumar
[16], by Kunnumkal and Topaloglu [18], and by Liu and van Ryzin [20] are aided by the ease
of solving the SBLP and enriched by the GAM.

We also showed that the SBLP and GAM can be successfully applied to the assortment
problem that arises when the capacities are set at infinity; the assortment problem is important
in its own right both in the context of perishable and non-perishable products. The new insight
is that, under the GAM, it is not necessarily true that the optimal assortment consists of the
highest priced products.

A Appendix

A.1 MNL Under Competition Leads to GAM

Consider two retailers, each of which can provide any subset of products in N = {1, . . . , n}
at given prices pki, i ∈ N, k = 1, 2 where k indexes the retailer. Assume that customers derive
net utility uki + εi from buying product i from retailer k. We will assume that the εi, i ∈ N
are independent, standard Gumbel random variables with parameter φ. Notice that a single
idiosyncratic random variable εi is selected for each product independently of the retailer.

Suppose retailer k selects set Sk ⊂ N, k = 1, 2. We are interested in finding the probabilities
πki(S1, S2) of selecting i ∈ S1 ∪ S2 for k = 1, 2. Let Nk = {i : uki > u3−k,1} for k = 1, 2. Thus

7H. Topalogulu has used this idea to model the multiclass overbooking problem under discrete choice models
in a presentation at the 2011 Informs Revenue Management Conference at Columbia University.
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retailer k = 1, 2 is dominant over set Nk. We will assume that N1 ∪N2 = N so there are no
ties. We will first analyze the case Sk ⊂ Nk, k = 1, 2. Let vki = exp(φuki) for all i ∈ N and
k = 1, 2. Then

πki(S1, S2) =
vki

v0 +
∑

i∈S1
v1i +

∑
i∈S2

v2i
i ∈ Sk k = 1, 2,

and πki = 0 if i ∈ S3−k. Retailer k may have reasons to use a subset Sk that is strictly smaller
than Nk, perhaps because adding a product i ∈ Nk − Sk ≡ Nk ∩ S ′

k may cannibalize demand
from higher profit products in Sk. However, this allows Retailer 3 − k to add some products
in Nk − Sk to S3−k. This suggest that we may need to allow for situations where Sk ⊂ N ,
k = 1, 2 with non-empty overlap S1 ∩ S2 even if N1 ∩N2 = ∅. We will now partition S1 ∪ S2

into disjoint sets where retailer’s dominate. More precisely, let

SD
k = {i ∈ Sk : i ∈ Nk or i /∈ S3−k} k = 1, 2

be the subset of Sk where retailer k dominates. It is clear that the SD
k , k = 1, 2 are disjoint

and that SD
1 ∪ SD

2 = S1 ∪ S2.

Then
πki(S1, S2) =

vki
v0 +

∑
i∈SD

1
v1i +

∑
i∈SD

2
v2i

i ∈ SD
k k = 1, 2.

We are particularly interested in seeing how the choice probabilities change for a given
retailer, say 1 as he changes his set, say S = S1, assuming the offer set of the other retailer,
say R = S2 stays put. More precisely, we are interested in πi(S,R) = π1i(S,R) i ∈ S for fixed
R. To make things more concrete, let us assume that R = N and let πi(S) = π1i(S,N).

With R = N , then πi(S) = 0 if i /∈ N1 suggesting that S ⊂ N1. For S ⊂ N1 we have

πi(S) =
v1i

v0 +
∑

j∈S v1j +
∑

j∈N−S v2j
i ∈ S ⊂ N1.

Let ṽ0 = v0 +
∑

j∈N v2j , ṽj = v1j − v2j and vj = v1j for all j ∈ N1. Then for all S ⊂ N1 we
have

πi(S) =
vi

ṽ0 + ṽ(Sl)
.

Clearly this has the GAM form. With some care, GAM parameters can be found for πi(S,R)
for R ⊂ N and S ⊂ N1 ∪ (N2 − R).

A.2 Estimation-Maximization Method for the GAM

The method presented here is an extension and a refinement of the EM proposed by Vulcano,
van Ryzin and Ratliff (VvRR) [31]. We assume that demands in periods t = 1, . . . , T arise from
a GAM with parameters v and w and arrival rates λt = λ for t = 1, . . . , T . The homegeneity
of the arrival rates is not curcial. In fact the method descibed here can be extended to the
case where the arrival rates are govened by co-variates such as the day of the weak, seasonality
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index, and indicator variables of demand drivers such as conferences, concerts or games. Our
main purpose here is show that it is possible to estimate demands fairly accurately.

The data is given by the offer sets St ⊂ N and the realized sales zt ⊂ Zn
+ for t = 1, . . . , T .

VvRR assume that the market share s = πN(N), when all products are offered, is known.
While we do not make this assumption here, we do present results with and without knowledge
of s.

VvRR update estimates of v by estimating demands for each of the products in N when
some of them are not offered. To see how this is done, consider a generic period where set
S was offered and the realized sale vector is Z = z. Let Xj be the demand for product j
if set N instead of S was offered. We will estimate Xj conditioned on Z = z. Consider
first the case j /∈ S. Since Xj is Poisson with parameter λπj(N), substituting the MLE

estimate e′zt/πSt(St) of λ we obtain the estimate X̂j = λ̂πj(N) =
πj(N)

πS(S)
e′z. We could use

a similar estimate for products j ∈ S but this would disregard the information zj . For
example, if zj = 0 then we know that the realization of Xj was zero as customers had
product j available for sale. We can think of Xj, conditioned on (S, z) as a binomial random
variable with parameters zj and probability of selection πj(N)/πj(S). In other words, each
of the zj customers that seleted j when S was available, would have selected j anyway with

probability πj(N)/πj(S). Then X̂j =
πj(N)

πj(S)
zk is just the expectation of the binomial. Notice

that X̂[1, n] =
∑m

i=1 X̂j =
e′z

πS(S)
πN (N) = λ̂s. We can find X̂0 by treating it as j /∈ S resulting

in X̂0 =
π0(N)
πS(S)

e′z = λ̂(1 − s). For any j let Zj = Xj + Yj where Yj is the demand recaptured

or ceded by j from or to other products. Our estimate of Yj is given by Ŷj = −X̂j if j /∈ S,

and by Ŷj = zj − X̂j for j ∈ S. We cannot obtain Ŷ0 from the formula z0 − X̂0 because we

do not observe z0. However, we know by conservation of flow, that Ŷ [0, n] = 0, which leads

directly to Ŷ0 =
π0(N)πS′ (N)

πS(S)
e′z or equivalently to Ŷ0 = π0(N)

∑
j /∈S X̂j = λ̂(1 − s)πS′(N). We

summarize the results in the following proposition:

Proposition 3 (VvRR extended to the GAM): If j ∈ S then

X̂j =
πj(N)

πj(S)
zj .

If j /∈ S or j = 0 we have

X̂j =
πj(N)

πS(S)
e′z.

Moreover, X̂[1, n] =
∑

j∈N X̂j =
πN (N)
πS(S)

e′z. If j ∈ S then

Ŷj =
v(S ′)− w(S ′)
1 + v(N)

zj

for j /∈ S
Ŷj = −X̂j .

Finally, for j = 0,

Ŷ0 =
π0(N)πS′(N)

πS(S)
e′z.
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VvRR use the formulas for the BAM to estimate the parameters λ, v1, . . . , vn under the
assumption that the share s = v(N)/(1+v(N)) is known. From this they use an E-M method
to iterate between estimating the X̂js given a vector v and then optimizing the likelihood
function over v given the observations. The MLE has a closed form solution so the updates
are given by v̂j = X̂j/X̂0 for all j ∈ N , where X̂0 = rX̂[1, n] and r = 1/s − 1. VvRR use
results in Wu [33] to show that the method converges. We now propose a refinement of the
VvRR method.

Using data (St, zt), t = 1 . . . , T , VvRR obtain estimates X̂tj that are then averaged over
the T observations for each j. In effect, this amounts to pooling estimators from the different
sets by giving each period the same weight. When pooling estimators it is convenient to take
into account the variance of the estimators and give more weight to sets with smaller variance.
Indeed, if we have T different unbiased estimators of the same unknown parameter, each with
variance σ2

t , then giving weights proportional to the inverse of the variance minimizes the
variance of the pooled estimator. Notice that the variance of X̂tj is proportional to 1/πj(St)
if j ∈ St and proportional to 1/πSt(St) otherwise. Let atj = πj(St) if j ∈ St and atj = πSt(St)
if j /∈ St. We can select the set the weights for product j as

αtj =
atj∑T
s=1 asj

.

Our simulations suggests that the adding that our weighting scheme reduces the variance of
the estimators by about 4%.

To extend the procedure to the GAM we combine ideas of the EM method based on MLEs
and least squares (LS). It is aslo possible to refine the estimates by using iterative re-weighted
least squares (Green [13]) but our computational experience shows that there is little benefit
from doing this. To initialize the estimation we use formulas for the expected sales under
St, t = 1, . . . , T for arbitrary parameters λ, v and w. More precisely, we estimate E[Ztj] by
λπj(St) for j ∈ St and t ∈ {1, . . . , T}. We then minimize the sum of squared errors between
estimated and observed sales (zts) subject to the constraints 0 ≤ w ≤ v and λ ≥ 0. This
gives us an initial estimate λ(0), v(0), w(0) and of the share s(0) = v(0)(N)/(1 + v(0)(N)). Let
r(0) = 1/s(0) − 1. If s is known then we add the constraint v(N) = r = 1/s − 1. Given
estimates of v(k) and w(k) the procedure works as follows

E-step Estimate the first choice demands X̂
(k)
tj and then aggregate over time using the current

estimate of the weights α
(k)
tj to produce X̂

(k)
j =

∑T
t=1 X̂

(k)
tj α

(k)
tj and X̂

(k)
0 = r(k)X̂(k)[1, n]

and update the estimates of v by

v
(k+1)
j =

X̂
(k)
j

X
(k)
0

j ∈ N.

M-step Feed v(k+1) together with arbitrary λ and w to estimate sales under St, t = 1, . . . , T and
minimize the sum of squared errors between observed and expected sales over λ and w
subject to w ≤ v(k+1) and non-negativity constraint to obtain updates λ(k+1), w(k+1) and
s(k+1).
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The proof of convergence is a combination of the arguments in Wu, as in VvRR, and the
fact that the least squared errors problem is a convex minimization problem. The case when
s is known works exactly as above, except that we do not need to update this parameter. The
M-step can be done by solving the score equations:∑

t∈Ai

πi(St)[e
′zt + λπ0(St)]−

∑
t∈Ai

zti = 0 i = 1, . . . , n,

∑
t/∈Ai

π̂i(St)[e
′zt + λπ0(St)]− λ

∑
t/∈Ai

π̂i(St) = 0 i = 1, . . . , n.

and
T∑
t=1

πSt(St)−
T∑
t=1

e′zt/λ = 0,

where Ai is the set of periods where product i is offered and

π̂i(St) =
vi

1 + v(St) + w(S ′
t)

t /∈ Ai.

This is a system of up to 2n + 1 equations on 2n + 1 unknowns. Attempting to solve the
score equations directly or through re-weighted least squares does not materially improve the
estimates relative to the least square procedure described above.

A.3 Proof of Theorem 1:

Proof: If the choice model πj(S), j ∈ S satisfies GAM then there exist constants vi, i ∈ N+,
ṽi ∈ [0, vi], i ∈ N and ṽ0 = v0+

∑
j∈N(vj−ṽj) such that πR(S) = v(R)/(ṽ0+ṽ(S) for all R ⊂ S.

For this choice model, the left hand side of Axiom 1’ is (ṽ0+ṽ(S)/(ṽ0+ṽ(T )). Let θj = 1−ṽj/vj .
Then the right hand side of Axiom 1’ is given by 1 −∑

j∈T−S(1 − θj)vj/(ṽ0 + ṽ(T )) = (ṽ0 +
ṽ(S)/(ṽ0+ṽ(T )). This shows that the GAM satisfies Axiom 1’. If πi({i, j}) = 0 then vi = 0 and

consequently ṽi = 0. From this it follows that πS−{i}(T −{i}) = v(S)−vi
ṽ0+ṽ(T )−ṽi

= v(S)
ṽ0+ṽ(T )

= πS(T ),
so Axiom 2 holds.

Conversely, suppose a choice model satisfies the GLA. Then by selecting R = {i} ⊂ S ⊂
T = N we see from Axiom 1’ that

πi(S) =
πi(N)

1−∑
j /∈S(1− θj)πj(N)

.

Since π0(N) +
∑

j∈N πj(N) = 1 the denominator can be written as π0(N) +
∑

j∈N θjπj(N) +∑
j∈S(1− θj)πj(N), resulting in

πi(S) =
πi(N)

π0(N) +
∑

j∈N θjπj(N) +
∑

j∈S(1− θj)πj(N)
.

Letting vj = πj(N) for all j ∈ N+, ṽ0 = v0 +
∑

j∈N θjvj and ṽj = (1− θj)vj ∈ [0, 1] for j ∈ N
the choice model can be written as

πi(S) =
vi

ṽ0 + ṽ(S)
,
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so it satisfies the GAM.

A.4 Proof of Theorem 2:

Proof: Assume a solution αl(Sl), l ∈ L for the CBLP is given and for k ∈ Nl let xlk =
Dl

∑
Sl⊂Nl

αl(Sl)πlk(Sl). The objective function and the capacity constraint in terms of xlk

are given respectively by
∑

l∈L
∑nk

k=1 plkxlk and
∑

l∈L
∑nk

k=1Alkxlk ≤ c. Let

x̃l0 = Dl

∑
Sl⊂Nl

αl(Sl)πl0(Sl).

Notice that x̃l0 = xl0 +
∑

k∈Nl
ylk where

xl0 = Dl

∑
Sl⊂Nl

αl(Sl)
vl0

v0 + wl(S
′
l) + vl(Sl)

and
ylk = Dl

∑
Sl⊂Nl:k/∈Sl

αl(Sl)
wlk

v0 + wl(S ′
l) + vl(Sl)

k ∈ Nl.

We now argue that xlk

vlk
is bounded above by xl0

vl0
. This follows because

xlk

vlk
= Dl

∑
Sl⊂Nl:k∈Sl

αl(Sl)
1

v0 + wl(S ′
l) + vl(Sl)

while
xl0

vl0
= Dl

∑
Sl⊂Nl

αl(Sl)
1

v0 + wl(S ′
l) + vl(Sl)

and the second equation sums over at least as many subsets.

Notice that if wlk > 0 then
xlk

vlk
+

ylk
wlk

=
xl0

vl0
,

or equivalently

ylk = wlk

[
xl0

vl0
− xlk

vlk

]
≥ 0 (13)

since xlk

vlk
≤ xl0

vl0
. On the other hand, by definition, ylk = 0 if wlk = 0. Thus formula (13) holds

for all k ∈ Nl. Substituting ylk into

xl0 +
∑
k∈Nl

ylk +
∑
k∈Nl

xlk = Dl
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and collecting terms we obtain
(
vl0 +

∑
k∈Nl

wlk

vl0

)
xl0 +

∑
k∈Nl

(
vlk − wlk

vlk

)
xlk = Dl ∀ l ∈ L,

which is equivalent to the demand balance constraint since ṽl0 = vl0 +
∑

k∈Nl
wlk and ṽlk =

vlk − wlk for all k ∈ Nl.

This shows that any solution to the CBLP can be converted into a feasible solution to the
SBLP for the GAM with the same objective value. As a result, V̄ (T, c) ≤ R(T, c).

Let z and β̃l, l ∈ L be an optimal solution for the dual of the CBLP. Let βl = β̃l/Dl. Then
the feasibility constraint for the dual of the CBLP takes the form

βl +
∑
j∈Sl

(z′Alj − plj)πlj(Sl) ≥ 0 Sl ⊂ Nl, l ∈ L. (14)

For each market segment we define the sets:

Fl = {k ∈ Nl : plk − z′Alk − βl
ṽlk

vlk > 0
}, l ∈ L

and the quantities:
γlk = (plk − z′Alk)vlk − βlṽlk ≥ 0 k ∈ Fl.

For k /∈ Fl we set γlk = 0.

We will now show that z, βl, l ∈ L and γlk k ∈ Nl, l ∈ L is a feasible solution to the dual
of the SBLP:

R(T, c) = min
∑

l∈L βlDl + z′c

subject to βl
ṽlk
vlk

+ z′Alk +
γlk
vlk

≥ plk k ∈ Nl, l ∈ L
βl

ṽl0
vl0

−∑
j∈Nl

γlj
vl0

≥ 0 l ∈ L
z ≥ 0, γlk ≥ 0 k ∈ Nl, l ∈ L

(15)

By construction

βl
ṽlk
vlk

+ z′Alk +
γlk
vlk

≥ plk

for all k ∈ Nl, l ∈ L.
Our next task is to show that

βl
ṽl0
vl0

−
∑
j∈Nl

γlj
vl0

≥ 0

Since vl0 > 0 and γlj = 0 for j /∈ Fl it is enough to show that

βlṽl0 −
∑
j∈Fl

γlj ≥ 0
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Substituting the definition of γlj and rearranging terms, the inequality is equivalent to

βl[ṽl0 + ṽl(Fl)] +
∑
j∈Fl

(z′Alj − plj)vlj ≥ 0.

Dividing by ṽl0 + ṽl(Fl) the inequality is equivalent to

βl +
∑
j∈Fl

(z′Alj − plj)πlj(Fl) ≥ 0.

However, this inequality holds because of the feasibility of the dual of the CBLP (14)
applied to Fl. Since any optimal solution to the dual of the CBLP has a corresponding
solution to the dual of the SBLP with the same objective function we have R(T, c) ≤ V̄ (T, c)
completing the proof.

A.5 Proof of Proposition 1:

Proof: To show feasibility it is enough to show that the capacity constraint is satisfied and
to do this it is enough to show that the vectors πl(Sl) are decreasing in wk. To facilitate the
notation we will drop the market segment index l. Then

πj(S) =
vi

v0 + w(S ′) + v(S)

which is decreasing in wk. As a result, if we compare the demands under model wk, k ∈ N and
model w′

k ∈ (wk, vk], k ∈ N , we see that the demands under the latter model are bounded above
by the demands under the former model. Consequently, strictly less capacity is consumed
under the latter model. Moreover, revenues suffer from lower demands so the original solution
is suboptimal.

A.6 Proof of Proposition 2:

Proof: Suppose that xlk, k ∈ Nl, l ∈ L is an optimal solution to the SBLP under the GAM for
fixed vk, k ∈ N+ and wk ∈ [0, vk], k ∈ N and consider a GAM model with the same vks and
w′

k ∈ [0, wk], k ∈ N . To see that the xlk remains feasible it is enough to verify the demand
balance constraint for each market segment. To facilitate the exposition we will drop the
market segment subscript l. The demand balance constraint can be written as

x0 +
n∑

k=1

xk +
n∑

k=1

wk(
x0

v0
− xk

vk
) = D.

31



Now consider a GAM with w′
k ∈ [0, wk]. Then the demand scaling constraints guarantee that

x0 +
n∑

k=1

xk +
n∑

k=1

w′
k(
x0

v0
− xk

vk
) ≤ D.

This shows that xk, k ∈ N together with some x′
0 ≥ x0 form a feasible solution to the demand

balance constraint without violating the demand scaling constraints.

A.7 Proof of Theorem 3:

Proof: We first verify that x0 and xk, k ∈ Xj as given by equations (8) and (9) with j given
by equation (11) is feasible for the SBLP assortment problem. Suppose the xk, k ∈ Xj are as
in equation (9). Then the demand balance equation is

ṽ0
v0
x0 +

∑
k∈Xj

ṽk
v0
x0 = D.

Solving for x0 we obtain (8). But now xk

vk
= x0

v0
= 1

ṽ0+ṽ(Xj)
D for all k ∈ Xj together with the

non-negativity of x0 and xk, k ∈ Xj shows that the solution is indeed feasible. This feasible
solution has objective value Rj given by equation (10).

To prove that Rj is the maximum revenue for the assortment problem we will show that
there is a feasible solution to the dual with the same objective value. Consider the dual with
objective function Dβ and constraint set ṽ0β −∑

k γk ≥ 0 and ṽkβ + γk ≥ pkvk, k ∈ N . We
claim that β = Rj/D together with γk = pkvk − ṽkβ for k ∈ Xj and γk = 0 for k /∈ Xj is a
feasible solution to the dual. The non-negative constraint γk ≥ 0 is satisfied by construction
for k > j. For k ∈ Xj the constraint is equivalent to pkvk ≥ ṽlβ, which in turn is equivalent
to pkDvk/ṽk ≥ Rj for all k ∈ Xj . Since the items are sorted in decreasing order of pkvk/ṽk it
is enough to show that pjDvj/ṽj ≥ Rj . However, we know that Rj is a convex combination
of Rj−1 and pjDvj/ṽk. Moreover, since Rj ≥ Rj−1 it follows that Rj ≤ pjDvj/ṽj. It remains
to show that ṽ0β − ∑

k γk ≥ 0. We will do this by showing that β = Rj/D is a solution
to equation ṽ0β =

∑
k∈Xj

γk where γk = pkvk − ṽkβ for k ∈ Xj. This is equivalent to

[ṽ0+ ṽ(Xk)]β =
∑

k∈Xj
pkvk. We see that β =

∑
k∈Xj

pkπk(Xj) = Rj/D completing the proof.
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