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Abstract

Motivated by the proliferation of user generated content online, we study a market with

heterogeneous customers who learn in a Bayesian manner the quality of an offered product by

observing the reviews of customers who purchased the product earlier in time. The seller, to

whom the quality is initially unknown, as well, can adjust her prices dynamically according to the

reviews’ changing sentiment. We find that this social learning process is successful; agents—the

consumers and seller—eventually learn the quality of the product. This holds, under different

conditions, both in the case when agents observe an ordered and unordered history of reviews.

Analyzing the social learning trajectory, we find that earlier reviews are more influential than

later ones. Finally, we study the seller’s pricing problem, where we first show that the seller

benefits from social learning ex ante, i.e., before knowing the quality of her product. Under

some conditions, we show that the seller can speed up learning by lowering her price, which

is in sharp contrast to Bayesian learning results from private signals as opposed to reviews.

Furthermore, we show that the seller’s optimal dynamic pricing strategy charges a lower price

than the corresponding myopic policy that ignores the effect of pricing on the social learning

process.

1 Introduction

Online review sites are playing an increasingly large role in consumers’ purchasing decisions.

A recent survey by Tripavdvisor, a review site for the hospitality industry, shows that 90% of

hoteliers think that reviews are very important for their business and 81% check their reviews

at least weekly. Other industries such as online retail, motion pictures, and restaurants have seen
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as well as seminar participants at Informs, MSOM, INSEAD, NetEcon.
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customers’ decisions increasingly influenced by reviews. The proliferation of smartphones is making

access to such review sites easier than ever.

Motivated by this trend, this paper studies consumer reviews in the spirit of the literature

on social learning. We adopt a stylized model in which a monopolist seller introduces a new

product with unknown quality to a market of heterogeneous consumers who have access to product

reviews generated by consumers who arrived earlier in time. The key elements in the model are:

(a) consumers learn in a Bayesian manner about the product quality from past reviews, (b) the

mechanism by which consumers report their reviews resembles that of online review sites, albeit

in a simplified way, and (c) consumers have heterogeneous preferences (willingness-to-pay) for the

product.

In more detail, the product (or service) features observed attributes, e.g., location, and unob-

served attributes that we denote with the term quality. To facilitate the Bayesian inference the

intrinsic quality of the product is either High (H) or Low (L). The quality experienced by a con-

sumer who purchases the product is a random perturbation around the intrinsic quality, e.g., due to

variability in the service delivery process. Both the seller and the consumers are equally uniformed

about its realization. As a result the seller’s price is not itself an informative signal about quality.

Consumers arrive sequentially over time and make inference about the product quality based

on the information available in the market, as described below. Following that, consumers make a

once and for all decision of whether to purchase or to forgo the product, depending on the updated

quality distribution and on their idiosyncratic preference for the observed attributes that jointly

determine their willingness-to-pay. The heterogeneity in preferences is captured by consumers’

types that are private information. Prior to each purchase decision, the seller sets a price after

making similar inference about the product quality. Consumers and the seller seek to maximize

their expected payoff, the latter comprising the discounted revenue contributions from the sequence

of consumers.

Buyers report a review stating that they “liked” the product, if their ex-post net utility exceeded

that available from the no-purchase option, or that they “disliked” the product, otherwise. The

action of consumers who forgo the product are not observed by their predecessors. Reviews are

only partially informative due to the heterogeneity in preferences that remains unseen and the

fluctuations in the experienced quality of the product. Each agent—consumer or seller—observes

the ordered sequence of consumer reviews and their associated prices. Finally, agents are rational

and make inferences about the quality from the information available to them in a Bayesian fashion.

We formulate this model as a game and analyze its various properties.

From a modeling viewpoint, the formulation of the problem of learning from reviews is novel

and practically relevant. The model is flexible and can be extended to account for more subtle
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forms of consumer heterogeneity, as well as different mechanisms for writing reviews, e.g., where

each buyer decides whether to write a review through some random procedure.

Our first set of results studies the effect of consumer reviews in social learning. To start with, we

show that the above-mentioned Bayesian learning process is successful in the sense that eventually

consumers almost surely learn the intrinsic quality of the product. Specifically, Proposition 3.4

shows that the conditional beliefs converge to a point mass distribution on the true state of the

world. Since no-purchase decisions are not observed, the sequence of beliefs is not a martingale,

therefore the convergence result requires some extra argument. In particular, we show that non-

purchasing consumers have no informational contribution to the learning process, and, as such,

their absence does not affect the decisions of the following consumers.

Second, we study some structural properties of the learning trajectory. We begin by analyzing

the effect of the order of reviews on consumers’ beliefs, highlighting the importance of early reviews

in a Bayesian learning setting. The building block of the analysis is a comparison of two posteriors:

one posterior after observing one consumer who liked the product followed by a consumer who

disliked it, and the other where the two reviews are reported in reverse order. Proposition 4.1

shows that under general conditions on the distribution of the involved random variables, the

posterior after the first sequence (like, dislike) will be greater than the posterior after the second

sequence (dislike, like). This result is novel in its own right, has implications for the importance of

early reviews on the product’s demand, and is of possible interest in other models with learning.

Moreover, we show in Proposition 4.2 that the likelihood that the next review will be positive

is decreasing with the belief, or in other words that reviews tend to be negative following high

quality expectation produced by positive past reviews, and similarly positive reviews tend to follow

negative ones. This result agrees with the empirical findings of Talwar, Jurca, and Faltings (2007)

who analyze the influence of past ratings on future reviews. Their explanation is that consumers’

reference point in evaluating the product is their quality expectation given by past reviews; in

contrast we show that this is the result of a self-selection bias resulting from rational consumer

behavior. Finally, Proposition 4.4 shows how increased variability in the perturbations around the

intrinsic quality slows down learning, demonstrating that operational policies may have significant

effect of consumer learning.

Third, we study the effect of social learning on the seller’s pricing decisions. Theorem 5.3 shows

that ex-ante the seller benefits from social learning in the sense that her ex-ante expected revenue

increases if consumers engage in social learning; however, ex-post, i.e., after the true quality has

been revealed, the seller is better off if the quality is high, and worse off, otherwise. Bose, Orosel,

Ottaviani, and Vesterlund (2006) have argued that social learning benefits the seller in a setting with

signals, and the above result justifies their conclusion in a setting with reviews and heterogenous

preferences.
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The effect of price on the speed of learning is ambiguous: A lower prices stimulates reviews

and consequentially learning, but it also increases consumers surplus, which can weaken the signal

conveyed by the review. Assuming consumer types are exponentially distributed, Proposition 5.5

shows that the seller can accelerate learning by lowering her price and stimulating more purchases.

This result stands in sharp contrast to Bose et al. (2006) who show that when learning from private

signals, increasing the price speeds up learning by screening consumers with the highest signals. In

that respect, learning from reviews is different than learning from signals, and the two models call

for reversed operational controls to affect learning.

Deriving a complete characterization of the optimal pricing policy is intractable. However, an

interesting result that we derive in Proposition 5.6 illustrates its structural properties: the optimal

dynamic policy always charges a lower price than the corresponding myopic policy that optimizes

instantaneous revenues but disregards the effect of price on the learning trajectory. This result is

consistent with Theorem 5.3 and Proposition 5.5 and ultimately suggests that the optimal dynamic

price is one that incentivizes learning and, moreover, is willing to tradeoff immediate revenues to

accelerate learning and extract higher future expected revenues. Finally, contrasting the pricing

results to Proposition 4.4 we note that an alternate lever to accelerate learning is for the seller to

operationally focus on reducing variability of experienced quality, to the extent that this is possible.

We conclude the paper with an important result motivated by a practical consideration. Namely,

while it is possible for consumers to extract and study the chronological sequence of reviews from

review aggregator sites, this is cumbersome and consumers may be more likely to react to aggregate

review information, i.e., the cumulative numbers of positive and negative reviews, as opposed to

detailed review sequence information. There is empirical support for that observation in various

papers, e.g., Luca (2011). This partial information affects in a crucial way the learning dynamics,

but, as Proposition 6.2 establishes, asymptotic learning continues to occur in this restricted infor-

mation setting. This result is of interest in its own right and its derivation and bounding approach,

which leverage Proposition 4.1, may be of interest in related settings. A model of social learning

from signals where agents only observed unordered samples from the action history is studied in

Smith and Sørensen (2008).

Our model retains some aspects of the literature on social learning that started with Banerjee

(1992) and Bikhchandani, Hirshleifer, and Welch (1992) who show that social learning may fail—

even asymptotically—resulting in herding to a bad outcome. The informational structure in our

model differs from theirs considerably. In our case, consumers have no private information that is

associated with the state of the world. Namely, if one lets all consumers exchange any information

they may have before any of them makes a purchasing decision, they would be equally uninformed

about the state of the world.

Many papers have extended these principal models. Smith and Sørensen (2000) show that
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asymptotic learning holds if agents’ signals have unbounded strength. Acemoglu, Dahleh, Lobel,

and Ozdaglar (2011) consider agents who are embedded on a general social network and find

conditions on the social network and signal structure for asymptotic learning. Herrera and Hörner

(2013) consider a model where, like in this paper, agents make a binary choice—“buy” and “not

buy”—but only the “buy” decision can be observed by predecessors. They show that asymptotic

learning occurs when signals have unbounded strength and agents observe the time passed since

the product was launched. Asymptotic learning is at the core of the model in Acemoglu, Bimpikis,

and Ozdaglar (2013) where agents can collect information by forming costly communication links

or by delaying their irreversible action. Goeree, Palfrey, and Rogers (2006) consider a model

where agents make choices sequentially and their payoff depends not only on the state of the world

and their action, but also on an idiosyncratic privately observed shock. Like in our model, this

heterogeneity of the consumers makes herding phenomena impossible. The above-mentioned papers

do not consider pricing decisions.

Many papers have considered social learning with word-of-mouth communication. Banerjee

and Fudenberg (2004) consider such communication with repeated interactions, however they do

not model word-of-mouth explicitly. Bergemann and Välimäki (1997) consider a duopoly and

heterogeneous consumers on a line, who report their experienced utility and analyze the resulting

price path. Bose et al. (2006) were the first to consider pricing problems in the presence of social

learning. In their model agents have private signals, and this marks the main difference with respect

to the model we study here. Candogan, Bimpikis, and Ozdaglar (2012) study pricing strategies

for a seller when consumers are part of a social network and face network externalities, but do

not consider social learning. Ifrach, Maglaras, and Scarsini (2012) have the closest informational

structure to ours, however their consumers are not Bayesian and their main focus is on the seller’s

pricing decision.

The paper is organized as follows. Section 2 introduces the Bayesian learning model from

reviews, and Sections 3 and 4 establish the asymptotic learning result and study the structural

properties of the learning trajectory, respectively. Section 5 examines the seller’s pricing problem,

and finally Section 6 extends the asymptotic learning result to the case where the review sequence

is unobservable.

Notation

Given any sequence {Xt} of i.i.d. random variables, the distribution function of X1 is denoted

by FX , its survival function by F̄X , its density by fX , that is,

FX(t) =

∫ t

−∞
fX(s) ds = 1− F̄X(t).
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The symbol 1{A} denotes the indicator of the event A.

2 The model

A monopolist introduces a product or service of unknown quality to a market of heterogeneous

consumers who will learn about this quality through a social learning mechanism and will make

their respective purchase decisions accordingly. Specifically, the monopolist introduces a product of

intrinsic quality Q that for simplicity is assumed to take one of two possible values L or H, where

H > L. The intrinsic quality of the product is determined through a random draw at time t = 0,

and takes value H with probability π0 and value L with probability 1− π0. The realization of Q is

assumed to be unknown to the potential consumers and to the seller (cf. Remark 2.2).

Consumers arrive sequentially and are indexed by their arrival time t ∈ {1, 2, . . .}. They are het-

erogeneous with respect to their preference for the product. Consumer t’s preference is represented

by his type Θt. Types are i.i.d. random variables with a strictly increasing continuous distribution

function FΘ. The type Θt is known to consumer t, but not to the other consumers. A consumer

t who purchases the product will experience a quality level Qt = Q + εt, where εt is a random

fluctuation around the nominal and initially unknown quality level Q. This fluctuation could be

the result of variations in the product itself, or even variations in the way individuals experience

or perceive quality. The random variables εt are i.i.d. with a continuous, zero mean distribution

function Fε, independent of the types Θt.

As an example one could consider a dinning experience in a new restaurant. Some of the

characteristics of the restaurant are observable and as such reflected in the consumer type Θt, but

the quality of the cuisine or of the overall experience is still unknown. In the restaurant example,

fluctuations in the experienced quality could be the result of variability in the quality of the prepared

menu items, of the table service rendered, the ambience, etc.

Each consumer t makes a once-and-for-all purchase decision denoted by Bt ∈ {0, 1}: he either

buys the product (Bt = 1) or does not buy it (Bt = 0). If a consumer buys the product, his payoff

is given by the following simple additive form

Vt := Θt +Qt − pt, (2.1)

where pt is the price of the product at time t. If he chooses to forgo the product his payoff is given

by 0, without loss of generality. That is, the payoff of consumer t is given by BtVt. Whatever the

purchase decision is, consumers do not revisit it in later periods.

If Bt = 1, once consumer t has bought the product and experienced its quality, he publicly
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posts a review Rt, where

Rt =


U if Bt = 1, and Vt ≥ 0,

D if Bt = 1, and Vt < 0,

7 if Bt = 0.

The review is either positive (thumbs up), if consumer t’s ex-post net-utility is non-negative (i.e.,

exceeds that of the no-purchase option), and negative (thumbs down), otherwise.1. Although

consumers who do not buy the product do not review it, it is useful to suppose that they report a

blank review 7. We will show that, in contrast to models with private signals, in our model 7’s are

not informative.

Define the time indices of consumers who choose to purchase the product

τ1 = min(t | Bt = 1) and τk = min(t | t > τk−1, Bt = 1)

and let the corresponding (price, review) histories be, for τk ≤ t < τk+1,

ht = (pτ1 , Rτ1 , . . . , pτk , Rτk), (2.2)

h+
t = (ht, pt+1) = (pτ1 , Rτ1 , . . . , pτk , Rτk , pt+1). (2.3)

At each period t the seller observes ht−1, while consumer t observes history h+
t−1. Let Ht the set of

all histories ht and H +
t the set of all histories h+

t . Note that the realization of Θt and εt is never

revealed to consumers different from t. Here consumers generate signals about the quality of the

product when they review it, whereas in the literature on social learning with signals, they reveal

privately held information when making a purchase decision.

The form of the utility function, review decision, information structure, and all the distributions

of the relevant random variables are assumed to be common knowledge.

Remark 2.1 (Reviews). In practice, some online review systems follow similar binary reviews

(e.g., youtube.com, ebay.com), but most follow a finer review scale with 5-star scale being the most

common (e.g., Amazon.com, Yelp.com). However, it is has been well documented that reviews

typically follow a bimodal distribution even with finer scales, indicating that consumers tend to

submit binary reviews regardless of the review scale2 (e.g., see Hu, Pavlou, and Zhang, 2006).

Remark 2.2 (Seller’s information). The seller does not hold any private information about the

quality of the product or value of the disturbances around it, but rather is as informed as consumers

1All our results extend to the case when each buying consumer writes a review with probability η ∈ (0, 1], as long
as this is independent of the reviews of past consumers and the experienced utility Vt.

2An extreme example of bimodal reviews is used in Rotten Tomatoes, a popular review site for movies, where
reviews on any scale are converted to either a “ripe” tomato or a “rotten” one, corresponding to thumbs up and
thumbs down, respectively.
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are on the realization of the product’s quality, i.e., the seller does not know ex-ante whether the

product is of high quality. Under this assumption, the price is not itself a signal of quality that

consumers could use to learn Q. The analysis of the paper would readily extend to a setting where

the seller may in fact know Q but due to external factors, such as competition or other marketing

considerations, the price of the product is again non indicative of the realization of Q.

Strategies. Consumer t’s pure strategy is a measurable functions Bt : T ×H +
t−1 → {0, 1}, where

T is the set of consumer types. Call the set of these strategies Bt. Given his type and conditional

on h+
t−1, consumer t chooses either to buy or forgo the product to maximize his expected payoff

BtE[Vt|Θt, h
+
t ].

Note that Vt is independent of the actions of the other consumers, including the ones taken by con-

sumers 1, . . . , t− 1; past actions affect player t’s inference, not his payoff. We call B = (B1, B2, . . .)

the profile of all consumers’ strategies.

At every time t, based on the history ht−1, the seller chooses the price for that period, denoted

by pt. Hence, the seller’s strategy set Φ is the set of all measurable functions φ : H → R+,

where H := ∪t≥0Ht is the set of all possible histories. The seller seeks to maximize her expected

discounted profit given by

E

 ∞∑
t=0

βtptBt

 , (2.4)

where β ∈ (0, 1) is the discount factor. It is assumed that the seller’s production costs are zero.

We comment in Section 3 about the case with positive marginal costs.

Equilibrium. We formalize the model as a Bayesian game. There is a probability space (Ω,F ,P)

on which all the random quantities are defined. Moreover, the probability measure P is common

across players. The set of players is L := S ∪ N+, where S is the seller and the remaining players

are the consumers. Consumer t’s type is given by Θt, while the seller’s type is degenerate. The set

of payoff-relevant states of the world is {H,L}. Each player forms beliefs on the state of the world

given the history available to him/her and the strategies played by other players. In a Bayesian

Nash equilibrium we require that these beliefs are computed using Bayes rule, whenever possible.

Definition 2.3. A strategy profile (φ∗, B∗) is a perfect Bayesian equilibrium (PBE) if
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1.

E

 ∞∑
t=k

βtφ∗(ht)B
∗
t

 ≥ E

 ∞∑
t=k

βtφ(ht)B
∗
t

 (2.5)

for k = 0, 1, . . . and for all φ ∈ Φ;

2.

B∗t (Θt, h
+
t−1)E[Θt +Qt − φ∗(ht)|Θt, h

+
t−1] ≥ Bt(Θt, h

+
t−1)E[Θt +Qt − φ∗(ht)|Θt, h

+
t−1] (2.6)

for all t ≥ 1 h+
t−1 ∈H +

t−1 and Bt ∈ Bt;

3. Beliefs are computed via Bayes’ rule, whenever possible.

A peculiar feature of this game is that consumers act once and their actions do not affect the

payoffs of consumers who arrive prior to them. As a result, their optimal action is always their

best response, which always exists. Consequently, the equilibrium computation can be collapsed

into the seller’s optimization problem, which can be formulated as a dynamic program with the

belief as a continuous state variable (see Section 5). An equilibrium of the game exists whenever

this dynamic program attains a solution, which is not easily verified in a continuous state space

specification. However, an ε-equilibrium (see Osborne and Rubinstein, 1994, Exercise 108.1), where

the seller’s strategy is arbitrarily close to optimal and the buyers’ strategies are exactly optimal,

always exists (see Bertsekas and Shreve, 2007, Proposition 9.19). Moreover, it can be found by

successive iterations of the Bellman operator (see Bertsekas and Shreve, 2007, Proposition 9.14).

3 Asymptotic learning

This section shows that asymptotic learning occurs, that is, both the consumers and the seller

eventually learn the quality of the product in any PBE of this game.

Given history h, define

π(h) := P(Q = H|h). (3.1)

So, for instance, π(h+
t−1) is the belief of consumer t that the quality Q is high based on the history

h+
t−1 and prior to making his purchase decision. Note that π(h+

t ) = π(ht), since the seller’s posted

price does not reveal information not already contained in ht. We frequently use the shorthand

notation

πt := π(ht). (3.2)
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The belief determines the buyers’ purchase decision. Consumer t will buy the product if and

only if the expected net utility from buying is greater than zero:

E[Vt|h+
t−1,Θt] = Θt + E[Qt|h+

t−1]− pt

= Θt + πt−1H + (1− πt−1)L− pt

≥ 0,

or, alternatively, if and only if Θt ≥ θ(πt−1, pt), where

θ(π, p) := p− (πH + (1− π)L) = p− Eπ[Q]. (3.3)

Note that εt does not affect the purchase decision since it has zero mean and is independent of the

history and Θt.

Given the purchase criterion, in each period t the seller faces an expected demand function

F̄Θ(θ(πt−1, pt)). For each belief, define the set of prices for which the probability of purchase is

strictly positive,

P(π) := {p|F̄Θ(θ(π, p)) > 0}. (3.4)

If the seller chooses a price outside P(π) when the belief is π, the probability of purchase is zero

and the belief remains unchanged.

The following assumption will hold throughout the paper.

Assumption 3.1. (a) supp(εt) = R.

(b) F̄Θ(−L) > 0.

Assumption 3.1(a) assures that there is always a positive probability that a consumer will derive

positive or negative net utility from buying the product, irrespective of whether the intrinsic quality

Q is high or low and of the value of the consumer type3. Assumption 3.1(b) is necessary in order

for social learning to occur. It assures that 0 ∈ P(π) for all beliefs, i.e., the seller can choose a

nonnegative price under which some consumers will always purchase the product, regardless of the

true state of the world. The assumption trivially holds when the distribution of Θt is unbounded,

and it is reminiscent of Assumption 3 in Goeree et al. (2006). Assumption 3.1(b) is fundamental

in the next proposition that establishes that the stream of purchasing consumers and reviews will

never cease in equilibrium.

3This assumption allows us to focus on the more interesting case where a single review is never fully informative,
which is the case when the support of εt is small.
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Proposition 3.2. The prices set by the seller in equilibrium are such that the probability of purchase

is positive in every period, i.e., pt ∈P(πt−1) for all t ≥ 1, with probability 1.

The object of interest in our analysis is the belief πt, which is a random variable in [0, 1].

Lemma A.1 demonstrates some basic properties of the belief. First, starting from any history ht

with corresponding price pt+1 ∈P(πt) the belief increases after aU and decreases after aD,

π((ht, pt+1,D)) ≤ π(ht) ≤ π((ht, pt+1,U)),

and this inequality is weak only when π(ht) ∈ {0, 1}. This is expected, since the ex-post net utility

of a buyer is higher when the intrinsic quality is high, which itself increases the probability of a

positive review. The opposite result holds in case ofD.

Following a no-buy, the posterior will not change, since the sequence of reviews remains un-

changed. However, this would have been the case even if 7 reviews had been observable. A no-buy

decision of consumer t + 1 merely reveals that his type is lower than θ(π(ht), pt+1). This carries

no information about the quality of the product. This observation is in sharp contrast with the

literature on social learning from signals, where any action can be informative by revealing the

agent’s private signal. The next proposition plays a significant role in subsequent analysis.

Proposition 3.3. We have

E[πt+1|ht] = πt. (3.5)

It is worth noting that {ht}t≥1 is not a filtration, since 7 reviews are not observable, therefore

(3.5) is not the usual martingale property of posterior distributions. Nevertheless, as argued above,

7 reviews carry no information on the quality of the product, and so conditioning on the full history,

which is a filtration, does not alter the belief.

We next present the main result of this section.

Proposition 3.4. If π0 ∈ (0, 1), then πt → 1{Q=H} with probability 1.

The result builds on two observations. First, as long as consumers purchase the product, the

drift of the belief process is positive when the quality is high and negative drift when it is low.

Second, the seller will always choose a price such that the probability of purchase is strictly positive,

as asserted in Proposition 3.2. As the number of reviews grows large, the posterior will converge

and correctly identify the intrinsic quality Q of the product.

Proposition 3.4 can be modified to account for positive marginal production cost c > 0. The

result would continue to hold under a stronger Assumption 3.1(b) stating that F̄Θ(−L − c) > 0.

Under the stricter condition we would need c ∈ P(0) and Proposition 3.2 would still hold—the

probability of purchase will be positive even under the lowest possible belief.
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4 Structural properties of the learning trajectory

This section explores structural properties of the dynamics of the learning process, and, in part,

provides a theoretical foundation for several empirical findings on the effect of consumer reviews.

Specifically, in the spirit of comparative statics analysis, we compare outcomes of the social learning

process under a single change in model parameters or review histories.

To start with, we explore the effect of the order in which reviews are submitted on agents’

beliefs. Identical reviews may carry different information, because the reviewers observed different

histories. Thus, reviews are not exchangeable random variables and potentially carry different

weights on the posterior distributions of a future consumer. Do earlier or later reviews carry

more weight in forming a posterior belief? We begin by comparing the belief resulting from two

histories: one where a positive review is followed by a negative one, hU,D := (p,U, p′,D) and

the reverse sequence hD,U := (p′,D, p,U). The following proposition shows that, under some

weak assumption on the distribution of εt, the earlier review is more influential4.

Proposition 4.1. If fε is log-concave, then for any histories h′ ∈ Ht′ and h′′ ∈ Ht′′ with t′, t′′ ∈
N ∪ {0} we have

π(h′, hU,D, h′′) ≥ π(h′, hD,U, h′′).

This result holds for any distribution of types. Proposition 4.1 should be understood in the

context of consumers’ self-selection given their unobservable types (for example see Li and Hitt,

2008). As reviews and prices vary over time, the corresponding cutoff for purchase, θ(πt, pt+1)

varies as well. Holding Q fixed, a consumer who purchases when the cutoff θ(πt, pt+1) is low is

more likely to be disappointed than a consumer who purchases when the cutoff is high, since the

latter is more likely to be a high type. As a result,D is a weaker negative signal in hU,D than in

hD,U. Similarly, a purchasing consumer with a low cutoff is less likely to be satisfied, because on

average his type is low, resulting is a stronger positive effect of theU in hU,D than in hD,U.

In conclusion, earlier reviews have a higher effect on the posterior belief.

Self-selection drives another result summarized in the next proposition: namely, that the like-

lihood that the next review will be positive is decreasing with the belief, or with the expected

quality.

Proposition 4.2. For any π ∈ [0, 1], p ∈P(π) and q ∈ {L,H} we have that

P
(
Rt+1 =U|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
is decreasing in π and P

(
Rt+1 =D|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
is increasing in π.

4As will become clear in the proof, Proposition 4.1 could be stated under more general assumptions. We present
it this way for the sake of simplicity.
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Talwar et al. (2007) empirically analyze the influence of past ratings on future reviews. Their

results confirm Proposition 4.2: reviews tend to be negative following high quality expectation

produced by positive past reviews, and similarly positive reviews tend to follow negative ones.

Talwar et al. (2007) offer the explanation that consumers’ reference point in evaluating the product

is their quality expectation given by past reviews.

Our model provides a different explanation. At times when the belief is high, many consumers

choose to purchase, including many with lower types who are more likely to have a negative experi-

ence and as such write negative reviews. Similarly, only high types buy the product when the belief

is low, but they are more likely to write positive reviews. In particular, in our model consumers

do not form a reference point that is affected by past reviews, but instead always compare their

net utility to the value of the no purchase option that is zero. This negative serial correlation in

reviews stems from consumers’ self-selection in their purchase decision and the fact that the types

of “other” consumers are unobservable.

Finally, our next result studies the effect of the variability of quality disturbances, {εt}t≥1 on

the speed of the social learning process. Recall that given ht−1, the belief πt is a random variable

that can take three values following aU,D and 7. Proposition 3.4 shows that as t grows

large, this random variable converges either to 0 or to 1. Learning is fast if the random variable

converges quickly to either of these points, i.e., if the dispersion of πt is large. With that in mind, we

formalize the notion of learning speed using the convex order of random variables, whose definition

is provided below,

Definition 4.3. Random variables X and Y are ordered by the convex order X ≤cx Y , if

E[ψ(X)] ≤ E[ψ(Y )]

for all convex functions ψ for which the expectations exist.

Let a and b denote different model specifications, i.e., different primitive assumptions such as

the noise distribution, different price, etc. We say that learning is faster under specification a than

specification b, if πbt ≤cx π
a
t starting from any history ht−1. We analyze the speed of learning under

two simplifying assumptions. First, that consumers are homogeneous with respect to their types,

i.e., that the distribution of Θt is degenerate, and that the price charged by the seller is not a

subsidy price, i.e., is not smaller than L.

Proposition 4.4. Suppose Θt is degenerate and consider two sequences {εat }t≥1 and {εbt}t≥1 of

i.i.d. random variables with symmetric, zero mean distributions that single cross with the sequence

of signs of Fεa − Fεb being − +. Fix any history ht−1 and let πat and πbt denote the beliefs under

specifications a, b. Then, πbt ≤cx π
a
t .

13



Notice that the assumptions on the distributions of εat and εbt imply εat ≤cx ε
b
t . The result shows

that learning is faster in settings where the experienced qualities are closer to the intrinsic quality

Q, since, intuitively, less variability in quality disturbances results in more accurate reviews that

speed up social learning. In the extreme case when quality disturbances are degenerate, learning is

resolved with certainty after a singleD for arbitrary type distributions, since a negative review

will never be submitted under Q = H.

One implication of this result is that a seller can speed up the social learning process by focusing

on reducing the variability of her service or production process. This will tend to result in consumers

experiencing a similar quality product, which accelerates the learning process. The opposite holds

true if the process variability is increased.

5 Pricing

5.1 Is social learning beneficial to the seller?

Consider first the seller’s problem of maximizing the expected revenue from a single consumer

with belief π. Concretely, she is interested in maximizing the revenue function

W (π, p) := pD(π, p),

where

D(π, p) = F̄Θ(θ(π, p)) = F̄Θ+πH+(1−π)L(p) (5.1)

is the demand function. Having defined W , we can rewrite the seller’s objective (2.4) as

E

 ∞∑
t=0

βtW (πt−1, pt)

 .
The next assumption is standard in the revenue management literature (see, e.g., Lariviere and

Porteus, 2001).

Assumption 5.1. The revenue functionW (π, p) has a unique global maximum in p for all π ∈ [0, 1].

Lariviere (2006) shows that W has a unique global maximizer if the generalized failure rate

of Θ + πH + (1 − π)L is increasing, where the generalized failure rate of X computed at x is

xfX(x)/F̄X(x).

Let p∗(π) := arg maxp∈R+ W (π, p) be the optimal price and W ∗(π) := W (π, p∗(π)) the maximal

revenue.
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Lemma 5.2. The function W ∗(π) is convex in π.

This result is the counterpart of Bose et al. (2006, Proposition 3) that showed convexity of the

revenue function for a model with homogeneous preferences and learning from signals. Lemma 5.2

is key in proving our next result.

Theorem 5.3. The expected discounted revenue of the seller under social learning is greater than

the expected discounted revenue when consumers do not engage in social learning, i.e.,

sup
φ∈Φ

E

 ∞∑
t=0

βtW (πt, φ(πt))

 ≥ E

 ∞∑
t=0

βtW ∗(π(ht))

 ≥ E

 ∞∑
t=0

βtW ∗(π0)

 =
W ∗(π0)

1− β
.

Theorem 5.3 shows that social learning is beneficial for the seller ex-ante, before knowing the

true quality of the product. Ex-post the seller loses when the quality is low (with probability 1−π0)

and gains when it is high (with probability π0). To gain intuition, compare the maximal revenue

extracted from consumer 1, W ∗(π0), and the expected maximal revenue extracted from consumer

2, E[W ∗(π1)]. Combining Proposition 3.3, Lemma 5.2, and Jensen’s inequality, we can see that

E[W ∗(π1)] ≥ W ∗(E[π1]) = W ∗(π). Thus, on average the seller extracts more revenue from the

second consumer than from the first, due to social learning. This argument can be repeated to

establish Theorem 5.3.

This result formalizes and demonstrates the claim of Bose et al. (2006) who argue that social

learning benefits the seller in a setting with signals. We point out here that our result does not

depend on our particular learning model; it would hold for any learning process with the same

preference model as long as Proposition 3.3 holds. In particular, it could be adapted to a setting

where consumers are heterogeneous in preferences and learn from signals.

5.2 Optimal pricing, myopic pricing and speeding up learning

Social learning benefits the seller. We consider next how the seller can leverage her pricing con-

trol to account for and optimally affect the social learning process. We first study whether the seller

can speed up social learning by altering the price to control the dispersion of posteriors, building

on the discussion preceding Proposition 4.4. We explore this under the following assumption.

Assumption 5.4. Consumer types are exponentially distributed with mean 1/λ, i.e., Θt ∼ exp(λ).

Proposition 5.5. Under Assumption 5.4, for any history ht−1 and for all prices p and p′ such

that p > p′ ≥ Eπt−1 [Q] = πt−1H + (1− πt−1)L, we have that π(ht−1, p, Rt) ≤cx π(ht−1, p
′, Rt).

Proposition 5.5 shows that when types are exponentially distributed, the learning speed in-

creases as the seller lowers the price. A price reduction by the seller has a dual effect on the
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learning process. First, the probability of purchase and of a review submission increases, and this

supports faster learning. Second, the surplus of each purchasing consumer increases, and this can

have a delaying effect on social learning, becauseD becomes rare, even if the quality is low,

weakening the strength of the signal the review conveys. The latter is also the reason why Propo-

sition 5.5 restricts attention to the prices where not all consumers purchase, e.g., p′ ≥ E[Q]. When

all consumers purchase, an additional reduction in the price only changes consumers’ surplus and

does not promote learning.

Next, we consider the seller’s optimal pricing strategy φ∗. Recall that under this strategy the

seller can adjust the price dynamically after each review. We focus on equilibrium pricing policies

that are Markov in the belief, thus, with some abuse of notation, we let the pricing decision depend

on beliefs instead of histories, φ : [0, 1] → R+. This assumption is innocuous; the belief process

{πt}t≥1 is Markov, and one can show that for any optimal non-Markov strategy there exists a

Markov strategy yielding the same revenue, see Bertsekas and Shreve (2007, Proposition 9.1).

Building on that and given the buyers’ purchase strategy, we can write the seller’s optimization

problem as a dynamic program with value function v(π, φ) being the total expected revenue from

implementing pricing policy φ starting from belief π, namely,

v(π0, φ) := E

 ∞∑
t=0

βtW (πt, φ(πt))

 .
The equilibrium policy is the optimal policy

φ∗ = argmax v(π0, φ)

and v∗(π) = v(π, φ∗). It is convenient to also consider the corresponding Bellman equation

v∗(π) = max
p∈R+

{
W (π, p) + βE[v∗(πt+1)|(πt, pt+1) = (π, p)]

}
. (5.2)

This dynamic program does not exhibit a simple solution, but nevertheless leads to interesting

structural insights regarding the optimal pricing policy and its connections to social learning. We

compare the equilibrium pricing strategy to a myopic pricing policy φmyopic(·) that maximizes in

each period the instantaneous revenue, given the belief, but does not account for social learning; it

responds to variations in the beliefs, but does not seek to affect them.

Proposition 5.6. Let Assumption 5.4 hold. Then

φ∗(π) ≤ φmyopic(π) for all π ∈ [0, 1].

16



The seller accounts for the social learning process by lowering the price that, in turn, increases

the likelihood of purchase. In the exponential case the greater likelihood of purchase is not offset

by the resulting increase in consumer surplus that may, as argued above, blur the review signal.

It is interesting to compare this result with the dynamic pricing results obtained in Bose et al.

(2006, Proposition 4, in particular). They find that the equilibrium pricing policy may charge a

higher price than the myopic one in order to speed up social learning. Bose et al. (2006) consider

a model of where consumers observe private signals and purchase decisions, not reviews. To speed

learning in this setting, the seller chooses a price under which only consumers with high signals

buy the product, and this is achieved by charging a high price.

The sharp distinction in the structure of the optimal pricing strategy demonstrates that the

two informational models of social learning—the one with private information signals and the one

with consumer reviews—are inherently different and call for separate treatment when addressed

from the operational perspective.

6 Unobservable review sequence

Most review sites saliently display the average review or the cumulative number of positive

and negative reviews, e.g., the average star rating on Amazon or the number ofUandDon

youtube. Information about the sequence in which these reviews were made is available on some

sites, but obtaining this information requires additional effort from consumers. Therefore, it is likely

that most of them focus their inference on the cumulative number of reviews, a result supported

empirically in a number of papers, e.g., Luca (2011).

With that in mind, in this section we study an alternative informational structure where con-

sumers observe the cumulative number of liking and disliking reviews, but not the sequence of

reviews that generated that result nor the sequence of prices paid by the reviewers. Namely, we

will assume that consumer t observes information ĥ+
t−1 = (Ut−1, Dt−1, pt), where

Ut = #{Ri =U, i ∈ {1, . . . , t}},

Dt = #{Ri =D, i ∈ {1, . . . , t}},

where pt is the price offered to consumer t. We also restrict the seller into selecting a static price

p at time t = 0, i.e., pt = p0 for all times t, which is a realistic assumption in many settings5.

The sequence {ĥ+
t }t≥1 is not a filtration, and moreover we do not obtain a result equivalent

to Proposition 3.3, i.e., E[πt+1|ĥ+
t ] 6= πt = π(ĥ+

t−1). In the absence of the sequence information,

5 If prices were dynamic but unobservable by consumers, it would add a significant layer of complexity by having
consumers form expectations about the possible price paths.
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the posterior belief given ĥ+
t is the expected posterior over all review sequences consistent with ĥ+

t .

Formally, define

Ĥ +(ĥ+
t ) :=

h+
t

∣∣∣∣∣∣
t∑
i=1

1{Ri=U} = Ut,

t∑
i=1

1{Ri=D} = Dt, pi = p for i = 1, . . . , t


to be the set of histories that are consistent with information ĥ+

t . The posterior is given by

π(ĥ+
t ) = P(Q = H|ĥ+

t ) =
∑

h+∈Ĥ +(ĥ+t )

P(Q = H|h+)P(h+|ĥ+
t ) =

∑
h+∈Ĥ +(ĥ+t )

π(h+)P(h+|ĥ+
t ). (6.1)

This posterior computation is significantly more involved than the already complex Bayesian infer-

ence of the previous section; consumers have to compute the probability of each consistent sequence

of reviews, its corresponding posterior, and finally take the average over these histories. The added

computational complexity is huge; it is proportional to the number of unique elements in Ĥ +(ĥ+
t )

which is given by the binomial coefficient indexed by (Ut + Dt) and Ut. Ifrach et al. (2012) show

that if consumers do not observe the review sequence but follow a non-Bayesian and far simpler

(“naive”) inference protocol, then they asymptotically learn the unknown product quality.

Despite the increased complexity, we can repeatedly apply Proposition 4.1 on the summands in

(6.1) to obtain bounds for the posterior. Define

h+(u, d, p) := (p,D, . . . , p,D︸ ︷︷ ︸
d

, p,U, . . . , p,U︸ ︷︷ ︸
u

, p)

and

h
+

(u, d, p) := (p,U, . . . , p,U︸ ︷︷ ︸
u

, p,D, . . . , p,D︸ ︷︷ ︸
d

, p).

Corollary 6.1. Let fε be log-concave. If ĥ+ = (u, d, p), then

π(h+(u, d, p)) ≤ π(ĥ+) ≤ π(h
+

(u, d, p)).

Corollary 6.1 is key in proving asymptotic learning in this setting. The next result—the main

one of this section—shows that asymptotic learning occurs for a range of prices even when the

sequence of reviews is not observed.

Proposition 6.2. Suppose that Assumption 3.1 holds and, in addition, that Θt and L are nonneg-

ative for all t. There exists a price p̃ > L such that for all p < p̃ we have π(ĥt) → 1{Q=H} with

probability 1.

Apart form its practical significance in establishing that consumers eventually learn the unknown
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product quality from cumulative review information, this result is of interest in its own right and

its derivation and bounding approach may be of interest in related settings.

A Proofs

Given random variables X, its failure rate is denoted by λX and its reverse failure rate by ρX ,

that is,

λX(t) =
fX(t)

F̄X(t)
,

ρX(t) =
fX(t)

FX(t)
.

Proofs of Section 3

Notice that

P(Rt = r|π(ht) = π,Q = q) =



∫ ∞
θ(π,p)

F̄ε(pt − q − x) dFΘ(x) for r =U, (A.1a)∫ ∞
θ(π,p)

Fε(pt − q − x) dFΘ(x) for r =D, (A.1b)

FΘ(θ(π, pt)) for r = 7. (A.1c)

where θ(π, p) is defined as in (3.3). We can therefore define the shorthand notation

G(r, π, q, p) := P(Rt = r|πt = π, pt = p,Q = q) (A.2)

and

G(r, π, p) := πG(r, π, q, p) + (1− π)G(r, π,H, p). (A.3)

Proof of Proposition 3.2. It follows from Assumption 3.1(b) that 0 ∈ P(0). Note that P(0) ⊂
P(π) for all π, and so 0 ∈ P(π). By continuity of F̄Θ it follows that there exists a price 0 <

δ ∈ P(0) ⊂ P(π) for all π, where δ is potentially very small. Consider any equilibrium pricing

strategy φ and suppose that at some history ht−1 the seller chooses a price pt 6∈P(πt−1). Clearly,

the revenue in that period is zero and ht = ht−1, since a new review cannot possibly be submitted.

Therefore, pt+1 = p(ht) = p(ht−1) = pt = 0, and similarly for t+ 2, t+ 3, . . .. We conclude that the

seller’s long run revenue starting from ht−1 is 0. However, the seller can charge δ at t and obtain

a positive revenue, which contradicts the assumption that pt 6∈P(πt−1).

Lemma A.1 illustrates some properties of the Bayesian updating,

Lemma A.1. (a) For all π ∈ [0, 1] and p ∈ Φ(π) we have G(U, π,H, p) > G(U, π, L, p).
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(b) For all π ∈ [0, 1] and p ∈ Φ(π) we have G(D, π,H, p) < G(D, π, L, p).

(c) There exist G,G ∈ (0, 1) such that G ≤ G(r, π, q, p) ≤ G for all r ∈
{
U,D,7

}
, q ∈ {H,L},

π ∈ [0, 1].

(d) For all q ∈ {H,L}, π ∈ [0, 1] and price p we have G(D, π, q, p)+G(U, π, q, p) = F̄ (θ(π, p)).

(e) For any history ht−1, we have π(ht−1,7) = π(ht−1).

(f) Whenever π(ht−1) ∈ (0, 1) we have

π(ht−1, pt,D) < π(ht−1) < π(ht−1, pt,U)

for all prices pt ∈ Φ(πt−1).

Proof. (a) Since F̄ε is nonincreasing, we have

G(U, π,H, p) =

∫ ∞
θ(π,p)

F̄ε(p−H − x) dFΘ(x)

>

∫ ∞
θ(π,p)

F̄ε(p− L− x) dFΘ(x)

= G(U, π, L, p).

(b) Since Fε is nondecreasing, we have

G(D, π,H, p) =

∫ ∞
θ(π,p)

Fε(p−H − x) dFΘ(x)

<

∫ ∞
θ(π,p)

Fε(p− L− x) dFΘ(x)

= G(D, π, L, p).

(c) This follows from Assumption 3.1, since there exists a fraction of consumers that would always

choose to buy the product, and a different fraction that would always choose not to buy, and

since the support of ε is large enough.

(d) Just add (A.1a) and (A.1b) and consider that, given πt the probability of buying is indepen-

dent of Q.

(e) In general, by Bayes’ rule,

π(ht−1, r) =
P(Rt = r|ht−1, Q = H)π(ht−1)

P(Rt = r|ht−1, Q = H)π(ht−1) + P(Rt = r|ht−1, Q = L)(1− π(ht−1))
. (A.4)
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Hence

π(ht−1,7) =
G(7, π(ht−1), H, p)π(ht−1)

G(7, πt, H, p)π(ht−1) +G(7, π(ht−1), L, p)(1− π(ht−1))
= π(ht−1),

since G(7, π, q, p) = FΘ(θ(π, p)) for all q ∈ {H,L}.

(f)

π(ht−1,D) =
G(D, π(ht−1), H, p)π(ht−1)

G(D, π(ht−1), H, p)π(ht−1) +G(D, π(ht−1), L, p)(1− π(ht−1))

<
G(D, π(ht−1), H, p)π(ht−1)

G(D, π(ht−1), H, p)π(ht−1) +G(D, π(ht−1), H, p)(1− π(ht−1))

= π(ht−1)

=
G(U, π(ht−1), H, p)π(ht−1)

G(U, π(ht−1), H, p)π(ht−1) +G(U, π(ht−1), H, p)(1− π(ht−1))

<
G(U, π(ht−1), H, p)π(ht−1)

G(U, π(ht−1), H, p)π(ht−1) +G(U, πt, L, p)(1− π(ht−1))

= π(ht−1,U).

where the first inequality follows from (b) and the second from (a).

Proof of Proposition 3.3. For t ≥ 1 call

hfull
t := (p1, R1, . . . , pt, Rt) and hfull+

t := (p1, R1, . . . , pt, Rt, pt+1)

the full histories including 7 reviews. As before π(hfull
t ) = π(hfull+

t ). Define

πfull
t = π(hfull

t ).

We have

E[πt+1|ht] = E[πfull
t+1|hfull

t ] = πfull
t = πt,

where the first and last equality follow from A.1(e) and the second from fact that πfull
t is a Doob

martingale.

The following lemma is needed to prove Proposition 3.4.

Lemma A.2. Define the function

g(x, y, z) = log

(
x

y

)
x+ log

(
z − x
z − y

)
(z − x). (A.5)

Then, 0 < x ≤ y < z < 1 implies g(x, y, z) ≥ 0 with equality if and only if x = y.
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Proof. All variables in the proof are assumed to satisfy the condition in the statement of the lemma.

We will show that g is strictly monotonically decreasing in x and that g(x, x, z) = 0. We first show

that g is convex with respect to the first argument,

∂g(x, y, z)

∂x
= log

(
x

y

)
− log

(
z − x
z − y

)
,

and,

∂2g(x, y, z)

∂x2
=

1

x
+

1

z − x
> 0.

It is easy to see that

∂g(x, y, z)

∂x

∣∣∣∣∣
x=y

= 0

and that
∂g(x, y, z)

∂x

∣∣∣∣∣
x=x−δ

< 0

for δ > 0 small. Thus by convexity we have, g(x, y, z) ≥ g(y, y, z) = 0, with equality if and only if

x = y.

Proof of Proposition 3.4. Following Proposition 3.3 we have

πt = πfull
t = P(Q = H|hfull

t )→ π∞,

using the martingale convergence theorem (see, for instance, Karlin and Taylor, 1975). Since

πt ∈ [0, 1] for all t ≥ 0, we further conclude that π∞ ∈ [0, 1], and that π0 = E[πt] = E[π∞].
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Recall the definitions of G in (A.2) and (A.3). We have

E[log πt|πt−1, Q = H] = log

(
G(7, πt, H, p)πt−1

G(7, πt, p)

)
G(7, πt, H, p)

+ log

(
G(D, πt, H, p)πt−1

G(D, πt, p)

)
G(D, πt, H, p)

+ log

(
G(U, πt, H, p)πt−1

G(U, πt, p)

)
G(U, πt, H, p)

= log πt−1 (A.6)

+ log

(
G(D, πt, H, p)

G(D, πt, p)

)
G(D, πt, H, p)

+ log

(
G(U, πt, H, p)

G(U, πt, p)

)
G(U, πt, H, p)

= log πt−1 + g
(
G(D, πt, H, p), G(D, πt, p), FΘ(θ(πt))

)
where the second equality stems from

G(7, πt, H, p) = G(7, πt, L, p)

G(7, πt, H, p) +G(D, πt, H, p) +G(U, πt, H, p) = 1,

and Lemma A.1(d). The function g was defined in (A.5).

We can show that there exists G > 0 such that

G ≤ G(D, πt, H, p) ≤ G(D, πt, p) < FΘ(θ(πt)) < 1.

Indeed, the first inequality follows from Lemma A.1(c); the second inequality stems from Lemma A.1(b)

and (A.2); the third inequality follows from Lemma A.1(d) and (A.2); the last inequality is a con-

sequence of Assumption 3.1(b).

Define

γ(π) := g
(
G(D, π,H, p), G(D, π, p), FΘ(θ(π, p))

)
. (A.7)

Using Lemma A.1(c) and (A.2), we see that

G(D, πt, H, p) = G(D, πt, p)

if and only if π = 1. Therefore, by Lemma A.2,

γ(π) > 0 for π ∈ [0, 1),

γ(π) = 0 for π = 1.
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Assume now, by contradiction, that there exist δ, η > 0 such that

P(π∞ < 1− η|Q = H) > 2δ.

Then there exists an integer T such that for all t > T

P(πt < 1− η|Q = H) > δ.

The function γ is continuous and strictly positive for all π ∈ [0, 1− η], therefore

min
π∈[0,1−η]

γ(π) =: γ > 0.

Finally, using (A.6) iteratively, we get

E[log πT+k|Q = H] = log π0 +
T+k∑
i=1

E[γ(πi)|Q = H]

≥ log π0 +

T+k∑
i=T

E[γ(πi)|Q = H]

≥ log π0 +
T+k∑
i=T

E[γ(πi)1{πi≤1−η}|Q = H]

≥ log π0 + kγδ,

and we conclude that E[log(πT+k)|Q = H] > 0 by taking k large enough, which contradicts the fact

that log πt ≤ 0. Therefore, P(π∞ < 1|Q = H) = 0, or P(π∞ = 1|Q = H) = 1.

The same argument can be used to prove that P(π∞ = 0|Q = L) = 1.

Proofs of Section 4

Define

Γ(π) =
π

1− π
, (A.8)

Λ(r, π, p) =
G(r, π,H, p)

G(r, π, L, p)
, (A.9)

Definition A.3. We say that the condition ILR (increasing likelihood ratio) holds if

Λ(r, π, p)

is nondecreasing in π for r ∈
{
U,D

}
for any price p ∈P(π).

24



We next discuss some sufficient conditions for ILR, which will depend on the following defini-

tions.

Definition A.4. (a) The distribution of a random variable X is IFR (increasing failure rate) if

its failure rate is nondecreasing.

(b) The distribution of a random variable X is DRFR (decreasing reverse failure rate) if its

reverse failure rate is nonincreasing.

Proposition A.5. If the distribution of ε is both IFR and DRFR, then condition ILR holds.

The proof of Proposition A.5 requires some properties of TP2 (total positivity of order two),

for which the reader is referred to Karlin (1968) and Karlin and Rinott (1980).

Proof of Proposition A.5. Notice that ε is IFR iff its survival function F̄ε is log-concave. Write

P(Θ + ε > s,Θ > t) =

∫ ∞
t

F̄ε(s− x) dFΘ(x) =

∫ ∞
−∞

1{(t,∞)}(x)F̄ε(s− x) dFΘ(x).

Notice that F̄ε is log-concave iff K(s, x) := F̄ε(s − x) it TP2. Moreover L(x, t) := 1{(t,∞)}(x) is

TP2. Therefore the convolution∫
K(s, x)L(x, t) dFΘ(x) = P(Θ + ε > s,Θ > t)

is TP2. This implies that for π1 < π2 we have

P(Θ + ε > p−H,Θ > p− θ(π2))P(Θ + ε > p− L,Θ > p− θ(π1)) ≥

P(Θ + ε > p−H,Θ > p− θ(π1))P(Θ + ε > p− L,Θ > p− θ(π2)). (A.10)

Hence

G(U, π2, H, p)G(U, π1, L, p) ≥ G(U, π1, H, p)G(U, π2, L, p),

that is,
G(U, π,H, p)

G(U, π, L, p)

is nondecreasing in π.

Next, notice that if ε is DRFR, then its distribution function Fε is log-concave.

Write

P(Θ + ε ≤ s,Θ > t) =

∫ ∞
t

Fε(s− x) dFΘ(x) =

∫ ∞
−∞

1{(t,∞)}(x)Fε(s− x) dFΘ(x).

Notice that Fε is log-concave iff K(s, x) := Fε(s − x) it TP2. Moreover L(x, t) := 1{(t,∞)}(x) is
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TP2. Therefore the convolution∫
K(s, x)L(x, t) dFΘ(x) = P(Θ + ε ≤ s,Θ > t)

is TP2. This implies that for π1 < π2 we have

P(Θ + ε ≤ p−H,Θ > p− θ(π2))P(Θ + ε ≤ p− L,Θ > p− θ(π1)) ≥

P(Θ + ε ≤ p−H,Θ > p− θ(π1))P(Θ + ε ≤ p− L,Θ > p− θ(π2)). (A.11)

Hence

G(D, π2, H, p)G(D, π1, L, p) ≥ G(D, π1, H, p)G(D, π2, L, p),

that is,
G(D, π,H, p)

G(D, π, L, p)

is nondecreasing in π, and therefore ILR holds.

A stronger yet simpler sufficient condition is the following.

Corollary A.6. If the density fε is log-concave, then ILR holds.

Proof. If the density fε is log-concave, then both the distribution function Fε and the survival

function F̄ε are log-concave, therefore the proof of Proposition A.5 can be applied.

Corollary A.6 shows that ILR is a fairly natural assumption on ε given its interpretation as

a mean zero noise around the product’s quality. For example, ILR holds if ε is has a normal

distribution or a Gumble distribution. We can now prove our result.

Proof of Proposition 4.1. We have

Γ
(
π(hU,D)

)
− Γ

(
π(hD,U)

)
(A.12)

= Γ(π0)
[
Λ
(
U, π0, p

)
Λ
(
D, π(p,U), p′

)
− Λ

(
D, π0, p

′)Λ
(
U, π(p′,D), p

)]
We know from Lemma A.1(f) that

π(p′,D) ≤ π0 ≤ π(p,U).

Therefore, by the ILR property (Definition A.3),

Λ
(
U, π0, p

)
≥ Λ

(
U, π(p′,D), p

)
and

Λ
(
D, π(,U), p′

)
≥ Λ

(
D, π0, p

′) ,
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which implies that the right hand side of (A.12) is nonnegative. Nonnegativity of the left hand

side provides the result π(hU,D) ≥ π(hD,U). Note that h′ is summarized in π0 in (A.12). Since

the result holds for all π0, it will hold for all prior histories h′. By monotonicity of the Bayesian

update in the belief, the inequality is preserved after history h′′.

Proof of Proposition 4.2. Note that

P
(
Rt+1 =U|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
= G(U, π, q, p)/F̄Θ(θ(π, p)

and

P
(
Rt+1 =D|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
= G(D, π, q, p)/F̄Θ(θ(π, p).

For ease of notation, we omit the arguments of the cutoff function θ(π, p) in this proof and write θ

instead. Consider the derivative

∂P
(
Rt+1 =U|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
∂π

= (H − L)(F̄Θ(θ))−2

[
F̄ε(p− q − θ)fΘ(θ)F̄Θ(θ)− fΘ(θ)

∫ ∞
θ(π,p)

F̄ε(p− q − x)fΘ(x)dx

]

= (H − L)fΘ(θ)(F̄Θ(θ))−2

[
F̄ε(p− q − θ)F̄Θ(θ)−

∫ ∞
θ

F̄ε(p− q − θ)fΘ(x)dx

]
< (H − L)fΘ(θ)F̄ε(p− q − θ)(F̄Θ(θ))−2

[
F̄Θ(θ)−

∫ ∞
θ

fΘ(x)dx

]
= 0,

where (H − L) = −∂θ(π, p)/∂π, the inequality follows from the fact that F̄Θ is decreasing in

x ∈ [θ,∞), and the final equality from the definition of survival function. Note that

P
(
Rt+1 =U|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
+P

(
Rt+1 =D|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
= 1,

and so

∂P
(
Rt+1 =D|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
∂π

= −
∂P
(
Rt+1 =U|(Bt+1, πt, Q, pt+1) = (1, π, q, p)

)
∂π

> 0.

Proof of Proposition 4.4. Without loss of generality we can assume Θt = 0 a.s.. Suppose that

θ(πt−1, p) = p − πt−1H − (1 − πt−1)L < 0. Then consumer t will not purchase the product and

πat = πt−1 = πbt . Next consider θ(πt−1, p) ≥ 0. Note that in this case all consumers buy the product,
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while p− L > 0 and p−H < 0. Adapting (A.1) and (A.4) we see that for c ∈ {a, b}

πct =

πct−1(p,U) w.p. πt−1F̄εc(p−H) + (1− πt−1)F̄εc(p− L)

πct−1(p,D) w.p. πt−1Fεc(p−H) + (1− πt−1)Fεc(p− L),

where

πct−1(p,U) =
πt−1F̄εc(p−H)

πt−1F̄εc(p−H) + (1− πt−1)F̄εc(p− L)

and

πct−1(p,D) =
πt−1Fεc(p−H)

πt−1Fεc(p−H) + (1− πt−1)Fεc(p− L)
.

In addition, recall from Proposition 3.3 that E[πat ] = E[πbt ] = πt−1. Given that the distributions of

εat and εbt are symmetric, if they have a single crossing, this must be at 0. Therefore

F̄εa(p−H) ≥ F̄εb(p−H), F̄εa(p− L) ≤ F̄εb(p− L),

Fεa(p−H) ≤ Fεb(p−H), Fεa(p− L) ≥ Fεb(p− L).

This implies that πat−1(p,U) ≥ πbt−1(p,U) and πat−1(p,D) ≤ πbt−1(p,D), that is, πat can be

obtained from πbt via a mean-preserving spread. Hence, πbt ≤cx π
a
t .

Proofs of Section 5

Proof of Lemma 5.2. For ease of notation we drop the arguments of θ = θ(π, p∗(π)) = p∗(π) −
Hπ − (1− π)L. The first and second order conditions of maxp∈R+ W (π, p) are

F̄Θ(θ)− fΘ(θ) = 0

and

−2fΘ(θ)− f ′Θ(θ) < 0,

respectively. Using the envelope theorem we have

∂W ∗(π)

∂π
= p∗(π)(H − L)fΘ(θ).

By differentiating W ∗ once more we see that

∂2W ∗(π)

∂π2
= (H − L)

[
∂p∗(π)

∂π
fΘ(θ) + p∗(π)f ′Θ(θ)

(
∂p∗(π)

∂π
− (H − L)

)]
.
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By the implicit function theorem applied to the first order condition we have

∂p∗(π)

∂π
= −

(H − L)
(
fΘ(θ) + p∗(π)f ′Θ(θ)

)
−2fΘ(θ)− p∗(π)f ′Θ(θ)

=
(H − L)

(
fΘ(θ) + p∗(π)f ′Θ(θ)

)
2fΘ(θ) + p∗(π)f ′Θ(θ)

= H − L− (H − L)fΘ(θ)

2fΘ(θ) + p∗(π)f ′Θ(θ)
.

Putting the above together we obtain

∂2W ∗(π)

∂π2
=

(H − L)2

2fΘ(θ) + p∗(π)f ′Θ(θ)

[(
fΘ(θ) + p∗(π)f ′Θ(θ)

)
fΘ(θ)− p∗(π)f ′Θ(θ)fΘ(θ)

]
=

(H − L)2(fΘ(θ))2

2fΘ(θ) + p∗(π)f ′Θ(θ)

> 0,

where the inequality follows from the second order conditions. We conclude that W ∗(π) is convex.

Lemma A.7. If fΘ is differentiable and fΘ(θ(π, p)) > 0 , then

∂G(U, π, q, p)

∂p
=

∫ ∞
θ(π,p)

F̄ε(p− q − x)f ′Θ(x) dx (A.13)

and
∂G(U, π, q, p)

∂p
=

∫ ∞
θ(π,p)

Fε(p− q − x)f ′Θ(x) dx. (A.14)

Proof. Using Leibniz integral rule we obtain

∂G(U, π, q, p)

∂p
= −

∫ ∞
θ(π,p)

fε(p− q − x) dFΘ(x)− F̄ε(p− q − θ(π, p))fΘ(θ(π, p).

Integrating by parts the right hand side of (A.13) provides the result forU. The result forDis

obtained similarly.

Proof of Theorem 5.3. From Proposition 3.3 we have that E[πt+1|ht] = πt. Therefore for all t ≥ 1

we have that π(ht) is a dilation of π(ht−1), hence E[ψ(π(ht))] ≥ E[ψ(π(ht−1))] for all convex

functions ψ. A direct implication of Lemma 5.2 is that the the expected revenue extracted from

consumer t is increasing in t, i.e., E[W ∗(π(ht+1))] ≥ E[W ∗(π(ht))]. Iteration of the argument proves

the result.
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Proof of Proposition 5.5. Bayes’ rule gives

π(ht−1p, r) =
πt−1G(r, πt−1, H, p)

πt−1G(r, πt−1, H, p) + (1− πt−1)G(r, πt−1, L, p)
=
πt−1G(r, πt−1, H, p)

G(r, πt−1, p)
.

For p ≥ Eπ[Q] we have θ(π, p) > 0. Thus, we can apply Lemma A.7 to obtain

∂π(ht−1, p,U)

∂p
=

πt−1(1− πt−1)

(G(U, πt−1, p))2

[
∂G(U, πt−1, H, p)

∂p
G(U, πt−1, L, p)

−
∂G(U, πt−1, L, p)

∂p
G(U, πt−1, H, p)

]
=

πt−1(1− πt−1)

(G(U, πt−1, p))2

[∫ ∞
θ(πt−1,p)

F̄ε(p−H − x)f ′Θ(x) dx

∫ ∞
θ(πt−1,p)

F̄ε(p− L− x) dFΘ(x)

−
∫ ∞
θ(πt−1,p)

F̄ε(p− L− x)f ′Θ(x) dx

∫ ∞
θ(πt−1,p)

F̄ε(p−H − x) dFΘ(x)

]
. (A.15)

Similarly

∂π(ht−1,D, p)

∂p
=

πt−1(1− πt−1)

(G(D, πt−1, p))2

[
∂G(D, πt−1, H, p)

∂p
G(D, πt−1, L, p)

−
∂G(D, πt−1, L, p)

∂p
G(D, πt−1, H, p)

]
=

πt−1(1− πt−1)

(G(D, πt−1, p))2

[∫ ∞
θ(πt−1,p)

Fε(p−H − x)f ′Θ(x) dx

∫ ∞
θ(πt−1,p)

Fε(p− L− x) dFΘ(x)

−
∫ ∞
θ(πt−1,p)

Fε(p− L− x)f ′Θ(x) dx

∫ ∞
θ(πt−1,p)

Fε(p−H − x) dFΘ(x)

]
. (A.16)

If Θ is exponentially distributed, then f ′Θ(·) = fΘ(·)/E[Θ]. In this case (A.15) and (A.16) equal zero,

showing that the support of π(ht−1, p, rt) is identical to the support of π(ht−1, p
′, rt). Moreover,

Lemma A.7 shows that G(r, πt−1, p) < G(r, πt−1, p
′) for r ∈ {U,D}. Thus, π(ht−1, p, rt) is

obtained from π(ht−1, p
′, rt) by moving mass from the center of the distribution to the extreme

points π(ht−1, p,U) and π(ht−1, p,D) while the mean remains unchanged by Proposition 3.3.

Therefore, π(ht−1, p
′, rt) is a mean preserving spread of π(ht−1, p, rt).

Lemma A.8. Under Assumption 5.4 the myopic pricing policy is given by

φmyopic(π) = max

(
1

λ
, πH + (1− π)L

)
=


1

λ
if π ≤ 1− λL

λ(H − L)
,

πH + (1− π)L if π >
1− λL
λ(H − L)

.
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Proof. When θ(π, φmyopic(π)) > 0 it follows by the first order conditions that

arg max
p
pF̄Θ(p− (πH + (1− π)L)) =

1

λ
.

When θ(π, φmyopic(π)) = 0, then all consumers buy, and it is optimal to charge the highest price

under this constraint, p = πH + (1− π)L. Putting these together yields the result.

The following lemma will be instrumental in comparing the two policies. Given an optimal

dynamic pricing policy φ∗, we define the following shorthand notation

θ∗(π) = θ(π, φ∗(π)). (A.17)

Lemma A.9. If Assumption 5.4 holds, then for every π ∈ [0, 1] such that φ(π) > πH + (1− π)L,

we have

v∗(π) =
1

λ(1− β)
F̄ (θ∗(π)). (A.18)

Proof. It is implicit in the proof that the history is summarized in π. Under Assumption 5.4 we

have f ′Θ(x) = −λfΘ(x) = −λ2F̄Θ(x).

Lemma A.7 shows that
∂G(r, π, q, p)

∂p
= −λG(r, π, q, p),

hence

∂G(r, π, p)

∂p
= −λG(r, π, p). (A.19)

Moreover, from (A.15) and (A.16) we have ∂π(r, p)/∂p = 0. Therefore, when φ∗(π) > Eπ[Q], the

first order conditions in (5.2) become

F̄Θ(θ) + pfΘ(θ)

+ β

[
v∗(π(p,U))

∂G(U, π, p)

∂p
+ v∗(π(p,7))

∂G(7, π, p)

∂p
+ v∗(π(p,D))

∂G(D, π, p)

∂p

]
= F̄Θ(θ) + pfΘ(θ)

+ β
[
−λv∗(π(p,U))G(U, π, p) + v∗(π(p,7))fΘ(θ)− λv∗(π(p,D))G(D, π, p)

]
= F̄Θ(θ) + pfΘ(θ) + βv∗(π)

(
fΘ(θ) + λFΘ(θ)

)
− λβ

[
v∗(π(p,U))G(U, π, p) + v∗(π(p,7))FΘ(θ) + v∗(π(p,D))G(D, π, p)

]
= F̄Θ(θ) + βλv∗(π)− λ

[
pF̄Θ(θ) + βE[v∗(πt)|πt−1 = π, pt = p]

]
(A.20)

= 0

for θ = θ∗(π) and p = φ∗(π), where we use (A.19) in the first equality. In the second equality we
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add and subtract λFΘ(θ) and we use Lemma A.1(e), namely, π(7, p) = π; in the third equality we

use fΘ(θ) + λFΘ(θ) = λ.

Substituting (A.20) in

v∗(π) = φ(π)F̄Θ(θ∗(π)) + βE[v∗(πt)|πt−1 = π, pt = φ(π)]

we obtain

F̄Θ(θ∗(π)) + (β − 1)λv∗(π) = 0

that yields (A.18).

Proof of Proposition 5.6. Define the expected discounted revenue from charging the myopic price

vmyopic(π0) = E

 ∞∑
t=0

βtW (πt, φ
myopic(πt))

 = E

 ∞∑
t=0

βtφmyopic(πt)F̄Θ(θ(πt, φ
myopic(πt)))


We find a lower bound for vmyopic and then use the optimality of v∗ to prove our result.

Define

π̃ =
λ−1 − L
H − L

.

Then from Lemma A.8 we have

vmyopic(π0) = E

 ∞∑
t=0

βt
[
1{πt≤π̃}λ

−1F̄Θ

(
λ−1 − Eπt [Q]

)
+ 1{πt>π̃}(Eπt [Q])F̄Θ(0)

] (A.21)

=
∞∑
t=0

βtE

[
max

(
λ−1F̄Θ

(
λ−1 − Eπt [Q]

)
,Eπt [Q]

)]
,

where the equalities follow from Lemma A.8, as explained below.

When π < π̃, price λ−1 is myopically optimal, hence W (π, λ−1) ≥W (π,Eπ[Q]). Similarly, when

π > π̃, price Eπ[Q] is optimal, hence W (π,Eπ[Q]) ≥W (π, λ−1). Therefore

λ−1F̄Θ

(
λ−1 − Eπ[Q]

)
> Eπ[Q]

when π < π̃, the reverse inequality holds for π > π̃ and the two quantities are equal for π = π̃.
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Using the convexity of the maximum and of F̄Θ we have

vmyopic(π0) ≥
∞∑
t=0

βt max

(
E

[
λ−1F̄Θ

(
λ−1 − πtH − (1− πt)L

)]
,E
[
πtH + (1− πt)L

])

≥
∞∑
t=0

βt max

(
λ−1F̄Θ

(
λ−1 − E

[
πtH − (1− πt)L

])
,E
[
πtH + (1− πt)L

])
=

1

1− β
max

(
λ−1F̄Θ

(
λ−1 − π0H − (1− π0)L

)
, π0H + (1− π0)L

)
,

where the last equality follows by the tower property of expectations applied to Proposition 3.3.

For posteriors for which φ∗(π) ≤ Eπ[Q] we have

φ∗(π) ≤ Eπ[Q] ≤ max(λ−1,Eπ[Q]) = φmyopic(π).

Thus we need to consider posteriors where φ∗(π) > Eπ[Q], for which Lemma A.9 holds. When

π ≤ π̃ the following inequality holds

1

λ(1− β)
λ−1F̄Θ

(
φ∗(π)− Eπ[Q])L

)
= v∗(π)

≥ vmyopic(π)

≥ 1

λ(1− β)
λ−1F̄Θ

(
λ−1 − Eπ[Q]

)
from which we conclude that

F̄Θ

(
φ∗(π)− Eπ[Q]

)
≥ F̄Θ

(
λ−1 − Eπ[Q]

)
.

Nonincreasingness of F̄Θ implies φ∗(π) ≤ λ−1 = φmyopic(π) for π ≤ π̃. The inequality is strict for

π ∈ (0, 1), since F̄Θ is strictly convex.

When π > π̃, i.e., when λ(πH + (1− π)L) > 1, we have

1

λ(1− β)
λ−1F̄Θ

(
φ∗(π)− Eπ[Q]

)
= v∗(π)

≥ vmyopic(π)

≥ 1

1− β
Eπ[Q].

This is equivalent to

F̄Θ

(
φ∗(π)− Eπ[Q]

)
≥ λEπ[Q] > 1,

which is impossible since F̄Θ cannot be larger than 1. Thus φ∗(π) > Eπ[Q] is not possible for π > π̃.

Therefore φ∗(π) ≤ Eπ[Q] = φmyopic for π > π̃. Hence we always have φ∗(π) ≤ φmyopic.
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Proofs of Section 6

Proof of Corollary 6.1. For every h+ ∈ Ĥ (ĥ+), swap adjacent pairs in the following way: (p,D, p,U)

to (p,U, p,D) to obtain h
+

(u, d, p). By Proposition 4.1 each iteration weakly increases the belief

associated with the history: π(h+) ≤ π(h
+

(u, d, p)). Similarly, sequentially swap adjacent pairs in

the reverse direction to obtain a lower bound π(h+(u, d, p)) ≤ π(h+).

These bounds hold for all summands in (6.1), since they share the same number ofU,D
and price. Therefore (6.1) provides the result.

Recall the definition of the odds ratio Λ in (A.9) and define

Λ̂(π, u, d, p) =
(
Λ(U, π, p)

)u (
Λ(D, π, p)

)d
. (A.22)

Lemma A.10. Suppose that Assumption 3.1 and the ILR property hold. Let ĥ+ = (u, d, p). Then

Γ(π0)Λ̂(0, u, d, p)

1 + Γ(π0)Λ̂(0, u, d, p)
≤ π(ĥ) ≤ Γ(π0)Λ̂(1, u, d, p)

1 + Γ(π0)Λ̂(1, u, d, p)
. (A.23)

Proof. From (A.8) we get π = Γ/(1 + Γ). Therefore by Lemma A.10 we have

π(ĥ+) ≥
Γ(π0)

∏d
k=1 Λ

(
D, π(0, k − 1), p

)∏u
k=1 Λ

(
U, π(k − 1, 0), p

)
1 + Γ(π0)

∏d
k=1 Λ

(
D, π(0, k − 1), p

)∏u
k=1 Λ

(
U, π(k − 1, 0), p

) (A.24)

By the IRL assumption we have that Λ(r, π, p) is weakly increasing in π. Noting that for c > 0

the function cx/(1 + cx) is increasing in x, when x > 0, we can repeatedly decrease each of the

posteriors in the right hand size of (A.24) to obtain

π(ĥ) ≥
Γ(π0)

∏d
k=1 Λ

(
D, 0, p

)∏u
k=1 Λ

(
U, 0, p

)
1 + Γ(π0)

∏d
k=1 Λ

(
D, 0, p

)∏u
k=1 Λ

(
U, 0, p

)
=

Γ(π0)
(

Λ
(
D, 0, p

))d (
Λ
(
U, 0, p

))u
1 + Γ(π0)

(
Λ
(
D, 0, p

))d (
Λ
(
U, 0, p

))u
=

Γ(π0)Λ̂(0, u, d, p)

1 + Γ(π0)Λ̂(0, u, d, p)
.

A similar argument can be used to obtain the upper bound.

Consider the inequalities
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P(Rt =U|π(ht) = π,Q = H) log

(
P(Rt =U|π(ht) = 0, Q = H)

P(Rt =U|π(ht) = 0, Q = L)

)

+ P(Rt =D|π(ht) = π,Q = H) log

(
P(Rt =D|π(ht) = 0, Q = H)

P(Rt =D|π(ht) = 0, Q = L)

)
> 0 (A.25)

and

P(Rt =U|π(ht) = π,Q = H) log

(
P(Rt =U|π(ht) = 1, Q = H)

P(Rt =U|π(ht) = 1, Q = L)

)

+ P(Rt =D|π(ht) = π,Q = H) log

(
P(Rt =D|π(ht) = 1, Q = H)

P(Rt =D|π(ht) = 1, Q = L)

)
< 0. (A.26)

Lemma A.11. There exists a price p̃ > L such that for all π ∈ [0, 1] and p ≤ p̃ the following

inequalities hold:

G(U, π,H, p) log
(
Λ(U, 0, p)

)
+G(D, π,H, p) log

(
Λ(D, 0, p)

)
> 0, (A.27)

G(U, π, L, p) log
(
Λ(U, 1, p)

)
+G(D, π, L, p) log

(
Λ(D, 1, p)

)
< 0. (A.28)

Proof. Note for p ≤ L we have θ(π, p) < 0 for all π ∈ [0, 1]. Consequently all consumers buy and

G(r, π, q, p) = G(r, 0, q, p) = G(r, 1, q, p)

for all π ∈ [0, 1], r ∈
{
D,U,7

}
, q ∈ {H,L}. Therefore

G(U, π,H, p) log
(
Λ(U, 0, p)

)
+G(D, π,H, p) log

(
Λ(D, 0, p)

)
= γ

(
G(D, 0, H, p), G(D, 0, L, p), F̄Θ(θ(0, p))

)
> 0

and

G(U, π, L, p) log
(
Λ(U, 1, p)

)
+G(D, π, L, p) log

(
Λ(D, 1, p)

)
= −γ

(
G(U, 1, L, p), G(U, 1, H, p), F̄Θ(θ(1, p))

)
< 0,

for all π ∈ [0, 1], where γ is as in (A.7) and the inequalities follow from Lemma A.5.

Since all the above functions are continuous in p, we have that there exists a price p̃ > L such

that these inequalities hold for all p ≤ p̃.
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Lemma A.12. Let {Zt}t∈N+ be a sequence of binary random variables such that for some ρ > 0

P(Zt = 1|Z1, . . . , Zt−1) = 1− P(Zt = 0|Z1, . . . , Zt−1) ≥ ρ a.s..

Then for all ρ < ρ, there exists α > 0 such that

P

 t∑
i=1

Zi < ρt

 ≤ e−αt for all t ≥ 1.

Analogously if for some ρ < 1

P(Zt = 1|Z1, . . . , Zt−1) ≤ ρ a.s.,

then for all ρ > ρ, there exists α > 0 such that

P

 t∑
i=1

Zi > ρt

 ≤ e−αt for all t ≥ 1.

Proof. Let {Zt}t∈N+ and {Zt}t∈N+ be two sequences of Bernoulli random variables with parameters

ρ and ρ, respectively. Then, using a result by Veinott (1965) (see Shaked and Shanthikumar, 2007,

Theorem 6.B.3), we have that

(Z1, . . . , Zt) ≤st (Z1, . . . , Zt) ≤st (Z1, . . . , Zt),

for all t ≥ 1.

Therefore using the Chernoff-Hoeffding bound (Hoeffding, 1963) we obtain that for every ρ ≤ ρ

P

 t∑
i=1

Zi < ρt

 ≤ P

 t∑
i=1

Zi < ρt

 ≤ e−αt

for some α > 0. Similarly for every ρ ≥ ρ

P

 t∑
i=1

Zi > ρt

 ≤ P

 t∑
i=1

Zi < ρt

 ≤ e−αt

For some α > 0.

Proof of Proposition 6.2. We use Corollary 6.1 and show that, conditionally on Q = H, the odds

Γ(π(ĥ+
t )) diverge almost surely to +∞ and, conditionally on Q = L, the odds they converge to

0 almost surely. In particular we show that Λ̂(0, Ut, Dt, p) → ∞ and Λ̂(1, Ut, Dt, p) → 0. This,

together with the bounds in (A.23), implies that π(ĥ+
t )→ 1{Q=H} a.s.
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We begin by studying the asymptotic behavior of the lower bound. Call

Xt := 1{Rt=U} log
(

Λ
(
U, 0, p

))
+ 1{Rt=D} log

(
Λ
(
D, 0, p

))
.

Call

B̄t := {Bi = 1, i ∈ {1, . . . , t}}.

Then

log
(

Λ̂(0, Ut, Dt, p)
)

=
∑
i∈B̄t

Xi.

Thus, we can write

P

(
log
(

Λ̂(0, Ut, Dt, p)
∣∣Q = H

)
< M

)
=

t∑
k=1

P

∑
i∈B̄t

Xi < M
∣∣ card(B̄t) = k,Q = H

P
(
card(B̄t) = k

∣∣Q = H
)
. (A.29)

For some α ∈ (0, 1) we can bound this probability as follows

P

(
log
(

Λ̂(0, Ut, Dt, p)
)
< M

∣∣Q = H

)
≤
bαtc−1∑
k=0

P
(
card(B̄t) = k

∣∣Q = H
)

+

t∑
k=bαtc

P

∑
i∈B̄t

Xi < M
∣∣ card(B̄t) = k,Q = H


(A.30)

= P

 t∑
i=1

1{Bi=1} < bαtc
∣∣Q = H


+

t∑
k=bαtc

P

∑
i∈B̄t

X̃i < M̃k

∣∣ card(B̄t) = k,Q = H

 ,

where

X̃i :=
Xi − log

(
Λ
(
D, 0, p

))
log
(

Λ
(
U, 0, p

))
− log

(
Λ
(
D, 0, p

)) ,
M̃k :=

Mk − k log
(

Λ
(
D, 0, p

))
log
(

Λ
(
U, 0, p

))
− log

(
Λ
(
D, 0, p

)) .
Notice that X̃i = 1{Ri=U}.
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From Assumption 3.1(a) we have

0 < min
π∈[0,1]

F̄Θ(θ(π, p)) ≤ P(Bt = 1|B1 = 1, . . . , Bt−1 = 1) ≤ max
π∈[0,1]

F̄Θ(θ(π, p)) ≤ 1

and

0 < min
π∈[0,1]

G(U, π,H, p)

F̄Θ(θ(π, p))
≤ P(X̃t = 1|X̃1, . . . , X̃t−1) ≤ max

π∈[0,1]

G(U, π,H, p)

F̄Θ(θ(π, p))
< 1

almost surely, for all t ≥ 1. The above maxima and minima exist since all the functions of π are

continuous and defined on [0, 1].

Take α < minπ∈[0,1] F̄Θ(θ(π, p)) = F̄Θ(θ(0, p)) and apply Lemma A.12 to conclude that

P

 t∑
i=1

1{Bi=1} < bαtc
∣∣Q = H

 ≤ e−αt

for some α > 0.

In order to apply Lemma A.12 to

P

∑
i∈B̄t

X̃i < M̃k

∣∣ card(B̄t) = k,Q = H


for k ≥ bαtc, we must verify that

M̃k ≤ kρ (A.31)

with the shorthand notation

ρ := min
π∈[0,1]

G(U, π,H, p)

F̄Θ(θ(π, p))
.

Noting that the denominator in the definition of M̃k is positive, the inequality (A.31) becomes

M

k
≤ M

bαtc
< log

(
Λ(U, 0, p)

)
ρ+ log

(
Λ(D, 0, p)

)
(1− ρ).

The right hand side is positive by our assumption on the price using Lemma A.11 and thus for any

M the inequality is satisfied for t large enough.

Thus, we have concluded that for any M > 0 there exists tM such that for all t > tM

P

(
log
(

Λ̂(0, Ut, Dt, p)
)
< M

∣∣Q = H

)
≤ K e−ᾱt

for some positive constants K, ᾱ. As a consequence, for all M > 0

∞∑
t=1

P

(
log
(

Λ̂(0, Ut, Dt, p)
)
< M

∣∣Q = H

)
≤ ∞.
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Applying the first Borel-Cantelli Lemma, we conclude that log
(

Λ̂(0, Ut, Dt, p)
)
→∞ a.s. when

Q = H and p ≤ p̃, where p̃ satisfied the conditions in Lemma A.11.

This implies

Λ̂(0, Ut, Dt, p)

1 + Λ̂(0, Ut, Dt, p)
→ 0

and therefore, by (A.23), that π(ĥt)→ 1 a.s., conditionally on Q = H.

The case Q = L can be proved along the same line.
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