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Abstract

We consider a multi-period single product pricing problem with an unknown demand curve.

The seller’s objective is to adjust prices in each period so as to maximize cumulative expected

revenues over a given finite time horizon; in doing so, the seller needs to resolve the tension

between learning the unknown demand curve and maximizing earned revenues. The main ques-

tion that we investigate is the following: how large of a revenue loss is incurred if the seller

uses a simple parametric model which differs significantly (i.e., is misspecified) relative to the

underlying demand curve. This “price of misspecification” is expected to be significant if the

parametric model is overly restrictive. Somewhat surprisingly, we show (under reasonably gen-

eral conditions) that this may not be the case.
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1 Introduction

The famous industrial statistician George E. P. Box is widely credited for the saying:

“All models are wrong, but some are useful.”

A direct read of the first part of the statement is that all mathematical models are abstractions of

reality, and as such can only capture some of its salient features; in other words, they are inherently

misspecified relative to the true underlying system/phenomenon that is being studied. There exists a

rather vast literature in statistics/econometrics that addresses this point, and develops extensions

of classical estimation theory to misspecified contexts; cf. White (1996) and references therein.

Yet, to the best of our knowledge, most OR/MS type studies, where decisions and control rules are

usually a result of optimizing an objective function that explicitly builds on a system model, ignore

the possibility of said model being incorrectly specified. Our focus in this paper is to illustrate the

extent to which the latter part of Box’s statement might apply in such settings. This will be done

in the context of a prototypical dynamic decision making problem whose details are described next.

1.1 The problem and key questions

We consider a monopoly operating in a stationary demand environment that offers a product

characterized by a set of attributes which are observable to customers. Over the time horizon of

interest, the only attribute that the seller can modify is the price of the product, and this can only

be done at pre-determined epochs; we index the periods between such epochs by t ≥ 1. We let

pt denote the price offered during the tth period, and Dt the corresponding realized demand. We

assume that the mean value of Dt conditional on price is given by a deterministic function λ(·) (aka
the demand curve). The seller’s objective is to sequentially set prices with the intent of maximizing

cumulative expected revenues.

We consider this dynamic optimization problem with the added complication that the true

demand curve, λ(·), is not known to the seller. A common approach would then be to postulate a

demand model, and over time jointly infer its structure from observed demand realizations, while

concurrently optimizing revenues. This variant of dynamic pricing problems, often referred to as

the problem of learning and earning, has a long and storied history, dating back to pioneering

work of economists such as Rothschild (1974), and has been the focus of significant recent work

in economics, computer science and operations research. Most of this work makes a significant

simplifying assumption: the seller is assumed to know the structure of the demand curve, up to a

finite number of unknown parameters. In other words, the demand model postulated by the seller

is well specified with respect to the underlying demand curve. There are very few papers that avoid

making this assumption, and they propose to address the potential for model misspecification using

standard approaches in nonparametric statistics: by judiciously expanding the scope and complexity
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of the model as further data becomes available (e.g., using higher degree polynomials, more complex

smoothing splines etc), it is is possible to approximate a very broad class of functional relationships

representing the underlying demand curve. Roughly speaking, misspecification is made to vanish,

asymptotically. For further discussion the reader is referred to section 1.3 which contains a review

of the relevant literature.

The focus of this paper is quite different. Rather than striving to eliminate misspecification in

the manner described above, we make it even more pronounced by assuming the seller adopts an

exceedingly simple parametric model for the demand curve, in particular, the widely used linear

model. With that as a given, we would like to better understand whether, when, and to what extent

does this simple and incorrect model support “good” pricing decisions; a more direct interpretation

of Box’s statement above. In so doing, we restrict attention to a simple class of pricing policies,

which are abstracted away from practice, and in line with the typical policies designed for the

well-specified cases. These policies operate in a semi-myopic manner: they loop through estimation

and optimization steps, and price to optimize immediate revenues given current model estimates,

while performing some minimal price experimentation. Despite their simple minded and incorrect

predicate – a linear demand model – the aforementioned pricing policies are, somewhat surprisingly,

quite “useful.”

1.2 Main findings and qualitative insights

We start with the following thought experiment. Suppose that a “good” policy is constructed based

on the linear model assumption in a well-specified setting (namely, when the underlying demand

curve is linear as well). How will this policy perform in an environment in which the demand curve

is no longer well specified, namely, when it differs from the linear modeling assumptions?

We first explore this question numerically and, quite surprisingly, find that the policy performs

remarkably well over a reasonable range of scenarios, in spite of said misspecification. Motivated

by these observations, the remainder of the paper explores the underlying theory that helps explain

these numerical findings.

Mimicking this numerical experiment, the departure point for our theoretical investigation is a

family of “good” policies designed in the well specified setting; in the latter formulation, namely,

when the demand curve is unknown but matches the modeling assumptions, such policies have

been identified in the literature (see section 1.3). This broad family of semi-myopic pricing policies

that are based on a linear demand model gives rise, under reasonably general conditions, to several

interesting conclusions.

First, pricing decisions generated by this policy converge in probability, despite model misspec-

ification, to the optimal price corresponding to the true underlying demand curve (Theorem 1).1

1One should emphasize here that the linear demand model that is adopted as a primitive in these policies is not
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Second, going beyond the property of consistency outlined above, we prove a result that at first

glance may seem rather remarkable: the above mentioned policies essentially maximize the cumu-

lative expected revenues (Theorem 2), despite their very simple structure and the fact that they

are predicated on an incorrect demand model. To punctuate this point, note that even if the seller

were to know a priori what is the parametric structure of the demand curve (assuming it even

belongs to a parametric family), this knowledge, and the customization of the pricing policy to it,

provides only limited (asymptotic) performance gains.

The above theory allows us to tease out the key ingredient in mitigating the impact of misspecifi-

cation: roughly speaking, the interleaving of estimation and optimization cycles in the “proximity”

of the perceived optimal price point results in price steps that are in the direction of the gradient

of the true underlying revenue function. To bring this point to full focus, we further discuss the

relationship with other gradient methods in §3.3.
To complement the above findings, we highlight some potential pitfalls associated with model

mis-specification and their implications. Roughly speaking, we demonstrate that if the demand

model is not sufficiently flexible (e.g., has only a single degree of freedom), the positive behavior

reported above does not continue to hold; the sequence of resulting prices might converge to a

strictly sub-optimal value or even oscillate over time (see Proposition 1 in §5.1 and the discussion

that follows). The oscillatory behavior illustrates that even in a completely stable (stationary)

environment, a monopolist that is regularly re-calibrating its model might (falsely) conclude that

the demand environment is changing temporally, while the price changes are in fact driven by a

mismatch between the adopted model and the ambient demand curve.

Summarizing, the high level contribution of this paper is two fold. From a theory standpoint,

the paper identifies how incorrect models may lead to correct pricing decisions under fairly general

assumptions. From a more practical viewpoint, it provides some justification for the prevalent use

of simple parametric models, as it establishes that the “price of misspecification” may not be as high

as one might expect. In particular, it highlights the role of the estimation/optimization cycles, that

are typically core elements of any pricing algorithm, in mitigating the impact of misspecification.

It is worth noting that the conclusions of the paper may extend beyond the pricing application;

this point will be discussed in further detail in Section 2 and the proofs.

The remainder of the paper. We finish this section with a review of related work. The next

section formulates the problem and presents a motivating experiment. Section 3 establishes the

main result on consistency of pricing decisions derived from misspecified models, while Section 4

analyzes the more refined revenue-optimality properties of the class of policies under consideration.

A discussion of the main findings, modeling assumptions and future directions is presented in

crucial. Similar results hold for many parametric classes of demand models, including many commonly used families

such as exponential and logit. We further comment on this point in Section 5.
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Section 5. All the proofs of the results are collected in Appendices A, B and C.

1.3 Review of related work

As alluded to earlier, one of the first papers to formulate and study the dynamic pricing problem

with an unknown demand curve was that of Rothschild (1974), which used a bandit-type formu-

lation to study optimal pricing strategies. There have been extensive follow ups, extensions and

generalizations of this work, primarily in the economics literature. The problem has received signif-

icant recent attention in the OR/MS community, primarily focusing on the setting where the seller

knows the structure of the unknown demand curve up to some finite (and small) number of param-

eters. The focus of these papers has mostly been on the design of policies that suitably balance the

exploration-exploitation trade off inherent to the problem; see, e.g., Broder and Rusmevichientong

(2012), Harrison et al. (2012, 2011), and den Boer and Zwart (2010). In the terminology of the

present paper, all of the above studies consider the well-specified case. There are far fewer studies

that consider the situation where the demand curve can not be represented as a function that is

parametrized with a finite number of parameters. Besbes and Zeevi (2009) considers this prob-

lem, and proposes to address it using standard approaches from nonparametric statistics, namely,

building a sequence of models that are in essence “finitely parametrized,” and judiciously grow the

complexity of these models as more demand observations become available; see also Wang et al.

(2011) for further improvements on those results. We refer the reader to Araman and Caldentey

(2010) for a recent review paper on the topic. The issue of model misspecification, and its potential

negative implications has surfaced in several recent papers: see, for example, Cachon and Kök

(2007) in a newsvendor context, and Mersereau and Zhang (2012).

Our work differs markedly from the streams of work outlined above. Taking as our departure

point that most models tend to be misspecified, the present paper attempts to provide some ex-

planation for the reasons simple models might perform reasonably well in a broad set of scenarios.

Philosophically, this is somewhat related, at least in spirit, to a study by Dawes (1979) that em-

phasizes the usefulness of improper linear models in the context of clinical prediction. One of the

main points that the current paper attempts to elucidate is the fundamental distinction between

capturing the “correct” model and arriving at the “correct” decision; a point that was the focus in

Besbes et al. (2010), Chehrazi and Weber (2010) and Kao et al. (2009).

Most closely related to our work are probably Cooper et al. (2006) and Cooper et al. (2009).

These papers also focus on the interplay between misspecification and decisions in the context

of estimation-optimization cycles. The emphasis in Cooper et al. (2006) is on potential negative

aspects of misspecification (the spiral down effect) in the context of capacity booking problems;

but the authors also identify some special cases in which decisions end up being optimal despite

the presence of misspecification. From a somewhat different angle, Cooper et al. (2009) establish
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that in an oligopoly setting, players that ignore the impact of their competitors decisions (leading

to some form of misspecification), may end up in a better equilibrium in comparison to the one that

would arise had they predicated their actions on the true model of competition. In the present

paper, we establish that in pricing problems, the impact of misspecification is mitigated (if not

completely eliminated) due to judiciously designed estimation/optimization cycles, and shed some

theoretical light on the main elements contributing to this phenomenon.

2 Problem Formulation and Motivating Experiment

2.1 The model

We consider a multi-period single product pricing problem where a seller (acting as a monopolist)

needs to set prices, pt, in each period t = 1, 2, . . ., chosen from a set of feasible prices given by the

interval [p(l), p(h)]. As described in section 1, the aggregate market response at time t to the posted

price pt is given by

Dt = λ(pt) + εt, t ≥ 1, (1)

where λ : R+ → R+ is a deterministic function representing the mean demand conditional on the

prevailing price, and εt is a zero-mean random variable with finite variance representing demand

shocks. We assume that the random variables εt, t ≥ 1 are independent and identically distributed.

We denote by Π the class of all admissible pricing policies available for use by the seller. Each policy

is represented by a sequence π = (p1, p2, . . .), where each entry within the sequence is restricted to

depend only on past demand observations and past decisions; namely, pt is adapted to the filtration

generated by (p1, . . . , pt−1, D1, . . . , Dt−1), for t ≥ 1.

In our setting the demand curve, λ(·), is not known and the seller can only learn about it

indirectly by observing market response to offered prices. In other words, the seller is faced with

the joint problem of learning demand while concurrently trying to maximize revenues; the so-called

learning and earning problem. We assume throughout that λ(·) is positive, strictly decreasing and

twice continuously differentiable on the price domain [p(l), p(h)] and denote by λ−1(·) its inverse on

[λ(p(h)), λ(p(l))]. In addition, we assume that the revenue function r(p) = pλ(p) admits a unique

maximizer p∗ ∈ (p(l), p(h)). Instances of families of demand functions satisfying such assumptions

are given in Example 1 in Section 3. Clearly if the seller were to know λ(·) prior to the start of the

selling season, he would simply set pt ≡ p∗ for all times t ≥ 1, hence maximizing the per period

expected revenues.
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2.2 Performance metric

The efficacy of any admissible policy will be measured in two ways. The first, and more rudimentary

measure, examines the long term behavior of the prices generated by the policy: does the sequence

of prices converge to the true optimal price p∗ = argmax{r(p)}. More specifically, a pricing policy

is said to be consistent if

pt → p∗ as t→ ∞, (2)

in probability.

It is fairly clear that absence of consistency renders essentially no hope of maximizing cumulative

expected revenues. At the same time, it is important to note that consistency focuses on the

asymptotic behavior of the decision variable, and thus has little to say on how said decisions

impact generated revenues over any finite time horizon. To address that, we will also evaluate the

expected cumulative revenues generated by a policy π = (p1, p2, . . .) over a given time horizon T

E
π

[
T∑

t=1

pt Dt

]
, (3)

where E
π[·] denotes the expectation operator with respect to the true underlying statistical model

(1), under π. In particular, we will compare those to the revenues generated by an oracle that

knows the ambient demand curve. More specifically, we define the regret of any admissible policy

π ∈ Π as follows:

R(π, T ) = p∗λ(p∗)T − E
π
[ T∑

t=1

ptDt

]
. (4)

Clearly the smaller the regret, the better the performance of a given policy, as the oracle revenues

(first term on the RHS above) are a strict upper bound on the performance of any pricing policy.

The magnitude of the regret, and in particular the way it scales as the time horizon increases,

provides a more refined lens to view the performance of a given policy.

2.3 The class of pricing policies

We will focus on pricing policies whose salient features are: i.) modeling the demand curve with

a linear function whose two parameters need to be inferred from demand observations; and ii.)

determining prices at judicious time instants, called recalibration points, by essentially maximizing

a proxy of the revenue function r(·) which is constructed from the estimated linear demand func-

tion. More specifically, the proposed policies operate in stages, the terminal point of each stage

corresponding to a recalibration point. At the commencement of each stage, which we index by i

for i = 1, 2, ..., the seller has an estimate of (what he considers to be) the optimal price p̂i. The
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seller then sets 2 prices to be used at stage i, the values of which are suitable perturbations of p̂i.

Each such price will be used for Ii periods. At the end of stage i, estimates of the model parameters

(α, β) are updated using least squares regression based on a subset of past observations, whose in-

dices will be denoted by Ti. The seller then computes the next estimate of the revenue maximizing

price p̂i+1, and the process repeats indefinitely, or until the end of the time horizon. Let P : R → R

be the projection operator on [p(l), p(h)], defined for all x ∈ R as P(x) = min
{
max{x, p(l)}, p(h)

}
.

The algorithm below provides a detailed description.

Semi-myopic pricing scheme: π̂(p̂1, {Ii, δi, Ti : i ≥ 1})
Set t1 = 0

For i ≥ 1

Step 1: Pricing and information collection

Set prices

pt = p̂i, t = t+ 1, ..., t+ Ii

pt = p̂i + δi, t = t+ Ii + 1, ..., t+ 2Ii

Set ti+1 = ti + 2Ii

Step 2: Recalibration

(α̂i+1, β̂i+1) = argmin
α,β

{∑

t∈Ti

[
Dt − (α− βpt)

]2}
(5)

Step 3: Reoptimization

p̂i+1 = P
(
α̂i+1

2β̂i+1

)
(6)

The above family of policies is predicated on a simple (linear) demand model, which is most

likely misspecified relative to the ambient demand curve. In addition, it combines estimation and

optimization in a manner that is effectively identical to how these elements would be executed

in the well specified setting. To that end, the structure proposed above is abstracted away from

common practice in applied revenue management. The common working assumption there is to

adopt a simple parametric family as a demand model, linear models being a prototypical example,

and “solving” the dynamic optimization problem (see (3) above) by separating and cycling between

estimation and optimization, essentially invoking a type of certainty equivalence principle, while

concurrently conducting proper price experimentation.

In recent papers on learning and pricing, Broder and Rusmevichientong (2012) and den Boer and

Zwart (2010) propose policies that are shown to have desirable theoretical properties, in the sense
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that they achieve (or almost achieve) the minimum rate of growth of the regret (4) with respect

to the time horizon. More broadly, Harrison et al. (2011) establish simple sufficient conditions for

a policy to achieve the best possible growth rate of regret. In essence, that theory stipulates that

myopic-type pricing policies are “optimal” provided that statistical information on the parameter

estimates (in the sense of Fisher) accumulates at a suitable rate, but the deviations that this forces

from myopic decisions do not happen too frequently. In particular, when Ii = 1, Ti = {1, ..., ti+1}
and δi = t−1/4, the policy above is among the simplest instances that essentially satisfies these two

sufficient conditions in Harrison et al. (2011, Theorem 2) 2, and can be thought of as a simplified

version of the controlled variance policy proposed in den Boer and Zwart (2010).

2.4 An illustrative numerical experiment

The main question that we will start pursuing, numerically in this section and later theoretically,

is: what is the impact of basing a pricing policy on an incorrect demand specification, specifically

a linear model, when the true underlying demand curve (according to which observations are

generated) is different.

Consider the policy π̂, which is designed based on the premise that the linear model is well-

specified. We examine the performance of this policy in three demand curve environments (for the

sake of simplicity, these are normalized to be between 0 and 1):

– linear L1 = {(α − βp)+} : α ∈ [α, α], β ∈ [β, β]} where [α, α] = [0.8, 1] and [β, β] = [0.2, 1]; [a

well specified setting]

– exponential L2 = {exp{α − βp} : α ∈ [α, α], β ∈ [β, β]}} where [α, α] = [−0.2, 0] and [β, β] =

[0.3, 1]; [a misspecified setting]

– logit L3 = {exp{α − βp}/(1 + exp{α − βp})−1 : α ∈ [α, α], β ∈ [β, β]}} where [α, α] = [0, 1] and

[β, β] = [0.5, 1]. [a misspecified setting]

For each of the above specifications, Li i = 1, 2, 3, we take 500 draws from the parameters α and

β according to a uniform distribution on [α, α] and [β, β], respectively. Each draw determines the

parameters for the demand curve in that particular instance. We then pit that against our proposed

policy, which is oblivious to the correct specification and is predicated on the two-parameter linear

model. We simulate a sample path under the ambient demand curve and policy, and compute the

fraction of oracle revenues that are achieved:

∑T
t=1 ptDt

p∗λ(p∗)T
,

2A formal verification is provided in Remark C1 in Appendix C for the case in which εt’s are uniformly bounded

almost surely.
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the higher this ratio is, the better the performance of the policy. Note that there are two sources of

loss: statistical error that stems from real time inference of model parameters; and amisspecification

error that impacts performance in the latter two demand curve instances, when the linear model

used for the policy is incorrectly specified.

In Table 1, we report the average ratio over the 500 instances for each case. The random variables

εt are assumed to be normally distributed with standard deviation σ and we assume that the policy

uses block size Ii = 1, Ti = {1, ..., ti+1}, with initial price p̂1 = 1 and with δt = ρt−1/4. We test

different values of noise variance σ2 and tuning parameter ρ. Throughout, we fix the price domain

to be [p(l), p(h)] = [0, 5].

well-specified mis-specified

demand functions L1 (linear) L2 (exponential) L3 (logit)

time periods (T ) time periods (T ) time periods (T )

ρ 100 500 103 100 500 103 100 500 103

σ = 0.25 0.25 0.90 0.94 0.95 0.91 0.94 0.95 0.84 0.90 0.92

0.5 0.87 0.93 0.95 0.93 0.96 0.96 0.87 0.93 0.95

0.75 0.79 0.88 0.91 0.94 0.96 0.97 0.91 0.95 0.96

σ = 0.5 0.25 0.83 0.89 0.91 0.82 0.87 0.89 0.69 0.77 0.80

0.5 0.80 0.88 0.91 0.87 0.92 0.93 0.76 0.84 0.87

0.75 0.74 0.84 0.87 0.94 0.96 0.97 0.91 0.95 0.96

Table 1: The impact of misspecification. Fraction of optimal (oracle) revenues achieved by the

linear-based pricing policy, averaged over a set of 500 random test instances.

Focusing on the columns of Table 1 corresponding to the well-specified case (draws from the

linear class L1), one observes that the policy performs very well. This is not surprising and simply

confirms the theory and numerical experiments developed in recent literature; see Harrison et al.

(2011), Broder and Rusmevichientong (2012) and den Boer and Zwart (2010).

Turning attention to columns corresponding to the mis-specified cases, corresponding to L2 or L3,

the performance of the policy is still surprisingly very good, and on similar order to the fraction of

optimal revenues achieved in the well-specified setting. 3 In other words, in terms of the two sources

of revenue losses highlighted above, the extent of losses that stem from misspecification appear

surprisingly small. The rest of the paper focuses on identifying the drivers for this phenomenon

and developing pertinent theory.

Remark 1 (A more general problem formulation) The dynamic pricing problem presented

above is a special instance of a more general class of problems in which the decision-maker seeks

3While for some values of ρ (ρ = 0.25), the performance can be poorer for the logit model, this appears to also be

an issue for the well specified case. For ρ = 0.75, the performance of the policy in the linear case is also worse than

for other values of ρ.
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a decision x in some feasible compact set X ⊂ R, to optimizes an objective function that directly

depends on some unknown response function λ(x). That is,

max
x∈X

G(x, λ(x)) . (7)

Here G(·, ·) is the objective function and conditional on selecting xt in period t, the decision-maker

has only access to noisy observations of λ(xt) given by λ(xt)+ εt, with εt iid random variables with

zero mean and finite variance. In the pricing problem, G(x, y) = xy. While the paper focuses on

the pricing application, we keep the proofs at an abstract level and show how these apply to (7)

above under appropriate conditions imposed on the mapping G(·, ·).

3 Consistency of the price process

Motivated by the illustrative numerical example detailed in the previous section, we now seek to

develop some theory to buttress the observations gleaned from that experiment. For the purposes

of the analysis, we will focus on policies π̂ that “forget” about past data. In particular, from here

on we assume that Ti = {ti + 1, ..., ti+1}, i.e., the parameter recalibration step (5) uses only the

most recent data. This restriction is made for tractability purposes and enables us to highlight the

main effects at play in a transparent fashion.

3.1 Theory

For the purpose of our main result, we impose the following conditions.

Assumption 1 i.) For some ρ > 0, E[exp{sε1}] <∞ for all s ∈ (−ρ, ρ).

ii.) (1/2) λ(p) |λ′′(p)| / (λ′(p))2 < 1 for all p ∈ [p(l), p(h)].

The first condition ensures that the demand shock distribution is suitably “light tailed,” which

greatly facilitates analysis (examples of standard distributions satisfying this property include

Bernoulli, Normal, Exponential, and Poisson). The latter condition imposes some shape restric-

tions on the true underlying demand function. As seen below, these are satisfied for a large class

of widely used demand functions.

Example 1 (Models satisfying Assumption 1 ii.)) .

– Linear models. If λ(p) = a−bp, then note that (1/2)λ(p)|λ′′(p)|/(λ′(p))2 = 0 and the assumption

is always satisfied.

– Exponential models. If λ(p) = exp{a− bp}, then (1/2)λ(p)|λ′′(p)|/(λ′(p))2 ≤ (1/2) < 1 and the

assumption is always satisfied.
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– Logit models. If λ(p) = exp{a− bp}/(1 + exp{a− bp}), then λ′(p) = −bλ(p)[1− λ(p)] and

1

2

λ(p)|λ′′(p)|
(λ′(p))2

=
1

2

∣∣∣∣
1− 2λ(p)

1− λ(p)

∣∣∣∣ ,

hence the assumption is satisfied as long as λ(p) < 3/4 for all p ∈ [p(l), p(h)].

We next analyze in detail the sequence of prices generated by the class of policies. In the context

of the semi-myopic pricing schemes, the least squares estimates of (α, β) are given by:

β̂i+1 = −
∑ti+1

t=ti+1(pt − pi)Dt
∑ti+1

t=ti+1(pt − pi)
2

(8)

α̂i+1 = Di + β̂i+1pi, (9)

where

Di =
1

2Ii

ti+1∑

t=ti+1

Dt, and pi =
1

2Ii

ti+1∑

t=ti+1

pt.

The next result shows that if the sequence of batch sizes corresponding to recalibration points

is suitably chosen, the resulting sequence of prices {p̂t : t ≥ 1} will be consistent.

Theorem 1 (consistency) Let Assumption 1 hold. Suppose that in the linear-model semi-myopic

policy π̂, Ti = {ti + 1, ..., ti+1}, δi → 0 and δiI
1/2
i / log(Ii) → ∞ as i → ∞. Then, for any initial

price p̂1, the sequence of prices {pt : t ≥ 1} generated by π̂ converges in probability to the true

revenue maximizing price p∗.

In other words, under the above conditions, a two-parameter linear model, in conjunction with the

rather simple structure of the semi-myopic pricing policy, guarantees that the resulting sequence

of prices recovers the optimal price corresponding to the true (and unknown) underlying demand

curve, regardless of the functional form of the latter.

3.2 Basic intuition underlying Theorem 1

The proof of Theorem 1 relies on establishing that the mapping from the estimate of the price

decision in stage i, p̂i to the estimate of the price decision in stage i+1, p̂i+1, is some perturbation

of a contraction; and that the contraction admits p∗ as a unique fixed point. This enables us to

establish the convergence of p̂i to p
∗. To flesh out some of the key ideas and intuition that underlie

the result, it will be conducive to consider a setting in which εt = 0 for all t ≥ 1 and assume that

Ii = 1.

Suppose that the demand curve is given by a logit function λ(p) = exp{4.1−p}/(1+exp{4.1−p}).
Put δi = i−1. With an initial price estimate of p̂1 = 8, we depict in Figure 1(a) the true demand
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p(α2 − β2p)

p(α3 − β3p)

p(α30 − β30p)

Figure 1: Convergence of the price process when fitting two parameters. The demand

curve is given by a logit exp{4.1−p}/(1+exp{4.1−p}). The fitted model is linear given by α−βp.
The price process is started at various initial prices.

curve as well as the estimated demand models at times 2, 3 and 30. The corresponding revenue

functions are shown in Figure 1(b).

While the fitted demand model and corresponding revenue function do not coincide with their

true underlying counterparts, we do observe that as time goes by, the fitted revenue function and

true revenue function grow closer in the region around p∗, the price that maximizes revenues of

the true revenue function. This “local convergence” is exactly what allows the seller to tease out a

near-optimal price decision from a wrong model.

From a technical standpoint, Assumption 1ii.) is the key ingredient in establishing a contraction-

type property of the mapping that generates the pricing decisions. Among other things, this ensures

systematic convergence of the price sequence regardless of the initial condition. Having said that,

the question of why the limit is in fact p∗ = argmaxp∈[p(l),p(h)]{pλ(p)} remains open.

Why is the limit point p∗, the maximizer of the true revenue function? We outline

13



the intuition behind this below. Absent noise, it is straightforward to establish that

β̂i+1 = −λ(p̂i + δi)− λ(p̂i)

δi
, (10)

α̂i+1 = β̂i+1p̂i + λ(p̂i), (11)

p̂i+1 =
α̂i+1

2β̂i+1

. (12)

Now suppose that p̂i converges to some limit p̃. By (10), it must be that the sequence β̂i converges

to β̃, where β̃ = −λ′(p̃). Similarly, the above, in conjunction with (11) implies that α̂i converges

to α̃, where α̃ = β̃p̃+ λ(p̃). Equation (12) now implies that p̃ must satisfy the following

p̃ =
α̃

2β̃
=

p̃

2
− λ(p̃)

1

2λ′(p̃)
,

i.e., p̃ satisfies p̃+λ(p̃)/λ′(p̃) = 0, which is exactly the first order condition for revenue maximization

when the demand function is λ(p). This equation admits p∗ as a unique solution, by assumption.

Hence, it must be that p̃ = p∗, and the limit can only be the price that maximizes the true revenue

function.

The above arguments ignore the noise associated with the observations. Note that in general,

β̂i+1 = −λ′(p̂i) +O(δi) +
1

δi

1

2Ii

ti+1∑

t=ti+1

ǫt ,

where we use O(δ) to represent a quantity that is of order δ. Now, (2Ii)
−1
∑ti+1

t=ti+1 ǫt will be “close”

to zero, and using an exponential bound we can show that, with high probability it will be bounded

above by a factor of log(Ii)/I
1/2
i . As a result, as long as δi converges to zero and the batch sizes

are such that δ−1
i log(Ii)/I

1/2
i converges to zero as i grows large (the condition required in the

theorem), then β̂i+1 ≈ −λ′(p̂i) as i grows large. Roughly speaking, this condition ensures that

the deterministic skeleton argument we presented first continues to hold when one accounts for the

noise associated with the observations.

A different lens through which to view the convergence to p∗. Let us examine closely the

price sequence produced by the linear-based semi-myopic pricing policies, focusing for transparency

on the case where there is no noise (ǫt ≡ 0). Approximating terms up to δi factors, the estimation

step leads to

β̂i+1 ≈ −λ′(p̂i)

α̂i+1 ≈ λ(p̂i) + β̂i+1p̂i.

The optimization step yields the price in stage i+ 1, which is given by (assuming it is interior)

p̂i+1 ≈ p̂i
2
− λ(p̂i)

λ′(p̂i)

= p̂i +
1

−2λ′(p̂i)
[λ(p̂i) + p̂iλ

′(p̂i)].
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In other words, the price sequence roughly satisfies the recursion

p̂i+1 ≈ p̂i +
1

−2λ′(p̂i)
r′(p̂i), i ≥ 1. (13)

Hence, in each iteration, the estimation/optimization cycle produces a price point that follows

the gradient of the true revenue function, and the step size is approximately given by 1/|2λ′(pi)|.
Consequently, in spite of model mis-specification, the estimation-optimization cycles naturally yield

a direction of improvement in the underlying objective function. We further explore connections

to gradient methods in the next subsection.4

3.3 Relation to gradient methods

Given the discussion above, a natural question is whether (13) is a variant of classical stochastic

approximation. The method of stochastic approximation, specifically the Kiefer-Wolfowitz (KW)

algorithm of Kiefer and Wolfowitz (1952), is perhaps the most general “model-free” approach for

solving the dynamic pricing problem under demand model uncertainty. In particular, fixing an

initial price p1, that method produces the following sequence of price updates

pi+1 = pi + ai
(pi + ci)Di(pi + ci)− (pi − ci)D

′
i(pi − ci)

2ci
, i ≥ 1

where: {ai : i = 1, 2, . . .} is the step size sequence; {ci : i = 1, 2, . . .} is the gradient differencing

sequence; and Di, D
′
i are two successive (independent) demand observations evaluated at the input

prices pi + ci and pi − ci, respectively. (Recall, conditionally, realized demand is given by Dt =

λ(pt)+ εt, where λ(·) is the true underlying demand function.) The recursion above is effectively a

steepest ascent algorithm which seeks to optimize the objective function r(p) := pλ(p), using noisy

estimates of the gradient of the revenue function in lieu of direct gradient observations. Under

suitable conditions on the primitive sequences, and assuming strong concavity of the underlying

objective function, the price process can be shown to converge to p∗ = argmin{r(p)}.
Restricting attention again to the noise free setting, let us contrast (13) with the (noise free)

stochastic approximation price recursion

pi+1 ≈ pi + air
′(pi), i ≥ 1,

where in the above the notation ‘≈’ is due to the gradient approximation (also used in deriving

(13)). Comparing the above and (13), we see that, like its stochastic approximation counterpart,

the linear-based semi-myopic policy we analyze prescribes prices that ultimately follow the direction

4In the absence of noise and derivative approximation, determining conditions for convergence of the price process

is akin to determining the stability of the dynamic price process. Let H(p) = p − 1
2λ′(p)

r′(p). The price process is

locally stable if H ′(p∗) < 1 and globally stable if |H ′(p)| < 1 for all p in the price domain. The latter is exactly what

Assumption 1ii.) ensures.
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of the gradient, however, the method is not local and does not rely on a prescribed sequence of

step sizes. In particular, while the tuning sequence {ai} in the context of stochastic approximation

is typically specified to be proportional to {1/i}, and hence is monotonically decreasing, the step

size in (13) may be “large” and does not necessarily shrink with the number of iterations; for

further connections with stochastic approximation variants with non-vanishing step size see, e.g.,

Nemirovski et al. (2009).

In settings where second order (Hessian) information is available, a prevalent iterative (deter-

ministic) optimization scheme is given by Newton’s method and its variants (see, e.g., Bertsekas

(1999)). Adapting this to our context, the sequence of price iterates generated by the method

would be given by

pi+1 = pi − r′(pi)/r
′′(pi), i ≥ 1.

In essence, the recursion is predicated on approximating the objective function by a quadratic

function r(p) ≈ r(pi) + r′(pi)(p − pi) + (1/2)r′′(pi)(p − pi)
2, using the local curvature parameters

evaluated at pi, and selecting the next price pi+1 so as to maximize this approximation. Note that

here too the step size is variable and not pre-determined as in the KW stochastic approximation

scheme. In contrast to the (zero-noise) recursion corresponding to the linear-based semi-myopic

policy, here the step size is inversely proportional to the (negative) second derivative of the objective

function, while in the former the step size is inversely proportional to twice the gradient value. To

better understand where this is derived from, recall that the approximation underlying Newton’s

method is given by r(p∗) + (1/2)r′′(p∗)(p − p∗)2, and relies on the correctly specified first and

second derivatives of the objective function evaluated at p∗. In contrast, the linear-based semi-

myopic policy is a “first order” method that uses the misspecified demand model as a primitive.

To that end, the approximation of the revenue function at p∗ discussed in (10)-(12), is given by

r̃p∗(p) ≈
(
[λ(p∗)− p∗λ′(p∗)] + λ′(p∗)p

)
p. Note that r̃′′p∗(p

∗) = 2λ′(p∗), which differs in general from

the second-order approximation r′′(p∗) = 2λ′(p∗) + p∗λ′′(p∗).

4 Revenue optimality

Having established consistency of price estimates under fairly general conditions, we next investigate

the efficacy of these pricing decisions as measured by cumulative revenue performance. Recall, from

(4), the regret R(π, T ) measures the gap between the performance of an oracle that has access to

the true underlying demand curve λ(·), and the performance of any given (admissible) policy.

Let I0 denote some positive integer and ν > 1 some positive number, and define the following

sequence of block sizes.

Ii =
⌊
νiI0

⌋
, i = 1, ..., k (14)
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Theorem 2 (revenue optimality) Let Assumption 1 hold. Suppose that in the linear-model

semi-myopic policy π̂, Ti = {ti + 1, ..., ti+1} and the block sequence is selected as in (14) with

δi = I
−1/4
i , i ≥ 1. Then, for any initial price p̂1, the sequence of prices {pt : t ≥ 1} generated by π̂

satisfies

R(π̂, T ) ≤ C (log T )2
√
T

for some positive constant C and all T ≥ 2.

The result above establishes that the average revenue loss per period, R(π̂, T )/T , converges to

zero. In other words, the revenue gap between the oracle and the proposed policy vanishes. The

obvious question is whether the size of this gap can be improved upon; the smaller the size of the

gap, the better the performance of the policy. It stands to reason that if one has prior knowledge

on the structure of the demand curve, for example if it belongs to a parametric family that is

known a priori to the designer of the policy, then the size of this gap could be reduced considerably.

Surprisingly, this intuition is essentially false. In a recent paper, Harrison et al. (2011) consider

a well specified setting where the demand curve is a linear function of two unknown parameters,

and the seller knows this structure, up to the values of the parameters. They prove that no policy

can have a revenue gap (regret) which is smaller than order-
√
T (uniformly over all parameter

values of the demand curve).5 In light of this result, the somewhat surprising conclusion is that

the revenue performance of the semi-myopic linear-based pricing policies is essentially best possible

(up to logarithmic terms) in terms of the growth rate of regret, whether or not the linear model is

misspecified relative to the underlying demand curve.

Discussion. The result above provides further theoretical evidence of the limited impact of

model misspecification within the context of our dynamic pricing problem. The specific structure

of the policy that is used in making this point is rather crude, insofar as it discards “most” of past

observations to re-estimate parameters, and concurrently re-optimizes prices relatively rarely. We

should clarify that this structure is imposed for mathematical tractability; recalling the numerical

experiments presented in §2.4, it appears that aggregating all the data, (while re-solving often)

results in finite time performance that is on par with, or close to, that achieved in the well-specified

setting. With regard to the tuning of the policy in the above result, and the intuition underlying

this, recall from Theorem 1 that to have consistency we need that δ−1
i log(Ii)/I

1/2
i converges to zero,

which is satisfied with the above policy tuning specification. The proof of Theorem 2 establishes

that the regret in the ith batch is bounded by O(log(Ii−1)I
−1/2
i−1 Ii + δ2i Ii). The first error term

stems from the error still present from the previous inference batch and the second source of error

stems from the losses due to price experimentation in the current batch. The selection of δi taken

5We conjecture that the (log T )2 term in the upper bound in Theorem 2 is an artifact of proof technique, and that

it is possible to improve the bound by eliminating this term.
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in Theorem 2 minimizes the growth rate of this loss, up to logarithmic terms. This selection of

δi could be seen as ensuring that the cumulative squared price variation used in any batch of size

Ii is of order
√
Ii, which is a similar requirement to the one made in the well-specified case (see

Harrison et al. (2011)).

5 Discussion

5.1 The need for two parameters

In earlier sections we have witnessed that a simple family of policies which is predicated on a two-

parameter linear model, can effectively achieve excellent performance (both theoretically as well

as numerically) despite the fact that the underlying demand curve is not linear. It turns out that

having two degrees of freedom in the model used by the policy is critical.

Consider the case where the model used by the policy is restricted to a single parameter. For

concreteness, suppose the value of the intercept α is fixed a priori, i.e., α̂t = α̃ for all t ≥ 1.

To isolate the effect of misspecification, and disentangle it from the fact that observations of the

demand curve are confounded by statistical noise, we again consider the zero noise setting, εt ≡ 0

for all t ≥ 0.

Consider the simple semi-myopic pricing policy described in the previous section, with stages of

length Ii = 1, i ≥ 1, which uses only one price at each stage given by p̂i. (Note that in the well

specified case, if a single parameter is unknown then there is no need for two prices to be used for

model calibration.) It is then straightforward to establish that the sequence of estimates and prices

satisfies for t ≥ 1

β̂t+1 =
α̃− λ(p̂t)

p̂t
, (15)

p̂t+1 = P
(

(α̃/2)p̂t
α̃− λ(p̂t)

)
. (16)

Behavior of the price process. Based on (16), it is evident that behavior of the sequence of

prices generated by the policy will be determined by properties of the mapping x 7→ P
(

(α̃/2)x
α̃−λ(x)

)
,

and if prices converge, it can only be to a fixed point of this mapping. This allows to characterize

the unique possible limit point associated with the sequence {p̂t : t ≥ 1}.

Proposition 1 (limit points) Suppose that λ(p(l)) < α̃. Consider the sequence of prices {p̂t : t ≥
1} generated by the semi-myopic pricing policy with Ii = 1 and f(x) = x. If {p̂t : t ≥ 1} converges,

then the only possible limit point is p̌ given by

p̌ = P
(
λ−1

(
α̃/2

))
. (17)
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The condition λ(p(l)) < α̃ precludes the situation where the true demand curve and estimated

demand model may never cross on the price domain for any parameter value (if λ(·) decreases

“slowly”). It is straightforward to check that if λ(p) = α̃−βp for some β > 0, and hence the model

is well-specified, then p̌ = p∗ and thus the limit point is the price that maximizes the true revenue

function. If however the model is mis-specified, then p̌ and p∗ will in general differ and hence even

if prices converge, the generated revenues will be strictly sub-optimal in almost all time periods.

The result above leaves open the question of establishing convergence. In Example 2 in Appendix

B, we illustrate that convergence may not take place and the price path may oscillate indefinitely

over time. The reader may question whether such an example, via the choice of demand models

and specific parameter values, is pathological in some way and potentially not representative. It is

in fact possible to further analyze the properties of the price process, and establish a relationship

between the local stability of that process and the elasticity of the underlying demand curve at

the limiting price, namely, Eλ(p̌) = −p̌λ′(p̌)/λ(p̌). In particular, it can be shown that whenever

Eλ(p̌) < 2, the price process will be locally stable and whenever Eλ(p̌) > 2, it will be unstable. We

do not document the proof of these results here as the purpose of this section is mainly illustrative.

We note that the convergence of prices to a sub-optimal price can be interpreted as a form of

“spiral-down effect,” related in spirit to the study of Cooper et al. (2006) that analyze a booking

limit capacity allocation problem. There the failure to properly model the distributions of arrival

classes is the main driver behind this behavior.

Convergence of the price process to a sub-optimal limit point (i.e., not the optimal price) may

take place even in the more favorable setting where the demand curve belongs to a parametric

family, and the seller therefore knows the structure of this demand curve up to the value of some

finite number of unknown parameter. The driver behind this incomplete learning phenomenon

is essentially the presence of an indeterminate equilibrium; roughly speaking, this is a point in

parameter space that serves as an attractor for the dynamical system generating price updates,

and at that point no further information can be learned about the unknown parameter values. The

reader is referred to McLennan (1984) and Harrison et al. (2012) for further discussion. In the

context of the present section, the phenomenon is very different: the driver of suboptimal pricing

as outlined in Proposition 1 is primarily the mismatch between the functional form of the (true)

demand curve, and the demand model used by the seller. In particular, if the demand model was

well-specified, convergence to p∗ would always take place (in a single iteration when there is no

noise). The oscillatory behavior discussed above appears to be a novel phenomenon, at least in the

context of monopoly pricing. Somehow relatedly, in the context of competition, rich structures of

price best response dynamics have been reported in Puu (1991), and more recently in Cooper et al.

(2009) where firms ignore the presence of competition when selecting their prices.
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5.2 Aggregation of past data for inference

For illustrative purposes, we focused on one particular semi-myopic scheme in which estimation of

model parameters is based on data only from the most recent “batch.” From a practical standpoint,

this can be viewed as an extreme case of exponential smoothing (a scheme that weighs down past

data, and is used heavily in revenue management applications). From an analysis perspective, it

enables us to decouple batch periods and facilitates dealing with dependencies in the observation

process. Having said that, an interesting question is what would happen when all past data is

used to fit the demand model (say, again, a linear model). In other words, instead of recalibrating

according to (5), one would now recalibrate using all past observations

(α̂i+1, β̂i+1) = argmin
α,β

{ti+1∑

t=1

[
Dt − (α− βpt)

]2}
. (18)

As an illustration of some of the possible consequences, we consider in Figure 2 the histograms of

the estimate of the optimal price p̂t after 104 periods, and for different starting prices. Here the

(true) underlying demand curve is taken to be exponential, given by exp{−0.5p}, for which the

optimal price, maximizing the corresponding revenue function, is p∗ = 2.

Focusing on the two top panels, corresponding to the cases in which no aggregation takes place, we

observe that the impact of the initial price p̂1 dissipates and the empirical distribution concentrates

around the optimal price p∗ (as highlighted earlier in the paper). When all observations are used

(the two bottom panels), the variance of the estimate p̂t appears to be much lower than the case

with no aggregation. However, the impact of the initial price does not dissipate anymore: after 104

periods the distribution of p̂t has a mode of 2.75, which is strictly suboptimal, when p̂1 = 4.5. This

suggests that schemes that use all existing data might be sensitive to initial conditions (the initial

price) in the presence of misspecification. Exploring properties of schemes that use exponential

smoothing for past data seems like an important practical avenue of future research.

5.3 Discussion of modeling assumptions and directions for future research

On the linear modeling assumption. The main results derived in this paper, both consistency

and revenue-optimality, are predicated on the choice of a linear function to model the unknown

demand curve. Our focus on linear models stems from their ubiquitous presence, both in academic

studies as well as in the practice of revenue management. A close inspection of the proofs reveals

that the main results can be extended straightforwardly, exactly along the same lines, if the policy

uses a generalized linear model, e.g., exponential ℓ(p;α, β) = exp{α−βp}, logit ℓ(p;α, β) = exp{α−
βp}(1+exp{α−βp})−1 and the like. The only difference would be the conditions under which global

convergence takes place; for example, it is possible to show that if the inference class is exponential,

then the main results continue to hold, provided that the added condition λ(p)λ′′(p) ≥ (λ′(p))2 is

20



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

p̂1 = 1, no aggregation p̂1 = 4.5, no aggregation

p̂1 = 1, aggregation p̂1 = 4.5, aggregation

priceprice

fr
eq
u
en
cy

fr
eq
u
en
cy

fr
eq
u
en
cy

fr
eq
u
en
cy

Figure 2: The impact of aggregation. The figure depicts the histogram of p̂t after 104 pe-

riods based on 103 simulations for the pricing scheme that uses only most recent observations

versus a scheme that aggregates all observations. The true demand curve is exponential given by

exp{−0.5p}, and the fitted model is linear given by α− βp; σ = 0.1.

satisfied. On the positive front, this highlights that the virtues of the estimation/optimization cycles

do not rely on the linear structure. However, this also begs the following question: acknowledging

the possibility of model misspecification, which is the “best” misspecified model? This topic lies in

the general domain of model selection and offers an interesting avenue for future research.

On the method of inference. The present paper has focused on least-squares estimation and

a setting where noise terms were independent of the decisions. However, we conjecture that the

key insights gleaned for that method are robust to changes in those primitives. A good example

of such is where demand is Bernoulli with price dependent probability (and hence price dependent

noise terms), and one employs Maximum Likelihood estimation instead of least-squares. While this

setting clearly does not fall into the set of assumptions underlying our main results, it is simply a
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matter of adjusting proofs to address this setting and derive the corresponding results.

Which policies have potential to work under misspecification? More specifically, will

every policy which is designed to work optimally or near-optimally in the well specified case, per-

form well also in the misspecified setting. This a very general question that is beyond the scope of

the present paper. As we indicated earlier, antecedent literature mostly provides anecdotal find-

ings, for example Cooper et al. (2006) highlight specific conditions under which it is possible that

decisions predicated on a misspecified model converge to an optimal value for the capacity booking

problem. Our present work identifies two key ingredients that appear necessary in order for a policy

to mitigate the impact of misspecification: i.) the inference model should be sufficiently rich (in

the present case, it was critical to have two degrees of freedom); and ii.) in blending estimation and

optimization, inference should be based on observations “around” the optimal decision point (given

the postulated model). This allows us, among other things, to examine recent policies developed in

the well specified setting, to determine whether there is hope in transferring them to misspecified

scenarios. For example, the CVP policy of den Boer and Zwart (2010) has the above mentioned

property, but the basic version of MLE-cycle analyzed in Broder and Rusmevichientong (2012)

would not satisfy said condition, as the inference is based on only two fixed experimentation prices.

The MLE-cycle policy that bases inference on all past data (also analyzed in Broder and Rus-

mevichientong (2012)), might again have the potential to mitigate the impact of misspecification,

as it does possess the “localization” property. The broader question of porting “good” policies from

the well specified to the misspecified setting for general joint learning and optimization problems

is worthy of further investigation.
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A Proofs for Sections 3 and 4

Preliminaries. For later use, we define σ =
√
Eε21,

m0 = min
p∈[p(l),p(h)]

|λ(p)|, m1 = min
p∈[p(l),p(h)]

|λ′(p)|,

M1 = max
p∈[p(l),p(h)]

|λ′(p)|, M2 = max
p∈[p(l),p(h)]

|λ′′(p)|.

Note that under the assumptions on λ(·), m0,m1 > 0 and M1,M2 <∞.

We will prove the conclusions of Theorems 1 and 2 under more general conditions, corresponding

to formulation (7), where X = [p(l), p(h)] and the same assumptions on λ(·) hold. As mentioned in

§2, the pricing example is a special case of (7) with G(x, y) = xy. In particular, we will further

assume that G(·, ·) satisfies the following conditions:

1. G(x, y) is continuously differentiable on [p(l), p(h)]× [0,+∞).

2. Let Ḡ(p) := G(p, λ(p)). Ḡ(p) is twice differentiable with bounded second derivative, unimodal,

and admits a unique interior maximizer denoted by p∗ in [p(l), p(h)].

3. For any α > 0, β > 0, G(x, α − βx) is unimodal and admits a unique maximizer h(α, β)

in [0,+∞). Furthermore h is continuously differentiable with bounded partial derivatives on

[m0/2,+∞)× [m1/2,+∞).

Note under the assumptions of the main text, all these assumptions hold in the special case in

which G(x, y) = xy. Let

α̌(p) := λ(p)− λ′(p)p

β̌(p) := −λ′(p).

Let hα denote the derivative of h with respect to its first argument and hβ denote the derivative of

h with respect to its second argument. We also make the following assumption.

Assumption A1

max
p∈[p(l),p(h)]

{∣∣∣λ′′(p)
[
phα(α̌(p), β̌(p))− hβ(α̌(p), β̌(p))

]∣∣∣
}
< 1.
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Note that in the pricing problem (when G(x, y) = xy) studied in the main text, this assumption

reduces to Assumption 1 ii.). Of course, we want to emphasize that for each general instance of

problem (7), Assumption A1 may take a different form. For the pricing problem, it holds under

many models and parameter combinations for usual demand curves as highlighted in Example 1.

We denote by π̂G(p̂1, {Ii, δi : i ≥ 1}) the policy that mimics π̂, with the exception that when

reoptimization is conducted, one attempts to maximize G(p, α̂i+1 − β̂i+1p). In other words, Step 3

is replaced by:

Step 3: Reoptimization

p̂i+1 = P
(
h(α̂i+1, β̂i+1)

)
(A1)

Theorem A1 Let Assumption A1 hold. Suppose that in the linear-model semi-myopic policy π̂G,

Ti = {ti + 1, ..., ti+1} δi → 0 and δiI
1/2
i / log(Ii) → ∞ as i → ∞. Then, for any initial decision p̂1,

the sequence of prices {pt : t ≥ 1} generated by π̂G converges in probability to the decision p∗ that

maximizes G(p, λ(p)).

Proof of Theorem 1. Since Assumption A1 reduces to Assumption 1 ii.) in this setting and since

h(α, β) = α/(2β), this result follows from Theorem A1.

Proof of Theorem A1. We will establish L2 convergence of the sequence p̂i to p
∗. The proof

analyzes the expected deviations from p∗, E(p̂i+1−p∗)2, and how they relate to those in the previous

iteration E(p̂i − p∗)2 when i is sufficiently large. In particular, we will establish that the expected

deviations shrink geometrically fast, up to a correcting factor due to the noise in the system. To

show the latter, we show that the probability that the actual deviations do not behave as such is

appropriately small.

Define

W 1
i =

1

Ii

ti+Ii∑

j=ti+1

εj , W 2
i =

1

Ii

ti+1∑

j=ti+Ii+1

εj .

Let ai = σ
(
2 log(Ii)

)1/2
and

Ai =
{
ω : |W j

i | ≤ aiI
−1/2
i , j = 1, 2

}
.

E(p̂i+1 − p∗)2 ≤ E
[
(p̂i+1 − p∗)2

∣∣Ai

]
P{Ai}+ E

[
(p̂i+1 − p∗)2

∣∣Ac
i

]
P{Ac

i}

≤ E
[
(p̂i+1 − p∗)2

∣∣Ai

]
+ |p(h) − p(l)|2P{Ac

i}. (A2)
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Next, we analyze E
[
(p̂i+1 − p∗)2

∣∣Ai

]
and P{Ac

i} separately.

Analysis of E
[
(p̂i+1 − p∗)2

∣∣Ai

]
: We will establish that for all ω ∈ Ai, |p̂i+1− p∗| ≤ γ|p̂i− p∗|+ vi

where γ < 1 will be specified later, and vi is an appropriately shrinking sequence to be specified in

the analysis below.

A simple derivation yields that

β̂i+1 = −λ(p̂i + δi)− λ(p̂i)

δi
− 1

δi

[
−W 1

i +W 2
i

]
(A3)

α̂i+1 = Di + β̂i+1pi. (A4)

Given this, the price recursion may be written as p̂i+1 = P
(
h(Di + β̂i+1pi, β̂i+1)

)
, or alternatively

p̂i+1 = P
(
h(α̌(p̂i), β̌(p̂i)) + Zi

)
, (A5)

with

Zi = h(Di + β̂i+1pi, β̂i+1)− h(α̌(p̂i), β̌(p̂i)).

Next, we analyze Zi. First note that

β̂i+1 = −λ(p̂i + δi)− λ(p̂i)

δi
− 1

δi

[
−W 1

i +W 2
i

]

= −[λ′(p̂i) +
1

2
λ′′(qi)δi]−

1

δi

[
−W 1

i +W 2
i

]

= β̌(p̂i) + Z1
i , (A6)

where the second equality follows from Taylor’s theorem applied to λ(·) with qi ∈ [p̂i, p̂i + δi] and

where

Z1
i = −1

2
λ′′(qi)δi −

1

δi

[
−W 1

i +W 2
i

]
.

Similarly, one has that α̂i+1 is a “perturbation” of α̌(p̂i) in the follwing sense

α̂i+1 = Di + β̂i+1pi

=
1

2
λ(p̂i) +

1

2
λ(p̂i + δi) +W 1

i +W 2
i

= λ(p̂i) +
1

2
λ′(q′i)δi +W 1

i +W 2
i − λ′(p̂i)p̂i − λ′(p̂i)

δi
2
+ Z1

i (p̂i + δi/2)

= α̌(p̂i) + Z2
i , (A7)

where the third equality follows from Taylor’s theorem applied to λ(·) with q′i ∈ [p̂i, p̂i + δi], and

where

Z2
i =

1

2
λ′(q′i)δi +W 1

i +W 2
i − λ′(p̂i)

δi
2
+ Z1

i (p̂i + δi/2).
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Let Y 1
i = 1

2M2δi + 2aiI
−1/2
i δi−1 and Y 2

i = M1δi + 2aiI
−1/2
i + Y 1

i (p
(h) + δi/2). Note that Y 1

i

and Y 2
i converge to zero as i grows to infinity since, by assumption, δi and δ

−1
i aiI

−1/2
i converge to

zero. Let i0 = min
{
i ≥ 1 : Y 1

i < m1/2 and Y 2
i < m0/2

}
, For i ≥ i0 and ω ∈ Ai, |Z1

i | < m1/2 and

|Z2
i | < m0/2. By assumption, h is continuously differentiable around (α̌(p̂i), β̌(p̂i)), with bounded

partial derivatives. Putting together (A6) and (A7), one obtains

Zi = h(α̌(p̂i) + Z1
i , β̌(p̂i) + Z2

i )− h(α̌(p̂i), β̌(p̂i)) = hα(ai, bi)Z
1
i + hβ(ai, bi)Z

2
i ,

for some (ai, bi) on the line segment joining (α̌(p̂i), β̌(p̂i)) to (α̌(p̂i) + Z1
i , β̌(p̂i) + Z2

i ). Note that

|Z1
i | ≤ K1[δi + δ−1

i aiI
−1/2
i ] and |Z2

i | ≤ K2[δi + δ−1
i aiI

−1/2
i ] for some positive constants K1 and K2

and hence for some positive K3,

|Zi| ≤ K3[δi + δ−1
i aiI

−1/2
i ].

On another hand, we have h(α̌(p̂i), β̌(p̂i)) = h(α̌(p∗), β̌(p∗)) + ρ′(q′′i )(p̂i − p∗) for some q′′i ∈
[p̂i, p̂i + δi] where ρ(p) = h(α̌(p), β̌(p)).

The next lemma, whose proof is deferred to Appendix C, establishes that p∗ is a fixed point of

h(α̌(p), β̌(p)).

Lemma A1 h(α̌(p∗), β̌(p∗)) = p∗.

We deduce that

h(α̌(p̂i), β̌(p̂i)) = p∗ + ρ′(q′′i )(p̂i − p∗).

Let

γ = max
p∈[p(l),p(h)]

ρ′(p) = max
p∈[p(l),p(h)]

{∣∣∣λ′′(p)
[
phα(α̌(p), β̌(p))− hβ(α̌(p), β̌(p))

]∣∣∣
}
. (A8)

Note that since h(·, ·) is continuously differentiable and λ(·) is twice continuously differentiable, the

maximum above is achieved and Assumption A1 implies that γ < 1.

We obtain that for all ω ∈ Ai,

|p̂i+1 − p∗| = |P(h(Di + β̂i+1pi, β̂i+1))− p∗| ≤ |h(Di + β̂i+1pi, β̂i+1))− p∗| ≤ γ|p̂i − p∗|+ vi,(A9)

where vi = K3[δi + δ−1
i aiI

−1/2
i ].

Analysis of P{Ac
i}: We use the following lemma, whose proof, deferred to Appendix C, relies on

a large deviations argument.

Lemma A2 For some suitably large constant K4 > 0, for j = 1, 2,

P{W j
i > aiI

−1/2
i } ≤ K4

Ii
, for all i ≥ 1.
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From the above, we deduce that

P{Ac
i} = P{max

j=1,2
|W j

i | > aiI
−1/2
i }

(a)

≤ 2P{|W 1
i | > aiI

−1/2
i }

(b)

≤ 4K4

Ii
, (A10)

where (a) follows from a union bound and (b) follows from Lemma A2.

Bounding E(p̂i+1 − p∗)2: Using (A2), (A9) as well as (A10), one obtains

E(p̂i+1 − p∗)2 ≤ γ2E(p̂i − p∗)2 + v2i + 2γE|p̂i+1 − p∗|vi + |p(h) − p(l)|2 4K4

Ii
.

Noting that

2E|p̂i − p∗|vi ≤ 2[γ/(1− γ2)]v2i + [(1− γ2)/(2γ)]E(p̂i − p∗)2,

one has that

E(p̂i+1 − p∗)2 ≤ 1 + γ2

2
E(p̂i − p∗)2 + wi,

where

wi = (1 + 2γ/(1− γ2))v2i + 4|p(h) − p(l)|2K4/Ii. (A11)

Take i sufficiently large such that wj is decreasing for all j ≥ i − ⌈i/2⌉. Let η = (1 + γ2)/2 and

j(i) = ⌈i/2⌉.

E(p̂i+1 − p∗)2 ≤ ηi(p1 − p∗)2 +
i−1∑

j=0

ηjwi−j

≤ ηi(p1 − p∗)2 +

j(i)∑

j=0

ηjwi−j +

i−1∑

j=j(i)+1

ηjwi−j ,

≤ ηi(p1 − p∗)2 +
wi−j(i)

1− η
+ ηj(i)+1

i∑

j=1

wj . (A12)

Since η < 1 and wi → 0 as i→ ∞, one obtains that wi−j(i) → 0 and ηj(i)+1
∑i

j=1wj → 0 as i→ ∞.

Hence

E(p̂i+1 − p∗)2 → 0.

Since L2 convergence implies convergence in probability, the result follows and the proof is complete.

Theorem A2 (revenue optimality) Let Assumption A1 hold. Suppose that in the linear-model

semi-myopic policy π̂G, Ti = {ti + 1, ..., ti+1} and the block sequence is selected as in (14) with

δi = I
−1/4
i , i ≥ 1. Then, for any initial price p̂1, the sequence of prices {pt : t ≥ 1} generated by

π̂G satisfies

E

[ T∑

t=1

[Ḡ(p∗)− Ḡ(pt)]
]

≤ Cmax{1, σ2} (log T )2
√
T

for some positive constant C independent of σ, and all T ≥ 2.
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Proof of Theorem 2. Let r denote the mapping p 7→ pλ(p) and note that r(·) is twice continuously
differentiable with second derivative bounded by (2M1+ p

(h)M2), where M1 and M2 where defined

at the start of the Appendix. The result follows from applying Theorem A2 to the special case of

interest.

Proof of Theorem A2. Note that throughout the proofs, all constants introduced C1, C2, ... are

constants that do not depend on σ. Fix a time horizon T and let k = inf{j ≥ 1 : 2
∑j

i=1 Ii ≥ T}.
The regret after T periods is given by

R(π̂G, T ) = E

[ T∑

t=1

[Ḡ(p∗)− Ḡ(pt)]
]

By assumption, Ḡ is twice differentiable with bounded second derivative. We deduce, through a

Taylor expansion that

|Ḡ(p∗)− Ḡ(p)| ≤ K(p− p∗)2.

Hence,

R(π̂G, T ) ≤ E

[ k∑

i=1

([
Ḡ(p∗)− Ḡ(p̂i)

]
+
[
Ḡ(p∗)− Ḡ(p̂i + δi)

])
Ii

]

≤ K
k∑

i=1

(
E(p̂i − p∗)2 + E(p̂i + δi − p∗)2

)
Ii

= K
k∑

i=1

(
2E(p̂i − p∗)2 + δ2i + 2E|p̂i − p∗|δi

)
Ii

≤ K
k∑

i=1

(
2E(p̂i − p∗)2 + δ2i + 2[E(p̂i − p∗)2]1/2δi

)
Ii.

Using equation (A12) from the proof of Theorem 1, one has that

E(p̂i − p∗)2 ≤ ηi(p̂1 − p∗)2 +
wi−j(i)

1− η
+ ηj(i)+1

i∑

j=1

wj ,

with the sequence {wi : i ≥ 1} defined in (A11). In particular, noting that with the selection

of parameters assumed in the theorem, wi ≤ C1max{1, σ2}(log Ii)I−1/2
i for some suitably large

positive constant C1, we deduce that for some positive constant C2 > 0, one has that

E(p̂i − p∗)2 ≤ C2max{1, σ2}(log Ii)I−1/2
i .

Hence, for some suitable constant C3 > 0,

R(π̂G, T ) ≤ C3Kmax{1, σ2}
k∑

i=1

[(log Ii)I
−1/2
i + δ2i ]Ii ≤ C4max{1, σ2}

k∑

i=1

(1 + log Ii)I
1/2
i .
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Bounding each term in the sum by the last one, one obtains that the regret is bounded by

C4kmax{1, σ2}(1 + log Ik)I
1/2
k . Noting that k ≤ C5 log T for some C5 > 0, one obtains

R(π̂G, T ) ≤ C6max{1, σ2}(log T )2T 1/2.

This completes the proof.

B Supplement to Section 5.1

Proof of Proposition 1. Let

W (p) =
(α̃/2)p

α̃− λ(p)
, and W̃ (p) = P (W (p)) ·

Then, the price recursion may be rewritten as

p̂t+1 = W̃ (p̂t), t ≥ 1.

Since W̃ (·) is continuous on [p(l), p(h)], the only possible limit points of the sequence {p̂t : t ≥ 1}
are fixed points of W̃ (·). We next establish that W̃ (·) has exactly one fixed point in [p(l), p(h)] and

this fixed point is given by p̌ defined in (17).

A fixed point of W (·) in (0,+∞) needs to satisfy

W (p)/p = 1.

Since λ(·) is assumed to be decreasing on [p(l), p(h)], W (p)/p = (α̃/2)/(α̃ − λ(p)) is decreasing,

which implies that W (p)/p = 1 has at most one solution in (0,+∞).

If α̃/2 ∈ (λ(p(h)), λ(p(l))), then W (·) admits a fixed point in (p(l), p(h)), and the latter is given

by λ−1
(
α̃/2

)
= p̌. Noting that W (p(h))/p(h) < 1 and W (p(l))/p(l) > 1, p̌ is also the unique fixed

point of W̃ (·) in [p(l), p(h)].

If α̃/2 ≥ λ(p(l)), then W (p(l))/p(l) ≤ 1. In such a case, W (·) does not admit any fixed

point in (p(l),+∞) and the only fixed point of W̃ (·) on [p(l), p(h)] is p(l). If α̃/2 ≤ λ(p(h)), then

W (p(h))/p(h) ≥ 1. In such a case, W (·) does not admit any fixed point in (0, p(h)) and the only

fixed point of W̃ (·) on [p(l), p(h)] is p(h). This completes the proof.

Example 2 (price behavior) To illustrate the possible issues that may arise, consider the fol-

lowing illustrative example. The price domain is taken to be [p(l), p(h)] = [0, 10]. We assume the

true demand model is of logit-form, λ(p) = exp{a−bp}/(1+exp{a−bp}) with a > 0 and b > 0, and

that the seller fits the linear model, 1− βp; i.e., the only parameter that is inferred is β. A simple

calculation yields that the only possible limit point is p̌ = a/b, and that the revenue maximizing
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Figure 3: Behavior of the price process. Prices converge to p̌ 6= p∗ in (a) and never settle

in (b). The true model is a logit model given by exp{3 − p}/(1 + exp{3 − p}) in (a) and by

exp{4.1−p}/(1+exp{4.1−p}) in (b). The fitted model is linear given by 1−βp. The price process
is started at the price that maximizes the profit rate associated with the true model, p∗.

price is given by p∗ = b−1W (exp{−1 + a}), where W (·) is the Lambert W function (the inverse of

x 7→ x exp{x}). Clearly p̌ and p∗ need not coincide.

In Figure 3, we depict two simulation runs, each including 30 price iterates. In both runs, the

initial price, p̂1, is taken to be p∗, namely, the optimal price. In the first case, appearing on panel

(a), the underlying demand function is a logit with parameters a = 3 and b = 1, with p∗ ≈ 2.55 and

p̌ = 3. We observe that the price iterates converge to p̌. In the second case, appearing on panel (b),

the underlying demand function is a logit with parameters a = 4.1 and b = 1, with p∗ ≈ 3.27 and

p̌ = 4.1. We observe that the price iterates do not converge, rather they oscillate around p̌. Note

that the oscillations occur despite the fact that the underlying demand environment is stationary.
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C Proofs of Auxiliary Results

Proof of lemma A1. Let

α∗ = α̌(p∗) = λ(p∗)− λ′(p∗)p∗

β∗ = β̌(p∗) = −λ′(p∗),

p∗ is an interior maximum to G(p, λ(p)) and uniquely satisfies

Gx(p
∗, λ(p∗)) + λ′(p∗)Gy(p

∗, λ(p∗)) = 0. (C13)

On the other hand, the unique maximizer of G(p, α∗ − β∗p) satisfies

Gx(p, α
∗ − β∗p)− β∗Gy(p

∗, α∗ − β∗p) = 0. (C14)

Note that α∗ − β∗p∗ = λ(p∗) and hence, by (C13), p = p∗ solves (C14), i.e., h(α∗, β∗) = p∗.

Proof of Lemma A2. Fix j ∈ {1, 2}. For s ∈ (−ρ, ρ), define

ψ(s) = logE[exp{sε1}].

Note that for any s ∈ (−ρ, ρ) and any x > 0, Markov’s inequality yields that

P{W j
i > x} ≤ exp{Ii(ψ(s)− sx)}

Select i sufficiently large so that aiI
−1/2
i < σρ. Fix x = aiI

−1/2
i = 2σ(log Ii)

1/2I
−1/2
i and let

s∗ = x/σ2. A third order Taylor expansion around 0 yields that for some s̃ ∈ [0, s∗]

ψ(s∗) =
1

2
σ2(s∗)2 +

1

6
ψ′′′(s̃)(s∗)3.

This implies that

ψ(s∗)− s∗x ≥ −1

2

x2

σ2
− C4

x3

σ6
,

where C4 = maxs∈[−ρ,ρ]{|ψ′′′(s)|}, which in turn yields

P{W 1
i > x} ≤ exp

{
−Ii(−

1

2

x2

σ2
− C4x

3/σ6)
}
.

Substituting the value of x, one obtains for some suitably large constant C5 > 0,

P{W 1
i > aiI

−1/2
i } ≤ exp

{
− log Ii + (C4/σ

6)I
−1/2
i (log Ii)

3/2
}

≤ C5

Ii
.

This completes the proof.
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Remark C1 (Verification) We verify that the policy π̂ (with Ii = 1, Ti = {1, ..., ti+1} and

δi = t−1/4) satisfies sufficient conditions for minimax optimality when εt’s are uniformly bounded

almost surely, namely the two sufficient conditions in Harrison et al. (2011, Theorem 2) are satisfied.

Suppose the support of εt is in [−U,U ] for some U > 0.

i.) We first check the information accumulation condition, and upper bound
∑2t

s=1(ps − p̄2t)
2.

2t∑

s=1

(ps − p̄2t)
2 =

2t∑

s=2

(1− s−1)(ps − p̄s−1)
2

≥
t∑

s=2

(p2s−1 − p̄2s−2)
2 +

t∑

s=2

(p2s − p̄2s−1)
2

=
t∑

s=2

A2
s +

t∑

s=2

B2
s ,

where As = p2s−1 − p̄2s−2 and Bs = p2s − p̄2s−1.

Suppose first As ≤ −δs/2. Then A2
s ≥ δ2s/4.

Suppose now As > −δs/2. Note that Bs = p2s− p̄2s−1 = p2s−1+δs− p̄2s−2+(1/(2s−2))(p2s−1−
p̄2s−2) ≥ δs − (1 + 1/(2s− 2))δs/2. Hence, for s ≥ 2, Bs ≥ δs/4. We deduce that B2

s ≥ δ2s/16.

Hence, we have that
∑t

s=2A
2
s +B2

s ≥ κ0
√
t for some κ0 > 0.

ii.) We now bound the deviations from the greedy solution:
∑2t

s=1(ϕ(αs, βs) − ps+1)
2, where

ϕ(α, β) = P(α/(2β)), and (αs, βs) are the least squares estimates based on all observations up to

and including time s. We define (α0, β0) := (1, 1).

2t∑

s=1

(ϕ(αs, βs)− ps+1)
2 =

t∑

s=1

(ϕ(α2s−2, β2s−2)− p2s−1)
2 +

t∑

s=1

(ϕ(α2s−1, β2s−1)− p2s)
2

=
t∑

s=1

(ϕ(α2s−1, β2s−1)− ϕ(α2s−2, β2s−2)− δs)
2.

Next, we evaluate ϕ(α2s−1, β2s−1)− ϕ(α2s−2, β2s−2).

Let us =
∑s

i=1(pi − p̄s)εi and As =
∑s

i=1(pi − p̄s)
2. Then, standard derivations lead to

βs+1 − β =
us+1

As+1

=
us
As

1

1 + (As+1 −As)/As
+
us+1 − us
As+1

We know from i) that As ≥ κ
√
s almost surely. We deduce that (As+1 − As)/As ≤ |p(h) −

p(l)+ δ1|2/(κ0
√
s+ 1) almost surely. In addition, since εt is assumed to have finite support, |us+1−

us|/As+1 =≤ |p(h) − p(l)|C1/(κ0
√
s+ 1) for some C1 > 0. We deduce that

|βs+1 − βs| ≤ C2√
s
,
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for some constant C2 > 0. It follows that

|αs+1 − αs| = |D̄s+1 − D̄s + βs+1p̄s+1 − βsp̄s|

≤ 2U

s+ 1
+ |βs+1 − βs|+

1

s+ 1
βs+1p

(h).

We deduce that

|αs+1 − αs| ≤ C3√
s
.

Concluding, one has for some C4 > 0

|ϕ(α2s−1, β2s−1)− ϕ(α2s−2, β2s−2)| ≤ | αs+1

2βs+1
− αs

2βs
| ≤ C4√

s
.

This implies that form some κ1 > 0,

2t∑

s=1

(ϕ(αs, βs)− ps+1)
2 ≤

2t∑

s=1

(C4s
−1/2 + δs)

2 ≤ κ1
√
s.

34


	Introduction
	The problem and key questions
	Main findings and qualitative insights
	Review of related work

	Problem Formulation and Motivating Experiment
	The model
	Performance metric
	The class of pricing policies
	An illustrative numerical experiment

	Consistency of the price process
	Theory
	Basic intuition underlying Theorem 1
	Relation to gradient methods

	Revenue optimality
	Discussion
	The need for two parameters
	Aggregation of past data for inference
	Discussion of modeling assumptions and directions for future research

	Proofs for Sections 3 and 4
	Supplement to Section 5.1
	Proofs of Auxiliary Results

