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We study firms that sell multiple differentiated substitutable products and customers whose purchase

behavior follows a Nested Logit model, of which the Multinomial Logit model is a special case. Customers

make purchasing decision sequentially under the Nested Logit model: they first select a nest of products

and subsequently purchase a product within the selected class. We consider the general Nested Logit model

with product-dependent price sensitivities and general nest coefficients. The problem is to price the products

to maximize expected profits. We show that the adjusted markup, defined as price minus cost minus the

reciprocal of the product’s price sensitivity, is constant for all products within a nest at optimality. This

reduces the problem’s dimension to a single variable per nest. We also show that each nest has an adjusted

nest-level markup that is nest invariant, which further reduces the problem to a single variable optimization

of a continuous function over a bounded interval. We provide conditions for this function to be uni-modal. We

also use this result to simplify the oligopolistic price competition and characterize the Nash equilibrium (NE)

and provide conditions under which the Tatonnement process converges to the unique NE. Furthermore, we

investigate its application to multi-product dynamic pricing and revenue management, as well as extensions

to more general attraction functions including linear and constant elasticity of substitution.

Key words : multi-product pricing; Attraction model; Nested Logit model; Multinomial Logit model;

product-differentiated price sensitivity; substitutable products

1. Introduction

Firms offering a menu of differentiated substitutable products face the problem of pricing them

to maximize profits. This becomes more complicated with rapid technology development as new

products are constantly introduced into the market and typically have a short life cycle. In this

paper we are concerned with the problem of maximizing expected profits when customers follow
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a nested choice model where they first select a nest of products and then a product within the

nest. The selection of nests and products depend on brand, product features, quality and price.

The Nested Logit (NL) model and its special case the Multinomial Logit (MNL) model are among

the most popular models to study purchase behavior of customers who face multiple substitutable

products. The main contribution of this paper is to find very efficient solutions for a very general

class of NL models and to explore the implications for oligopolistic competition and dynamic

pricing.

The MNL model has received significant attention by researchers from economics, marketing,

transportation science and operations management, and it has motivated tremendous theoretical

research and empirical validations in a large range of applications since it was first proposed by

McFadden (1974), who was later awarded the 2000 Nobel Prize in Economics. The MNL model has

been derived from an underlying random utility model, which is based on a probabilistic model of

individual customer utility. Probabilistic choice can model customers with inherently unpredictable

behavior that shows probabilistic tendency to prefer one alternative to another. When there is a

random component in a customer’ utility or a firm has only probabilistic information on the utility

function of any given customer, the MNL model describes customers’ purchase behavior very well.

The MNL model has been widely used as a model of customer choice, but it severely restricts

the correlation patterns among choice alternatives and may behave badly under certain conditions

(Williams and Ortuzar 1982), in particular when alternatives are correlated. This restrictive prop-

erty is known as the independence of irrelevant alternatives (IIA) property (see Luce 1959). If the

choice set contains alternatives that can be grouped such that alternatives within a group are more

similar than alternatives outside the group, the MNL model is not realistic because adding new

alternative reduces the probability of choosing similar alternatives more than dissimilar alterna-

tives. This is often explained with the famous “red-bus/blue-bus” paradox (see Debreu 1952).

The NL model has been developed to relax the assumption of independence between all the

alternatives, modeling the “similarity” between “nested” alternatives through correlation on utility

components, thus allowing differential substitution patterns within and between nests. The NL

model has become very useful on contexts where certain options are more similar than others,

although the model lacks computational and theoretical simplicity. Williams (1977) first formulated

the NL model and introduced structural conditions associated with its inclusive value parameters,

which are necessary for the compatibility of the NL model with utility maximizing theory. He

formally derived the NL model as a descriptive behavioral model completely coherent with basic

micro-economic concepts. McFadden (1980) generated the NL model as a particular case of the
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generalized extreme value (GEV) discrete-choice model family and showed that it is numerically

equivalent to Williams (1977). The NL model can also be derived starting from Gumbel marginal

functions. Later on, Daganzo and Kusnic (1993) pointed out that although the conditional proba-

bility may be derived from a logit form, it is not necessary that the conditional error distribution

be Gumbel. To keep consistent with micro-economic concepts, like random utility maximization,

certain restrictions on model parameters that control the correlation among unobserved attributes

have to be satisfied. One of the restrictions is that nest coefficients are required to lie within the

unit interval, i.e., 0≤ γi ≤ 1 ∀i.
Multi-product price optimization under the NL model and the MNL model has been the subject

of active research since the models were first developed. Hanson and Martin (1996) show that

the profit function for a firm selling multiple differentiated substitutable products under the MNL

model is not jointly concave in the price vector. While the objective function is not concave in

prices, it turns out to be concave with respect to the market share vector, which is in one-to-one

correspondence with the price vector. To the best of our knowledge, this result is first established

by Song and Xue (2007) and Dong et al. (2009) in the MNL model and by Li and Huh (2011) in the

NL model. In all of their models, the price-sensitivity parameters are assumed identical for all the

products within a nest and the nest coefficients are restricted to be in the unit interval. Empirical

studies have shown that the product-specified price sensitivity may vary widely and recognized the

importance of allowing different price sensitivities in the MNL model (see Berry et al. 1995 and

Erdem et al. 2002). Borsch-Supan (1990) points out that the restriction for nest coefficients in the

unit interval leads too often rejection of the NL model. Unfortunately, the concavity with respect

to the market share vector is lost when price-sensitivity parameters are product-differentiated or

nest coefficients are greater than one as shown through an example in Appendix A.

Under the MNL model with identical price-sensitivity parameters, it has been observed that the

markup, that is price minus cost, is constant across all the products of the firm at the optimal

solution (see Anderson and de Palma 1992, Aydin and Ryan 2000, Hopp and Xu 2005 and Gallego

and Stefanescu 2011). The profit function is uni-modal and there exist a unique optimal solution,

which can be found by solving the first order conditions (see Aydin and Porteus 2008, Akcay et al.

2010 and Gallego and Stefanescu 2011). In this paper, we consider the general NL model with

product-differentiated price-sensitivity parameters and general nest coefficients. We show that the

adjusted markup, which is defined as price minus cost minus the reciprocal of the price sensitivity,

is constant across all the products in each nest at optimal (locally or globally) prices. When

optimizing multiple nests of products, the adjusted nest-level markup, which is an adjusted average
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markup for all the products in the same nest, is also constant for each nest. By using this result, the

multi-product and the multi-nest optimizations can be reduced to a single-dimensional problem of

maximizing a continuous function over a bounded interval. We also provide mild conditions under

which the single-dimensional problem is uni-modal, further simplifying the problem.

In a game-theoretic decentralized framework, the existence and uniqueness of a pure Nash equi-

librium in a price competition model depend fundamentally on the demand functions as well as

the cost structure. Milgrom and Roberts (1990) identify a rich class of demand functions, including

the MNL model, and point out that the price competition game is supermodular, which guarantees

the existence of a pure Nash equilibrium. Bernstein and Federgruen (2004) and Federgruen and

Yang (2009) extend this result for a generalization of the MNL model referred to as the attraction

model. Gallego et al. (2006) provide sufficient conditions for the existence and uniqueness of a

Nash equilibrium under the cost structure that is increasing convex in the sale volume. Liu (2006),

Cachon and Kok (2007) and Kok and Xu (2011) consider the NL model with identical price sensi-

tivities for the products of the same firm and have characterized the Nash equilibrium. Moreover,

Li and Huh (2011) study the same model with nest coefficients 0 ≤ γi ≤ 1 and have derived the

unique equilibrium in a closed-form expression involving the LambertW function (see Corless et al.

1996). In all these models, the product-specified price-sensitivity parameters for the products of

the same firm are assumed identical. This paper considers competition under the general NL model

and shows that the multi-product price competition is equivalent to a log-supermodular game in

a single-dimensional strategy space.

In addition to monopoly and oligopoly pricing under the NL model, we also consider an applica-

tion to dynamic pricing and an extension to more general nested attraction models. Multi-product

dynamic pricing problems have been popular (see Gallego and van Ryzin 1997) and some heuristics

have been developed to solve this complicated dynamic program. We show how dynamic pricing

can be done under the NL model by using the fact that the adjusted markup is constant for all the

products in each nest. This allow us to simplify the multi-product dynamic pricing problem under

the NL to the classic dynamic pricing problem for a single product with concave revenue rate. We

also consider the extension to more general attraction functions other than the exponential one

that leads to the NL model. In particular, we show that the optimization also reduces to a single

variable when the attractions are linear or have constant elasticity of substitution.

The remainder of this paper is organized as follows. In Section 2, we consider the general Nested

Logit model and show that the adjusted markup is constant across all the products of a nest.

Moreover, the adjusted nest-level markup is also constant for each nest in a multi-nest optimization
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problem. In Section 3, we investigate the oligopolistic price competition problem, where each firm

controls a nest of substitutable products. A Nash equilibrium exists for the general NL model

and sufficient conditions for the uniqueness of the equilibrium are also provided. Section 4 is

the application in multi-product dynamic pricing under the framework of revenue management.

In Section 5, we consider an extension to other Nested Attraction models and conclude with a

summary of our main results and useful management insights for application in business.

2. Nested Logit Model

The Multinomial Logit (MNL) model has been widely used to study customer choice behavior in

marketing, economics, transportation science and operations management. However, it exhibits the

Independence of Irrelevant Alternatives (IIA) property, which implies that the ratio of probabilities

of choosing any two alternatives is independent of the availability and attributes of a third alter-

native. In reality, adding new alternative or reducing the price of an alternative hurt the similar

alternatives more than dissimilar alternatives and the empirical studies have shown that the MNL

model doesn’t work well when a firm has multiple substitutable products, in particularly when the

products are correlated. The Nested Logit (NL) model is a popular generalization of the standard

MNL model and its structure with a two-stage process alleviates the IIA property. Under the NL

model, the customers make product selection decisions sequentially: at the upper level, they first

select a branch, called a “nest” that includes multiple similar products; at the lower level, their

subsequent selection is within that chosen nest (see McFadden 1976, Carrasco and Ortuzar 2002

and Greene 2007). The IIA property no longer holds when the two alternatives don’t belong to the

same nest.

Suppose that the substitutable products constitute n nests and nest i has mi products. Cus-

tomers’ product selection behavior follows the NL model: they first select a nest and then choose a

product within their chosen nest. Let Qi(p1, . . . ,pn) be the probability that a customer selects nest

i at the upper level; and let qk|i(pi) denote the probability that product k of nest i is selected at the

lower level, given that the customer selects nest i at the upper level, where pi = (pi1, pi2, . . . , pimi
)

is the price vector for all the products in nest i. Following Williams (1977), McFadden (1980) and

Greene (2007), Qi(p1, . . . ,pn) and qk|i(pi) are defined as follows:

Qi(p1, . . . ,pn) =
eγiIi

1+
∑n

l=1 e
γlIl

, (1)

qk|i(pi) =
eαik−βikpik

∑mi
s=1 e

αis−βispis
, (2)

where αis can be interpreted as the “quality” of product s in nest i, βis ≥ 0 is the product-specified

price sensitivity for that product, Il = log
∑ml

s=1 e
αls−βlspls represents the attractiveness of nest l,
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which is the expected value of the maximum of the utilities of all the products in nest l (see

Anderson et al. 1992), and nest coefficient γi can be viewed as the degree of inter-nest heterogeneity.

When 0< γi < 1, products are more similar within nest i than cross nests; when γi = 1, products

in nest i have the same degree of similarity as products in other nests, and the NL model reduces

to the standard MNL model; when γi > 1, products are more similar to the ones in other nests.

The probability that a customer will select product k of nest i, which can also be considered the

market share of that product, is

πik(p1, . . . ,pn) =Qi(p1, . . . ,pn) · qk|i(pi). (3)

Note that
∑mi

k=1 qk|i(pi) = 1 and
∑mi

k=1 πik(p1, . . . ,pn) =Qi(p1, . . . ,pn). Liu (2006) and Li and Huh

(2011) consider a special case of the NL model, where the price-sensitivity parameters βis are

identical for all the products of nest i.

It is easily verified that, the price sensitivities of the market shares with respect to prices are

given by

∂πij(p1, . . . ,pn)

∂pij
= −βijπij(p1, . . . ,pn)

(

(1− qj|i(pi))+ γi(1−Qi(p1, . . . ,pn))qj|i(pi)
)

≤ 0,

∂πij(p1, . . . ,pn)

∂pik
= βikπij(p1, . . . ,pn)qk|i(pi)

(

1− γi(1−Qi(p1, . . . ,pn))
)

, ∀ k 6= i,

∂πij(p1, . . . ,pn)

∂pls
= βlsγlπij(p1, . . . ,pn)πls(p1, . . . ,pn)≥ 0, ∀ l 6= i.

Each product’s market share is decreasing in its own price and increasing in the prices of the

products in other nests. The sign of the derivative of a product’s market share with respect to the

prices of other products in the same nest depends on the sign of 1− γi(1−Qi(p1, . . . ,pn)): it is

positive if γi ≤ 1; it is negative if γi is sufficiently large.

The NL model is a generalization of the standard MNL model, which corresponds to the case

when γi = 1 for all i=1,2, . . . , n, and

πik(p1, . . . ,pn) =
eαik−βikpik

1+
∑n

l=1

∑ml
s=1 e

αls−βlspls
.

Without loss of generality, assume that the market size is normalized to 1. For the NL model, the

monopolist’s problem is to determine the price vectors (p1, . . . ,pn) to maximize the total expected

profit

R(p1, . . . ,pn)
def
=

n
∑

i=1

mi
∑

k=1

(pik − cik)πik(p1, . . . ,pn). (4)

We will later also consider the oligopolist problem where each firm controls one or more nests.
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2.1. Optimization over a Single Nest

Here we consider the problem of optimizing the profits of nest i assuming the prices of all the other

nests are fixed. This problem may arise if a firm controls a single nest and the other nests are con-

trolled by other firms, or if a nest is controlled by a manager within a firm that takes the other nest

prices as fixed. We will later leverage the results obtained for nest i to deal with the monopolist’s

problem of maximizing R(p1, . . . ,pn) and to deal with the oligopolist problem where each firm

controls one or more nests. Given the price vectors of other nests p-i = (p1, . . . ,pi−1,pi+1, . . . ,pn),

the problem for nest i is to maximize her expected profit:

Ri(pi,p-i)
def
=

mi
∑

k=1

(pik − cik)πik(pi,p-i). (5)

The profit function Ri(pi,p-i) is not quasi-concave in pi (see Hanson and Martin 1996 for a

counterexample), so other researchers, including Song and Xue (2007), Dong et al. (2009), have

taken different approaches to establish the structure of the MNL profit function. They express

profit as a function of market shares and show that it is jointly concave with respect to market

shares. These authors assume identical price sensitivities with each nest, but the profit function

is not jointly concave when the price sensitivities are allowed to be product dependent, as we

do, within each nest. The Appendix A provides the analysis and an example where the objective

function fails to be jointly concave.

We will next take a different approach to consider the price optimization problem under the

general NL model. The first order condition (FOC) of the profit function (5) is

∂Ri(pi,p-i)

∂pij
= πij(pi,p-i) ·

[

1−βij(pij − cij)+βij

(

1− γi(1−Qi(pi,p-i))
)

·
mi
∑

s=1

(pis − cis)qs|i(pi)

]

=0. (6)

Roots of the FOC (6) can be obtained by either setting the inner of the square bracket term to

zero, resulting in

1−βij(pij − cij)+βij

(

1− γi(1−Qi(pi,p-i))
)

·
mi
∑

s=1

(pis − cis)qs|i(pi) = 0, (7)

or by setting πij(pi,p-i) = 0 which requires pij =∞. There are 2mi potential solutions to the FOC

depending on the set Fi of products with finite prices. We first consider price optimization given the

set Fi of products with finite prices and will later show that is optimal to select Fi = {1, . . . ,mi}. We

will also show that the problem of finding optimal finite prices pij, j = 1, . . . ,mi for all the products

in the nest can be reduced to the problem of maximizing a single-dimensional continuous function
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over a bounded interval and will present sufficient conditions for this function to be uni-modal.

This will tremendously simplify the problem of maximizing the products of a single nest and will

be leveraged later to price the products of multiple nests.

Equation (7) can be rewritten as follows:

pij − cij −
1

βij

=
(

1− γi(1−Qi(pi,p-i))
)

∑

s∈Fi

(pis − cis)qs|i(pi), ∀j ∈Fi. (8)

Because the right hand side (RHS) of equation (8) is independent of product index j, then pij −
cij − 1

βij
is constant for each j ∈Fi. We will call θi = pij − cij − 1

βij
the adjusted markup for nest i,

which is constant for all the products in each nest at optimality (local or global). A similar result

for the standard MNL model has been observed by Aydin and Ryan (2000), Hopp and Xu (2005)

and Gallego and Stefanescu (2011). Li and Huh (2011) also point out that the markup is constant

in the NL model with identical price-sensitivity parameters.

We will abuse the notations a bit below without much ambiguity. The original pricing problem

(5) can be simplified to the following optimization problem with single decision variable:

RFi
i (θi,p-i)

def
= QFi

i (θi,p-i)(θi+wFi
i (θi)) (9)

where

QFi
i (θi,p-i) =

eγiIi

1+a-i+eγiIi
, qFi

k|i(θi) =
eα̃ik−βikθi

∑

s∈Fi
eα̃is−βisθi

,

wFi
i (θi) =

∑

k∈Fi

1
βik

· qFi
k|i(θi), π

Fi
ik (θi,p-i) =QFi

i (θi,p-i) · qFi
k|i(θi),

Ii = log
∑

s∈Fi
eα̃is−βisθi , Il = log

∑ml
s=1 e

αls−βlspls , l 6= i,

α̃is = αis −βiscis − 1, ∀s, a-i =
∑

l 6=i
log Il.

The value QFi
i (θi,p-i) is the probability for nest i to be selected given that all the products in

set Fi are priced with constant adjusted markup θi, or equivalently with prices pij = cij +
1
βij

+ θi

for all j ∈ Fi. θi +wFi
i (θi) =

∑

k∈Fi
(pik − cik)q

Fi
k|i(θi) can be considered the average markup for all

the products in set Fi. It is easy to verify the following:

∂QFi
i (θi,p-i)

∂θi
= −γiQ

Fi
i (θi,p-i)(1−QFi

i (θi,p-i))v
Fi
i (θi)≤ 0,

∂qFi
k|i(θi)

∂θi
= (vFi

i (θi)−βik)q
Fi
k|i(θi),

where vFi
i (θi) =

∑

k∈Fi
βikq

Fi
k|i(θi). The total market share of nest i is decreasing in the adjusted

markup θi. The monotonicity of a specific product’s chosen probability within a nest with respect

to the adjusted markup of that nest, given that the nest is selected at the upper level, depends on
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the comparison of the price sensitivities: if the product k is the least (most) price sensitive, i.e.,

βik ≤ (≥)βij∀ j ∈Fi, then βik ≤ (≥)vFi
i (θi)∀ θi from Lemma 1 and qFi

k|i(θi) is increasing (decreasing)

in her adjusted markup θi; otherwise, the monotonicity is not clear.

There are some monotonic properties for functions wFi
i (θi) and vFi

i (θi).

Lemma 1 (a) wFi
i (θi) is increasing in θi and

1
maxs∈Fi

βis
≤wFi

i (θi)≤ 1
mins∈Fi

βis
.

(b) vFi
i (θi) is decreasing in θi and mins∈Fi

βis ≤ vFi
i (θi)≤maxs∈Fi

βis. Furthermore, wFi
i (θi)v

Fi
i (θi)≥

1 ∀ θi, Fi, and all the inequalities become equalities when βis is identical for all s∈ Fi.

Notice that if set Fi contains more than one product with different price sensitivities then

wFi
i (θi)v

Fi
i (θi)<

maxs∈Fi
βis

mins∈Fi
βis

, because wFi
i (θi) is increasing and bounded by 1

mins∈Fi
βis

, and vFi
i (θi) is

decreasing and bounded by maxs∈Fi
βis.

Will the optimal profit increase if another product, say product z, is added to the product set Fi?

We will show that the answer to this question is yes at optimally chosen adjusted markups, but no

at arbitrarily chosen adjusted markups. Let F+
i := Fi∪{z}. We will show that maxθi

RFi
i (θi,p-i)≤

maxθi
R

F
+
i

i (θi,p-i). Example 1 below shows that R
F

+
i

i (θi,p-i) is not always greater than RFi
i (θi,p-i)

for all θi.

Example 1 Suppose that there are three available products with parameters α̃i =

(0.7256,6.3544,8.0862) and βi = (0.6422,1.0721,1.7322) and the nest coefficient is γi = 0.8945.

Assume a-i =
∑

l 6=i
Il = 0 for simplicity. Let Fi = {1,2} and F+

i = {1,2,3}. Figure 1 demonstrates

the comparison between offering all the three products and offering products 1 and 2. When

θ < 3.53, R
F

+
i

i (θi,p-i)<RFi
i (θi,p-i); when θ > 3.53, R

F
+
i

i (θi,p-i)>RFi
i (θi,p-i).

We will show that maxθi
RFi

i (θi,p-i) is increasing in Fi by showing that max0≤ρi≤1 r
Fi
i (ρi,p-i) is

increasing in Fi where

rFi
i (ρi,p-i) :=maxpi<∞

∑

k∈Fi
(pi,k − ci,k)π

Fi
i,k(pi,p-i)

s.t., QFi
i (pi,p-i) = ρi

(10)

is the maximum profit that we can obtain from set Fi when we set the market share of nest i

to ρi. Clearly, maxpi
RFi

i (pi,p-i) =max0≤ρi≤1 r
Fi
i (ρi,p-i). Similarly, we can show that the adjusted

markups for all the products in set Fi are constant at optimality (local or global), denoted by θi.

Note that θi and ρi are one-to-one mapping becauseQFi
i (θi,p-i) =

(
∑

s∈Fi
eα̃is−βisθi)

γi

1+a-i+(
∑

s∈Fi
eα̃is−βisθi)

γi is strictly

decreasing in θi. Consequently,

rFi
i (ρi,p-i) = ρi(θi+wFi

i (θi)), (11)
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Figure 1 Comparison between Offering all and Offering partial
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where θi is the unique solution to QFi
i (θi,p-i) = ρi.

We are now ready to compare rFi
i (ρi,p-i) and r

F
+
i

i (ρi,p-i).

Proposition 1 The function rFi
i (ρi,p-i) is strictly monotone increasing in Fi for all ρ ∈ (0,1),

i.e., r
F

+
i

i (ρi,p-i)> rFi
i (ρi,p-i).

As a consequence of Proposition 1 we can do at least as well by adding more products to Fi until

Fi contains all the products in the nest! This means that at optimality the prices of all products

are finite and among the 2mi solutions to the first order conditions, the solution associated with

Fi = {1, . . . ,mi}, where all products in the nest have a common, finite adjusted markup, is globally

optimal. Without further notice we will omit the notation Fi from now on unless otherwise stated.

We now state our main condition for nest-price optimization under the general NL model:

Condition 1 γi ≥ 1 or maxs βis
mins βis

≤ 1
1−γi

.

Notice that both the standard MNL model (γi = 1) and the NL model with identical price-

sensitivity parameters and γi < 1 satisfy Condition 1. When γi > 1, it corresponds to the scenario

where products are more similar cross nests; when 0< γi < 1, it refers to the case where products

within the same nest are more similar, so the price coefficients of the products in the same nest
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should not vary too much and the condition maxs βis
mins βis

≤ 1
1−γi

is reasonable. Condition 1 will be used

in Theorem 1 to establish important structural results.

We remark that (1− γi)wi(θi)vi(θi)< 1 for all θi under Condition 1. If there are more than one

products with different price sensitivities, wi(θi)vi(θi)<
maxs βis
mins βis

, then maxs βis
mins βis

≤ 1
1−γi

implies that

(1− γi)wi(θi)vi(θi)< 1 for all θi; otherwise wi(θi)vi(θi) = 1 for all θi.

Theorem 1 (a) The adjusted markups for all the products in nest i are constant and the optimal

price vector, denoted by p∗
i , can be expressed as follows

p∗ij = cij +
1

βij

+ θ∗i ∀j = 1,2, . . . ,mi, (12)

where θ∗i is a root of

θi+(1− 1

γi
)wi(θi) =

1

(1+ a-i)γi
·

mi
∑

k=1

eα̃ik−βikθi

βik

(

mi
∑

s=1

eα̃is−βisθi

)γi−1

. (13)

If Condition 1 is satisfied, θ∗i is the unique root to equation (13).

(b) Under Condition 1, Ri(θi,p-i) is strictly uni-modal with respect to θi and ri(ρi,p-i) is strictly

concave in ρi.

Note that θ∗i doesn’t have to be positive in general, but it must be strictly positive when the

nest coefficient γi ≤ 1 because the total profit can be expressed as θi+(1− 1
γi
)wi(θi), where θi is a

solution to equation (13). Consequently, when γi > 1, it may be optimal to include “loss-leaders”

as part of the optimal pricing strategy. More specifically, it may be optimal to include products

with negative adjusted markups or even negative margins for the purpose of attracting attention

to the nest.

If Condition 1 is satisfied, the profit functionRi(θi,p-i) is uni-modal in θi and ri(ρi,p-i) is concave

in ρi, so the FOC is sufficient to determine the optimal prices and the optimal solution is unique,

which can be easily found by several well known algorithms for uni-modal or concave functions,

like binary search and golden section search; if Condition 1 is not satisfied, Ri(θi,p-i) may not be

uni-modal in θi as illustrated in the following example.

Example 2 Assume that fnest i contains five products with parameters for the NL model: α̃i =

(1.9769,0.5022,0.6309,0.6013,0.0841) and βi = (0.6720,1.1249,1.0247,0.7968,0.0150). The nest

coefficient γi = 0.9150. The total attractiveness of non-purchase and other nests is 1 + a-i = 500.

Note that maxs βis
mins βis

= 1.1249
0.0150

= 74.99> 1
1−γi

= 11.76 so Condition 1 is not satisfied. Figure 2 clearly

shows that Ri(θi, θ-i) is not uni-modal in θi and there are three solutions to equation (13) in the
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Figure 2 Non-unimodality of Ri(θi, θ-i))
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interval (1,10): (1.910,0.144765), (2.984,0.144719) and (4.736,0.144779). Observe that the maxi-

mum relative profit difference is very small: (0.144779−0.144719)/0.144719= 0.04%. This suggests

that Ri(θi,p-i) is very flat at the peak and any solution to the FOC can be considered a good

approximation to the optimal adjusted markup.

We next show that a global optimal adjusted markup can be found in a bounded interval even if

Condition 1 fails.

Proposition 2 Denote θi,min = 1−γi
γi mins βis

and θi,max =
1−γi+

(

∑mi
s=1 e

α̃is−βisθi,min
)γi

/

(1+a-i)

γi mins βis
, and let

θ′i,min =
1−γi

γi maxs βis
and θ′i,max =

1−γi+

(

∑mi
s=1 e

α̃is−βisθ
′
i,min

)γi
/

(1+a-i)

γi mins βis
. The optimal adjusted markup θ∗i

is in the interval [θi,min, θi,max] if γi ≥ 1, and it is in the interval [θ′i,min, θ′i,max] if 0< γi < 1.

The price optimization problem in an mi-dimensional space is reduced to the problem of max-

imizing a continuous single-dimensional function over a bounded interval. There are several well

developed algorithms that can be employed to solve it efficiently.

The Corollary follows immediately for the special cases: the standard MNL model and the NL

model with identical price-sensitivity parameters.
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Corollary 1 If γi = 1 or βis is identical for all s= 1,2, . . . ,mi, denoted by βi, the optimal prices

are unique and can be expressed in (12), where θ∗i is, respectively, the unique solution to one of the

following equations:

θi =
1

(1+ a-i)
·

mi
∑

k=1

eα̃ik−βikθi

βik

,

θi +(1− 1

γi
)/βi =

(
∑mi

s=1 e
α̃is)

γi

(1+ a-i)γiβi

· e−βiθi .

2.2. Optimization of Multiple Nests

Nest, we consider the centralized system, where all the nests are controlled by a central planner

with objective to maximize the total profit R(p1, . . . ,pn), as expressed in equation (4).

The FOC of function R(p1, . . . ,pn) is

∂R(p1, . . . ,pn)

∂pij
= πij(p1, . . . ,pn) ·

[

1−βij(pij − cij)+βij(1− γi)

mi
∑

s=1

(pis − cis)qs|i(pi)

+βijγi

n
∑

l=1

mi
∑

s=1

(pis − cis)πis(p1, . . . ,pn)

]

=0.

Roots of the FOC can be found by either setting πij(p1, . . . ,pn) = 0, which requires pij =∞ or

letting the inner term of the square bracket equal 0, which is equivalent to

pij − cij −
1

βij

= (1− γi)

mi
∑

s=1

(pis − cis)qs|i(pi)+ γi

n
∑

l=1

ml
∑

s=1

(pls − cls)πls(p1, . . . ,pn). (14)

Similar to Theorem 1, it is optimal to sell all the products at finite prices such that the adjusted

markups are constant for all the products in the same nest as suggested in Theorem 2. Then,

problem (4) is equivalent to determining the adjusted markups θ := (θ1, . . . , θn) to maximize the

total expected profit,

max
θ

R(θ)
def
=

n
∑

i=1

Qi(θ1, . . . , θn)(θi+wi(θi)). (15)

where

Qi(θ1, . . . , θn) =
eγiIi

1+
∑n

l=1 eγlIl
, qk|i(θi) =

eα̃ik−βikθi
∑mi

s=1 eα̃is−βisθi
,

wi(θi) =
∑mi

s=1
1

βik
· qk|i(θi), πik(θ1, . . . , θn) =Qi(θ1, . . . , θn) · qk|i(θi),

Il = log
∑ml

s=1 e
α̃ls−βlspls , α̃is = αis −βiscis − 1, ∀s.

When the price-sensitivity parameters are identical for all the products in each nest, i.e., βis = βi

for all s = 1,2, . . . ,mi, then wi(θi) =
1
βi

and the optimization problem (15) can be rewritten as

follows:

max
θ

R(θ)
def
=

n
∑

i=1

Q̂i(θ1, . . . , θn)(θi+
1

βi

)
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where Q̂i(θ1, . . . , θn) =
eα̂i−βiγiθi

1+
∑n

l=1 eα̂l−βlγlθl
and α̂l = γl log (

∑ml
s=1 e

α̃ls). This reduces to the standard

MNL model, where the nests play the role of products. This problem is easy to solve as shown in

Corollary 1.

For the general NL model with product-differentiated price-sensitivity parameters, the FOC of

the total profit R(θ) in (15) is

∂R(θ)

∂θi
= γiQi(θ1, . . . , θn)vi(θi)

[

n
∑

j=1

Qj(θ1, . . . , θn)(θj +wj(θj))−
(

θi +(1− 1

γi
)wi(θi)

)

]

= 0.

Again, because vi(θi)≥mins βis > 0, the solutions to the above FOC can be found by either letting

Qi(θ1, . . . , θn) = 0, which requires θi =∞ or setting the inner term of the square bracket equal to

zero, which is equivalent to

θi +(1− 1

γi
)wi(θi) =

n
∑

j=1

Qj(θ1, . . . , θn)(θj +wj(θj)) (16)

Theorem 2 says that no nest would be priced out by charging infinite prices and equation (16) is

satisfied for each nest at the optimal adjusted markups. The RHS of equation (16) is independent of

nest index i, so at the optimal solutions θi+(1− 1
γi
)wi(θi) is constant for all i, denoted by φ. Note

that θi +wi(θi) =
∑mi

k=1(θi+
1

βik
)qk|i(θi) is the average markup for all the products in nest i, so we

call θi+(1− 1
γi
)wi(θi) the adjusted nest-level markup for nest i. Thus, problem (15) can be reduced

to an optimization problem with respect to adjusted nest-level markup in a single-dimensional

space,

maxφ R(φ)
def
=
∑n

i=1Qi(θ1, . . . , θn)(θi+wi(θi)),

where θi +(1− 1
γi
)wi(θi) = φ, ∀i= 1,2, . . . , n.

(17)

Profit R(φ) is an implicit function expressed in terms of θi, but there is a one-to-one mapping

between θi and φ under Condition 1 for each i because ∂
∂θi

(

θi+(1− 1
γi
)wi(θi)

)

= 1
γi
(1 − (1 −

γi)wi(θi)vi(θi))> 0.

The price optimization can also be transformed to an optimization problem with respect to the

total market share. Let R(ρ) be the maximum achievable total expected profit given that the total

market share
∑n

i=1Qi(p1, . . . ,pn) = ρ.

R(ρ) := maxp

∑n

i=1

∑mi
k=1(pik − cik)πik(p1, . . . ,pn)

s.t.,
∑n

i=1Qi(p1, . . . ,pn) = ρ.
(18)

Theorem 2 (a) It is optimal to offer all the products in each nest at prices such that equation

(14) is satisfied, which implies that pij − cij − 1
βij

, called adjusted markup, is constant for all j

of each nest i.
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(b) Under Condition 1 for each i=1,2, . . . , n, it is optimal to charge the adjusted markup for each

nest such that equation (16) is satisfied, which implies that θi + (1− 1
γi
)wi(θi), called adjusted

nest-level markup, is constant for all i.

(c) Under Condition 1 for each i = 1,2, . . . , n, function R(φ) is strictly uni-modal in φ and the

optimal solution to problem (17) is unique, denoted by φ∗. The the optimal solution to the

original problem (4) is also unique and the optimal prices can be written in terms of

p∗ij = cij +
1

βij

+ θ∗i (19)

where θ∗i is the unique solution to

θi+(1− 1

γi
)wi(θi) = φ∗. (20)

(d) Under Condition 1 for each i = 1,2, . . . , n, the maximum achievable profit R(ρ) is strictly

concave in the aggregate market share ρ.

An interesting observation is that the optimal φ∗ is equal to the optimal profit and φ∗ is the

maximum fixed point of R(φ). If Condition 1 is satisfied for each i, the uni-modal or concave

optimization can be used to find the optimal ρ∗ and φ∗ as well as the optimal adjusted markups

θ
∗ and optimal prices (p∗

1, . . . ,p
∗
n). Moreover, the optimal φ∗ is in a bounded interval so it is easy

to find even if Condition 1 fails for some or all nests.

Proposition 3 Denote θ̂i,min = 1
γi maxs βis

− 1
mins βis

and φmax =
∑n

i=1

(

∑mi
s=1 e

αis−βisθ̂i,min

)γi

γi mins βis
. The

optimal φ∗ is in the interval [0, φmax].

3. Oligopolistic Competition

We will next consider oligopolistic price competition where each firm controls one or more nests.

This is consistent with an NL model where customers first select a brand and then a product within

a brand. We will later consider the case where a firm controls several nests, e.g., a firm owns more

than one brand. The oligopolistic price (Bertrand) competition with single and multiple products

under the standard MNL model has been widely examined and the existence and uniqueness of

Nash equilibrium have been established (see Gallego et al. 2006, Allon et al. 2011). Liu (2006)

and Li and Huh (2011) have studied price competition under the NL model with identical price

sensitivities for all the products of each firm. However, their approach cannot easily extend to the

general NL model with product-differentiated price sensitivities. To the best of our knowledge, our

paper is the first to study oligopolistic competition with multiple products under the general NL

model with product dependent price-sensitivities and arbitrary nest coefficients.
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In the price competition game, the expected profit for firm i is

Game I: Ri(pi,p-i) =

mi
∑

k=1

(pik − cik) ·πik(pi,p-i)

where pi = (pi1, pi2, . . . , pimi
) and p-i = (p1, . . . ,pi−1,pi+1, . . . ,pn).

From Theorem 1, each firm’s problem can be reduced to a problem with single decision variable

as follows

Game II: Ri(θi, θ-i) =Qi(θi, θ-i)(θi+wi(θi)).

where Qi(θ1, . . . , θn) =
eγiIi

1+
∑n

l=1 eγlIl
, Il = log

∑ml
s=1 e

α̃ls−βlspls for l=1, . . . , n.

We remark that Ri(θi, θ-i) is log-separable. Because the profit function Ri(θi, θ-i) is uni-modal

with respect to θi under Condition 1, then it is also quasi-concave in θi because quasi-concavity

and uni-modality are equivalent in a single-dimensional space. The quasi-concavity can guarantee

the existence of the Nash equilibrium (see, e.g., Nash 1951 and Anderson et al. 1992), but there

are some stronger results without requiring Condition 1 because of the special structure of the NL

model.

Theorem 3 (a) Game I is equivalent to Game II, i.e., they have the same equilibria.

(b) Game II is strictly log-supermodular; the equilibrium set is a nonempty complete lattice and,

therefore, has the componentwise largest and smallest elements, denoted by θ
∗
and θ

∗ respec-

tively. Furthermore, the largest equilibrium θ
∗
is preferred by all the firms.

The multi-product price competition game has been reduced to an equivalent game with single

decision variable for each firm. The existence of Nash equilibrium has been guaranteed and the

largest one is a Pareto improvement among the equilibrium set.

3.1. Uniqueness of Equilibrium

To examine the uniqueness of the Nash equilibrium, we will concentrate on Game II, which is

equivalent to Game I from Theorem 3. First, we consider a special case: the symmetric game.

Suppose that there are n firms and that all the parameters (αi,βi, γi) in the NL model and the

cost vector ci are the same for each firm i. Some further properties of the equilibrium set can be

derived.

Condition 2 γi ≥ n
n−1

or maxs βis
mins βis

≤ 1

1−n−1
n ·γi

.

We remark that Condition 2 is a bit stronger than Condition 1 and they are closer for larger n

(they coincide when n goes infinite).
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Theorem 4 (a) Only symmetric equilibria exist for the symmetric game discussed above.

(b) The equilibrium is unique under Condition 2.

Under Condition 2, the equilibrium is the unique solution to

θi +

(

1− 1

γi(1−Qi(θi, n))

)

wi(θi) = 0. (21)

where Qi(θi, n) =
(
∑mi

s=1 eα̃is−βisθi)
γi

1+n(
∑mi

s=1 eα̃is−βisθi)
γi . It has been shown how to obtain equation (21) in the proof

of Theorem 4.

We will next state some sufficient conditions for the uniqueness of the Nash equilibrium in the

general case:

Condition 3 (a) Denote Ψ as the region such that

−∂Qi(θi, θ-i)

∂θi
>
∑

j 6=i

∂Qi(θi, θ-i)

∂θj
, θ ∈Ψ, i= 1,2, . . . , n.

(b) Denote Ωi as the region such that θi +wi(θi) is log-concave in θi ∈Ωi, i= 1,2, . . . , n.

Notice that the NL model with product independent price-sensitivity parameters within a nest

and homogeneous nest coefficients, satisfies Condition 3 for any θ. Condition 3(a) is a standard

diagonal dominant condition (see e.g., Vives 2001) and it says that a uniform increase of the

adjusted markups by all the n firms would result in a decrease of any firm’s market share. In the

NL model, Condition 3(a) is equivalent to

γivi(θi)>
n
∑

j=1

γjQj(θj, θ-j)vj(θj). (22)

From Lemma 1, inequality (22) can be implied by the following condition that is stronger but

easier to be verified:

min
i

γimin
l,s

βl,s >max
i

γimax
l,s

βl,s

n
∑

j=1

Qj(θj, θ-j),

which is equivalent to

n
∑

l=1

(

ml
∑

s=1

eα̃ls−βlsθl

)γl

<
mini γiminl,s βls

maxi γimaxl,s βls −mini γiminl,s βls

. (23)

From inequalition (23), Condition 3(b) can be satisfied when the adjusted markups θi are suffi-

ciently large for all the firms.
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Apparently, θi+wi(θi)> 0 because each firm sells all her products at a positive average margin.

Then, Condition 3(b) can be implied by a stronger condition that θi +wi(θi) or wi(θi) is concave

in θi for each i= 1,2, . . . , n because if wi(θi) is concave, then

∂2 log(θi+wi(θi))

∂θ2i
=

w′′
i (θi)(θi+wi(θi))− (w′

i(θi))
2

(θi+wi(θi))2
≤ 0,

where w′
i(θi) = ∂wi(θi)/∂θi and w′′

i (θi) = ∂2wi(θi)/∂θ
2
i .

When θi is large enough, Condition 3(b) can also be satisfied without requiring the concavity of

θi +wi(θi) or wi(θi).

Lemma 2 There exist a threshold θ̃i for each firm i such that θi +wi(θi) is log-concave in θi for

θi ≥ θ̃i.

Tatonnement process can reach equilibrium under some mild conditions. In the basic taton-

nement process, firms take turns in adjusting their price decisions and each firm reacts optimally

to all other firms’ prices without anticipating others’ response, which can be interpreted as a way of

expressing bounded rationality of agents. In each iteration, firms respond myopically to the choices

of other firms in the previous iteration and the dynamic process can be expressed below.

Tatonnement Process: Select a feasible vector θ(0); in the kth iteration determine the optimal

response for each firm i as follows:

θ
(k)
i = arg max

θi∈Ωi∩Ψ
Ri(θi, θ

(k−1)
-i ). (24)

Theorem 5 Suppose θ
∗ is an equilibrium under Condition 3,

(a) θ
∗ is the unique pure Nash equilibrium of Game II in region (

⋂n

i=1Ωi)
⋂

Ψ.

(b) The unique pure Nash equilibrium θ
∗ can be computed by the tatonnement scheme, starting

from an arbitrary price vector θ
(0) in the region (

⋂n

i=1Ωi)
⋂

Ψ, i.e., θ(k) converges to θ
∗.

Example 3 Consider an example with two firms and each firm sells two products. The demand

follows the NL model. For firm 1, α̃1 = (1.0,2.0), β1 = (0.6,0.8) and γ1 = 0.75; for firm 2, α2 =

(0.8,1.1), β2 = (0.7,1.2) and γ2 =0.5.

The Nash equilibrium of Game II is θ
∗ = (6.11,4.00). Figure 3 shows the tatonnement process

converges to the Nash equilibrium θ
∗ from three different initial points (1,1), (10,1) and (5,8)

respectively and all the pathes converge to θ
∗ very fast.
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Figure 3 Convergence of Tatonnement Process
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3.2. Competition with Multiple Nests

This subsection considers the oligopolistic price competition in a more complicated environment,

where each firm controls multiple nests of products. Let Ni be the set of nests controlled by firm

i, then her price optimization problem is

max
pNi

RNi
(pNi

,p-Ni
) =

∑

l∈Ni

ml
∑

k=1

(plk − clk)πlk(pl,p-l),

where pNi
= (pl)l∈Ni

is firm i’s decision variables, that are the price vectors for the nests controlled

by firm i, and p-Ni
includes all the price vectors for the nests charged by other firms. From Theorem

2, it is equivalent for each firm to consider the following simplified optimization problem in a

single-dimensional strategy space:

maxφi
RNi

(φi, φ-i)
def
=
∑

l∈Ni
Ql(θl, θ-l)(θl+wl(θl)),

where θl +(1− 1
γl
)wl(θl) = φi, ∀l ∈Ni.

By a similar argument to Theorem 3, the above two games are equivalent. Moreover, from Theorem

2, RNi
(φi, φ-i) is uni-modal and quasi-concave in φi under Condition 1 for each l ∈ Ni, so there

exits a Nash equilibrium for the simplified game as well as the original game.
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4. Dynamic Pricing in Revenue Management

In this section, we consider the application of the NL model to the traditional revenue management

problem, where a firm sells multiple substitutable products over a finite horizon and the inventory

cannot be replenished during the selling season (see Gallego and van Ryzin 1997). For notational

simplicity, the cost for each product is assumed to be zero and the salvage value of remaining

capacity is also assumed to be zero. The problem with a constant cost or a constant salvage value

per unit would result in a similar formulation. The time horizon is discretized to T periods and each

time interval is tiny enough that the probability that more than one customers arrive is negligible.

Customers’ purchase behavior is influenced by the price vector in that period and their product

selection follows the NL model.

Assume that the firm is a monopolist and we will omit the firm index in this section. Suppose the

firm sells m products that constitute a nest. The model and results are similar if the products form

multiple nests. Assume that the customer arrival process is a nonhomogeneous Poisson process

with rate λt in period t. Without loss of generality, we assume that the total attractiveness from

non-purchase and all the competitors is normalized to 1. Then, the probability that a customer

chooses product k, given the price vector p := (p1, p2, . . . , pm), is

πk(p) =Q(p) · qk(p) =
(
∑m

s=1 e
αs−βsps)

γ

1+ (
∑m

s=1 e
αs−βsps)

γ · eαk−βkpk

∑m

s=1 e
αs−βsps

(25)

4.1. Single Resource

First, we consider the problem where all the products consume a common resource (see, e.g.,

Maglaras and Meissner 2006). Let x denote the number of remaining units of capacity at the

beginning of period t, and t be the time-to-go. Let J(x, t) be the expected revenue-to-go function

starting at state (x, t). The Bellman equation is the following,

J(x, t) = λt

{

max
p

m
∑

k=1

(

pk −∆J(x, t− 1)
)

·πk(p)

}

+J(x, t− 1), (26)

where ∆J(x, t − 1) = J(x, t− 1) − J(x− 1, t − 1) is the marginal value of the resource at state

(x, t− 1). The boundary conditions are J(0, t) = 0 and J(x,0)= 0.

Let R(p) =
∑m

k=1 pkπk(p) and ρ=
∑m

j=1 πk(p). Then, λt ·R(p) is the total revenue rate and λt ·ρ

is the aggregate rate of capacity consumption in period t. Abusing notations a bit, we define

r(ρ) :=maxp

∑m

k=1 pkπk(p)

s.t.,
∑m

k=1 πk(p) = ρ.
(27)
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Similarly to Theorem 1, the optimal prices to problem (27), denoted by (p∗1, p
∗
2, . . . , p

∗
m), are unique

for each ρ∈ (0,1) and can be expressed as p∗k = ck +
1
βk

+ θ∗(ρ), where θ∗(ρ) is the unique solution

to

m
∑

s=1

eα̃s−βsθ =

(

ρ

1− ρ

)
1
γ

,

where α̃s =αs −βscs − 1 for s= 1,2, . . . ,m.

The value λt · r(ρ) is the maximum achievable revenue rate at period t subject to the constraint

that all products jointly consume the common resource at rate λt · ρ. Then, the Bellman equation

(26) can be rewritten as follows

J(x, t) = λt max
0≤ρ≤1

{r(ρ)− ρ∆J(x, t− 1)}+J(x, t− 1). (28)

The multi-product dynamic pricing problem has been reduced to a dynamic pricing problem

(28) in a single-dimensional space. If there exists an inverse demand function that maps the market

shares into a corresponding vector of prices, the revenue function R(p) can be expressed in terms

of demand rate. Maglaras and Meissner (2006) point out that if the revenue function is continuous,

bounded and strictly jointly concave in demand rates, the maximum achievable revenue r(ρ) is

concave with respect to the aggregate rate of capacity consumption ρ. However, we have shown

that the revenue rate is not jointly concave in market shares (which refer to the demand rates

here) under the NL model in Section 2. But, the maximal achievable revenue is concave in the

aggregate rate under the NL model under Condition 1 from Theorem 1, so the multi-product

dynamic pricing program has been reduced to the classic dynamic program for single product

with a concave demand rate (see Gallego and van Ryzin 1994 and Maglaras and Meissner 2006).

Furthermore, as shown in Section 2, the optimal prices exist and are unique at each state.

4.2. Multiple Resources

In the previous subsection, all the products consume the same common resource. In this subsection,

the products are stocked at the finished product level and cannot be replenished during the selling

season. Dong et al. (2009) and Akcay et al. (2010) have studied the problem under the standard

MNL model and Li and Huh (2011) have considered the NL model with identical price sensitivity

for the products of the same firm. We will next investigate the problem under the general NL

model with product-differentiated price sensitivities.

Let x= (x1, x2, . . . , xm) denote the vector of the inventory levels. The Bellman equation is the

following

J(x, t) = λt

{

max
p

m
∑

k=1

(

pk −∆kJ(x, t− 1)
)

·πk(p)

}

+J(x, t− 1), (29)
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where ∆kJ(x, t−1)= J(x, t−1)−J(x−ek, t−1) if xk ≥ 1; ∆kJ(x, t−1) =∞ otherwise, and ek is

an all-zero vector except the kth entry of 1. When a product is sold out it can be eliminated from

the consideration set, which is equivalent to pricing it at infinity. At state (x, t), the optimization

problem is

max
p

R(p)
def
=

m
∑

k=1

(

pk −∆kJ(x, t− 1)
)

·πk(p).

Notice that in the above optimization, the stock-out product is automatically priced at infinity

and the consideration set only includes products with positive inventory. From Theorem 1, the

optimal price vector can be expressed as follows

p∗k =∆kJ(x, t− 1)+
1

βk

+ θ∗,

where θ∗ is one of the roots to the following

θ+(1− 1

γ
)w(θ) =

1

γ
·

m
∑

s=1

eᾱs−βsθ

βs

(

m
∑

s=1

eα̃s−βsθ

)γ−1

, (30)

that maximizes R(θ), where ᾱs = αs − βs∆sJ(x, t− 1) − 1. If Condition 1 is satisfied, θ∗ is the

unique root to equation (30); if it is not satisfied, the optimal θ∗ can be found in a bounded interval

from Proposition 2.

5. Extension and Discussion

Discrete choice model is one of the most popular models to study customer choice behavior when

multiple substitutable products are available. While the acceptance and application of the popular

MNL model are adversely affected by the IIA property, the NL model with a two-stage process has

been generalized and it alleviates the IIA property.

5.1. Extension: Non-purchase in a Nest

In the NL model, at the lower stage customers are assumed to select one product within the nest

they chose at the upper stage. As an extension, non-purchase may also be an option at the lower

stage. Let ai0 refer to the attractiveness of non-purchase option in nest i and the choice probabilities

QN
i (pi,p-i) and qNk|i(pi) can be redefined as follows:

QN
i (pi,p-i) =

eγiI
N
i

1+
∑n

l=1 e
γlI

N
l

,

qNk|i(pi) =
eαik−βikpik

ai0 +
∑mi

s=1 e
αis−βispis

,

where INl = log (al0 +
∑ml

s=1 e
αls−βlspls).
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The FOC of the profit function (5) under the NL model with non-purchase option in a nest is

∂Ri(pi,p-i)

∂pij
= πN

ij (pi,p-i)

[

1−βij(pij − cij)+βij

(

1− γi(1−QN
i (pi,p-i))

)

mi
∑

s=1

(pis − cis)q
N
s|i(pi)

]

=0,

where πN
ij (pi,p-i) =QN

i (pi,p-i)q
N
k|i(pi).

Similar to Theorem 1, we can prove that the adjusted markup is also constant for all the products

in the same nest at optimality and the multi-product price optimization can be reduced to an

optimization problem with single decision variable, the adjusted markup.

5.2. Extension: Nested Attraction Model

Market share attraction models have received increasing attention in the marketing literature and

it specifies that a market share of a firm is equal to its attraction divided by the total attraction

of all the firms in the market, including the non-purchase attraction, where a firm’s attraction is a

function of the values of its marketing instruments, e.g., brand value, advertising, product features

and variety, etc. As an extension, we will consider the generalized Nested Attraction models, of

which the MNL model and the NL model are special cases. Again, its two-stage structure can

alleviate the IIA property, imposed by the MNL model and other Attraction models.

In this subsection, we extend to the general Nested Attraction model:

Qi(pi,p-i) =
eγiIi

1+
∑n

l=1 e
γlIl

,

qk|i(pi) =
aik(pik)

∑mi
s=1 ais(pis)

,

πik(pi,p-i) = Qi(pi,p-i) · qk|i(pi),

where ais(pis) is the attractiveness of product s of nest i at price pis and it is continuously

twice-differentiable in pis, and Il = log
∑ml

s=1 als(pis) is the total attractiveness of nest i. Note that

ais(pis) = eαis−βispis for the NL model discussed above; for the linear model ais(pis) = αis − βispis,

αis, βis > 0; for the modified constant elasticity of substitution (CES) model ais(pis) = αisp
−βis
is ,

αis > 0, βis > 1. (Here, we call it the modified CES model because the standard CES model is not

a probabilistic choice model.)

Consider the FOC for the profit Ri(pi,p-i) in function (5) under the Nested Attraction model:

∂Ri(pi,p-i)

∂pij
=

βijπij(pi,p-i)a
′
ij(pij)

aij(pij)
·
[

(pij − cij)+
aij(pij)

a′
ij(pij)

−
(

1− γi(1−Qi(pi,p-i))
)

mi
∑

s=1

(pis − cis)qs|i(pi)

]

=0.

The above FOC is satisfied when either
βijπij(pi,p-i)a

′
ij(pij)

aij(pij)
= 0, which requires a′

ij(pij) = 0, or the

inner term of the square bracket is equal to zero

(pij − cij)+
aij(pij)

a′
ij(pij)

−
(

1− γi(1−Qi(pi,p-i))
)

·
mi
∑

s=1

(pis − cis)qs|i(pi) = 0. (31)
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The following Theorem 6 says that it is optimal to offer all the products at prices such that

equation (31) holds, which implies that (pij − cij)+
aij(pij)

a′ij(pij)
is constant for all j, denoted by ηi.

Condition 4 (a) a′
ij(pij)≤ 0, 2(a′

ij(pij))
2 > aij(pij)a

′′
ij(pij) ∀j, pij.

(b) That a′
ij(pij) = 0 implies that (pij − cij)aij(pij) = 0.

That a′
ij(pij) ≤ 0 says that each product’s attractiveness is decreasing in its price; that

2(a′
ij(pij))

2 > aij(pij)a
′′
ij(pij) can be implied by a stronger condition that aij(pij) is log-concave

in pij , which is equivalent to (a′
ij(pij))

2 > aij(pij)a
′′
ij(pij) for all pij . Condition 4(b) requires that

aij(pij) converges to zero at a faster rate than linear functions when a′
ij(pij) converges to zero.

In other words, when a′
ij(pij) = 0, product j of nest i doesn’t contribute any profit so it can be

eliminated from the profit function.

It is straightforward to verify that the MNL model, the linear attraction model and the modified

CES model all satisfy Condition 4. Furthermore, there is a one-to-one mapping between pij and ηi

for all j because ∂
∂pij

(

(pij − cij)+
aij(pij)

a′ij(pij)

)

=
2(a′ij(pij))

2−aij(pij)a
′′
ij(pij)

a′ij(pij)
< 0 under Condition 4.

Then, problem (5) under the general Nested Attraction model can be reduced to the optimization

problem in a single-dimensional space as follows

maxηi
Ri(ηi, η-i)

def
= Qi(pi,p-i) ·

∑mi
k=1(pik − cik)qk|i(pi),

where (pij − cij)+
aij(pij)

a′ij(pij)
= ηi.

(32)

Theorem 6 Under Condition 4, it is optimal to offer all the products at prices such that equation

(31) is satisfied, which implies that (pij − cij)+
aij(pij)

a′ij(pij)
is constant for all j =1,2, . . . ,mi.

The Corollary follows immediately for the special cases: the Nested linear attraction model and

the Nested modified CES model.

Corollary 2 The following quantities are constant at optimal prices for the Nested linear attrac-

tion model and the Nested modified CES model, respectively:

2pij − cij −
αij

βij

, (1− 1

βij

)pij − cij.

The multi-product pricing problem can be simplified to an optimization problem in a single-

dimensional space. It is not hard to show that Ri(ηi, η-i) is log-supermodular for the general Nested

Attraction model under Condition 4, so Theorem 3 also holds here.



Gallego, Wang: Price Optimization and Competition under Nested Logit Model 25

5.3. Discussion and Conclusion

Discrete choice modeling has become a popular vehicle to study purchase behavior of customers

who face multiple substitutable products. The standard Multinomial Logit (MNL) discrete choice

model has been well studied and widely used in marketing, economics, transportation science and

operations management, but it suffers the IIA property, which limits its application and acceptance,

especially in the scenarios with correlated products. The Nested Logit (NL) model with a two-stage

process has been generalized and it can alleviate the IIA property. Empirical studies have shown

that the NL model works well in the environment with differentiated substitutable products.

This paper considers price optimization and competition with multiple substitutable products

under the general NL model. We investigate the general NL model with product-dependent price-

sensitivity parameters and general nest coefficients. Optimization analysis shows that the adjusted

markup is constant for all products within a nest. In addition, the adjusted nest-level markup is

constant for each nest when optimizing over multiple nests. By using this result, the multi-product

and multi-nest optimization problems can be simplified to a single-dimensional maximization of a

continuous function over a a bounded interval. Mild conditions are provided for this function to be

uni-modal. We also use this result to characterize the Nash equilibrium and the equilibrium can

be quickly found by the Tatonnement process.

Furthermore, we consider its application in multi-product dynamic pricing under the framework

of revenue management, and establish structural results of the optimal pricing policy. Revenue

management and dynamic pricing have been well investigated in the last couple of decades and

it has been widely used in practice for management of airlines, hotels, rental cars, cruises, etc.

Significant revenue benefits have been documented from this scientific management. With the help

of our theoretical analysis on the general NL model, customer purchase behavior will be deeply

investigated and a new direction in marketing management will arise. Our research work will shine

bright light on the application of the NL model and deliver important management insights in

practice.

We have also studied the general Nested Attraction model, of which the NL model and the MNL

model are special cases, and have shown how it can be transformed to an optimization problem

in a single-dimensional space. The two-stage model can alleviate the IIA property and derive high

acceptance and wide use in practice. In the future, the research and practice on customers’ selection

behavior with three or even higher stages may attract more attention because it may be closer

to customers’ rationality. One of other future research directions may consider the heterogeneity
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of customers and investigate the discrete choice model in the context with multiple heterogenous

market segments.

Appendix A: Non-concavity of Market Share Transformation

In the NL model, denote a-i =
∑

l 6=i
eγlIl for notational convenience. From equation (1),

Qi

1−Qi

=

(
∑mi

s=1 e
αis−βispis

)γi

1+ a-i
.

Combining with equation (2) results in

eαik−βikpik =
πik

Qi

·
(

Qi(1+ a-i)

1−Qi

) 1
γi

Then, pik can be expressed in terms of πi := (πi1, πi2, . . . , πimi
) as follows

pik(πi) =
1

βik

(

logQi − logπik

)

+
1

βikγi

(

log(1−Qi)− logQi

)

+
αik

βik

− log(1+ a-i)

βikγi

. (33)

The profit of firm i can be rewritten as a function of market shares:

Ri(πi,p-i) =

mi
∑

k=1

(

1

βik

(

logQi − logπik

)

+
1

βikγi

(

log(1−Qi)− logQi

)

− c̃ik

)

·πik, (34)

where Qi =
∑mi

s=1 πis and c̃ik = cik − αik

βik
+ log(1+a-i)

βikγi
.

The price optimization under the NL model has been transformed to the optimization problem in market

shares as discussed above. Li and Huh (2011) have examined the NL model with nest coefficient γi ≤ 1 and

identical price coefficients within each firm (maybe different across firms) and proven that the total profit

is jointly concave with respect to market shares and used this result to analytically compare the optimal

monopolistic solution to oligopolistic equilibrium solutions. However, their approach cannot easily extend to

the NL model with γi > 1 or product-differentiated price coefficients. We will present an example to show

that the profit function is not jointly concave in market shares for the general NL model and then develop

a new approach which exploits the structure of optimal prices.

Taking the first and second order derivatives of the profit function (34) with respect to πij results in

∂Ri(πi,p-i)

∂πij

=
1

βij

(

log(Qi)− log(πij)− 1
)

+
1

βijγi

(

log(1−Qi)− log(Qi)
)

− c̃ij

+

mi
∑

k=1

(

1

βikQi

− 1

βikγi

(

1

1−Qi

+
1

Qi

))

·πik,

∂2Ri(πi,p-i)

∂π2
ij

=
1

βij

(

2

Qi

− 1

πij

)

− 2

βijγi

(

1

1−Qi

+
1

Qi

)

−
mi
∑

k=1

(

1

βikQ2
i

+
1

βikγi

(

1

(1−Qi)2
− 1

Q2
i

))

·πik
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Figure 4 Non-concavity of Ri(πi,p-i))
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Observe that the second order derivative ∂2Ri(πi,p-i))

∂π2
ij

is independent of a-i, the attractiveness of other firms

and even αis ∀ s, the qualities of all the products in the same nest. A necessary condition for the concavity

of Ri(πi,p-i) in πi is: in the feasible region,

∂2Ri(πi,p-i))

∂π2
ij

≤ 0, ∀ j, k, πik. (35)

Example 4 Assume that firm i sells two products with product-differentiated price coefficients βi = (0.9,0.1)

and nest coefficient γi = 0.1. Figure 4 demonstrates the relationship between the second order derivative

∂2Ri(πi,p-i))
∂π2

i1

with respect to the market share πi2 of product 2, fixing the market shore of product 1 at πi1 =

0.0054. It shows that ∂2Ri(πi,p-i))

∂π2
i1

> 0 for 0.05 ≤ πi2 < 0.24, then Ri(πi,p-i)) is not always concave in the

feasible region.

Appendix B: Proofs

Proof of Lemma 1. (a) Consider the first order derivative of wFi
i (θi). Then

∂wFi
i (θi)

∂θi
=−1+

∑

k∈Fi
eα̃ik−βikθi/βik

∑

s∈Fi
βise

α̃is−βisθi

(

∑

s∈Fi
eα̃is−βisθi

)2 .
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That
∂w

Fi
i

(θi)

∂θi
≥ 0 can be shown by Cauchy-Schwarz inequality that is

∑m

i=1 xi

∑m

i=1 yi ≥
(
∑m

i=1

√
xiyi

)2

for any xi, yi ≥ 0. Because

∑

k∈Fi

eα̃ik−βikθi

maxs∈Fi
βis

≤
∑

k∈Fi

eα̃ik−βikθi

βik

≤
∑

k∈Fi

eα̃ik−βikθi

mins∈Fi
βis

then, 1
maxs∈Fi

βis
≤ wFi

i (θi)≤ 1
mins∈Fi

βis
and the inequalities become equalities when βis is constant for

all s∈ Fi.

(b) Consider the first order derivative of vFi
i (θi). Then

∂vFi
i (θi)

∂θi
=

−
∑

k∈Fi
β2
ike

α̃ik−βikθi ·
∑

s∈Fi
eα̃is−βisθi +

(

∑

s∈Fi
βise

α̃is−βisθi

)2

(

∑

s∈Fi
eα̃is−βisθi

)2 .

It can be shown that ∂vi(θi)

∂θi
≤ 0 by a similar argument to part (a).

wFi
i (θi)v

Fi
i (θi) =

∑

k∈Fi
eα̃ik−βikθi/βik

∑

s∈Fi
βise

α̃is−βisθi

(

∑

s∈Fi
eα̃is−βisθi

)2 =
∂wFi

i (θi)

∂θi
+1≥ 1

The inequality holds because of part (a). �

Proof of Proposition 1. From

QFi
i (θi,p-i) =

(

∑

s∈Fi
eα̃is−βisθi

)γi

1+ a-i +
(

∑

s∈Fi
eα̃is−βisθi

)γi = ρi,

then,
∑

s∈Fi
eα̃is−βisθi =

(

ρi(1+a-i)

1−ρi

) 1
γi and rFi

i (ρi,p-i) can be written as follows

rFi
i (ρi,p-i) = ρi






θi +

∑

s∈Fi
eα̃is−βisθi/βis

(

ρi(1+a-i)

1−ρi

) 1
γi






,

where θi is the unique solution to
∑

s∈Fi
eα̃is−βisθi =

(

ρi(1+a-i)

1−ρi

) 1
γi , denoted by θFi

i . Denote HFi(θi) as follows:

HFi(θi) = ρi






θi +

∑

s∈Fi
eα̃is−βisθi/βis

(

ρi(1+a-i)

1−ρi

) 1
γi






, (36)

Note that function (36) is convex in θi and

∂HFi(θi)

∂θi

∣

∣

∣

∣

θi=θ
Fi
i

= ρi






1−

∑

s∈Fi
eα̃is−βisθi

(

ρi(1+a-i)

1−ρi

) 1
γi







∣

∣

∣

∣

∣

∣

∣

θi=θ
Fi
i

= 0.

The last inequality holds because
∑

s∈Fi
eα̃is−βisθi |

θi=θ
Fi
i

=
(

ρi(1+a-i)

1−ρi

) 1
γi . So, rFi

i (ρi,p-i) is equal to the min-

imum of HFi(θi) in θi, i.e., r
Fi
i (ρi,p-i) =minθi H

Fi(θi).

Suppose that another product z is added to set Fi and denote F+
i := Fi ∪ {z}. Similarly, we have

r
F+

i
i (ρi,p-i) =minθi H

F+

i (θi) =HF+

i (θ
F+

i
i ).
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Note that HF+

i (θi)>HFi(θi) for all θi and θFi
i < θ

F+

i
i . Therefore,

r
F+

i
i (ρi,p-i) =HF+

i (θ
F+

i
i )>HFi(θ

F+

i
i )>HFi(θFi

i ) = rFi
i (ρi,p-i).

The first inequality holds because HF+

i (θi)>HFi(θi) for all θi; the second inequality holds because θ
F+

i
i is

the minimizer of HF+

i (θi).

Therefore, rFi
i (ρi,p-i) is strictly increasing in Fi for any 0< ρi < 1. �

Proof of Theorem 1. (a) Because Proposition 1 says that it is optimal to offer all the products at finite

prices, from equation (7),

pij − cij −
1

βij

= (1− γi(1−Qi(pi,p-i)))

mi
∑

s=1

(pis − cis)qs|i(pi). (37)

Since the right hand side (RHS) of equation (37) is independent of j, then pij − cij − 1
βij

is constant

for each j = 1,2, . . . ,mi from equations (37). Let θi = pij − cij − 1
βij

. Equation (37) can be rewritten as

follows:

(

1− (1+ a-i)γi

1+ a-i +(
∑mi

s=1 e
α̃is−βisθi)

γi

)

wi(θ)−
(1+ a-i)γiθi

1+ a-i +(
∑mi

s=1 e
α̃is−βisθi)

γi
=0,

where α̃is = αis−βiscis−1. Since (1+a-i)+(
∑mi

s=1 e
α̃is−βisθi)

γi <∞, the above equation can be rewritten

as equation (13). After some algebra, equation (37) can also be rewritten as follows

Qi(θi,p-i)(θi +wi(θi)) = θi +(1− 1

γi

)wi(θi).

So, the total expected profit can be expressed as follows

Ri(θi,p-i) = θi +(1− 1

γi

)wi(θi), (38)

where θi is a solution to equation (13). Furthermore, the optimal adjusted markup is the solution that

maximizes the expression (38). The proof to the uniqueness of the solution to equation (13) can be found

in part (b) below.

(b) Consider the first order derivative of Ri(θi,p-i) as follows

∂Ri(θi,p-i)

∂θi
=

mi
∑

s=1

βisπis(θi,p-i)
[

− γi(1−Qi(θi,p-i))θi +(1− γi(1−Qi(θi,p-i))wi(θi))
]

= γiQi(θi,p-i)
(

1−Qi(θi,p-i)
)

vi(θi)

[

−
(

θi +(1− 1

γi

)wi(θ)

)

+
1

γi(1+ a-i)
·
(

mi
∑

s=1

eα̃is−βisθi/βis

)(

mi
∑

s=1

eα̃is−βisθi

)γi−1
]

. (39)
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Let X(θi) = −
(

θi +(1− 1
γi
)wi(θi)

)

+ 1
γi(1+a-i)

·
(

∑mi

s=1 e
α̃is−βisθi/βis

)(

∑mi

s=1 e
α̃is−βisθi

)γi−1

. Consider

its first order derivative

∂X(θi)

∂θi
=

1

γi(1−Qi(θi,p-i))
·
(

(1− γi)wi(θi)vi(θi)− 1

)

.

We claim that (1 − γi)wi(θi)vi(θi) < 1 for all θi under Condition 1. It is clearly true if γi ≥ 1. If

there are multiple products with different price sensitivities then wi(θi)vi(θi) <
maxs βis

mins βis
together with

maxs βis

mins βis
≤ 1

(1−γi)
imply that (1− γi)wi(θi)vi(θi) < 1; otherwise wi(θi)vi(θi) = 1 for all θi, then, clearly,

(1− γi)wi(θi)vi(θi)< 1.

Therefore, ∂X(θi)

∂θi
< 0 for all θi under Condition 1, and X(θi) is decreasing from positive to negative as θi

goes from −∞ to ∞. Hence, Ri(θi,p-i) is strictly uni-modal with respect to θi and there exists a unique

solution to ∂Ri(θi,p-i)
∂θi

= 0.

Let ρ(θi) =QFi
i (θi,p-i). For the concavity of ri(ρi,p-i), from equation (11),

∂ri(ρi,p-i)

∂θi
= γi(1−Qi(θi,p-i))Qi(θi,p-i)vi(θi)

[

−
(

θi +(1− 1

γi

)wi(θi)

)

+
1

γi(1+ a-i)
·
(

mi
∑

s=1

eα̃is−βisθi/βis

)(

mi
∑

s=1

eα̃is−βisθi

)γi−1
]

,

∂ρi(θi)

∂θi
= −γi(1−Qi(θi,p-i))Qi(θi,p-i)vi(θi).

Then,

∂ri(ρi,p-i)

∂ρi

=
∂ri(ρi,p-i)/∂θi
∂ρi(θi)/∂θi

=

(

θi +(1− 1

γi

)wi(θi)

)

− 1

γi(1+ a-i)
·
(

mi
∑

s=1

eα̃is−βisθi/βis

)(

mi
∑

s=1

eα̃is−βisθi

)γi−1

.

Therefore,

∂2ri(ρi,p-i)

∂ρ2i
=

∂

∂ρi

(

∂ri(ρi,p-i)

∂ρi

)

=
∂
(

∂ri(ρi,p-i)

∂ρi

)

/∂θi

∂ρi(θi)/∂θi

=
1

(γi(1−Qi(θi,p-i)))
2
Qi(θi,p-i)vi(θi)

·
(

(1− γi) ·wi(θi)vi(θi)− 1
)

< 0.

The inequality holds because (1 − γi)wi(θi)vi(θi) < 1 for all θi under Condition 1. Thus, ri(ρi,p-i) is

strictly concave in ρi under Condition 1. �

Proof of Proposition 2. The profit can be rewritten in function (38): Ri(θi) = θi +(1− 1
γi
)wi(θi), where

θi is a solution to equation (13). If γi ≥ 1, that θi + (1− 1
γi
)wi(θi)≥ 0 implies that θi ≥ −(1− 1

γi
)wi(θi)≥
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1−γi
γi mins βis

def
= θi,min; if 0< γi < 1, that θi +(1− 1

γi
)wi(θi)≥ 0 implies that θi ≥−(1− 1

γi
)wi(θi)≥ 1−γi

γi maxs βis

def
=

θ′i,min.

From the FOC (13),

θi =
1

γi

(

(1− γi)+
1

(1+ a-i)

(

mi
∑

s=1

eα̃is−βisθi

)γi
)

wi(θi)≤
1− γi+(

∑ms

s=1 e
α̃isβisθi)

γi /(1+ a-i)

γimins βis

.

Because the RHS of the inequality is decreasing in θi, we have the upper bounds θi,max and θ′i,max.

Actually, the upper bound can be a bit tighter if Condition 1 is satisfied. Let X2(θi) =

1
γi

(

(1− γi)+
1

(1+a-i)
(
∑mi

s=1 e
α̃is−βisθi)

γi
)

wi(θi). Then, under Condition 1,

∂X2(θi)

∂θi
=

Qi(θi, θ-i)

γi(1−Qi(θi, θ-i))
·
(

(1− γi)wi(θi)vi(θi)− 1

)

< 0.

So, X2(θi) is decreasing in θi under Condition 1 and it is straightforward to find a tighter upper bound. �

Proof of Theorem 2. (a) Let Fi be the set of products in nest i to offer at finite prices. The adjusted

markup of each product k ∈ Fi is constant, denoted by θi. Suppose the prices of all products in other

nests are given and denote total attractiveness of nest j as aj =
∑mj

s=1 e
αjs−βjspjs ∀j 6= i. The total market

share can be expressed as follows

ρ=

n
∑

k=1

Qk(θi,p-i) =

∑

j 6=i
aj +

(

∑

s∈Fi
eαis−βisθi

)γi

1+
∑

j 6=i
aj +

(

∑

s∈Fi
eαis−βisθi

)γi .

Then, the total attractiveness of nest i is
(

∑

s∈Fi

eαis−βisθi

)γi

=
1

1− ρ
− (1+ a-i) (40)

where a-i =
∑

j 6=i
aj. Given that the total market share is ρ and the offered product set in nest i is Fi,

the adjusted markup is the unique solution to equation (40), denoted by θFi
i , and the total profit can be

expresses as follows

RFi(ρ) = Qi(θi,p-i)(θi +wi(θi))+
∑

j 6=i

Qj(θi,p-i)

mj
∑

s=1

(pjs − cjs)qs|j(pj)

=
(

1− (1+ a-i)(1− ρ)
)

·
(

θi +

∑

s∈Fi
eαis−βisθi/βis

(

1/(1− ρ)− (1+ a-i)
)1/γi

)

+
∑

j 6=i

aj(1− ρ) ·
mj
∑

s=1

(pjs − cjs)qs|j(pj),

where θi = θFi
i . Let HFi

2 (θi) be

HFi

2 (θi) =
(

1− (1+ a-i)(1− ρ)
)

·
(

θi +

∑

s∈Fi
eαis−βisθi/βis

(

1/(1− ρ)− (1+ a-i)
)1/γi

)

+
∑

j 6=i

aj(1− ρ) ·
mj
∑

s=1

(pjs − cjs)qs|j(pj).

Note that HFi

2 (θi) is convex in θi and

∂HFi

2 (θi)

∂θi

∣

∣

∣

∣

θi=θ
Fi
i

= 0.
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Then, RFi(ρ) = minθi H
Fi

2 (θi) = HFi

2 (θFi
i ). Similarly to the proof of Proposition 1, we can show that

RFi(ρ)<RF+

i (ρ) for any 0< ρ< 1. Therefore, it is optimal to offer all the products at prices such that

the adjusted markup is constant in each nest.

(b) Let E be the set of nests whose adjusted markup satisfies equation (16). The total market share can be

expressed as follows

ρ=
∑

i∈E

Qi(θi, θ-i) =

∑

i∈E (
∑mi

s=1 e
α̃is−βisθi)

γi

1+
∑

i∈E
(
∑mi

s=1 e
α̃is−βisθi)

γi
, (41)

where θ-i is the vector of the adjusted markups for all other nests in set E excluding nest i. Then,

∑

i∈E

(

mi
∑

s=1

eα̃is−βisθi

)γi

=
ρ

1− ρ
, (42)

θi +(1− 1

γi

)wi(θi) = φ, ∀i=1,2, . . . , n. (43)

The solution to (42) and (43) is unique, which will be shown later, denoted by φE and θE . The total

profit can be expressed

RE(ρ) =
∑

i∈E

Qi(θi, θ-i)

(

φE +
wi(θi)

γi

)

= ρφ+
∑

i∈E

(
∑mi

s=1 e
α̃is−βisθi)

γi ·wi(θi)

γi/(1− ρ)
,

where φ= φE and θ = θE. Denote HE
3 (φ) as follows

HE
3 (φ) = ρφ+

∑

i∈E

(
∑mi

s=1 e
α̃is−βisθi)

γi ·wi(θi)

γi/(1− ρ)
.

where θi satisfies (43). We will next show that HE
3 (φ) is convex in φ under Condition 1 for each i.

∂HE
3 (φ)

∂φ
= ρ+

∑

i∈E

∂GE
3 (φ)/∂θi
∂φ/∂θi

= ρ− (1− ρ)
∑

i∈E

(

mi
∑

s=1

eα̃is−βisθi

)γi

,

where GE
3 (φ) =

∑

i∈E

(
∑mi

s=1
eα̃is−βisθi)γi ·wi(θi)

γi/(1−ρ)
. The second equality holds because

∂GE
3 (φ)

∂θi
= −1− ρ

γi

·
(

1− (1− γi)wi(θi)vi(θi)
)

(

mi
∑

s=1

eα̃is−βisθi

)γi

,

∂φ

∂θi
=

1

γi

(

1− (1− γi)wi(θi)vi(θi)
)

.

And
∂HE

3 (φ)

∂φ
|φ=φE = 0 because of equation (42). The second order derivative of HE

3 (φ) is

∂2HE
3 (φ)

∂φ2
=
∑

i∈E

∂
∂θi

(∂HE
3 (φ)/∂φ)
∂φ

∂θi

=
∑

i∈E

γ2
i (1− ρ)vi(θi) (

∑mi

s=1 e
α̃is−βisθi)

γi

1− (1− γi)wi(θi)vi(θi)
> 0

Thus, HE
3 (φ) is convex in φ, and the solution to (42) and (43) is unique. Let E+ be the new nest set

if the adjusted markup of another nest satisfies equation (16). We can prove that RE+

(ρ)> RE(ρ) for

all ρ ∈ (0,1) by the same argument as in the proof of Theorem 1. Therefore, it is optimal to keep the

adjusted markup of all the nests to satisfy equation (16).
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(c) Consider the FOC of R(φ),

∂R(φ)

∂φ
=

n
∑

i=1

∂R(θ)/∂θi
∂φ/∂θi

= (R(φ)−φ)

n
∑

i=1

γ2
i Qi(θ1, . . . , θn)vi(θi)

1− (1− γi)wi(θi)vi(θi)
= 0, (44)

where θi is the solution to equation (43). Because
∑n

i=1

γ2
i Qi(θ1,...,θn)vi(θi)

1−(1−γi)wi(θi)vi(θi)
> 0 under Condition 1 for each

i, then, R(φ) is increasing (decreasing) in φ if and only if R(φ)≥ (≤)φ.

(i) Case I: there is only one solution to equation (44), denoted by φ∗. Apparently R(φ) is increasing

in φ for φ≤ φ∗ and is decreasing in φ for φ> φ∗.

(ii) Case II: there are multiple solutions to equation (44). Suppose that there are two consecutive

solutions φ1 =R(φ1)< φ2 =R(φ2) and there is no solution to equation (44) between φ1 and φ2.

It must hold that R(φ)<R(φ2) for any φ1 <φ<φ2; otherwise, there must be another solution to

equation (44) between φ1 and φ2, which contradicts that φ1 and φ2 are two consecutive solutions.

We claim that R(φ) is increasing in φ for φ ∈ [φ1, φ2]. Assume there are two points φ1 <φ′
1 <φ′

2 <φ2

such that R(φ′
1)>R(φ′

2). Then, there must be a solution to equation (44) between φ′
1 and φ2, which

also contradicts that φ1 and φ2 are two consecutive solutions. Thus, R(φ) is increasing between any

two solutions to equation (44) and R(φ) may be decreasing after the largest solution. Therefore,

R(φ) is unimodual with respect to φ under Condition 1 for each i.

(d) Let ρ(φ) =
∑n

i=1Qi(θ1, . . . , θn), where θi is the solution to θi +(1− 1
γi
)wi(θi) = φ, ∀i=1,2, . . . , n. Then,

∂ρ(φ)

∂φ
=

n
∑

i=1

∂ρ(φ)/∂θi
∂φ/∂θi

=−Q0(θ1, . . . , θn)

n
∑

i=1

γ2
i Qi(θ1, . . . , θn)vi(θi)

1− (1− γi)wi(θi)vi(θi)
,

∂R(φ)

∂ρ
=

∂R(φ)/∂φ

∂ρ(φ)/∂φ
=−R(θ)−φ

1− ρ
.

We can easily show that R(ρ) is unimodual in ρ by a similar argument to part (c). Moreover, we consider

the second order derivative under Condition 1 for all i,

∂2R(ρ)

∂ρ2
= − ∂

∂ρ
· R(θ)−φ

1− ρ
=−R(θ)−φ

(1− ρ)2
+

1

1− ρ
·

∂R(θ)

∂φ
− 1

∂ρ

∂φ

= − 1

(1− ρ)2
∑n

i=1

γ2
i
Qi(θ1,...,θn)vi(θi)

1−(1−γi)wi(θi)vi(θi)

< 0.

The last equality hold because (1−γi)wi(θi)vi(θi)< 1 for all θi and each i under Condition 1. Therefore,

R(ρ) is concave in ρ under Condition 1 for each i. �

Proof of Proposition 3 From equation (16), the optimal φ∗ is one of the fixed points of R(φ) and appar-

ently φ∗ > 0. Because θ∗i +(1− 1
γi
)wi(θ

∗
i ) = φ∗, then θ∗i ≥ 1

γi maxs βis
− 1

mins βis

def
= θ̂i,min.
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Equation (16) can be rewritten as follows

φ=
n
∑

i=1

Qi(θi, θ-i)

(

φ+
wi(θi)

γi

)

,

which can be simplified to

φ=

n
∑

i=1

(

mi
∑

s=1

eα̃is−βisθi

)γi

· wi(θi)

γi

≤
n
∑

i=1

(
∑mi

s=1 e
α̃is−βisθi)

γi

γimins βis

≤
n
∑

i=1

(

∑mi

s=1 e
α̃is−βisθ̂i,min

)γi

γimins βis

def
= φmax.

The first inequality holds because wi(θi)≤ 1
mins βis

for each i from Lemma 1 and the second inequality holds

because (
∑mi

s=1 e
α̃is−βisθi)

γi is decreasing in θi for each i.

If Condition 1 is satisfied for some i, a tighter upper bound can be easily found because (
∑mi

s=1 e
α̃is−βisθi)

γi ·
wi(θi)

γi
is decreasing in θi under Condition 1. �

Proof of Theorem 3. (a) Suppose that (p∗
i ,p

∗
-i) is an equilibrium of Game I. From Theorem 1, the

adjusted markup for all the products of each firm is constant, i.e., pik − cik − 1
βik

is constant for all k,

denoted by θ∗i . We will argue that (θ∗i , θ
∗
-i) must be the equilibrium of Game II. If firm i is better-off to

deviate to θ̂i, then firm i will also be better-off to deviate to p̂i in Game I, where p̂i = (p̂i1, . . . , p̂imi
)

and p̂ik = θ̂i + cik +
1

βik
. It contradicts that (p∗

i ,p
∗
-i) is equilibrium of Game I.

Suppose that (θ∗i , θ
∗
-i) is an equilibrium of Game II. We will argue that (p∗

i ,p
∗
-i) is an equilibrium of

Game I, where pik = θ∗i + cik+
1

βik
for all k. If firm i is better-off to deviate to p̂i := (p̂i1, p̂i2, . . . , p̂imi

) in

Game I, p̂ik−cik− 1
βik

must be constant from Theorem 1, denoted by θ̂i. Then, firm i must be better-off

to deviate to θ̂i in Game II, which contradicts that (θ∗i , θ
∗
-i) is an equilibrium of Game II.

(b) Consider the derivatives of logRi(θi, θ-i):

∂ logRi(θi, θ-i)

∂θi
= −γi(1−Qi(θi, θ-i))vi(θi)+

wi(θi)vi(θi)

θi +wi(θi)
,

∂ logRi(θi, θ-i)

∂θj
= γjQj(θj , θ-j)vj(θj)≥ 0, ∀j 6= i,

∂2 logRi(θi, θ-i)

∂θi∂θj
= γiγjQi(θi, θ-i)Qj(θj , θ-j)vi(θi)vj(θj)≥ 0, ∀j 6= i.

Then, Game II is a log-supermodular game. Note that the strategy space for each firm is the real line.

From Topkis (1998) and Vives (2001), the equilibrium set is a nonempty complete lattice and, therefore,

has the componentwise largest and smallest elements, denoted by θ
∗
and θ∗ respectively.

For any equilibrium θ
∗, θ

∗ ≥ θ
∗ ≥ θ

∗ and

logRi(θ
∗
i , θ

∗
-i)≤ logRi(θ

∗
i , θ

∗

-i)≤ logRi(θ
∗

i , θ
∗

-i).
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The first inequality holds because ∂ logRi(θi,θ-i)

∂θj
≥ 0; the second inequality holds because (θ

∗

i , θ
∗

-i) is a Nash

equilibrium of the log-supermodular game. Because logarithm is an monotonic increasing transformation,

Ri(θ
∗
i , θ

∗
-i)≤Ri(θ

∗
i , θ

∗

-i)≤Ri(θ
∗

i , θ
∗

-i).

Therefore, the largest equilibrium θ
∗
is preferred by all the firms. �

Proof of Theorem 4 (a) Suppose that there exists an asymmetric equilibrium, denoted by

(θ∗1, θ
∗
2, θ

∗
3, . . . , θ

∗
n). Suppose that θ∗1 is the largest and θ∗2 is the smallest without loss of generality, then

θ∗1 > θ∗2. Because the game is symmetric, (θ∗2, θ
∗
1, θ

∗
3, . . . , θ

∗
n) is also an equilibrium. In other words, the best

strategies for firm 1 are θ∗1 and θ∗2 respectively corresponding to other firms’ strategies (θ∗2, θ
∗
3, . . . , θ

∗
n)

and (θ∗1, θ
∗
3, . . . , θ

∗
n). Since the game is strictly supermodular and (θ∗2, θ

∗
3, . . . , θ

∗
n) < (θ∗1, θ

∗
3, . . . , θ

∗
n), then

θ∗1 ≤ θ∗2, which is a contradiction.

(b) Recall the first order derivative of Ri(θi, θ-i) equation (39)

∂Ri(θi, θ-i)

∂θi
= γiQi(θi, θ-i)

(

1−Qi(θi, θ-i)
)

vi(θi)

[

−
(

θi +(1− 1

γi

)wi(θ)

)

+
1

γi(1+ a-i)
·
(

mi
∑

s=1

eα̃is−βisθi/βis

)(

mi
∑

s=1

eα̃is−βisθi

)γi−1
]

.

For the symmetric equilibria in an n-firm game, a-i = (n − 1) (
∑mi

s=1 e
α̃is−βisθi)

γi . Let Y (θi) =

−
(

θi +(1− 1
γi
)wi(θi)

)

+
(
∑mi

s=1
eα̃is−βisθi)γi

γi(1+(n−1)(
∑mi

s=1
eα̃is−βisθi)γi)

·wi(θi) and it can be simplified to

Y (θi) =−θi −
(

1− 1

γi(1−Qi(θi, n))

)

wi(θi) = 0.

Consider its first order derivative

∂Y (θi)

∂θi
=

1

γi(1−Qi(θi, n))
·
(

−1+wi(θi)vi(θi)

(

1− γi + γi

(n− 1)(Qi(θi, n))
2

1−Qi(θi, n)

))

,

where Qi(θi, n) is the market share for firm i when all firms charge the same adjusted markup θi, i.e.,

Qi(θi, n) =
(
∑mi

s=1
eα̃is−βisθi)

γi

1+n(
∑mi

s=1
eα̃is−βisθi)

γi . Clearly, Qi(θi, n)<
1
n
. Then,

∂Y (θi)

∂θi
<

1

γi(1−Qi(θi, n))
·
(

−1+wi(θi)vi(θi)

(

1− n− 1

n
γi

))

.

Therefore,

(i) If γi ≥ n
n−1

, ∂Y (θi)

∂θi
< 0 for all θi.

(ii) If 0< γi <
n

n−1
and maxs βis

mins βis
≤ 1

1−n−1

n
·γi

, we claim that wi(θi)vi(θi)
(

1− n−1
n

γi

)

< 1. If there are more

than one products with different price coefficients, wi(θi)vi(θi)<
maxs βis

mins βis
; otherwise wi(θi)vi(θi) = 1

for all θi. In both cases, wi(θi)vi(θi)
(

1− n−1
n

γi

)

< 1.
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Thus, ∂Y (θi)

∂θi
< 0 for all θi under Condition 2. Then, Y (θi) is strictly decreasing from positive to negative

as θi goes from −∞ to ∞. Hence, there exists a unique solution to Y (θi) = 0 and it is also the unique

equilibrium to the symmetric game. �

Proof of Lemma 2. Consider the derivatives of log(θi +wi(θi)),

∂ log(θi +wi(θi))

∂θi
=

wi(θi)vi(θi)

θi +wi(θi)
,

∂2 log(θi +wi(θi))

∂θ2i
=

wi(θi)

θi +wi(θi)
· ∂vi(θi)

∂θi
+ vi(θi) ·

∂ wi(θi)

θi+wi(θi)

∂θi

=
wi(θi)

θi +wi(θi)
· ∂vi(θi)

∂θi
+ vi(θi) ·

θi ·
(

− 1+wi(θi)vi(θi)
)

−wi(θi)

(θi +wi(θi))2

The log-concavity of θi +wi(θi) can be guaranteed by θi ·
(

− 1+wi(θi)vi(θi)
)

−wi(θi)≤ 0 because vi(θi) is

decreasing from Lemma 1. We will next show that θi ·
(

−1+wi(θi)vi(θi)
)

→ 0 as θi →∞. Denote β
i
=mins βis

and let Ξi be the set Ξi = {s : βis = β
i
}. Then,

−1+wi(θi)vi(θi) =
− (
∑mi

s=1 e
α̃is−βisθi)

2
+
(

∑mi

s=1
1

βis
eα̃is−βisθi

)

· (∑mi

s=1 βise
α̃is−βisθi)

(
∑mi

s=1 e
α̃is−βisθi)

2

=
1

(

∑

s∈Ξi
eα̃is +

∑

s/∈Ξi
eα̃is−(βis−β

i
)θi
)2 ·

(

−
(

∑

s∈Ξi

eα̃is +
∑

s/∈Ξi

eα̃is−(βis−β
i
)θi

)2

+

(

∑

s∈Ξi

1

β
i

eα̃is +
∑

s/∈Ξi

1

βis

eα̃is−(βis−β
i
)θi

)

·
(

∑

s∈Ξi

β
i
eα̃is +

∑

s/∈Ξi

βise
α̃is−(βis−β

i
)θi

)

)

≈

∑

s∈Ξi
eα̃is ·

(

∑

s/∈Ξi
(βis

β
i

+
β
i

βis
− 2)eα̃is−(βis−β

i
)θi

)

(

∑

s∈Ξi
eα̃is

)2

+2
(

∑

s∈Ξi
eα̃is

)

·
(

∑

s/∈Ξi
eα̃is−(βis−β

i
)θi
)

In the above approximation, the higher order terms are ignored. Because βis

β
i

+
β
i

βis
− 2> 0 and βis − β

i
> 0,

then

θi ·
(

(βis

β
i

+
β

i

βis

− 2
)

eα̃is−(βis−β
i
)θi
)

=
θi ·
(

βis

β
i

+
β
i

βis
− 2
)

e−α̃is+(βis−β
i
)θi

→ 0, as θi →∞.

The above convergence holds because the exponential function is increasing faster than the linear function.

Since
(

∑

s∈Ξi
eα̃is

)2

+2
(

∑

s∈Ξi
eα̃is

)

·
(

∑

s/∈Ξi
eα̃is−(βis−β

i
)θi
)

→
(

∑

s∈Ξi
eα̃is

)2

as θi →∞, therefore, θi ·
(

−

1+wi(θi)vi(θi)
)

→ 0. There exists θ̃i such that

θi ·
(

− 1+wi(θi)vi(θi)
)

≤ 1

maxs βis

≤wi(θi), for θi ≥ θ̃i.

Thus, θi +wi(θi) is log-concave for θi ≥ θ̃i. �
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Proof of Theorem 5. Consider the first order and second order derivatives of logRi(θi, θ-i) with respect

to θi:

∂ logRi(θi, θ-i)

∂θi
=

∂ log(Qi(θi, θ-i))

∂θi
+

∂ log(θi +wi(θi))

∂θi
=−γi(1−Qi(θi, θ-i))vi(θi)+

∂ log(θi +wi(θi))

∂θi
,

∂2 logRi(θi, θ-i)

∂θ2i
= −γ2

i Qi(θi, θ-i)(1−Qi(θi, θ-i))
(

vi(θi)
)2

+
∂2 log(θi +wi(θi))

∂θ2i
.

The cross-derivative of logRi(θi, θ-i) is

∂2 logRi(θi, θ-i)

∂θi∂θj
= γiγjQi(θi, θ-i)Qj(θj , θ-j)vi(θi)vj(θj)≥ 0, ∀j 6= i.

Then,

∑

j 6=i

∂2 logRi(θi, θ-i)

∂θi∂θj
= γiQi(θi, θ-i)vi(θi)

∑

j 6=i

γjQj(θj , θ-j)vj(θj).

Under Condition 3, Ri(θi, θ-i) is log-dominant diagonal,

−∂2 logRi(θi, θ-i)

∂θ2i
≥
∑

j 6=i

∂2 logRi(θi, θ-i)

∂θi∂θj
(45)

The inequality holds because

γ2
i Qi(θi, θ-i)(1−Qi(θi, θ-i))

(

vi(θi)
)2 ≥ γiQi(θi, θ-i)vi(θi)

∑

j 6=i

γjQj(θj , θ-j)vj(θj)

under Condition 3(a), and

∂2 log(θi +wi(θi))

∂θ2i
≤ 0

under Condition 3(b). The inequality (45) establishes the uniqueness of the Nash equilibrium to Game II

(see e.g., Vives 2001).

If the equilibrium of a log-supermodular game with continuous payoff is unique, it is globally stable and a

tatonnement process with dynamic response (24) converges to it from any initial point in the feasible region.

�

Proof of Theorem 6. Suppose that Fi is the set of product to offer at prices such that equation (31) is

satisfied. Without loss of generality, assume that a-i = 0. Consider the price optimization problem with the

market share constraint as follows:

rFi
i (ρi,p-i) :=maxpi<∞

∑

k∈Fi
(pik − cik)πik(pi,p-i)

s.t., Qi(pi,p-i) = ρi.
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We can easily show that at optimal prices (pij − cij)+
aij(pij)

a′

ij
(pij)

is constant for all j ∈Fi, denoted by ηi. Then,

rFi
i (ρi,p-i) = ρi

∑

k∈Fi

(pik − cik)qk|i(pi)

where pij satisfies that (pij − cij)+
aij(pij)

a′

ij
(pij)

= ηi for all j ∈Fi and ηi is the unique solution, denoted by ηFi
i , to

(

∑

s∈Fi
ais(pis)

)γi

1+
(

∑

s∈Fi
ais(pis)

)γi = ρi,

which is equivalent to
∑

s∈Fi
ais(pis) =

(

ρi
1−ρi

)1/γi
. Then, rFi

i (ρi,p-i) can be rewritten as follows

rFi
i (ρi,p-i) = ρiηi − ρ

1− 1
γi

i (1− ρi)
1
γi

∑

s∈Fi

(ais(pis))
2

a′
is(pis)

,

where ηi = ηFi
i and (pij − cij)+

aij(pij)

a′

ij
(pij)

= ηFi
i . Denote HFi

4 (ηi) as follows:

HFi
4 (ηi) = ρiηi − ρ

1− 1
γi

i (1− ρi)
1
γi

∑

s∈Fi

(ais(pis))
2

a′
is(pis)

.

We will next show that HFi

4 (ηi) is convex in ηi under Condition 4. Consider the first order derivative:

∂HFi

4 (ηi)

∂ηi
=
∑

s∈Fi

∂HFi

4 (ηi)/∂pis

∂ηi/∂pis

= ρi − ρ
1− 1

γi
i (1− ρi)

1
γi

∑

s∈Fi

2ais(pis)(a
′

is(pis))
2−(ais(pis))

2a′′

is(pis)

(a′

is
(pis))2

1+
(a′

is
(pis))2−ais(pis)a

′′

is
(pis)

(a′

is
(pis))2

= ρi − ρ
1− 1

γi
i (1− ρi)

1
γi

∑

s∈Fi

ais(pis)

And
∂H

Fi
4

(ηi)

∂ηi

∣

∣

∣

∣

ηi=η
Fi
i

=0 because
∑

s∈Fi
ais(pis) =

(

ρi
1−ρi

)1/γi
. The second order derivative of HFi

4 (ηi) is

∂2HFi
4 (ηi)

∂η2i
=
∑

s∈Fi

∂
∂pis

(∂HFi

4 (ηi)/∂ηi)
∂ηi
∂pis

=−ρ
1− 1

γi
i (1− ρi)

1
γi

∑

s∈Fi

(a′
is(pis))

3

2(a′
is(pis))2 − ais(pis)a′′

is(pis)
≥ 0.

The last inequality holds because a′
is(pis) ≤ 0 and 2(a′

is(pis))
2 − ais(pis)a

′′
is(pis) > 0 from Condition 4. So,

HFi
4 (ηi) is convex in ηi and rFi

i (ρi,p-i) =minθi H
Fi
4 (ηi) =HFi

4 (ηFi
i ).

Suppose another product z is added to the set Fi and denote the new set as F+
i = Fi ∪ {z}. By the same

argument as in the proof of Proposition 1, we can show that r
F+

i
i (ρi,p-i) > rFi

i (ρi,p-i) for any 0 < ρi < 1.

Therefore, it is optimal to offer all the product at finite prices such that equation (31) is satisfied and the

multi-product pricing problem has been reduced to an optimization problem in a single-dimensional space.

�
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