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We study a multi-server queueing model of a revenue-maximizing firm providing a service to a market of

heterogeneous price- and delay-sensitive customers with private individual preferences. The firm may offer

a selection of service classes that are differentiated in prices and delays. Using a deterministic relaxation,

which highlights the first-order economic structure of the problem, we construct a solution that is incentive

compatible and near-optimal in systems with large capacity and market potential. Our approach provides

several new insights for large-scale systems: i) the tractable first-order analysis characterizes essentially all

salient features of the optimal solution; ii) service differentiation is optimal when the less delay-sensitive

market segment is sufficiently elastic; iii) depending on system capacity and market heterogeneity, “inten-

tional delay” (whereby delay is artificially added) in cheaper service classes may be used to justify price

premiums in the more expensive service classes, akin to the role of “damaged goods” in the economics lit-

erature; and iv) connecting economic optimization to queueing theory, the revenue-optimized system has

the premium class operating in a “quality-driven” regime and the lower-tier service classes operating in an

“efficiency-driven” regime (i.e., with noticeable delays that arise either endogenously or due to the injection

of intentional delay by the service provider).

1 Introduction

1.1 Main Objectives and Overview of Results

Background and the main objectives. Price discrimination based on the “speed” at which a

service is delivered has become a prevalent business practice. Standard examples include: parcel

delivery services such as FedEx and UPS that offer overnight delivery at substantially higher prices

than standard ground shipping; airport security screening whereby any economy class ticket holder,

regardless of frequent flyer status, can purchase access to a priority lane; and various government

services, e.g., passport issuance and renewals, that can be expedited by paying additional fees.

A more recent example is the debate on “network neutrality” which questions whether Internet
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service providers should be allowed to charge higher prices to certain content providers for faster

data transmission rates. In all of the above, an essentially identical service is provisioned at varying

quality grades (here, processing speed) and segments the market in a way that enables the firm

to provide faster processing for impatient customers and shift system congestion to more patient

customers. For revenue-maximizing firms, this service differentiation is driven by the potential to

extract further revenues from the less-patient customer base, while non-profit providers can use

service differentiation to better allocate resources and increase social welfare. Roughly speaking,

the high-level problem faced by the service provider is how to optimally differentiate services by

creating and appropriately implementing a suitable price-quality menu. In this paper we study

a stylized queueing model of this service differentiation problem with the intention of shedding

further light on the economics and operations considerations underlying this practice.

We consider a monopolistic revenue-maximizing firm (service provider) that offers a single service

to a market of heterogeneous price- and delay-sensitive customers. The system is modeled as

a multi-server queueing model, and the service may be offered at different grade levels that are

differentiated in terms of price and delay; we will refer to these as “service classes.” Each individual

customer gains some positive utility from the service, but suffers negative utility for each unit of

time he spends waiting in the system. Upon arriving at the system, he chooses one of these service

classes (or opts out) so as to maximize his net utility (this utility being a linear function of the mean

processing delay and price). In this manner, the set of price and delay combinations affects the

demand rates into each service class, which in turn determines the congestion experienced there,

and vice versa. An optimal solution will specify a menu of service classes together with a sequencing

rule that maximize the expected revenue rate.

The market is composed of distinct customer segments or “types.” All customers of a particular

type have the same linear delay sensitivity and a random service valuation (or willingness-to-pay)

drawn from a common distribution. A key assumption is that the type (and hence delay sensitivity)

as well as the willingness-to-pay of an individual customer is private information and thus unknown

to the service provider. Therefore, if the service provider chooses to offer different service levels,

possibly at different prices, then he also needs a mechanism to ensure that the customers’ self-

optimizing choices are aligned with the service provider’s revenue objective. The service provider’s

revenue maximization problem can be cast as a mechanism design problem.

The socially optimal menu for the above model is known and fairly straightforward to charac-

terize and implement, stemming from the observations that it is optimal to set prices equal to

the externality costs and to allocate servers so as to minimize aggregate delay costs; see further

discussion in §1.2. For revenue maximization, however, both of these insights no longer hold and

the firm’s problem becomes more complex and only partially understood. This paper proposes an
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approximate analysis, which is justified rigorously for systems with large capacity and large market

potential, that offers significant insights into the structure of the optimal solution.

Main findings. The paper’s findings contribute along three dimensions. First, we show that

a deterministic relaxation of the service provider’s revenue maximization problem gives rise to an

intuitive price-delay menu which, in conjunction with a simple priority sequencing rule, achieves

essentially optimal revenue performance when implemented in the stochastic system. This is de-

scribed in §3 for a market with two customer types and is extended to more than two types in §5. In

so doing, the paper demonstrates that a complex mechanism design problem can be made tractable

by invoking large-scale analysis ideas that are commonplace in queueing theory. A key compo-

nent of this approach is proving that incentive compatibility conditions are satisfied for systems of

suitable size.

The paper’s second contribution lies in the economic structural insights that are teased out of

the deterministic relaxation: the service provider will determine whether to offer differentiated

services depending on the extent to which the customer types’ characteristics give rise to elastic

or inelastic demand. In particular, increasing delay in certain service classes creates incentives

for impatient customers to pay a premium for better (faster) service. In order to achieve this,

it may be optimal to offer a form of “damaged goods,” in which the service provider artificially

delays the completion of service in some number of classes, in order to increase overall revenues.

While strategically delaying some of the service classes may seem plausible when the system has

slack processing capacity, one may question whether this insight persists when the resources in the

system are more heavily utilized, since significant delays may then arise endogenously. Indeed, we

show in §3-4, which focus on two customer types, that endogenous delays are sufficient and the

use of damaged goods is unnecessary for systems with no “excess” capacity. However, as seen in

the more general case discussed in §5, the damaged goods insight is more fundamental: our results

suggest that purposeful delay of certain service classes is necessary in order to achieve optimal

revenue performance even if there is no “slack” in systems with three or more service classes.

In stark contrast, if the economic objective is social welfare optimization (as opposed to revenue

maximization), the deterministic relaxation prescribes a non-differentiated solution; namely, only a

single service class is needed to essentially achieve the optimal value of the objective function. To

those readers familiar with the work of Mendelson and Whang (1990), this observation may seem

puzzling at first glance; we provide an explanation in §6.

Finally, the paper also contributes to the literature on heavy-traffic analysis of queueing systems.

Roughly speaking, we show that classical operating regimes, such as the so-called efficiency-driven

(ED) and quality-driven (QD), may arise endogenously as a result of the revenue-maximizing mech-

anism design problem; specifically, the high priority class operates in the underloaded quality-driven
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regime while the low priority class operates in the heavily utilized efficiency-driven regime. This

complements earlier results by Maglaras and Zeevi (2003a), where it was first shown that, when

customers are homogenous in their delay costs, the quality and efficiency-driven operating regime

(QED) arises endogenously as a result of revenue maximization; this can be viewed as an interme-

diate case relative to the ones shown to be optimal for heterogeneous delay preferences.

1.2 Related Literature

The work on strategic customers in queues – where arrivals depend on system congestion – is

extensive, dating back to the seminal study of Naor (1969); a survey of the topic area can be

found in Hassin and Haviv (2003). Of particular note are Mendelson (1985) and Mendelson and

Whang (1990), both of which model the system as an M/M/1 queue. The former considers a

single customer type and formalizes the atomistic, utility-maximizing customer behavior in queues.

The latter extends the welfare optimization analysis to multiple customer types and shows that

prices that are set to externality costs are incentive compatible, and that delay cost minimization

is optimal.

The closest paper in the literature is Afèche (2013), which addresses the revenue maximization

problem in a single-server queueing system facing a market with two customer types (analogous

to §3-4 in this work). He formulates the problem in a mechanism design framework, using ideas

from the seminal work of Myerson (1979, 1981), and highlights the fact that externality pricing

and delay cost minimization are no longer optimal in the revenue maximization setting. Moreover,

he establishes that the optimal solution may even include so-called “strategic delay,” in which

the service provider chooses to artificially delay some customers beyond what is caused by system

congestion alone. Our work adopts the mechanism design framework (which, among other things,

allows for strategic delay), but our method of analysis is quite different and our main insights

substantiate and extend Afèche (2013) in a more general setting, and separates in some sense the

“first-order” effects from “lower-order” phenomena; we will return to discuss this in more detail in

§5 (see Remark 3) after expounding on our main results. In particular, it reveals when and why

service differentiation is revenue maximizing, how the firm should implement service differentiation,

and precisely illustrates the role of strategic delay in this context.

A parallel stream of work analyzes multi-server queueing systems and leverages asymptotic anal-

ysis to gain insight into the optimal prices and policies. The work of Maglaras and Zeevi (2003a)

considers a single-class M/M/n system with price- and congestion-sensitive customers. Their work

characterizes the asymptotic equilibrium operating point, and shows that when demand is elastic,

the revenue-maximizing price induces customer arrivals that result in the QED regime; an operating

regime where the probability of a customer experiencing delay is strictly positive but below one.
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Maglaras and Zeevi (2005) extend this argument to a two-class system where aggregate demand

into each class is affected by price and congestion, again linking economic optimality to the QED

regime. Methodologically, this paper also relies on a suitable “deterministic relaxation” of the

original optimization problem, but unlike Maglaras and Zeevi (2005), it allows for full substitution

of services, whereas the former considers partially substitutable services where atomistic choice is

not captured and incentive compatibility considerations are not present.

The “strategic delay” that features in the revenue-maximization setting can be viewed as the

queueing system manifestation of damaged goods. This concept, at least within the economics

and marketing literature, refers to a practice by which firms introduce a lower-price lower-quality

version of a good with equal (or even higher) production cost, in order to segment the customer

market and price discriminate. A number of examples of such cases can be found in Deneckere and

McAfee (1996); see also McAfee (2007) who derives sufficient conditions for such practice in terms

of marginal revenues. More recently, Anderson and Dana (2009) provide necessary conditions for

a monopolist firm to increase profits by engaging in price discrimination, which may include offer-

ing damaged goods. However, the marketing and economics literature disregards the operational

considerations of the service system, and the inherent conflict between price discrimination and

efficient resource utilization (though Aféche (2013) takes a first step towards incorporating some of

these aspects). Our model differs in two important aspects. We consider a market where customer

valuations are continuous within discrete types of quality sensitivity. In the aforementioned works,

each customer segment has a single valuation and a single quality sensitivity parameter, with a

finite number of discrete segments or a continuum of segments. More importantly, we consider a

system that is subject to congestion, so quality degrades as more customers purchase the service,

and the service provider only has a partial (deliberate delay) or indirect (pricing and sequencing)

influence on quality. For these reasons, while some of our results have a similar flavor to the ones

mentioned above, they are neither a special case nor a generalization thereof.

Finally, there is a growing body of work that studies economic problems in queueing systems

under different modeling assumptions, for example, allowing for non-linear delay cost functions,

state-dependent pricing or delay notification, different user risk preferences, settings with uncertain

model primitives and different degrees of learning, etc. We will not review this literature herein,

but remark that the tractable analytical framework proposed in our paper has the potential to be

applicable in those settings as well.

2 Model and Problem Formulation

We first describe the queueing system used to model the firm, then define a customer choice model,

and finally formulate the optimization problem.
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System model. The service provider (SP) operates s processing resources used to offer a partic-

ular service to a market of heterogeneous customers. The SP may offer k versions (or “classes”) of

the service that are differentiated by price and delay. We model this as a multi-class, multi-server

queueing system. Customer requests arrive into each service class j = 1, . . . , k according to an

independent Poisson process with rate λj . Each service class has an infinite-capacity buffer, and

customers in that class wait in a queue according to their order of arrival until they are allocated

a server. This allocation is determined by a control policy π to be discussed later on. The delay

experienced by a customer in a given service class is the time he spends in the system minus the

time spent in service.

Customers, irrespective of service class, have random processing requirements that are modeled

as independent and identically distributed (i.i.d.) draws from an exponential distribution with

mean 1/µ; in that way, the mean processing requirements are homogeneous across customers. The

control policy π may not depend on the realized service times of customers. Each server may

only work on one customer at a time and servers may idle with customers waiting in their queues;

i.e., we allow non-work-conserving policies. Service for any customer may be interrupted without

penalty and resumed without restarting service. We do not require the service discipline to be first-

come-first-served within a service class. The control policy is represented as an allocation process

π(t) : [0,∞) → Zk+, where πj(t) is the number of servers processing class j customers at time t.

We require πj(t) to be right continuous with left limits and Lebesgue integrable; further structural

assumptions will be advanced shortly.

To define the system dynamics, consider 2k mutually independent unit-rate Poisson processes,

N
(a)
j (t) and N

(s)
j (t) for j = 1, . . . , k. Fix for now an arrival rate vector λ = (λ1, . . . , λk) where λj is

the arrival rate into class j, which will be further detailed later in this section. Define N
(a)
j (λjt) to be

the number of customers that have arrived into class j by time t and N
(s)
j

(∫ t
0 µπj(s) ds

)
the number

of class j customers that have completed service by time t. It is useful to describe the system in

terms of the “headcount process” ((Z1(t), . . . , Zk(t)) : 0 ≤ t <∞) where Zj(t) is the number of class

j customers in the system at time t, and the “queue length process” ((Q1(t), . . . , Qk(t)) : 0 ≤ t <∞)

where Qj(t) is the number of class j customers in queue at time t. These processes must jointly

satisfy the following conditions:

k∑
j=1

πj(t) ≤ s, (1)

Qj(t) = Zj(t)− πj(t) ≥ 0 for j = 1, . . . , k, (2)

Zj(t) = N
(a)
j (λjt)−N (s)

j

(∫ t

0
µπj(s) ds

)
≥ 0 for j = 1, . . . , k. (3)
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Condition (1) limits the total number of servers working at any time to be at most s, but does

not preclude servers from idling while there is work in the system. Condition (2) restricts the

number of servers working on class j customers to be at most the number of class j customers in

the system at that time. Condition (3) describes the system dynamics. We require that the control

π, (π1(t), . . . , πk(t)) be adapted to the filtration generated by (Z1(t), . . . , Zk(t)).

As an example of an allocation process, consider a strict preemptive priority policy, with highest

priority given to class 1 and lowest given to class k. Under such a policy, an arriving class j customer

interrupts any lower-priority customer in service, from classes j+ 1, . . . , k. If all servers are serving

higher- or equal-priority customers, the arriving customer waits in queue. As long as the queues

of all higher-priority classes are empty, then idle servers may resume interrupted lower-priority

customers (from highest to lowest priority and in the order that they were interrupted) and start

working on customers from the highest-priority non-empty queue. In other words, all processing

capacity is first applied to class 1 and any remaining capacity is then successively applied to class

2, then to class 3, and so on. Such a policy can be expressed as follows:

π1(t) = min{s, Z1(t)} πj(t) = min{(s− Z1(t)− · · · − Zj−1(t))+ , Zj(t)}, j = 2, . . . , k. (4)

(In later sections, we see that this class of simple policies will largely suffice for our purposes.)

We say that a policy π is an “admissible control” for a given arrival rate vector λ if it satisfies

the above conditions and there exists a unique stationary distribution for the headcount process

under this policy. For an arrival rate vector λ and admissible control π, we define EDj(λ, π) to

be the expected time in queue for class j customers under the stationary distribution. (Expected

values are all taken under the stationary distribution generated by a specified arrival rate vector λ

and admissible control π.) Since customers are sensitive to delay, it is useful to think in terms of

achievable delays instead of admissible controls. For an arrival rate vector λ, the set of achievable

delay vectors is

D(λ) = {(d1, . . . , dk) : dj ≥ EDj(λ, π), π is an admissible control, j = 1, . . . , k}. (5)

Note that we allow dj > EDj(λ, π), so a given service class may experience an overall delay

greater than what can be attributed to system congestion alone. (The importance of this extra

degree of freedom was first expounded on in Afèche (2013).) To operationalize this, we assume that

the SP may “inject delay” after the service has been completed, so the server may begin processing

a new customer while the injected delay is being imposed on the customer whose processing has

just been completed. For example, a class j customer may be sent to an infinite-capacity “delay

node” following service completion, where he is held for δj units of time and is then released from
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the system; this will be referred to as “injected delay.” Since customers perceive delay as time in

system minus time in service, this delay node adds exactly δj to the queueing delay, EDj , for an

“overall delay” of dj = EDj + δj . Note that with this convention, the headcount process Zj(t) is

the number of class j customers in the system, excluding the delay node. As an aside, we note

that this structure is most easily implemented in systems where service is not directly observed by

the customer. Other methods to realize this “injected delay” include slowing down the processing

rate, introducing appropriately timed server idleness, or adding a suitable delay node in the input

queues.

Customer choice model and information structure. To communicate the key ideas of

the paper in the simplest manner, the remainder of this section and §3-4 will consider a market

comprised of two distinct customer segments (types), indexed by i = 1, 2; §5-6 will derive additional

important insights that pertain to a market with N > 2 customer types. Customers of type i

arrive at the system according to an independent Poisson process with rate Λi and may choose

a service class to purchase or leave the system without service. Each arriving customer of type i

has a willingness-to-pay Vi which is an i.i.d. draw from a distribution Fi. We assume that for each

i = 1, 2 the (cumulative) distribution function Fi is concave, has a continuous density, an increasing

generalized failure rate (IGFR), and a finite mean. Each type i customer incurs an additive linear

delay cost of $ci per unit of time spent waiting, and the parameter ci is common across all type i

customers.

Each customer seeks to maximize his individual utility. Upon arrival, a customer is informed

of the k service classes, each having a per-access fee pj and overall delay dj . We assume that the

queues themselves are unobservable to the customers. A customer of type i who is willing to pay

Vi for completing service, computes his net utility for service class j as

Ui(j) = Vi − (pj + cidj), (6)

and enters the service class that maximizes that utility, namely,

j∗ = argmaxj{Ui(j) : Ui(j) ≥ 0, j = 1, . . . , k} with j∗ = 0 if Ui(j) < 0 for all j = 1, . . . , k;

that is, j = 0 represents the no-purchase option. This type of behavior arises when service requests

originate with atomistic and self-interested customers, who rationally decide how (and whether) to

use the system. Customers who choose not to enter the system are lost and do not return.

We assume that the characteristics of each customer segment (Λi, ci, Fi, and µ) are known to the

SP, while the type i ∈ {1, 2} and random valuation Vi ∼ Fi of any individual customer are private

information, and thus unknown to the SP. Since the SP is unable to distinguish between customer

types, he offers the same set of service classes to all customers.
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Number of service classes offered. Observe that a customer of type i will select the service

class with the minimum “full cost,” given by pj + cidj , irrespective of his individual willingness-

to-pay Vi. Therefore, all customers of type i will select the same service class. In a market with

two customer types, the SP need only offer up to two service classes (k ≤ 2) (or more generally, at

most N classes if there are N customer segments). The resulting mean demand rate, governed by

the customer demand model, for each of the two service classes is given by

λ1(p1, p2, d1, d2) = Λ1F̄1(p1 + c1d1)1{p1 + c1d1 ≤ p2 + c1d2}

+ Λ2F̄2(p1 + c2d1)1{p1 + c2d1 < p2 + c2d2}, (7)

λ2(p1, p2, d1, d2) = Λ1F̄1(p2 + c1d2)1{p2 + c1d2 < p1 + c1d1}

+ Λ2F̄2(p2 + c2d2)1{p2 + c2d2 ≤ p1 + c2d1}, (8)

where F̄i(·) := 1− Fi(·) and 1{·} is the indicator function. We assume that if a customer of type i

is indifferent between the two service classes, he will choose service class j = i. We note that the

arrival process of customers into each service class is Poisson by the thinning property of Poisson

processes.

System equilibrium. The queueing delays (ED1,ED2) depend on the demand rates (λ1, λ2)

and admissible control π, and, in turn, these demand rates depend, in part, on the queueing delays.

An equilibrium for the system is an operating point where, for fixed prices, control policy, injected

delays, and demand model, the congestion delays induce precisely the demand rates, and these in

turn induce said delays.

Definition 1 (Equilibrium). Fix prices (p1, p2), a control policy π, injected delays (δ1, δ2),

and a customer demand model (λ1, λ2) = (λ1(p1, p2, d1, d2), λ2(p1, p2, d1, d2)). The system admits

an equilibrium if there exists a stationary probability distribution for the headcount process Z such

that

dj = EDj(λ1, λ2, π) + δj j = 1, 2. (9)

Remark 1. We do not provide general conditions under which an equilibrium exists, but rather

show in §4 that a unique equilibrium exists for the specific solution we propose to the following

economic optimization problem.

Revenue maximization problem. The SP’s problem is to find prices (p1, p2), a control policy

π, and injected delays (δ1, δ2) to maximize the equilibrium revenue rate given by

R(π, p1, p2, δ1, δ2) =

2∑
j=1

pjλj(p1, p2, d1, d2), (10)

where (d1, d2) are the overall delays in equilibrium (assuming that such an equilibrium exists), given

in (9), and the customer demand model λj(·), j = 1, 2, is given in (7) and (8).
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Afèche (2013) formulates the above as a mechanism design problem. Adopting Myerson’s rev-

elation principle (Myerson (1981)), it suffices to consider a direct mechanism where all customers

report their private information (their type i and valuation Vi) to the SP. The SP then uses that

information to determine which service class the customer purchases, if any. In order for arriving

customers to truthfully report their types and valuations, the SP’s mechanism needs to satisfy two

sets of constraints:

• Incentive Compatibility: pi + cidi ≤ pj + cidj for all j 6= i,

• Individual Rationality: λi = ΛiF̄i(pi + cidi) for i = 1, 2.

Note that this labeling assumes, without loss of generality, that type i customers are assigned to

service class i or turned away. Myerson’s revelation principle states that if the mechanism satisfies

the incentive compatibility and individual rationality conditions above, then it is a Nash equilibrium

for players to truthfully report their types and valuations. Moreover, there is no loss of generality

in restricting our attention to direct mechanisms.

Adopting this mechanism design approach, the revenue maximization problem can be recast as

follows. Find prices p = (p1, p2) and control policy π to:

maximize

2∑
i=1

piλi (11)

subject to pi + cidi ≤ pj + cidj i, j = 1, 2 and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, 2

(d1, d2) ∈ D(λ).

The increasing generalized failure rate and finite mean properties of Fi ensure that an infinite

price is not optimal (Lariviere (2006)). (This is a common assumption in the revenue management

literature, but we note that weaker assumptions, e.g., that the functions pF̄i(p) for i = 1, 2 are

coercive, also suffice.) The reader should note that optimizing (11) over the space of admissible

controls while taking into account the resulting equilibrium of the multi-server system is reasonably

challenging, and a head-on treatment will likely require a brute-force computational analysis with

limited insight. We denote the supremum of achievable revenues1 over the feasible set of (11), by

R∗. This can be viewed as the output of an oracle, and will serve as a benchmark against which

we will compare the performance of an approximate solution to (11) that will be developed in the

next section.

Discussion of modeling assumptions. Note that in the mechanism design formulation (11),

the SP is not forced to offer two distinct service classes; the optimization problem allows both

1While it is possible to show that the supremum R∗ may be achieved by a feasible solution, and hence an optimal
solution exists, our subsequent analysis does not require this technical result.
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classes to offer the same level of service, e.g., by pricing the “two options” equally and sequencing all

customers through one queue that is served under a FIFO discipline. Additionally, in this problem

setting the SP can only separate the customers in terms of their delay sensitivity preferences, not

their willingness-to-pay; in other words the price may differ based on the customer’s type i but not

their willingness-to-pay Vi. This is a consequence of the structure of the underlying “products”

that the SP can offer and the additive nature of the delay costs in each customer’s net utility (cf.

discussion before (7)-(8)); linearity of the delay cost is not required. We note that the formulation

given in (11) can be extended to allow for multiple but distinct customer types, which is the setting

of §5.

3 Deterministic Analysis

Our first step towards solving the mechanism design problem (11) is to solve a carefully chosen

deterministic relaxation (“DR”) of the latter. The DR preserves the essential economic and op-

erational considerations of the SP’s problem while ignoring the complications presented by the

queueing dynamics and resulting equilibrium. The optimal solution to the DR will allow us to

construct an approximate solution for the original, stochastic problem (11).

3.1 Deterministic Relaxation

The DR seeks prices (p1, p2) and delays (d1, d2) that

maximize p1λ1 + p2λ2 (12)

subject to pi + cidi ≤ pj + cidj i, j = 1, 2 and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, 2

λ1 + λ2 ≤ sµ

d1 ≥ 0, d2 ≥ 0.

That is, unlike in (11) where delays are endogenous, here they are decision variables. We only

require that delays be non-negative and that total demand does not exceed the system capacity.

It is in that precise sense that (12) is a (deterministic) relaxation of (11). (The objective and the

incentive compatibility and individual rationality constraints remain as in (11).) This may appear

overly simplistic, but, as we will see in the remainder of this paper, it captures the essential features

of a near-optimal solution to the stochastic problem in (11). Observe that an optimal solution to

(12) exists since the objective function is coercive and the feasible set is closed.

We will denote the optimal solution to (12) as (p̄1, p̄2, d̄1, d̄2) and set λ̄i = ΛiF̄i(p̄i+cid̄i), i = 1, 2.

We also define the relative workload contribution in each class at the optimal solution as

κ̄i =
λ̄i
sµ

i = 1, 2. (13)

This is the fraction of “processing capacity” consumed by class i in the DR solution.
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Table 1: Categorization of DR solutions.

capacitated uncapacitated

undifferentiated p̄1 = p̄2 p̄1 = p̄2
κ̄1 + κ̄2 = 1 κ̄1 + κ̄2 < 1

differentiated p̄1 > p̄2 p̄1 > p̄2
κ̄1 + κ̄2 = 1 κ̄1 + κ̄2 < 1

3.2 Characterization of the DR Solution

Our first structural result states that within the DR setting, it is best to have type 1 customers

wait “as little as possible,” i.e., d̄1 = 0, and to make type 2 customers wait “only long enough” to

satisfy incentive compatibility, i.e., p̄1 = p̄2 + c1d̄2.

Proposition 1 (Structure of the DR solution). Let (p̄1, p̄2, d̄1, d̄2) be the optimal solution

to the deterministic relaxation (12). Then

(a) d̄1 = 0, and

(b) p̄1 = p̄2 + c1d̄2.

The main intuition here is that the SP earns revenue from fees but not delays. Therefore, a

feasible solution (p1, p2, d1, d2) to the DR cannot be optimal if it is possible to maintain the same

full cost in a service class while reducing the delay and increasing the price, since this would increase

revenues while ensuring feasibility. This suggests that the sole purpose of imposing non-zero delay

in class 2 is to segment the market.

We propose the following categorization and nomenclature for the DR solution, summarized in

Table 1. If p̄1 = p̄2 we say that the solution is “undifferentiated,” and if p̄1 > p̄2 we say it is

“differentiated.”2If κ̄1 + κ̄2 = 1 we say that the solution is “capacitated,” and if κ̄1 + κ̄2 < 1 we

say it is “uncapacitated” (since the two cases refer to the DR solutions for which the capacity

constraint in (12) is either binding or not).

With this in mind, we first answer the question of when the DR solution is differentiated. Con-

sider the following deterministic relaxation of the “single-product problem,” in which the SP is

constrained to offering only one service class:

max
p

{
p(Λ1 + Λ2)Ḡ(p) : (Λ1 + Λ2)Ḡ(p) ≤ sµ

}
, (14)

where Ḡ(p) = 1−G(p), and G(p) is the aggregate willingness-to-pay distribution with density g(p),

G(p) :=
Λ1F1(p) + Λ2F2(p)

Λ1 + Λ2
, g(p) :=

Λ1f1(p) + Λ2f2(p)

Λ1 + Λ2
. (15)

2Note that if p̄1 > p̄2 and κ̄2 = 0, then (p̄1, p̄1) is also a solution to the DR, and so the problem essentially
reduces to a single product with a single market segment. Therefore we assume that any solution with κ̄2 = 0 is also
“undifferentiated.”
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We assume that G(·) is strictly IGFR and therefore there is a unique maximizer of the single-

product problem, which we denote by p̂. Observe that if the optimal solution to the DR (12) is

undifferentiated (p̄1 = p̄2), then the optimal solution to the single-product problem (14) must be

p̂ = p̄1 = p̄2. In that case, no revenue is lost in restricting the SP to a single service class in the

DR setting.

In Proposition 2 below we provide a necessary and sufficient condition for a differentiated solution,

expressed in terms of demand elasticity3at the single-product optimal price p̂. Let εi(p1, p2) be the

elasticity of type i demand for class i service at prices (p1, p2), i = 1, 2, and let εg(p) be the elasticity

of the aggregate demand for a single service class at price p:

ε1(p1, p2) =
p1f1(p1)

F̄1(p1)
, ε2(p1, p2) = (1− c) p2f2(cp1 + (1− c)p2)

F̄2(cp1 + (1− c)p2)
, εg(p) =

pg(p)

Ḡ(p)
, (16)

where c := c2/c1 < 1.

Proposition 2 (Conditions for service differentiation). Assume that G(·) is strictly IGFR.

Let p̂ be the optimal solution of the single-product problem (14), and let p̄1, p̄2 be the optimal prices

of the deterministic relaxation (12). Then

p̄1 > p̄2 if and only if ε2(p̂, p̂) > εg(p̂). (17)

Differentiated services should be offered if and only if the demand elasticity for type 2 (delay-

insensitive) customers at p̂ is greater than the aggregate demand elasticity at that price. In that

case, the SP may increase revenues by lowering the price for type 2 customers. Note that it must

be elastic relative to the aggregate demand (as opposed to simply having an elasticity which is

greater than 1), to account for the fact that any reduction in price must be matched by an increase

in delays, in order to maintain incentive compatibility.

3.3 Translating the DR Solution

The DR solution provides fundamental insight on how to specify the number of service classes k,

the prices for each, the control policy π, and how much injected delay (δ1, δ2), if any, is needed.

This is summarized in Figure 1 and further interpreted below. The number of services classes and

their respective prices are taken from the DR solution itself, while Proposition 1 indicates how to

form the control policy, and when/whether to inject delay. When two service classes are offered,

the prescribed solution gives strict preemptive priority to class 1, capturing the intuition that class

1 delays are targeted to be as small as possible.

3Recall that the demand elasticity at a price p = (p1, p2) is the proportional change in demand due to a change
in price:

εi(p) = − pi
λi

∂λi

∂pi
.

Demand is elastic at p if ε(p) > 1 in which case reducing the price will increase revenue; demand is inelastic at p if
ε(p) < 1 in which case increasing the price will increase revenue.
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Figure 1: Prescribed stochastic solution based on DR for N = 2 customer types.

Offer one service class,
single queue (no priorities),

DR price  ,
no injected delay.

Offer two service classes,
strict preemptive priority to class 1,

DR prices          .

Solve DR

Inject delay in class 2:         

Uncapacitated

No injected delay.
Capacitated

k = 1

k = 2

Figure 1 contains an important insight that will be justified in the stochastic analysis in the next

section. Namely, injected delay is applied to class 2 only out of necessity, when the DR solution is

differentiated and uncapacitated. If the DR solution is capacitated we expect, and indeed show in

Theorem 1, that the natural congestion in the system will cause sufficient queueing delays in class

2 to satisfy the incentive compatibility condition. If the DR solution is uncapacitated, class 2 will

also face a system operating at a low utilization rate and experience insignificant queueing delay.

In that case, the SP injects delay to ensure that class 2 experiences d̄2 delay, needed to optimally

segment the market. This is the key to ensuring that type 1 (delay-sensitive) customers have an

incentive to pay a premium for high-priority service.

Henceforth, we will explicitly distinguish between the “DR solution” to (12) and its implemen-

tation in the stochastic system, described in Figure 1, which will be referred to as the “stochastic

solution.” We will also port the nomenclature in Table 1 to the stochastic setting. We call the

stochastic solution “differentiated” if it offers two service classes and “undifferentiated” if it offers a

single service class. With some abuse of terminology, we call the queueing system operating under

the stochastic solution “capacitated” (“uncapacitated”) if the underlying DR solution is capaci-

tated, κ̄1 + κ̄2 = 1 (uncapacitated, κ̄1 + κ̄2 < 1). Of course, the equilibrium traffic intensity in the

queueing system under the stochastic solution is always less than 1.
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4 Performance Analysis

4.1 Preliminaries

This section proves that the stochastic solution prescribed above achieves near-optimal performance

in the stochastic system, and induces an equilibrium and operating regime that is consistent with

the DR solution. To make this rigorous, we will focus on large-scale systems that are characterized

by large processing capacities and large market potential. Specifically, we will consider a sequence

of systems with increasing capacity and market potential, indexed by n:

sn := n,

Λni := nΛ̂i, i = 1, 2,
(18)

with Λ̂i := Λi/s; note that at n = s we recover the system with s servers and market potential

Λi of original interest. Note that the size of each customer segment Λni scales with capacity, but

the valuation distribution Fi(·) is held fixed. We will use a superscript n to index quantities that

depend on the size of the system. Under this scaling, the nth system may be described by the

queue length and headcount processes:

Qnj (t) = Znj (t)− πnj (t) for j = 1, . . . , k,

Znj (t) = N
(a)
j

(
λnj t
)
−N (s)

j

(∫ t

0
µπnj (s) ds

)
for j = 1, . . . , k,

defined for a given control policy πn(t) = (πn1 (t), . . . , πnk (t)) and arrival rate vector λn = (λn1 , . . . , λ
n
k).

For the nth system in the sequence, we formulate a revenue maximization problem, analogous

to (11), where the quantities with superscript n replace their counterparts in (11); that is, we are

analyzing the mechanism design optimization problem (11), but for a system with capacity and

market potential scaled up proportionally by a factor n. We will denote by Rn∗ the supremum of

(11) for the nth problem. The policy prescribed in §3.3 can be applied to each system of size n as

follows.

Undifferentiated DR solution (single class). If p̄1 = p̄2 = p̂, offer a single service class (k = 1) at

price p̂ with no injected delay. The arrival rate into the single class is

λn = Λn1 F̄1(p̂+ c1d
n) + Λn2 F̄2(p̂+ c2d

n),

where dn is the overall delay under the control policy πn(t) = min{sn, Zn(t)}. (The single-class

problem is addressed in Maglaras and Zeevi (2003a,b).)

Differentiated DR solution (two classes). For the remainder of this section, we will focus on the

case where the DR solution is differentiated, when necessary distinguishing between the capacitated

and uncapacitated cases. If p̄1 > p̄2, the stochastic solution has two service classes (k = 2) at prices

(p̄1, p̄2) with injected delays (0, δ2), where δ2 = d̄2 if κ̄1 + κ̄2 < 1, and δ2 = 0 otherwise.
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Our first result studies a simplified setting where the arrival rate into each class is

λnj = Λnj F̄j(p̄j + cjd
n
j ), for j = 1, 2, (19)

and dnj is the overall delay in class j, under the control policy

πn1 (t) = min{sn, Zn1 (t)}, πn2 (t) = min{(sn − Zn1 (t))+, Zn2 (t)}.

We denote by ρnj = λnj /nµ the traffic intensity in class j = 1, 2.

In (19) we explicitly assume that customers choose the “correct” service class, or equivalently,

report their type truthfully. The following proposition shows that, under this assumption, the

prescribed solution yields a unique equilibrium for each system in the sequence. Furthermore, the

sequence of equilibria (i.e., the traffic intensities (ρn1 , ρ
n
2 ) and overall delays (dn1 , d

n
2 ) induced by

these prices, priority rule, and injected delays) converges to the DR solution.

Proposition 3 (System equilibrium). Assume the scaling in (18). Set the stochastic solu-

tion to be prices (p̄1, p̄2) and injected delays (δ1, δ2), together with the sequencing rule π prescribed

in §3.3. Then, assuming (19) the following are true:

(a) for every n, there exists a unique system equilibrium (ρn1 , ρ
n
2 , d

n
1 , d

n
2 );

(b) as n→∞, ρnj → κ̄j and dnj → d̄j, for j = 1, 2.

4.2 Incentive Compatibility and Revenue Optimality

Our next two theorems show that, in large systems, the stochastic solution derived in §3.3 is

incentive compatible, i.e., it is a Nash equilibrium strategy for the customers to indeed choose the

“correct” service classes as prescribed by the solution of the DR. Moreover, the proposed stochastic

solution achieves near-optimal revenues. Note that Theorems 1-3 do not assume (19), but rather

that the arrival rates λn1 and λn2 are determined by the atomistic customer choice models described

by (7)-(8), under the scaling (18) and the stochastic solution composed of prices (p̄1, p̄2), injected

delays (δ1, δ2), and sequencing rule π prescribed in §3.3. Let Rn(π, p̄1, p̄2, δ1, δ2) be the revenue rate

in the nth system generated by this solution, namely,

Rn(π, p̄1, p̄2, δ1, δ2) = p̄1λ
n
1 + p̄2λ

n
2 .

Theorem 1 (Incentive compatibility). Assume the scaling in (18). Then, there exists a fi-

nite Nic such that for all n ≥ Nic, the stochastic solution composed of prices (p̄1, p̄2), injected delays

(δ1, δ2), and sequencing rule π prescribed in §3.3 is incentive compatible, namely

p̄i + cid
n
i ≤ p̄j + cid

n
j , i, j = 1, 2 and i 6= j,

where dnj , j = 1, 2, are the overall delays arising in the nth system in equilibrium.
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We emphasize that incentive compatibility is achieved for a finite sized system, i.e., for all sys-

tems in the sequence above the threshold Nic, customers will choose the correct service class (in

equilibrium).

Theorem 2 (Revenue optimality). Assume the scaling in (18). Then, the revenue rate Rn(π, p̄1, p̄2, δ1, δ2)

generated by the stochastic solution composed of prices (p̄1, p̄2), injected delays (δ1, δ2), and sequenc-

ing rule π prescribed in §3.3, satisfies

Rn∗ −Rn(π, p̄1, p̄2, δ1, δ2) ≤M, for all n ≥ Nic,

for some finite positive constant M , and Nic as in Theorem 1. (Rn∗ is the supremum revenue of the

original mechanism design problem (11) for the scale-n system.)

Theorem 2 is an uncharacteristically strong optimality result. Given that the DR is, in some

sense, only a fairly crude (first-order) approximation of the mechanism design problem (11), we

expect that the policy predicated on the DR would lead to a performance gap, in terms of revenue,

that increases with system size. This asymptotic gap for policies based on deterministic analysis

often grows proportionally to
√
n, which is the magnitude of the stochastic fluctuations not captured

by the DR. Moreover, the optimality gap in settings where the
√
n behavior has also been optimized

will typically diverge with n, but at a slower rate. Surprisingly, our result shows that the optimality

gap of the policy derived via the static DR remains bounded, regardless of the volume of workflow

and scale of revenues. The DR solution has thus essentially optimized the original (stochastic)

mechanism-design problem.

The result of Theorem 2 can be partially explained by Proposition 3 part (b). To fully decon-

struct what underlies the strength of Theorem 2 requires a more careful examination of the rate of

convergence of traffic intensities and delays, which is provided in §4.3.

4.3 System Operating Regime and Its Implications

The operating regime of a single-class multi-server queue can be naturally characterized by focusing

on the probability that an arriving customer will have to wait prior to commencing service:

• P(waiting time > 0) ≈ 0: “quality driven” (QD) regime (focus on providing high-quality

service).

• P(waiting time > 0) ≈ 1: “efficiency driven” (ED) regime (focus on efficient use of resources).

• P(waiting time > 0) ≈ ν ∈ (0, 1): “quality and efficiency driven” (QED) regime.

The celebrated work of Halfin and Whitt (1981) showed that these regimes are equivalently char-

acterized by the system’s traffic intensity. Specifically, the QED regime, where the probability

of having to wait for service is modest, i.e., neither “never” nor “always,” arises if and only if
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ρn = 1 − β/
√
n for some 0 < β < ∞. This corresponds to the well-known “heavy-traffic” regime

that has been studied extensively in the queueing literature. The ED regime operates at still

higher asymptotic utilization rates, while the QD regime corresponds to lower utilization rates.

The next theorem characterizes the operating regime that arises in our context as a consequence

of the economic objectives in (11).

Theorem 3 (System operating regimes). Assume the scaling in (18), and consider the stochas-

tic solution composed of prices (p̄1, p̄2), injected delays (δ1, δ2) and sequencing rule π prescribed in

§3.3. Then,

(a) if the DR solution in (12) is capacitated, κ̄1+κ̄2 = 1, then the traffic intensity in the stochastic

system is

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 −
α

n
+ o(1/n),

and the system operates in the ED regime, namely,

ρn1 + ρn2 = 1− α

n
+ o(1/n),

where α is a finite positive constant that depends on model primitives;

(b) if the DR solution in (12) is uncapacitated, κ̄1 + κ̄2 < 1, then

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 + o(1/n),

and the system operates in the QD regime.

Note that even if the system is capacitated, class 1 never experiences any significant delay since

they receive static priority, and κ̄1 < 1 (that class is effectively facing an underutilized system

operating in the QD regime). Class 2, on the other hand, experiences a system whose resources

operate in the so-called ED regime, which results in significant congestion delays for the low priority

class. This congestion is experienced entirely by class 2 customers, thereby achieving the necessary

service differentiation. If the system is uncapacitated, delay is injected since there is essentially

“not enough” endogenous congestion in the system to give rise to non-vanishing delay in class 2.

Discussion. Unlike the bulk of the literature on asymptotic analysis of queueing systems, where

the operating regime is imposed a priori for analysis purposes, in our work this regime arises as

a consequence of economic optimization considerations. In fact, as evidenced from our results, if

the traditional QED-type regime were imposed, it would be strictly sub-optimal in the context of

our problem. To put our results in further perspective, let us first contrast them with Maglaras

and Zeevi (2003a) who showed that the QED regime emerges as a direct consequence of economic

optimization (revenues or welfare) when all customers have the same delay sensitivity parameter
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(single type). Our results are complementary and, taken together, show that each of the three

asymptotic operating regimes outlined above may arise when we allow for multiple service classes:

i) in a capacitated system, a single-class stochastic solution gives rise to the QED regime; ii) a

two-class stochastic solution in a capacitated system places class 1 in the QD regime and class 2 in

the ED regime; and iii) in the uncapacitated case all classes operate in the QD regime and injected

delay is required to differentiate the two service classes. Emphasizing the last point, injected delay

plays a fundamental role in a large scale system only if it has ample capacity, and, as such, suggests

that in systems where capacity has been optimized, injected delay will have a vanishing effect.

Theorem 3 also provides the key analytical foundations that support Theorem 2 (revenue opti-

mality). Note that in the capacitated case

Rn(π, p̄1, p̄2, δ1, δ2) = p̄1λ
n
1 + p̄2λ

n
2 = nµ (p̄1ρ

n
1 + p̄2ρ

n
2 ) ,

= nµ
(
p̄1(κ̄1 + o(1/n)) + p̄2

(
κ̄2 −

α

n
+ o(1/n)

))
,

= nµ(p̄1κ̄1 + p̄2κ̄2) + nµ
(
p̄1o(1/n)− p̄2

α

n
+ p̄2o(1/n)

)
,

= nR̄− µp̄2α+ o(1), (20)

where R̄ is the value of the DR (12) under the optimal solution (p̄1, p̄2, d̄1, d̄2). Since the DR

(12) is a relaxation of the original mechanism design problem (11), the supremum revenue in the

DR dominates the supremum revenue in the original problem. Moreover, the DR has an optimal

solution (i.e., achieves its supremum), and thus nR̄ ≥ Rn∗ , where Rn∗ is the supremum revenue for

the nth system. In the uncapacitated case, ρn2 converges at rate o(1/n) in the QD regime, so the

stochastic solution will provide revenues that are close, in absolute dollars, to the optimum.

Remark 2 (The single-server system model). The deterministic relaxation (12) applies to

a single-server system model, and the stochastic solution outlined in §3.3 is well-defined in that

setting as well. The scaling in that model would increase the speed of the single server µn = nµ

together with potential demand Λni , i = 1, 2, defined as in (18). If the stochastic solution is

differentiated, one can show that delays in class 1 and class 2 will still converge to (0, d̄2), but

a different analysis is needed to establish the eventual satisfaction of the incentive compatibility

property.

5 The Essential Role of Injected Delay

We now consider the more general problem with N ≥ 3 customer types. Apart from providing an

important technical extension, which seems intractable using direct analysis but is possible within

our framework, it turns out that the analysis of the multi-type model offers new insights that are

obscured in the simpler two-type setting, in particular, concerning the importance of injected delay.
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5.1 Analysis of the Deterministic Relaxation

The problem formulation in §2 is easily extended to N customer types with linear delay costs

c1 > c2 > · · · > cN , valuation distributions Fi(·), and potential demand Λi, i = 1, . . . , N . The

mechanism design problem is then to find prices (p1, . . . , pN ), a control policy π, and the injected

delay prescription (δ1, . . . , δN ) that maximize revenues. We start by solving the following DR,

which is the analogue of (12):

maximize

N∑
i=1

piλi (21)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . , N and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, . . . , N

N∑
i=1

λi ≤ sµ

di ≥ 0 i = 1, . . . , N.

With two customer types, the solution to (12) either assigned both types to a single service class,

or each type to its own service class. In the more general setting with N types, the solution to

(21) may give rise to k ≤ N distinct service classes. With this in mind, we denote the optimal

solution to (21), indexed by customer type, p̄ = (p̄1, . . . , p̄N ) and d̄ = (d̄1, . . . , d̄N ). Equivalently,

we may write the DR solution in terms of the distinct service classes, namely p̂ = (p̂(1), . . . , p̂(k))

and d̂ = (d̂(1), . . . , d̂(k)), along with k sets {A(1), . . . , A(k)}, where A(j) is the set of all customer

types that choose class j. That is, p̄i = p̂(j) for all i ∈ A(j). We will call the sets A(j), j = 1, . . . , k,

“market segments.”

The generalization of Proposition 1, which describes the structure of the optimal solution of the

DR in the two-type problem, is given by the following result.

Proposition 4 (Structure of the multi-type DR solution). Let p̄, d̄ be an optimal solu-

tion to the DR (21). Then

(a) d̄1 = 0 and p̄i + cid̄i = p̄i+1 + cid̄i+1, for i = 1, . . . , N − 1.

(b) Recall that types are labelled in decreasing order of their delay sensitivity parameters, i.e.,

c1 > c2 > · · · > cN . The market segments A(j), j = 1, . . . , k are contiguous in the following

sense

A(1) =
{

1, . . . , |A(1)|
}
,

A(2) =
{
|A(1)|+ 1, . . . , |A(1)|+ |A(2)|

}
,

...

A(k) =
{∑k−1

j=1 |A(j)|+ 1, . . . , N
}
.
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Figure 2: Depiction of optimal DR solution for N = 10 customer types.

Customer types

Service classes

1 32 5 64 7 98 10

Note. This DR solution specifies k = 4 service classes, where p̂(j) and d̂(j) denote the price and delay, respectively,

of service class j and A(j) denotes the segment of customer types that choose service class j.

Part (a) suggests that delays should be large enough to satisfy incentive compatibility, but not

larger. Part (b) shows that the market segment A(j), is composed of consecutive customer types.

An example with N = 10 customer types and k = 4 service classes, along with the associated DR

solution p̄, d̄ and p̂, d̂, {A(1), . . . , A(4)} is shown in Figure 2. (In what follows, we assume access to

the solution of (21).)

5.2 Prescribed Solution for the Stochastic System

Assume that the optimal solution to the DR (21) offers k service classes at prices p̂(1) > p̂(2) >

· · · > p̂(k) and delays d̂(k) > · · · > d̂(2) > d̂(1) = 0, with market segments A(1), . . . , A(k). For the DR

solution, we define the relative workload contribution from class j to be

κ̂(j) :=

∑
i∈A(j)

ΛiF̄i(p̂(j) + cid̂(j))

sµ

and, following terminology established in §3, we say that the DR solution is capacitated if
∑k

j=1 κ̂(j) =

1 and uncapacitated otherwise.

We start by specifying the prescribed stochastic solution in the case k ≥ 3; there are k classes

of service and our prescription sets prices p̂ = (p̂(1), . . . , p̂(k)). Classes are served using a strict

preemptive priority rule, giving highest priority to class 1 and lowest to class k. Injected delays

are given by δ = (δ(1), . . . , δ(k)), where: δ(1) = 0; δ(j) = d̂(j) for j = 2, . . . , k − 1; δ(k) = d̂(k) if the

system is uncapacitated; and δ(k) = 0 otherwise. If k = 1, there is only a single class priced at

p̂(1); no priorities or injected delays are needed. If k = 2, there are two service classes with prices
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Figure 3: Prescribed stochastic solution based on DR for N > 2 customer types.

Solve DR

Capacitated

Uncapacitated

Offer k service classes,
strict preemptive priority to class 1,

DR prices                    .

Inject delay in classes 2 to k.

Inject delay in classes 2 to .

Go to Figure 1.
k = 1 or 2

(p̂(1), p̂(2)); service is sequenced according to a strict preemptive priority rule; and injected delays

are given by δ(1) = 0, and δ(2) = d̂(2) if the system is uncapacitated or δ(2) = 0 otherwise.

Necessity of injected delay. Note that if k ≥ 3 the prescribed stochastic solution will always

inject delay in some of the service classes, irrespective of whether the system is capacitated or

uncapacitated. As will be shown in Theorem 4, this results in near-optimal performance. In

contrast, when k = 2 no injected delay is needed in a capacitated system, since delays arise

endogenously as a result of congestion. In the multi-class setting all classes outside the lowest

priority do not experience measurable delays as a result of congestion, hence the necessity of

injected delay to optimize the service offering.

To move forward with the stochastic analysis of this solution, we first apply the scaling in (18)

to all customer types i = 1, . . . , N . Then, in the nth system in the sequence, the demand for each

class j is given by

γn(j) =
∑
i∈A(j)

Λni F̄i(p̂(j) + cid
n
(j))1{p̂(j) + cid

n
(j) ≤ p̂(`) + cid

n
(`) for all ` = 1, . . . , k}

+
∑
i/∈A(j)

Λni F̄i(p̂(j) + cid
n
(j))1{p̂(j) + cid

n
(j) < p̂(`) + cid

n
(`) for all ` 6= j},

where dn is the overall delay vector under the control policy πn(t) = (πn1 (t), . . . , πnk (t)),

πn1 (t) = min{sn, Zn1 (t)}, πnj (t) = min

{(
sn −

∑j−1
`=1 Z

n
` (t)

)+
, Znj (t)

}
, j = 2, . . . , k.

The revenue earned in the nth system under our solution is

Rn(π, p̂, δ) = p̄(1)γ
n
(1) + · · ·+ p̄(k)γ

n
(k),
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and let Rn∗ denote the the supremum over revenues earned under any feasible solution to the N -type

mechanism design problem which generalizes (11).

Theorem 4 (Incentive compatibility and revenue optimality). Under the scaling described

above,

(a) there exists a finite Nic > 0 such that for all n ≥ Nic, the incentive compatibility conditions

are satisfied

p̂(j) + cid
n
(j) ≤ p̂(`) + cid

n
(`) for all i ∈ A(j) and j, ` = 1, . . . , k, with ` 6= j;

(b) if the stochastic solution is differentiated, k ≥ 2, then there exists a finite positive constant

M such that

Rn∗ −Rn(π, p̂, δ) ≤M for all n ≥ Nic.

Remark 3 (Connection to Afèche (2013)). Our paper leverages the formulation of Afèche

(2013), extending that framework to the more complex setting of the multi-server and multi-type

systems. Moreover, our treatment strengthens prior findings and provides additional insight in sev-

eral dimensions. In particular, we are able to separate the questions of when a revenue-maximizing

SP should offer multiple service classes and how the system should be operated, including possibly

injecting delay. We are also able analyze the revenue-maximization problem for more than two

customer types, with the rather surprising insight that in the multi-class setting injected delays

are needed to guarantee optimal revenues. In particular, for two customer types (Figure 1) and a

“capacitated” system, injected delay is not a first-order effect and is insignificant in large systems.

Since we expect that two-class systems where capacity has been optimized will never be uncapaci-

tated, injected delay will play a minor role in such settings. When we extend our method to more

than two customer types (Figure 3), it is revealed that injected delay may be a first-order effect

that remains significant in large systems, even those with optimized capacity.

A partial extension to multiple customer types can also be found in Afèche and Pavlin (2011)

and Katta and Sethuraman (2005), which show that some pooling of customer types may occur

and, in the former, some form of injected delay may be necessary. However, the results in both

of those works require strong, restrictive assumptions on the structure of customer valuations and

delay costs. By contrast, the N -type model presented in this section is a seamless extension of the

two-type setting and our results and insights generalize directly.

Remark 4 (An alternative implementation). Is it possible to achieve the same degree of

delay differentiation if k ≥ 3 without the use of injected delay in a capacitated system? While

the answer is affirmative, the resulting heuristic may not be desirable. For example, consider

a structure with two priority lanes. Users that select the most expensive service class p̂(1) get
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assigned to the high priority queue and experience negligible delay. Users that select the cheapest

class p̂(k) get assigned the second (low) priority queue. Users that select any intermediate service

class p̂(j) get assigned to the high priority queue with probability 1 − d̂n(j)/d̂
n
(k) and to the low

priority queue with probability d̂n(j)/d̂
n
(k). One can verify that this policy is incentive compatible

and results in near-optimal revenues, in the sense of Theorem 4. However, while the average delays

in the intermediate service classes are asymptotically optimal, this policy would subject those

customers to either very long delays or no delay at all, a quality that makes it less desirable from

an operational standpoint. While this demonstrates that the solution to the DR may have multiple

implementations in the stochastic setting, we believe that the one provided in §5.2 is the most

natural and efficient interpretation of the DR solution.

6 Contrast with Mendelson-Whang’s Socially Optimal Solution

In the welfare-maximization problem, the SP seeks to find prices (p1, . . . , pN ) and a policy π that

maximize the overall welfare in the system (net utility to customers plus revenue to the SP). As

with the revenue maximization objective in (11), this can be reformulated as a mechanism design

problem:

maximize W (p, d) =

N∑
i=1

Λi

(∫ ∞
pi+cidi

vfi(v) dv − cidiF̄i(pi + cidi)

)
(22)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . , N and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, . . . , N

d ∈ D(λ).

Here, the objective is to maximize the sum of the total value generated per customer type, integrated

over the corresponding subsets that purchase service, minus their total delay costs. Pricing transfers

are “internal” in this formulation and do not affect welfare.

Mendelson and Whang (1990) offered a complete analysis of this problem for a system modeled

as an M/M/1 queue. Their main insights were: i) the SP should offer N service classes, i.e., one for

each customer type; ii) the optimal prices are equal to the externality costs for each class; and iii)

resulting equilibrium delays arise naturally as the result of system congestion under a strict priority

rule that strives to minimize the total delay costs (the “cµ-rule”). A relatively simple variation of

their arguments in the M/M/1 context can be applied in the multi-server setting of our paper to

re-establish i)-iii).
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First, consider the following deterministic relaxation (DR) of the social welfare optimization

problem (22):

maximize W (p, d) (23)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . , N and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, . . . , N

N∑
i=1

λi ≤ sµ

pi ≥ 0, di ≥ 0 i = 1, . . . , N.

Assume that the model primitives are such that an optimal solution to (23) satisfies λi > 0 for

all i = 1, . . . , N . In this case, Proposition 5 below shows that the optimal solution is unique and

undifferentiated.

Proposition 5 (Solution to the Social Welfare DR). If p1, d1, . . . , pN , dN is an optimal so-

lution to the social-welfare DR (23) such that λi > 0 for all i = 1, . . . , N , then p1 = · · · = pN = p̂soc,

and d1 = · · · = dN = 0, where

p̂soc =

{
Ḡ−1

(
sµ∑N
i=1 Λi

)
,
∑N

i=1 Λi > sµ

0, otherwise.

This appears to contradict all three of the findings of Mendelson and Whang (1990)! To reconcile,

we will argue shortly that as the system size grows large, and under the optimal strategy identified

by the Mendelson-Whang solution, pricing decisions converge to a common price, delays approach

zero and, moreover, delay differentiation becomes negligible. As a consequence, the differentiated

N class menu asymptotically degenerates to a single class offering, as derived in the DR solution.

To be more precise, the Mendelson-Whang solution under the scaling (18), prescribes the vector

of social welfare optimal prices in the nth system, pn∗ = (pn1∗, . . . , p
n
N∗), to be

pnj∗ =

N∑
`=1

c`λ
n
`∗
∂EDn

`

∂λnj
, j = 1, . . . , N. (24)

Here, λnj∗ = Λnj F̄ (pnj∗ + cjEDn
j ) is the demand rate, and EDn

j is the queueing delay in each class

j = 1, . . . , N under a strict preemptive priority policy

πn1 (t) = min{sn, Zn1 (t)}, πnj (t) = min

{(
sn −

∑j−1
`=1 Z

n
` (t)

)+
, Znj (t)

}
, j = 2, . . . , N.

Let ρnj∗ = λnj∗/nµ denote the traffic intensity in class j in the nth system under this optimal solution.

Proposition 6 (Social welfare solution structure). Assume the scaling in (18) and assume

that F̄i(p̂soc) > 0 for all i = 1, . . . , N . Then as n→∞,



26 Maglaras, Yao, and Zeevi: Optimal Price and Delay Differentiation

(a) pnj∗ → p̂soc for j = 1, . . . , N ;

(b)
√
n
(

1−
∑N

j=1 ρ
n
j∗

)
→ β for some strictly positive, finite constant β that depends on model

primitives.

Part (a) of the above proposition asserts that the DR indeed captures the first order properties

of the optimal solution for the original mechanism design problem (22), and that the exact analysis

in Mendelson and Whang (1990) provides a lower order (and asymptotically vanishing) refinement

around the DR solution (that may, of course, be significant in systems of modest size).

Part (b) of the above proposition asserts that the social-welfare optimized system must equilibrate

in the QED regime, namely
∑N

j=1 ρ
n
j∗ ≈ 1 − β/

√
n. This complements the analysis in Maglaras

and Zeevi (2003a), who showed that the QED regime was welfare maximizing for a single customer

type. That is, the socially optimal resource utilization rate is “similar” in a single-type and a

multi-type system. In contrast, the revenue maximizing solution may lead to different resource

utilization regimes in single-type versus multi-type settings. Additionally, the resource utilization

findings imply that the socially optimal solution leads to almost negligible delay differentiation,

whereas the revenue maximizing solution may prescribe significant delay differentiation and, as

a result, charge significant price premiums for faster service. These asymptotic findings provide

interesting contrasts between social welfare and revenue optimization that do not seem apparent

via exact analysis.
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A Proofs

This appendix contains the proofs of Propositions 2-3 and Theorems 1-4. We defer the proofs of Propositions

1, 4-6 along with a few side lemmas to Appendix B.

Proof of Proposition 2. We prove the equivalent statement: p̄1 = p̄2 = p̂ if and only if ε2(p̂, p̂) ≤ εg(p̂).
Fix (p1, p2, d1, d2) to be a feasible solution to the DR (12) that additionally satisfies

d1 = 0, d2 =
1

c1
(p1 − p2).

The full cost for each class at this solution is

p1 + c1d1 = p1 and p2 + c2d2 = cp1 + (1− c)p2,

respectively, where c := c2/c1. Define the functions κ1(p1) and κ2(p1, p2) to be the relative workload

contributions by class 1 and class 2, respectively, at the price point (p1, p2):

κ1(p1) :=
Λ1F̄1(p1)

sµ
, κ2(p1, p2) :=

Λ1F̄2(cp1 + (1− c)p2)

sµ
. (25)

The following result, specifically (26), proves the “only if” part of the above assertion.

Lemma 1. Let p̂ be the optimal solution to the single-product problem (14), and let (p̄1, p̄2) be the optimal

solution to the DR (12). Then

p̄1 = p̄2 = p̂ implies ε2(p̂, p̂) ≤ εg(p̂) and (26)

p̄1 > p̄2 implies
ε1(p̄1)

p̄1
<

(
1− c

1− c
κ2(p̄1, p̄2)

κ1(p̄1)

)
ε2(p̄1, p̄2)

p̄2
, (27)

where ε1(p1), ε2(p1, p2) and εg(p) are the price elasticities defined in (16) and κ1(p1) and κ2(p1, p2) are

defined in (25).

It remains to show that ε2(p̂, p̂) ≤ εg(p̂) implies p̄1 = p̄2 = p̂. Note that (27) is equivalent to the statement

that p̄1 = p̄2 = p̂, provided that

ε1(p̄1)

p̄1
≥
(

1− c

1− c
κ2(p̄1, p̄2)

κ1(p̄1)

)
ε2(p̄1, p̄2)

p̄2
.

Hence, we have that

ε1(p̂) ≥
(

1− c

1− c
κ2(p̂, p̂)

κ1(p̂)

)
ε2(p̂, p̂),

which we rewrite in terms of fi and F̄i,

p̂f1(p̂)

F̄1(p̂)
≥
(

1− c

1− c
Λ2F̄2(p̂)

Λ1F̄1(p̂)

)
(1− c) p̂f2(p̂)

F̄2(p̂)
.

Some algebraic manipulation yields

Λ1f1(p̂) ≥
(
(1− c)Λ1F̄1(p̂)− cΛ2F̄2(p̂)

) f2(p̂)

F̄2(p̂)
,

Λ1f1(p̂) + Λ2f2(p̂)

Λ1F̄1(p̂) + Λ2F̄2(p̂)
≥ (1− c) f2(p̂)

F̄2(p̂)
,

εg(p̂) ≥ ε2(p̂, p̂),

and we deduce that ε2(p̂, p̂) ≤ εg(p̂) implies p̄1 = p̄2 = p̂. This concludes the proof. �
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Proof of Proposition 3. Consider the sequence of systems under the scaling (18).

Proof of (a) (Existence and uniqueness of equilibrium.) Fix a positive integer n and put sn = n. We make

two trivial observations that substantially simplify our analysis.

Observation 1: Since the control is a strict preemptive priority, the number of class 1 customers in the

system form a Markov process that is an M/M/n queue with arrival rate λn1 and service rate µ; customers

in class 2 are “invisible” to customers in class 1.

Observation 2: Since the service requirements of all customers are i.i.d. exponential with rate µ, the total

number of customers in the system form a Markov process that is an M/M/n queue with arrival rate λn1 +λn2

and service rate µ.

For any arrival rate 0 ≤ λn1 < nµ, we define, with some abuse of notation, EDn
1 (λn1 ) to be the queueing

delay in class 1 as an explicit function of the arrival rate in class 1. The expectation is taken with respect

to the stationary distribution of the class 1 headcount process under the arrival rate λn1 and the sequencing

rule π1(t). With Observation 1, standard queueing results show that such a stationary distribution exists

and is unique as long as λn1 < nµ.

For any arrival rate pair (λn1 , λ
n
2 ), with λn1 , λ

n
2 ≥ 0 and λn1 + λn2 < nµ, we define EDn

2 (λn1 , λ
n
2 ) to be the

queueing delay in class 2 as a function of arrival rates in both classes. The expectation is taken with respect

to the stationary distribution of the headcount process under arrival rates (λn1 , λ
n
2 ) and the sequencing rule

(πn1 (t), πn2 (t)). With Observation 2, standard queueing results show that such a stationary distribution exists

and is unique as long as λn1 + λn2 < nµ. Note that EDn
1 (λn1 ) is continuous and monotone increasing in λn1 .

EDn
2 (λn1 , λ

n
2 ) is continuous and monotone increasing in λn1 and in λn2 .

For each class i = 1, 2, we write the class i arrival rate in that class as an explicit function of the class i

overall delay dni ≥ 0: λni (dni ) = Λni F̄i(p̄i + cid
n
i ), i = 1, 2. Note that λni (dni ) is monotone non-inceasing in dni .

An equilibrium in the nth system is given by a delay pair (ξn1 , ξ
n
2 ) that jointly satisfies

λn1 (ξn1 ) + λn2 (δ2 + ξn2 ) < nµ,

EDn
1 (λn1 (ξn1 )) = ξn1 ,

EDn
2 (λn1 (ξn1 ), λn2 (δ2 + ξn2 )) = ξn2 .

(28)

Since class 2 customers are “invisible” to class 1, we first show that a unique ξ1 exists for class 1 and then,

given ξ1, we show that a unique ξ2 exists for class 2.

Class 1: Define h1(x) := x− EDn
1 (λn1 (x)). Note that h1(·) is continuous with h1(0) < 0 and h1(∞) > 0

(since λn1 (0) = Λn1 F̄1(p̄1) < nµ and λn1 (∞) = 0). Furthermore, h1(x) is monotone increasing in x since

EDn
1 (λn1 (x)) is monotone non-increasing in x. Therefore, there exists a unique ξn1 such that h1(ξn1 ) = 0.

Class 2: Fix λn1 = Λn1 F̄1(p̄1+c1ξ
n
1 ) and note that λn1 < nµκ̄1. Define h2(x) := x−δ2−EDn

2 (λn1 , λ
n
2 (δ2+x)).

Note that h2(·) is continuous with h2(∞) > 0 since λn2 (δ2 + ∞) = 0. Furthermore, h2(x) is monotone

increasing in x since EDn
2 (λn1 , λ

n
2 (δ2 + x)) is monotone non-increasing in x. If h(x) < 0 for some x ≥ 0 and

λn2 (δ2 + dn2 ) < nµ− λn1 for dn2 > x, then there exists a unique ξn2 such that h2(ξn1 ) = 0.

There are two cases we need to discuss. First, for the uncapacitated case (κ̄1+ κ̄2 < 1, δ2 = d̄2), take x = 0

since λn2 (d̄2) = Λn2 F̄2(p̄2 + c2d̄2) > 0 and λn1 + λn2 (d̄2) < nµ. Second, for the capacitated case (κ̄1 + κ̄2 = 1,
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δ2 = 0), take x such that λn1 + λn2 (x) = nµ. Then as x → x, EDn
2 (λn1 , λ

n
2 (x)) → ∞ and, for some ε > 0,

h(x+ ε) < 0 and λn1 + λn2 (x+ ε) < nµ.

We conclude that there exists a unique equilibrium for each n, which can be represented by the delay pair

(ξn1 , ξ
n
2 ) satisfying (28), or equivalently the traffic intensity pair (ρn1 , ρ

n
2 ), where

ρni =
Λni F̄i(p̄1 + ciξ

n
i )

nµ
, i = 1, 2.

Note that under this equilibrium, ρn1 + ρn2 < 1 and therefore a unique stationary distribution exists for every

n.

Proof of (b) (Convergence of equilibria to DR solution). We prove part (b) in two steps. In Step 1 we

show that a limit exists, ρni → ρ∞i , i = 1, 2. In Step 2 we show that the overall delays converge to the delays

in the DR solution, dni → d̄i, i = 1, 2. From Step 2, it follows immediately, by the continuity of Fi(·), that

ρ∞i = κ̄i, i = 1, 2.

In what follows, let {ρni }∞n=1 be the sequence of class i traffic intensities in equilibrium and let {EDn
i }∞n=1

be the associated sequence of class i expected queueing delays, i = 1, 2. For each n,

ρn1 =
Λ̂1

µ
F̄1(p̄1 + c1EDn

1 ),

ρn2 =
Λ̂2

µ
F̄2(p̄2 + c2δ2 + c2EDn

2 ),

where the expectation is taken with respect to the unique stationary distribution established in part (a).

Step 1. Proving that ρni → ρ∞i , i = 1, 2.

If ρn1 = 0 then EDn
1 = 0 (since there are no class 1 customers in the system), but then ρn1 = κ̄1 > 0, in

contradiction. Therefore, ρn1 > 1 for all n. Now, suppose there exist subsequences {nk}∞k=1 and {n`}∞`=1 such

that

lim
k→∞

nk(1− ρnk
1 ) = g and lim

`→∞
n`(1− ρn`

1 ) = g,

where 0 ≤ g < g ≤ ∞.

Lemma 2. Given a sequence of single-class M/M/n systems, indexed by n, with arrival rate λn and service

rate µ, with λn < nµ, let EDn be the expected queueing delay with respect to the stationary distribution.

1. If n(1− ρn)→ 0, then EDn →∞.

2. n(1− ρn)→ g ∈ (0,∞) if and only if EDn → d = 1
µg ∈ (0,∞).

3. If n(1− ρn)→∞, then EDn → 0.

Since 0 ≤ g < g ≤ ∞, by Lemma 2, we have that

0 ≤ lim
k→∞

EDnk
1 < lim

`→∞
EDn`

1 ≤ ∞.

Noting that ρn1 is continuous and strictly decreasing in EDn
1 ,

0 ≤ lim
`→∞

ρn`
1 < lim

k→∞
ρnk
1 ≤ 1.
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Since lim`→∞ ρn`
1 is strictly less than 1, we have

lim
`→∞

n`(1− ρn`
1 ) = g =∞

and therefore g ≤ g, contradicting our assumption. Therefore, all subsequences converge to a common limit,

which we denote ρ∞1 . The same argument shows that ρn1 + ρn2 converges as n→∞. Therefore, ρn2 → ρ∞2 .

Step 2. Proving that overall delays converge to the DR solution dni → d̄i, i = 1, 2.

We treat separately the capacitated and uncapacitated cases.

For the uncapacitated case (κ̄1 + κ̄2 < 1 and δ2 = d̄2), note that

ρn1 + ρn2 =
Λ̂1

µ
F̄1(p̄1 + c1EDn

1 ) +
Λ̂2

µ
F̄2(p̄2 + c2(d̄2 + EDn

2 ))

≤ κ̄1 + κ̄2 < 1.

Since ρn1 + ρn2 is eventually strictly less than 1, EDn
1 → 0 and EDn

2 → 0, and we conclude that dn1 → d̄1 = 0

and dn2 → δ2 = d̄2. For the capacitated case (κ̄1 + κ̄2 = 1, κ̄2 > 0, and δ2 = 0), note that in class 1,

ρn1 ≤ κ̄1 < 1 for all n so EDn
1 → 0 and ρn1 → κ̄1.

In class 2, suppose limn→∞ EDn
2 < d̄2. Then there exists ε > 0 such that for all n sufficiently large

ρn2 =
Λ̂2

µ
F̄2(p̄2 + c2EDn

2 ) ≥ κ̄2 + ε.

Since ρn1 → κ̄1, we have that eventually ρn1 + ρn2 > κ̄1 + κ̄2 = 1, in contradiction.

Suppose limn→∞ EDn
2 > d̄2. Then there exists ε > 0 such that for all n sufficiently large

ρn2 =
Λ̂2

µ
F̄2(p̄2 + c2EDn

2 ) ≤ κ̄2 − ε.

Since ρn1 → κ̄1, we have that eventually ρn1 + ρn2 < 1, which implies EDn
2 → 0, in contradiction. This

completes the proof. �

Lemma 3 (Rates of convergence). Assume the scaling in (18). Set the stochastic solution to prices

(p̄1, p̄2) and injected delays (δ1, δ2), together with the sequencing rule π prescribed in §3.3. Assume that

customer types choose the “correct” service class, i.e.,

λnj = Λnj F̄j(p̄j + cjd
n
j ), for j = 1, 2.

If the DR solution is uncapacitated (κ̄1 + κ̄2 < 1),

dn1 = o(1/n) and dn2 = d̄2 + o(1/n), (29)

while if the DR solution is capacitated (κ̄1 + κ̄2 = 1),

dn1 = o(1/n) and dn2 = d̄2 +O(1/n). (30)

Proof of Lemma 3. This will be central to the proof of Theorem 1. We prove this in three steps.

Step 1. We first prove (29). From part (b), ρn1 → κ̄1 < 1 and therefore
√
n(1 − ρn1 ) → ∞. The proof of

Proposition 1 of Halfin and Whitt (1981) shows that for a single-class multi-server queue,

√
n(1− ρn1 ) exp(n(1− ρn1 )2/2)ν(ρn1 )→ 1

1 +
√

2π
as n→∞.
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Here, ν(·) is the probability that a class 1 customer has a positive waiting time, as a function of traffic

intensity. Therefore,

n3/2 exp(n(1− ρn1 )2/2)EDn
1 →

1

µ(1− κ̄1)(1 +
√

2π)
∈ (0,∞) as n→∞,

which yields dn1 = O(n−3/2e−bn) = o(1/n) where b = 1
2 (1− κ̄1)2. This also proves that EDn

2 = o(1/n), and

therefore dn2 = δ2 + o(1/n) = d̄2 + o(1/n), if κ̄1 + κ̄2 < 1.

Step 2. We now show that n(κ̄1 − ρn1 )→ 0. Since F1(·) is continuously differentiable, so there exists some

d̃n1 ∈ [0, dn1 ] such that

n(κ̄1 − ρ1) = ndn1
c1Λ̂1f(p̄1 + c1d̃

n
1 )

µ
.

Since ndn1 → 0 as n→∞, we conclude that n(κ̄1−ρn1 )→ 0. This also proves n(κ̄2−ρn2 )→ 0, if κ̄1 + κ̄2 < 1.

Step 3. We now show that n(κ̄2 − ρn2 )→
(
µκ̄2d̄2

)−1 ∈ (0,∞). Note that

ρn1EDn
1 + ρn2EDn

2

ρn1 + ρn2
=

ν(ρn1 + ρn2 )

nµ(1− ρn1 − ρn2 )
,

where ν(·) is the probability that a customer in an M/M/n queue has a positive waiting time as a function

of traffic intensity. Applying part (b), we see that EDn → κ̄2d̄2 and by Lemma 2(b) it must hold that

n(1− ρn1 − ρn2 ) = n(κ̄1 − ρn1 ) + n(κ̄2 − ρn2 )→ 1

µκ̄2d̄2
∈ (0,∞).

F2(·) is continuously differentiable, so there exists some d̃n2 , where |d̃n2 − d̄2| ≤ |dn2 − d̄2|, such that

n(κ̄2 − ρn2 ) = n(dn2 − d̄2)
c2Λ̂2f2(p̄2 + c2d̃

n
2 )

µ
,

and, by continuity, f2(p̄2 + c2d̃
n
2 )→ f2(p̄2 + c2d̄2) > 0. Therefore

n(dn2 − d̄2)→ 1

c2κ̄2d̄2Λ̂2f2(p̄2 + c2d̄2)
∈ (0,∞).

We conclude that dn2 = d̄2 +O(1/n). This completes the proof. �

Proof of Theorem 1. It suffices to show that the delays (dn1 , d
n
2 ) from Proposition 3 are incentive com-

patible for sufficiently large n. If incentive compatibility is satisfied, then by the revelation principle it is a

Nash equilibrium for customers to truthfully report their types and valuations. This allows us to drop the

assumption that customers choose the correct service class and thus define for any n ≥ Nic a system where

the customer demand model is given by (7)-(8), under which an equilibrium exists, and where the prices and

equilibrium delays are incentive compatible.

Applying Proposition 1(b) to the incentive compatibility conditions, the delays (dn1 , d
n
2 ) are incentive

compatible if

d̄2 ≤ (dn2 − dn1 ) ≤ c1
c2
d̄2. (31)

From Proposition 3(b) we have that dn1 → 0 and dn2 → d̄2 as n→∞ Since c1/c2 > 1, there exists some N1
ic

such that for all n ≥ N1
ic, d

n
2 − dn1 ≤ c1

c2
d̄2.
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For the inequality d̄2 ≤ (dn2 − dn1 ), we consider separately the uncapacitated and capacitated cases. In

the uncapacitated case, dn1 = EDn
1 and dn2 = EDn

2 + δ2 = EDn
2 + d̄2. The strict priority rule implies that

EDn
1 ≤ EDn

2 for all n. Therefore, for all n ≥ N2
ic = 1,

dn2 − dn1 = d̄2 + EDn
2 − EDn

1 ≥ d̄2.

In the capacitated case, dn1 = EDn
1 and dn2 = EDn

2 (no delay is injected), so

dn2 − dn1 = d̄2 +
1

n

(
n(dn2 − d̄2)− ndn1

)
. (32)

In the proof of Lemma 3 we showed that n(dn2 − d̄2) → β > 0 and ndn1 → 0, as n → ∞. Therefore, there

exists some N2
ic such that for all n ≥ N2

ic,(
n(dn2 − d̄2)− ndn1

)
≥ 0,

so dn2 − dn1 ≥ d̄2.

For all n ≥ Nic = max{N1
ic, N

2
ic}, the delays (dn1 , d

n
2 ) are incentive compatible. This concludes the proof.

�

Proof of Theorem 2. By Theorem 1, for any n ≥ Nic, the prescribed solution is incentive compatible

and customers choose the “correct” service class. We write the revenues earned in the nth system as

Rn(π, p̄1, p̄2, δ1, δ2) = p̄1λ
n
1 + p̄2λ

n
2 = nµ(p̄1ρ

n
1 + p̄2ρ

n
2 )

where λni = ΛiF̄i(p̄i + cid
n
i ) and ρni = λni /nµ. Therefore

Rn(π, p̄1, p̄2, δ1, δ2) = nµ(p̄1κ̄1 + p̄2κ̄2)− µp̄1n(κ̄1 − ρn1 )− µp̄2n(κ̄2 − ρn2 )

= nR̄− µp̄1n(κ̄1 − ρn1 )− µp̄2n(κ̄2 − ρn2 ). (33)

From (29) and (30) we have that n(κ̄1 − ρn1 )→ 0 while, if the DR solution is uncapacitated n(κ̄2 − ρn2 )→ 0

and if the DR solution is capacitated n(κ̄2−ρn2 )→ 1/µκ̄2d̄2. Therefore, there exists a finite, positive constant

M such that

n(κ̄1 − ρn1 ) + n(κ̄2 − ρn2 ) ≤M for all n ≥ Nic. �

Proof of Theorem 3. By Theorem 1, for any n ≥ Nic, the prescribed solution is incentive compatible

and customers choose the “correct” service class. Therefore, all the assumptions of Proposition 3 and Lemma

3 are satisfied for the sequence of systems indexed by n, starting at Nic, and the results of Proposition 3

and Lemma 3 hold. In particular, a unique sequence of equilibria exists, the equilibrium delays converges to

the DR solution, and as n→∞, if the DR solution is uncapacitated,

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 + o(1/n),

while if the DR solution is capacitated,

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 −
α

n
+ o(1/n).

where α = 1/µκ̄2d̄2. This concludes the proof. �
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Proof of Theorem 4. This is a direct extension of the two-type case, namely Theorems 1-2 and support-

ing results. The proof is essentially identical, and we will provide an outline here for k > 2 service classes,

omitting further details.

Class 1, the highest priority service class, is the same as in the two-type, two-class case. Intermediate

service classes, j = 2, . . . , k − 1, also operate in the QD regime, in terms of traffic intensity and queueing

delays, but the SP adds injected delay to ensure that the IC constraints are satisfied since the system

congestion for these classes is not sufficient (analogous to class 2 in the two-type uncapacitated system).

Finally, the lowest priority service class k operates in the QD regime with injected delay if the system is

uncapacitated and in the ED regime with no injected delay if the system is capacitated. This is analogous

to class 2 in the two-type, two-class system.

B Supplementary Proofs (to be included in full technical report)

Proof of Proposition 1. Proposition 1 is a special case of Proposition 4(a). �

Proof of Proposition 4.

Proof of (a). Suppose each property does not hold for a feasible solution (p̄1, . . . , p̄N ), (d̄1, . . . , d̄N ). We

construct an alternative solution (p̆1, . . . , p̆N ), (d̆1, . . . , d̆N ), which is feasible and strictly improves on the

former.

Suppose d̄1 > 0. Take p̆1 = p1 + c1d1, d̆1 = 0, and p̆i = pi, d̆i = di for i = 2, . . . , N .

Suppose p̄i + cid̄i < p̄i+1 + cid̄i+1. Take

p̆i+1 =
ci(p̄i+1 + ci+1d̄i+1)− ci+1(p̄i + cid̄i)

ci − ci+1
d̆i+1 =

p̄i + cid̄i − p̄i+1 − ci+1d̄i+1

ci − ci+1

and p̆j = p̄j , d̆j = d̄j for j 6= i+ 1.

Proof of (b). We write the result of part (a) as

d̄i = d̄i−1 +
1

ci−1
(p̄i−1 − p̄i).

Additionally, incentive compatibility requires

p̄i + cid̄i ≤ p̄i−1 + cid̄i−1 for i = 2, . . . , N.

Therefore p̄1 ≥ p̄2 ≥ · · · ≥ p̄N and the sets {A(1), . . . , A(N)} must have the structure described. �

Proof of Lemma 1. Apply Proposition 1 to reduce the deterministic relaxation (12) to two variables p1

and p2, and set c := c2
c1
< 1,

maximize Λ1p1F̄1(p1) + Λ2p2F̄2(cp1 + (1− c)p2) (34)

subject to p1 ≥ p2

Λ1F̄1(p1) + Λ2F̄2(cp1 + (1− c)p2) ≤ sµ.

Equations (26) and (27) follow from the KKT necessary conditions of (34). �
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Proof of Lemma 2. Lemma 2 follows immediately from Lemma 4 and the M/M/n delay formula. �

Lemma 4 (Halfin and Whitt). Given a sequence of single-class M/M/n systems, indexed by n, with

arrival rate λn and service rate µ, we define ρn = λn

nµ and νn = P(Zn ≥ n), the probability that all servers

are busy.

(a) If
√
n(1− ρn)→ 0 then νn → 1.

(b)
√
n(1− ρn)→ β ∈ (0,∞) if and only if νn → ν ∈ (0, 1).

(c) If
√
n(1− ρn)→∞ then νn → 0.

Proof of Proposition 5. Let p1, d1, . . . , pN , dN be an optimal solution to (23). If
∑N
i=1 Λi ≤ sµ then

p1 = · · · = pN = p̂soc = 0 and d1 = · · · = dN = 0 is trivially the optimal solution. Assume
∑N
i=1 Λi > sµ

and thus
∑N
i=1 ΛiF̄i (p̂soc) = sµ. We prove that if λi > 0 then pi = p̂soc and di = 0, for any i = 1, . . . , N .

Proposition 5 follows immediately.

Apply the identity
∫∞
x
vfi(v) dv = xF̄i(x)+

∫∞
x
F̄i(v) dv to rewrite the social welfare at the optimal solution

as

W (p1, d1, . . . , pN , dN ) =

N∑
i=1

piΛiF̄i(pi + cidi) +

N∑
i=1

Λi

∫ ∞
pi+cidi

F̄i(v) dv

and define Wsoc to be the social welfare at the single-class solution (p̂soc, 0)

Wsoc := p̂socsµ+

N∑
i=1

Λi

∫ ∞
p̂soc

F̄i(v) dv.

Consider the difference in social welfare between the two solutions

W (p1, d1, . . . , pN , dN )−Wsoc =

N∑
i=1

Λi

(
piF̄i (pi + cidi) +

∫ ∞
pi+cidi

F̄i(v) dv

)
− p̂socsµ−

N∑
i=1

Λi

∫ ∞
p̂soc

F̄i(v) dv

= p̂soc

(
N∑
i=1

ΛiF̄i(pi + cidi)− sµ

)
︸ ︷︷ ︸

≤0

+
N∑
i=1

Λi

(
(pi − p̂soc)F̄i (pi + cidi) +

∫ p̂soc

pi+cidi

F̄i(v) dv

)

≤
N∑
i=1

Λi

(
(pi − p̂soc)F̄i (pi + cidi) +

∫ p̂soc

pi+cidi

F̄i(v) dv

)
.

Since F̄i(·) is non-negative and non-increasing, we have for any i = 1, . . . , N ,

(pi − p̂soc)F̄i (pi + cidi) +

∫ p̂soc

pi+cidi

F̄i(v) dv ≤ 0. (35)

Moreover, (35) holds with strict inequality for any i such that λi > 0 and pi 6= p̂soc. (This is easily checked

in each of the cases: i) p̂soc < pi, ii) pi < p̂soc ≤ pi + cidi, and iii) p̂soc > pi + cidi.) Therefore, if λi > 0 and

pi 6= p̂soc then W (p1, d1, . . . , pN , dN ) < Wsoc in contradiction. �

Proof of Proposition 6.
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Proof of (a). Let EDn
j∗ be the queueing delay for class j, j = 1, . . . , N , in the nth system operating

under the optimal solution; let Wn
∗ be the optimal social welfare:

Wn
∗ :=

N∑
j=1

Λnj

(∫ ∞
pnj∗+cjEDn

j∗

vfj(v) dv − cjEDn
j∗F̄j(p

n
j∗ + cjEDn

j∗)

)
.

Let EDn
soc be the queueing delay in the nth system operating with a single service class at price p̂soc and let

Wn
soc be the resulting social welfare:

Wn
soc :=

N∑
j=1

Λnj

(∫ ∞
p̂soc+cjEDn

soc

vfj(v) dv − cjdjF̄j(p̂soc + cjEDn
soc)

)
.

We first show that EDn
soc → 0. Define ρnsoc to be the utilization in the nth system and note that

ρnsoc =

N∑
j=1

Λnj
nµ

F̄j(p̂
n
soc + cjEDn

soc) <

N∑
j=1

Λnj
nµ

F̄j(p̂
n
soc) ≤ 1 for all n.

If limn→∞ EDn
soc > 0 then limn→∞ ρnsoc < 1 implying that limn→∞ EDn

soc = 0, in contradiction. If

limn→∞ pnj∗ 6= p̂soc then
Wn

∗
Wn

soc
< 1 for sufficiently large n, in contradiction.

Proof of (b). We can write the queueing delays in each class as

EDn
1∗ = ψn(ρn1∗), and EDn

j∗ =
ωnj∗ψ

n(ωnj∗)

ρnj∗
−
ωn(j−1)∗ψ

n(ωn(j−1)∗)

ρnj∗
for j = 2, . . . , N. (36)

where ωnj∗ :=
∑j
`=1 ρ

n
`∗ for j = 1, . . . , N ,

νn(x) :=

n−1∑
j=0

(nx)j

j!
+

(nx)n

n!(1− x)

−1 (nx)n

n!(1− x)
and ψn(x) :=

νn(x)

nµ(1− x)
. (37)

Note that νn(x) is the formula for probability of delay and ψn(x) is the formula for expected delay in a

standard M/M/n queue in stationarity, each as a function of traffic intensity x ∈ [0, 1).

Define

κj∗ :=
Λ̂jF̄j(p̂soc)

µ
for j = 1, . . . , N.

From part (a) we have ρnj∗ → κj∗. Since
∑N−1
j=1 κj∗ < 1, we have that, n(κj∗−ρnj∗)→ 0 for all j = 1, . . . , N−1

(see Step 2 in the proof of Lemma 3) and therefore
√
n(κj∗ − ρnj∗) → 0 for all j = 1, . . . , N − 1. It remains

to show that
√
n(κN∗ − ρnN∗)→ β ∈ (0,∞).

Since FN (·) is continuously differentiable, there exists some d̃n such that

(κN∗ − ρnN∗) = EDn
N∗

Λ̂NfN (pnN∗ + cN d̃
n)

µ
.

According to the formulas above, we can write

EDn
N∗ =

ωnN∗
ρnN∗

νn(ωnN∗)

nµ(1− ωnN∗)
−
ωn(N−1)∗

ρnN∗

νn(ωn(N−1)∗)

nµ(1− ωn(N−1)∗)

n(1− ωnN∗)EDn
N∗ =

ωnN∗
µρnN∗

(
νn(ωnN∗)−

ωn(N−1)∗

ωnN∗

(1− ωnN∗)
(1− ωn(N−1)∗)

νn(ωn(N−1)∗)

)

lim
n→∞

n(1− ωnN∗)EDn
N∗ =

1

µκN∗
lim
n→∞

νn(ωnN∗).
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Also, note that

n(1− ωnN∗)(κN∗ − ρnN∗) =

N−1∑
j=1

n
(
κnj∗ − ρnj∗

)
(κN∗ − ρnN∗) + n(κN∗ − ρnN∗)2

lim
n→∞

n(1− ωnN∗)(κN∗ − ρnN∗) = lim
n→∞

n(κN∗ − ρnN∗)2.

Therefore, we have that (
lim
n→∞

√
n(κN∗ − ρnN∗)

)2
=

Λ̂NfN (p̂soc)

µ2κN∗
lim
n→∞

νn(ωnN∗).

By Lemma 4, it must be that
√
n(κN∗ − ρnN∗)→ β ∈ (0,∞). �
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