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Abstract

We study a dynamic pricing problem for a monopolist seller that operates in a setting where

each potential sale takes the form of a bilateral negotiation. The outcome of each negotiation

between the seller and a single independent buyer depends on the valuations of the seller and

buyer for that good, their relative negotiation power, and their beliefs regarding the other party’s

valuation. We first analyze variations of the bilateral negotiation problem and analyze the effect

of the buyer’s negotiation power. Next, we review the dynamic negotiation problem, and propose

a simple deterministic “fluid” analogue. The main emphasis of the paper is in expanding the

above formulation to the case where both the buyer and seller have limited prior information on

their counterparty valuation. Our first result shows that if both the seller and buyer are bidding

so as to minimize their maximum regret, then it is optimal for them to bid as if the unknown

valuation distributions were uniform. Building on this result and the fluid formulation of the

dynamic negotiation problem, we characterize the seller’s minimum price at any given point in

time. Finally, we expand on the above ideas to study the seller’s problem in the case where the

primitives of the buyer valuation distributions are unknown and non-stationary using ideas from

scenario-based robust optimization. The motivating application is from residential real-estate,

however, the model and proposed approach is generally applicable.

Keywords: bilateral negotiations, dynamic pricing, revenue maximization

1 Introduction

Many transactions between a seller and a buyer follow some form of a negotiation. This is typical

in business-to-business settings as well as in transactions that involve end consumers for expensive

items such as cars, furniture, and real-estate. The outcome of each such negotiation depends

on the reservation values of the seller and buyer, their negotiation skills, and their beliefs about

these parameters for their respective counterparties. This process is known as “bilateral price

negotiation”. Depending on the market conditions, the seller may enjoy increased market power

and as such be able to name her list price, whereas in the other extreme the buyers may essentially

submit take-it-or-leave-it bids to the seller. In most settings, actual behavior falls somewhere in

between, where the seller and buyer somehow split the difference between the seller’s minimum

acceptable bid (her reservation price) and the buyer’s willingness to pay. This might be regarded
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as if the seller foregoing some of her profits by offering the buyer a price discount. However,

in today’s business world, “the shifting balance of power has many stores scrambling for pricing

strategies that get beyond the time-worn cycle of markups and discounts” [9]. That is, in the

new business world, there is a significant and permanent power shift towards the consumers’ end,

propelled by the Internet and apps, which has rendered the buyers more empowered in haggles,

thus demanding much lower prices.

One motivating application for the paper comes from the residential real estate industry, where a

developer of a multi-unit project, e.g., a multi-story condominium development, tries to sell various

condos to prospective buyers through a sequence of negotiations over time. While for each buyer

their respective negotiation could be modeled as a one-off interaction, the seller should consider the

fact that she will engage into a sequence of such negotiations over time. The phenomenon of “power

shift towards the buyers’ end” is also observed in the real estate industry since the explosion of

the real-estate bubble in the financial crisis of 2007. Hence, our main focus is the changing trading

problem and the new pricing strategies of the sellers in real estate, even though most of our findings

do apply to the general case. 1

In more detail, we study the revenue maximization problem of a vendor that has C units of

capacity to sell over a time horizon of length T to a market of prospective buyers that arrive

according to a Poisson process with rate Λ, each has a willingness-to-pay that is an independent

draw from a distribution Fb, and who engages in a bilateral negotiation with the seller for a single

unit. The salvage value of the seller is private information, and buyers assume that it follows some

distribution Fs and is constant over time. The reservation price of the seller at time t depends on

the salvage value and the state of the sales process, i.e., the time-to-go and remaining capacity.

The ultimate focus of this paper is to study this problem, primarily in the setting where buyers

have market power (which is regarded as a “buyer posted price” (BPP) environment), and where the

seller and the buyers do not know the distributions Fb, Fs, respectively and moreover the unknown

distribution Fb may be changing over time. This setting is motivated by the real estate application,

where there is significant uncertainty about the current and future market conditions, and the

1Numerous articles in the press exemplify the phenomenon that “properties once sold at very high monetary terms
are now being purchased by the bidders who pay the minimum amount to cover back taxes, interest and fees” [29].
Many developers of multi-unit residential projects are advertising in the newspapers, magazines and on the internet
announcing that all bids are welcome.
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non-stationarity here is not due to seasonality effects that can be readily incorporated, but rather

due to changes in underlying market conditions, e.g., such as interest rates, economic conditions,

etc., that “modulate” the buyer willingness-to-pay distribution.

Despite the importance and prevalence of negotiation problems in practice, most literature in

quantitative dynamic pricing has focused on posted price mechanisms (see Gallego and Van Ryzin

[13], Das Varma and Vettas [30]) and auctions (see Vulcano et al. [31]). Among the papers that

involve revenue management problems in the form of bilateral negotiations, the work of Bhandari

and Secomandi [7] is perhaps closest to ours regarding the problem under consideration. However,

Bhandari and Secomandi use a stylized MDP to investigate the negotiation processes in a dynamic

deterministic setting while we are mainly interested in uncertain environments. Moreover, our focus

is not on the mechanism design, nor does it involve “strategic buyers” who refuse to buy at high

prices, which are the main differences of our work from Riley and Zeckhauser [28] and Gallien [14].

The first modeling and methodological contribution of the paper is in formulating the classical

bilateral negotiation problem in an uncertain environment, where buyers and the seller do not

have information about Fs, Fb, respectively. There are three natural ways to specify this type of

model uncertainty. The first one is stochastic, wherein the unknown distributions are assumed

to be drawn from a given set of possible distributions according to some known probability law,

and where the firm’s goal is to optimize its expected revenues over all possible market model

realizations. Its main shortcoming is that it requires detailed information on the distribution of

the model uncertainty. As a second formulation, both the seller and the buyer adopt a max-min

criterion where they aim to optimize their respective worst-case revenues. This criterion may

yield overly pessimistic results. Finally, a third approach that reduces the conservatism of max-

min formulations while maintaining their appealing low informational requirements is through the

use of the competitive ratio or maximum regret criteria, which measure the performance relative

to that of a fully-informed decision maker. They have been used extensively in the computer

science literature, and have recently been applied in pricing and operations management problems.

Specifically, Ball and Queyranne [4], Eren and Maglaras [11], Perakis and Roels [27], Lan et al. [20]

and Eren and Van Ryzin [12] adopt different versions of this idea.

Secondly, we carry the analysis to the dynamic setting. The key finding is to recognize that in
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the buyer’s market (i.e. BPP setting) where the seller is simply making accept or reject decisions

of the buyer bids, the problem can be reduced to a single resource capacity control problem in

the form analyzed by Lee and Hersh [21]. Specifically, the distribution of buyer bids is analogous

to a continuous distribution of fare classes. This observation allows us to completely characterize

the structure of the optimal policy. We note in passing that the problem in the seller’s market is

similarly analogous to the well-studied dynamic pricing problem in Gallego and van Ryzin [13].

Next, motivated by the goal of studying the dynamic settings where the distributional assump-

tions may not be known, we start with a simpler approximated problem where the buyer arrival

process is replaced by a deterministic and continuous process. This model can be justified as a limit

as the capacity and market potential grow large and the sales horizon and distributional assump-

tions stay unchanged. This is often referred to as a “fluid” model and admits a static solution, as

it could be expected from the mapping of the BPP formulation to the capacity control problem,

where the seller accepts all bids above a given threshold.

Finally, the last part of the paper focuses on the real-life applications where the distributions

Fs, Fb are unknown and may vary over time. Motivated by our previous findings regarding the

static uncertain problem, we propose a method that a) uses the fluid model, b) adopts uniform

distributions for Fs, Fb, c) considers multiple possible parameter scenarios for the evolution of these

distributions, and d) picks a feedback pricing strategy for the seller to optimize its regret relative to

the full information problem. This problem can be solved in an open-loop manner. This, however,

can be improved by optimizing over a set of linear feedback bidding rules for the seller, that are

motivated by the optimal seller strategy under full information. A set of numerical results show

that the regret formulation and the associated uniform distribution assumption lead to good results,

i.e., modest revenue loss for the seller, in a variety of settings.

The main contributions of the paper are as follows: First, the maximum regret formulation and

associated results are novel, and important on their own right as they offer a robust analogue of the

one-to-one bilateral negotiations problem. Parenthetically, we find that the uniform distribution

appears as the natural assumption under incomplete information, which is consistent with results

derived in the robust optimization literature. Secondly, we draw attention to the analogy between

the dynamic bilateral negotiation problems and the classical revenue management problems; which
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is a first in the literature. Third, the formulation of the seller’s dynamic problem with uncertain

Fs, Fb distributions assumed as being uniform, as motivated by the result in the one-to-one setting,

is novel and the formulation is itself readily solvable producing a simple and tractable policy that

has a good performance.

The remainder of the paper. In section 2, we consider the one-to-one negotiation problems:

In section 2.1, the classical models are revisited; and in section 2.2, we analyze a variant of the

problem with an added uncertainty element in terms of the valuation distribution functions. In

section 3, the analysis is carried to a dynamic setting. Section 3.1 sheds light on the analogy of

the negotiation and the revenue management problems. Section 3.2 presents the dynamic pricing

model that extends the results of the static negotiation problem to a dynamic setting using a fluid

model approach. Next, in section 4, the results of section 2.2 are extended to the dynamic setting

under a regret criterion. In particular, we propose a scenario-based robust optimization approach

which is both tractable and takes into account the unfolding uncertainty in the system as time

progresses. Numerical illustrations and extensions are presented in section 5. Finally, section 6

concludes our findings and presents avenues for further research.

2 1-to-1 Bilateral Negotiation Problem

2.1 Background: 1-to-1 Bilateral Negotiation Problem

The literature of two-person bargaining games goes back to Nash [26] and Harsanyi [18], and the

ones to pioneer the analysis of the dynamics of an environment with shifting negotiation power are

Myerson (et al.) ( [25], [24]) and Chatterjee and Samuelson [8]. In these studies the problem is

analyzed within a static context as a game between a single seller and a single buyer.

The one-to-one bilateral negotiation problem involves the trading interactions between two

individuals where one of the individuals (the seller) owns an object that the other (the buyer) wants

to buy. Both players are risk neutral. From the seller’s perspective the valuation of the buyer for this

unit is random variable vb, distributed according to probability density and distribution functions

fb and Fb with support [
¯
vb, v̄b]. A symmetric argument holds for the buyer, where he assumes that

the seller’s valuation for the unit, vs, is distributed according to cumulative distribution function
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Fs (with pdf fs) on the range [
¯
vs, v̄s]. Fs and Fb are both strictly increasing and differentiable on

their supports, and are common knowledge.

The rules of the bargaining game is as follows: At the beginning of the sales interval the seller

sets a reservation price s(vs), then the buyer submits a bid b(vb), and a successful trade is concluded

if b(vb) exceeds s(vs). The resulting sales price is kb(vb) + (1 - k)s(vs), where k ∈ [0, 1] is a parameter

that determines the bargaining power of the buyers. Specifically, if k = 0, the problem reduces to a

“seller posted price” (SPP) setting where the trade is concluded at the price s(vs) as long as s(vs) ≤

b(vb). At the other extreme k = 1, the problem becomes a “buyer posted price” (BPP) formulation

where the sales price is equivalent to the buyer’s bid b(vb), again provided that s(vs) ≤ b(vb) holds.

Chatterjee and Samuelson [8] characterize the class of equilibria for this problem in which player

bidding strategies are “well-behaved”. In particular, they make the following assumption regarding

the buyer and seller bidding functions s(.) and b(.), which is also relevant for our analyses:

Assumption 1. In the equilibrium, both b(.) and s(.) are bounded above and below and are strictly

increasing and differentiable except possibly at the boundary points.

Under the above assumption, the equilibrium bidding strategies of the two parties 2 are the

solutions to the following two linked differential equations:

−kFs(s−1[b(vb)])s
′(s−1[b(vb)]) + fs(s

−1[b(vb)])(vb − b(vb)) = 0, (1)

(1− k)(1− Fb(b−1[s(vs)]))b
′(b−1[s(vs)]) + fb(b

−1[s(vs)])(vs − s(vs)) = 0, (2)

where k ∈ [0, 1] is the parameter determining the bargaining power of the buyer.

The above formulations is obtained by solving the following “best response problems” of the

seller and the buyer simultaneously:

max
s∈[vs,b̄]

∫ b̄

s
(kb+ (1− k)s− vs)gb(b)db,

and

max
b∈[

¯
s,vb]

∫ b

¯
s

(vb − kb− (1− k)s)gs(s)ds,

2We will use the terms “bidding function” and “bidding strategy” interchangeably throughout the paper.
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where gs and gb are the pdf’s of the optimal bidding functions s∗(.) and b∗(.) respectively,
¯
s is the

minimum value the seller’s bid can take and b̄ is the maximum value the buyer’s bid can assume.

The equations (1) and (2) take the following simpler forms in the BPP environment (i.e. k = 1):

b∗(vb) = {b| − Fs(b) + (vb − b)fs(b) = 0}, ∀vb ∈ [
¯
vb, v̄b] (3)

s∗(vs) = vs, ∀vs ∈ [
¯
vs, v̄s] (4)

and the same equations produce the following bidding functions in the SPP (k = 0) case:

b∗(vb) = vb, ∀vb ∈ [
¯
vb, v̄b] (5)

s∗(vs) = {s|1− Fb(s) + fb(s)(vs − s) = 0}, ∀vs ∈ [
¯
vs, v̄s] (6)

An interesting feature of the seller’s optimal bidding function in the BPP setting is its inde-

pendence from Fb. The intuition behind this fact is obvious: Since the seller has no influence on

determining the final price, she is willing to accept any offer above her own valuation to obtain pos-

itive return. That makes bidding her own valuation, vs, her best response to all bids of the buyers.

Thus, gs becoomes identical to fs in the BPP setting and the buyer bidding function assumes the

simple form as in (3). A symmetrical argument holds for the SPP setting, justifying (5) and (6).

2.2 1-to-1 Bilateral Negotiation Problem in Uncertain Environments

In this subsection, we analyze a variant of the classical one-to-one bilateral negotiation problem

with an added uncertainty feature. In particular, we assume that both agents are able to estimate

the minimum and the maximum values that their opponent’s valuation could assume; however,

they do not have any knowledge regarding the distribution of this value in its given range.

As discussed in Section 1, there are various ways to model this type of uncertainty, and among

those, we will adopt the “absolute regret minimization criterion” approach (ARMC). The rationale

behind this method is to improve the average quality of decisions under uncertainty.

Adopting the ARMC approach, the problems that the seller and the buyer need to solve in
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order to minimize their maximum regret are formulated respectively as follows:

argmin
s
{max

b
max
s′

[(kb+ (1− k)s′ − vs) · 1{b≥s′} − (kb+ (1− k)s− vs) · 1{b≥s}]} (7)

argmin
b
{max

s
max
b′

[(vb − (kb′ + (1− k)s)) · 1{b′≥s} − (vb − (kb+ (1− k)s)) · 1{b≥s}]} (8)

In the first of the above problems, the seller tries to select the bid s which minimizes the revenue

loss across all bids b of the buyer; where the seller’s revenue loss in each instance is the difference

between the maximum revenue she could have achieved by bidding her best response s′ (i.e. (kb+

(1−k)s′−vs) ·1{b≥s′}) and the realized revenue at her selected bid s (i.e. (kb+(1−k)s−vs) ·1{b≥s}).

The problem of the buyer is symmetrical.

The equilibrium bidding functions s∗ARMC and b∗ARMC that solve the above problems and are

best responses to each other are characterized in the following theorem.

Theorem 1 (Equivalence of ARMC and the uniform distribution case). When each party

in the bilateral negotiation game only possesses the support information of the opponent’s value

distribution and uses ARMC to maximize revenues, the equilibrium bidding functions are given as:

s∗ARMC(vs) =
vs

2− k
+

(1− k)v̄b
2

+
k(1− k)

¯
vs

2(2− k)
, ∀vs ∈ [

¯
vs, v̄s], (9)

b∗ARMC(vb) =
vb

1 + k
+
k
¯
vs
2

+
k(1− k)v̄b
2(1 + k)

, ∀vb ∈ [
¯
vb, v̄b]. (10)

which are also the equilibrium bidding functions of a game where Fs, Fb are both uniform on the

given ranges.

For the proof, please refer to Appendix 7.1.

The above result brings a theoretical motivation to use uniform distribution as the opponent’s

distribution function when there is no information. In other words, the results of the ARMC

analysis support the intuition that the valuation of the counterparty could be anywhere over its

support with equal probabilities when nothing is known regarding its distribution.

Remark 1. We have thus extended the literature on the one-to-one negotiation problem where

neither the seller nor the buyer know each other’s distribution function, but they both know the
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range of the opponent valuations. It is also possible to analyze a third case where one of the parties

is informed about the other’s value distribution function, while the other only knows the range of

his opponent’s valuation. The analysis regarding this case can be found in Appendix 7.2.

3 Dynamic Bilateral Negotiation Problems

3.1 The Analogy of Revenue Management and Bilateral Negotiation Problems

We next turn our attention to the main motivating problem of this paper: The revenue maxi-

mization problem of a firm that has C units to sell over a time horizon of length T to a market of

prospective buyers that arrive according to a Poisson process with rate Λ, each has a willingness-to-

pay that is an independent draw from a distribution Fb, and each engages in a bilateral negotiation

with the seller for one unit of that good. The salvage value of the seller is private information, and

buyers assume that it is drawn from some distribution Fs, and is constant over time.

The key observation in the dynamic setting is that the buyers in the system are “naive”: they

ignore the competition with other buyers in the market, and bid according to the equilibrium

bidding function b∗(·) characterized by the equation (1). However, the seller will engage into a

sequence of such negotiations over time, therefore submits her bid with the objective of maximizing

her overall revenues. Thus, the seller’s bid is no longer determined by the equation (2).

First, consider the BPP (buyer posted price) setting: In this setting, given the arrival rate Λt

and the buyer bidding function b∗BPP , it is possible to define the expected “sales rate” at instant t

as N(t) = N(st) = ΛtḠb(st). Then, the seller’s revenue maximization problem takes the form:

max
{st,t=1,...T}

Eξ,bt [
T∑
t=1

(bt − vs)ξ(t;N)] (11)

subject to

T∑
t=1

ξ(t;N) ≤ C a.s., st ∈ P, ∀t. (12)

where bt := b∗BPP (vt), and the valuation vt of the buyer arriving at t is randomly drawn from the

distribution of the buyer values. ξ(t;N) is the random sales amount at t which is Bernoulli with

probability P(ξ(t;N) = 1) = N(t)δt and P(ξ(t;N) = 0) = 1 − N(t)δt for small δt. Note that the
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price st (which belongs to a feasible price set P) has no direct effect on the revenue, except for

determining the lower bound of the buyer bids to be admitted. That is, it effectively works as a

control that leads to “opening” product classes (buyer bids) that exceed st and “closing” classes

that bring lower revenue than st.

Hence, the problem is in the same spirit as the “capacity control problem” of the revenue

management literature, which is studied by Lee and Hersh [21] among many others. In this problem

the prices are exogenously determined by competition or through a higher order optimization

problem defining the market conditions and the firm chooses a dynamic capacity allocation rule.

To see the connection more clearly, assume that we approximate all buyer bids by n finite values;

i.e. define b̄∗ ≥ b1 ≥ b2 ≥ . . . ≥ bn ≥
¯
b∗ as n finite “fare classes”, where the arrival rate of bid bi is

approximated by Λt(Ḡb(bi)− Ḡb(bi−1)), ∀i ∈ {2, . . . , n} and the arrival rate of b1 is approximated

by ΛtḠb(b1) at each instant t. Then, the problem above pours into the following capacity allocation

problem of a firm which has discretion as to which product requests to accept at any given time:

max
{u(t),t=1,...T}

Eξ[
T∑
t=1

(b′ − vs)ξ(t;uΛ)] (13)

subject to
T∑
t=1

e′ξ(t;uΛ) ≤ C a.s., ui(t) ∈ {0, 1}, ∀t.

where ui(t)’s are the controls that take value 1 when a bid of value bi is accepted at time t and zero

otherwise, b′ = {b1, b2, . . . , bn}, e′ the n-dimensional unit vector, and ξ(t;uΛ) denotes the associated

sales vector. The formulation (13) is the discretized version of the capacity control problem of Lee

and Hersh [21]. Thus, if the buyer bids could be approximated by a finite class of fares, the BPP

formulation is equivalent to the capacity allocation problem of a seller selling a single resource to

multiple demand classes in a perfect competition setting. For details, we refer the reader to Lee

and Hersh [21] and Maglaras and Meissner [23].

Next consider the SPP (seller posted price) setting: In this environment, the seller’s revenue
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maximization problem could be formulated as follows:

max
{st,t=1,...T}

Eξ[
T∑
t=1

(st − vs)ξ(t;N)] (14)

subject to
T∑
t=1

ξ(t;N) ≤ C a.s., st ∈ P, ∀t. (15)

where N(t) = N(st) = ΛtF̄b(st) is the “sales rate” at t and ξ(t;N) is the associated sales vector.

As in the BPP setting, a simple observation shows that the above formulation is in parallel to the

“dynamic pricing” problem of a monopolist seller selling a homogenous product in a discrete-time

setting; which is readily given in the paper of Gallego and Van Ryzin [13]. The stochastic dynamic

pricing game has been extensively analyzed in the same paper, which we will be referring to as

GVR paper in the sequel.

The two above equivalences stem from the fact that while each buyer negotiates with the seller

only once, the seller will engage into a sequence of negotiations over the sales horizon. Hence, in

BPP, she will determine the minimum bid to be accepted at each instant to control the amount

of capacity to be sold, whereas in SPP she will pursue a dynamic pricing strategy to maximize the

revenues to be extracted from the stochastically arriving buyers. Therefore, in broad terms, the

SPP setting reduces to the dynamic pricing problem and the BPP setting to the capacity allocation

problem of the literature. We state this result as a proposition.

Proposition 1. If the buyers in the market are naive, the dynamic SPP game becomes equivalent to

the dynamic pricing problem and the dynamic BPP game to the capacity allocation problem

of the revenue management literature.

3.2 Fluid Formulation of the Dynamic Problem

Since analyzing the stochastic dynamic pricing problem of the seller is difficult, we will proceed

with a fluid formulation hoping to obtain insights towards the solution of the stochastic problem.

As commonly known, fluid formulation is a good approximation of the real stochastic problem when

number of interactions per unit time is sufficiently large.

To this end, consider the following fluid version of the dynamic negotiation game: Infinitesimal
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buyers arrive with a (deterministic) rate Λt at t, t ∈ [0, T ]. Both parties know Λt and the distribution

function of their opponent. Then the revenue maximization problem of the seller is as follows:

max
st,∀t

[

∫ T

0
rt(vs, st)dt] (16)

subject to

∫ T

0
Λt[

∫ b̄

st

gb(b) db] dt ≤ C (17)

where rt(vs, st) is the instantaneous net revenue function of the seller at time t when her valuation

is vs and her reservation price st; which is given by:

rt(vs, st) =

∫ b̄

st

Λt(kb+ (1− k)st − vs) gb(b) db. (18)

and gb is the pdf of the buyer bidding function b(·) characterized in (1) and s(·) is given by (2).

If the above problem is modeled as a stochastic control problem in the price space, finding its

solution could be extremely difficult. Therefore, following a similar approach as in GVR, we will

analyze the problem by focusing on the optimal sales rate, rather than the optimal pricing policy.

If the seller sets st as the lowest price to be accepted at t, the fraction of buyers that are accepted

at that instant is given by αt(st) =
∫ b̄
st
gb(b) db = Ḡb(st), inducing an inverse function:

st(αt) = G−1
b (1− αt).

The function st(αt) is well-defined for all αt ∈ [0, 1] as a result of Assumption 1.

Then, the instantaneous net revenue function of the seller at time t in terms of the fraction of

accepted buyers becomes:

rt,a(vs, αt) =

∫ b̄

G−1
b (1−αt)

Λt (kb+ (1− k)(G−1
b (1− αt))− vs) gb(b) db.

Thus, the seller’s revenue maximization problem (16)-(17) in the price space is equivalent to:

max
αt,∀t

[

∫ T

0
rt,a(vs, αt)dt] (19)

subject to

∫ T

0
Λtαt dt ≤ C. (20)
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which is a formulation in the demand space.

Provided that rt,a(vs, α) is concave in α, the formulation (19)-(20) becomes maximization of a

concave function over a convex set; and its solution is then given as in the following Theorem.

Theorem 2. If rt,a(vs, α) is concave in α, the equilibrium bidding strategy st(.), t ∈ [0, T ], of the

seller in the dynamic negotiation problem takes the form:

st(vs) = max{G−1
b (1− C∫ T

t=0 Λt dt
), s∗(vs)},∀t ∈ [0, T ], (21)

where s∗(vs) is the bidding function of the seller given in (2); and the equilibrium bidding strategy

bt(.) of each infinitesimal buyer arriving at time t is characterized by (1), with Gb being its cdf.

Proof. As we have already noted, the buyers have neither the knowledge of the sales rate nor the

remaining inventories of the seller. Therefore, they regard the situation as a one-to-one negotiation

game and employ the equilibrium bidding function b∗(.) regardless of their arrival time.

To see how the seller behaves, note that the problem (19)-(20) is maximized at the maximizer

of rt,a(., vs), which is α∗ := Ḡb(s
∗(vs)), provided that it is feasible to admit this fraction at each

instant t (i.e. if α∗
∫ T

0 Λt dt ≤ C). This case is equivalent to applying the bid st(vs) = s∗(vs), ∀t.

If, on the other hand, α∗
∫ T

0 Λt dt > C, then by the concavity of rt,a(., vs), it is optimal to

admit the constant fraction α0 := C∫ T
t=0 Λtdt

at each t. This second case corresponds to bidding

st(vs) = G−1
b (1 − C∫ T

t=0 Λt dt
), ∀t ∈ [0, T ]. So the seller will set her reservation price as st(vs) =

max{s∗(vs), G−1
b (1− C∫ T

t=0 Λt dt
)}, which ends the proof of the theorem.

The above theorem is in the same spirit as the Proposition 2 of GVR paper and forms the first

major result of this section.

Regarding concavity of the instantaneous revenue function of the seller, for instance:

g′b(b) ≥ 0,∀b ∈ [
¯
b, b̄] (22)

is a sufficient condition to ensure that rt,a(vs, α) is concave in α for all vs ∈ [
¯
vs, v̄s]. This condition

simply ensures that the second derivative of the function rt,a(vs, ·) is negative at all α. Observe
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that if both functions Fs, Fb are uniform, Condition (22) is satisfied.

3.3 Dynamic Negotiation Problems under Uncertainty

In this part, we study a variant of dynamic negotiation problems where the primitives of the buyer

valuation distribution are unknown.

The problem setting is as follows: At each instant t, t ∈ [0, T ], independent negotiations

take place between the seller and the entire population of infinitesimal buyers whose valuation

distribution function is revealed at t. The players know each other’s distribution range for all

t ∈ [0, T ] (and suppose that, for convenience, this range does not change across time). In this

situation, the ARMC (absolute regret minimization) approach is again a viable choice for all parties.

However, we need to make the following assumption to ignore the “learning effect” for the seller

(otherwise, the seller’s problem becomes trivial as she can infer the value distribution function of

buyers from the instantaneous sales rate and employ the optimal pricing policy).

Assumption 2. The seller can neither observe the buyer value distribution function, Fb, nor the

sales amount until the end of the sales horizon.

Although the above assumption might seem unrealistic, it is in fact equivalent to assuming that

the buyers’ valuation distribution is continuously changing over time. Hence, observing the past

sales will not help the seller in predicting the future sales.

With these observations, we are ready to state and prove the following Theorem, which empha-

sizes the analogy of the dynamic stochastic problem with the stochastic one-to-one problem.

Theorem 3. The dynamic stochastic problem with unknown valuations reduces to the dynamic

deterministic problem of section 3.2, with Fs and Fb being uniform distribution functions on their

given ranges at each t.

The proof of the above Theorem can be found in the Appendix 7.3.
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4 Applications in Non-Stationary Environments

In this section, we consider dynamic stochastic problems where the support of valuation distribu-

tions are unknown and non-stationary. This type of multi-stage stochastic optimization problems

has elicited much interest from various research communities and there are several established

methodologies to expound them involving dynamic programming, stochastic programming and ro-

bust optimization. However, the problem usually remains hard to solve analytically. Therefore, in

practice, it is typical to solve the recursions numerically or resort to some approximations such as

approximate dynamic programming or simulation. In a similar manner, we will introduce a class

of policies that is motivated by the structure identified in the deterministic version of the problem

and confirm that these policies achieve “good” performance in the dynamic stochastic problem.

Before proceeding with the analysis, first we would like to shed light on the relevance of the

results of Lan et al. [20] and Lobel and Perakis [22] to our problem, where both papers analyze

the capacity rationing problem of a seller operating under limited demand information. Both

papers employ a robust formulation approach and resort to “absolute regret minimization criterion”

(ARMC) among others. The resulting optimal policies are in the form of a nested booking policy.

However, as pointed out earlier, despite the analogy between the dynamic BPP (buyer posted price)

problem and the classical capacity rationing problem, restricting the buyer bids to a fixed set of

discrete fares and characterizing the worst-case scenario by a specific sequence of buyer arrivals

(as in these papers) would only be analyzing a special case of the stochastic BPP problem. We

will rather proceed with the general problem where we allow for a continuous range of buyer bids

changing dynamically over time, and assume no specific sequence or volume of buyer arrivals.

The problem with added time-varying nature of the valuations could seem to be far-fetched to

the reader; however, it is commonly observed in some business settings, particularly in the real-

estate sector. The only caveat is to assume that the parameters of the distribution fluctuate over

night could be unrealistic. To avoid this, we will use approximations such that these transitions are

significantly observable only from one discrete period to another, where the length of each period

could be different from another. The following example describes such a setting:

Example: Consider a condo-developer who has C = 375 units to sell over T = 15 bi-monthly
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intervals. Assume that the market conditions remain stationary within an interval, but there is an

observable transition in the buyer valuation distribution at the end of each period. In particular,

the buyer valuations in period t, t ∈ {1, 2, . . . , 15}, are uniformly distributed in the range [µ(t) −

$300K,µ(t) + $300K], where µ(t) is given by the equation:

µ(t) = µ(t− 1) + δ(t), for t = 2, 3, . . . T ; µ(1) = $600K

and δ(t) is the noise factor at time t with the following distribution:

δ(t) =


U[−$120K, 0], w.p 0.4

$0, w.p 0.2

U[0, $120K] w.p 0.4

∀t

That is, µ(t) corresponds to average buyer valuation in period t. Some example µ paths (i.e. the

values that µ(.) takes from t = 1 to t = 15) are given in the following Figure.

–Figure 1 “Example of Parameter paths” about here–

Figure 1: Examples of Parameter Paths
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As exemplified above, the problem setting we will consider is comprised of discrete periods

t ∈ {1, 2, ...T}. In each period, the buyer valuations follow a new distribution function (denoted

by Fµ(t)), and independent dynamic negotiations take place between the seller and the entire

population of infinitesimal buyers. The seller regards Fµ(t) as uniform distribution over an unknown

range (the reasoning for this assumption comes from Theorem 3). To parameterize the uniform

distribution with a single variable, we will assume that the length of the distribution support is

known and given at all times t; but the middle point of the range, µ(t), remains unknown. This

average buyer valuation changes from one period to another by an additive noise factor. We make

no distributional assumptions regarding the noise factor, except that it lies in a basic compact

algebraic set ∆. We will focus on a BPP (buyer posted price) setting, in the light of the previous

discussion about our motivating problem. For simplicity, we will pursue the analysis on the example

problem stated above.

Resizing the problem by dividing all monetary values by $300K and carrying the analysis to a

fluid setting, we obtain the following robust optimization problem:

max
{st,t=1,...15}

z (23)

subject to z ≤ [
15∑
t=1

100

4
((1.5 +

t∑
i=1

δ(i))2 − 4s2
t )], (24)

100((1.5 +

t∑
i=1

δ(i))− 2st) ≤ at, ∀t, (25)

15∑
t=1

at ≤ 375 a.s.∀t (26)

−0.2 ≤ δ(t) ≤ 0.2, at ≥ 0, ∀t. (27)

The formulation above is that of an uncertain quadratically constrained (QC) problem. This class

of problems is analyzed by many researchers, including Ben-Tal et al. [1], who build an SDP which

approximates the NP-hard robust counterpart, and Goldfarb and Iyengar [16] who reformulate it

as an SOCP problem and solve the latter. Although the solution methodologies in these papers

decrease the computational effort considerably, the main problem is that the above formulation leads

to an open-loop solution (i.e. a pricing policy st that does not make use of the past disturbances),
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therefore yielding conservative results for practical use.

Rather than open-loop policies that do not take into account the system dynamics, some simple

but tractable functional forms might be sufficient for good performances, if not for optimality. “An

affine policy” of past disturbances, i.e. a pricing policy of the form: st = mt +
∑t

i=1Bt,iδ(i), could

be one such policy. This approach is not new in the literature. It has been originally advocated in

the context of stochastic programming (see Garstka and Wets [15] and references therein), where

such policies are known as decision rules. More recently, the idea has received renewed interest

in robust optimization (Ben-Tal et al. [2]), and has been extended to various contexts for solving

specific optimization problems, from linear and quadratic programs (Ben-Tal et al. [3], Kerrigan

and Maciejowski [19]) to conic and semi-definite (Ben-Tal et al. [3], Bertsimas and Brown [5]).

Bertsimas et al. [10] were able to show that the optimal controls in a one-dimensional, discrete,

linear, time-varying dynamical system are affine functions of the past disturbances. However, they

also show that the optimality of affine policies is easily violated even when the problem assumptions

are relaxed slightly. For instance, optimality no longer holds when there exist linear constraints

coupling the controls across different time-steps, which is exactly the case in our problem due to

the capacity constraints. Hence, in our problem affine policies are not optimal, but hopefully yield

results that are close to optimal.

Moreover, we have an additional structural support in the favor of using affine policies. To

see this, let us take a step back and consider the deterministic problem. The form of the optimal

pricing policy in the deterministic problem is given in the following Proposition.

Proposition 2. If the entire µ path is known at t = 1 (i.e. the noise vector δ is known), the

optimal bidding function of the seller with valuation vs engaging in dynamic negotiations under

BPP setting is given by:

ŝt(vs) = max{b∗(v0
b ), vs}, ∀t ∈ {1, 2, . . . , T}

where v0
b satisfies:

∑T
t=1 Λt

∫ µ(t)+0.5l(t)

v0
b

fµ(t)(vb)dvb = C (l(.) being the range of buyer valuations at

t, Λ(t) total number of buyers in the market at t).

Hence, the optimal clairvoyant policy of the seller (under ARMC approach) is a stationary policy

19



where the optimal bid at any time t is given by: s∗t (vs) = max{vs,
∑T
t′=t Λt′ (

µ(t′)+0.5l(t′)
l(t′) )−x(t)

2
∑T
t′=t

Λt′
l(t′)

+ ¯
vs
2 },

where x(t) is the inventory at the beginning of period t.

Thus, inspired by the optimal policy of the deterministic problem, a candidate closed-loop policy

for the stochastic problem could be defined as:

st = At +Btx(t) + Ct,tµ(t) +
∑
i>t

Ci,t(µ̂(i) + E[δ(i)]) (28)

for appropriate constants At, Bt and Ci,t, ∀t, ∀i > t.

However, optimizing over the coefficients At, Bt and Ci,t violates the convex nature of the

maximum regret minimization problem (23)-(27), since x(t) is dependent on si, i = 1, 2, . . . , t− 1,

∀t. Fortunately both x(t) and µ(t) are functions of the noise factors δ(i), i ≤ t; and it is possible to

recover the form (28) by defining the optimal policy s as an affine function of the past uncertainties:

Proposition 3. Defining:

st = mt +

t∑
j=1

Bt,jδ(j) (29)

the formulation (28) can be recovered.

The proof of the above proposition is omitted for length-related concerns, but it simply follows

from the fact that, if the seller bid is defined as in (29), the current capacity x(t) is an affine function

of previous noise factors δ(j), j ≤ t, in a uniform distribution setting. However, the opposite of

this claim is not true, i.e. it is not possible to recover equations (29) from the (28). That is because

the degree of freedom is larger for the set of equations (29) (i.e. given the values of mt and Bt,i,

∀t, i ≤ t, there is more than one solution for At, Bt, Ci,t, ∀t, i > t.)

Hence, supported by previous research and the structural form of the deterministic optimal

policy, we confine our search to affine pricing policies. Moreover, rather than accounting for the

entire uncertainty set, we will sample N (to be found by trial-and-error) scenarios and model the

seller’s pricing problem with the objective of “minimizing the worst case regret” within this sample.

This approach avoids computational complexity and is supported by previous works. For instance,

Perakis and Roels [27] argue that rather than spanning the entire uncertainty set, accounting for

the twenty-fifth and seventy-fifth percentiles produces policies that perform substantially better on
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average without deteriorating much in terms of the worst-case regret performance.

To this end, we define the following quantities:

Π(s, δ) := net revenues to be obtained by the pricing policy s under the noise vector δ;

Π∗(δ) := maximum revenues to be obtained under the noise vector δ.

Clearly, for the example problem (14)-(15):

Π(s, δ) =
100

4

[ 15∑
t=1

0.25((1.5 +
t∑
i=1

δ(i))2 − 4(st)
2)

]

Π∗(δ) =
100

4

[ 15∑
t=1

0.25((1.5 +

t∑
i=1

δ(i))2 − 4(s∗t (δ))
2)

]

where s∗t (δ) = max{vs,
[∑15

t=1 100×(1.5+
∑t
i=1 δ(i))

]
−375

2
∑15
t=1 100

}, ∀t.

And the final form of the problem to be solved is the following:

min
{mt,Bt,i,t=1,...15,i=1,...,t}

z

subject to z ≥ [Π∗(δj)−Π(sj , δj)], ∀j = 1, 2, . . . , N,

100((1.5 +
t∑
i=1

δj(i))− 2sjt ) ≤ a
j
t , ∀t, ∀j = 1, 2, . . . , N,

15∑
t=1

ajt ≤ 375 a.s.∀j = 1, 2, . . . , N,

sjt = mt +
t∑
i=1

Bt,iδ
j(t), ∀t, ∀j = 1, 2, . . . , N,

ajt ≥ 0, ∀t, ∀j = 1, 2, . . . , N.

Hence, by finding the best common coefficients mt, Bt,i that minimize maximum regret across the

selected scenarios, we hope to find a heuristic policy that also performs well for all possible instances

of the problem.
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5 Numerical Results

5.1 The Effect of the Negotiation Parameter

In this subsection we analyze the effect of the “buyer’s negotiation power” (which is reflected in

the parameter k) on the seller revenues. To this end, we consider a dynamic setting where the

buyers and the seller both have uniform valuation distributions on the ranges [
¯
vb, v̄b] = [1, 3] and

[
¯
vs, v̄s] = [0.5, 1.5] respectively. Assume that the buyers arrive according to a Poisson distribution

with rate Λ = 1 per period for a sales horizon of T = 50 periods. Recall that the buyer and the

seller bidding functions in the dynamic problem for a given value of the parameter k take the forms:

b∗(vb) =
vb

1 + k
+
k
¯
vs
2

+
k(1− k)v̄b
2(1 + k)

, ∀vb ∈ [
¯
vb, v̄b] (30)

s∗t (vs) = max{vs, G−1
b (1− x(t)∫ T

τ=t Λτdτ
)}, ∀t,∀vs ∈ [

¯
vs, v̄s] (31)

respectively, where x(t) is the remaining inventory at t, and Gb(.) is the cdf of b∗(.).

We vary the value of k from 0 (i.e. SPP setting) to 1 (i.e. BPP setting) and use 500 random

instances. The ratio of average seller revenues for the given k value to the revenues under the SPP

setting at various levels of seller capacity is given in the Figure 2.

–Figure 2 “Seller revenues (as % of revenue at k = 0) for various k and C values” about here–

Although an SPP environment essentially yields higher profits for the seller than a BPP setting as

expected, an interesting observation is that the seller with high load factor might actually benefit

from a slight shift in negotiation power. This is because, the buyer bids might first increase and

then decrease in k for lower-valued buyers. (For instance, take a buyer with vb = 1.2. His bid will

be equivalent to b(vb) = vb = 1.2 for k = 0; b(vb) = vb
1.2 + 0.2×0.5

2 + 0.2×0.8×3
2×1.2 = 1.25 for k = 0.2, and

b(vb) = vb
2 + 0.5

2 = 0.85 for k = 1.) As the load factor CΛ
T increases, it is more prevalent to accept

lower-valued buyers, who now bid highest at moderate values of k rather than at k = 0 or at k = 1.
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Figure 2: Seller revenues (as % of revenue at k = 0) for various k and C values

5.2 The Effect of Uniform Distribution Assumption

Next, we would like to investigate the seller’s loss when she does not have the real distribution

information and assumes that the buyers’ valuations are distributed uniformly in their range as a

natural conclusion of the ARMC approach. Our experiments contrast the revenues obtained by the

seller in the “no distribution information” setting to the revenues in the “full-information” setting.

To this end, consider the revenue maximization problem of a seller who operates in a BPP setting,

where the market size is Poisson with rate Λ=100 per period for T = 15 periods.

For the Normal and Gumbel distributions, we extracted the mean as the midpoint of the

range and selected the standard deviation σ by assuming that the range is equal to ±3σ. For the

exponential distribution we assumed that the valuation of a typical consumer is given by
¯
vb + w

where w is exponentially distributed in [0, v̄b −
¯
vb] and its rate parameter µ is selected so that the

probability that w lies in that range is 99.5% (this is consistent with the ±3σ assumption of the

Normal distribution). In each test case, we assumed that the buyers bid believing that the seller’s

value is uniform in [
¯
vs, v̄s] = [$750K, $2000K]; inducing b∗(vb) = min{vb, 0.5vb + 0.5

¯
vs}.

The sets of results summarized in Tables 1-2 illustrate the performance of the policy under

uniform distribution assumption in a variety of settings as we varied the range ([
¯
vb, v̄b]), the
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inventory of the seller (C), and the seller valuation(vs). In Table 1, vs is fixed at vs = $1000K,

while C and [
¯
vb, v̄b] are varied to test different cases. In Table 2, C is fixed at C = 500 where [

¯
vb,

v̄b] and vs are varied. We display the revenues of the no-information case as a percentage of the

revenues of the full-information case (i.e. maximum revenues to be achieved).

“Table 1 about here”

Table 1: The Ratio of Seller’s Revenue under ARMC to Seller’s Revenue under Full Information
[
¯
vb, v̄b] = [$500K, $1500K] [

¯
vb, v̄b] = [$1000K, $2000K] [

¯
vb, v̄b] = [$1000K, $2500K] [

¯
vb, v̄b] = [$1000K, $3000K]

C = 250, C = 500, C = 750 C = 250, C = 500, C = 750 C = 250, C = 500, C = 750 C = 250, C = 500, C = 750
Exponential 96.49%, 100%, 100% 44.83%, 71.19%, 90.65% 45.60%, 64.43%, 83.99% 47.13%, 63.95%, 80.34%

Normal 92.65%, 100%, 100% 86.85%, 97.00%, 100% 91.57%, 98.22%, 100% 92.14%, 98.35%, 100%
Gumbel 85.15%, 100%, 100% 32.56%, 60.41%, 82.50% 35.35%, 54.51%, 76.20% 37.84%, 52.64%, 73.59%

“Table 2 about here”

Table 2: The Ratio of Seller’s Revenue under ARMC to Seller’s Revenue under Full Information
[
¯
vb, v̄b] = [$500K, $1500K] [

¯
vb, v̄b] = [$1000K, $2000K] [

¯
vb, v̄b] = [$1000K, $2500K] [

¯
vb, v̄b] = [$1000K, $3000K]

vs =$750K, $1000K, $1500K vs =$750K, $1000K, $1500K vs =$750K, $1000K, $1500K vs =$750K, $1000K, $1500K
Exponential 80.46%, 100%, 100% 80.47%, 80.46%, 100% 74.89%, 74.39%, 100% 68.34%, 68.52%, 98.40%

Normal 97.87%, 100%, 100% 98.35%, 97.00%, 100% 98.92%, 98.22%, 100% 98.86%, 98.35%, 99.28%
Gumbel 98.24%, 100%, 100% 70.49%, 60.41%, 100% 64.49%, 54.51%, 100% 61.21%, 52.64%, 98.19%

As the figures in the Tables 1 and 2 suggest, the uniform distribution assumption performs

well when the underlying distribution is normal. It may perform poorly for the exponential and

Gumbel distributions, especially under very low capacity and moderate seller values. This is mainly

because, if the underlying distribution is too skewed, the uniform distribution assumption yields a

significant miscalculation in the value of the optimal bid. If the capacity is sufficiently large, the

initial mishap could be remedied quickly as the bid given according to the uniform distribution

assumption converges fast to the real optimal bid value, hence resulting in low revenue loss. If the

seller valuation is too large, again the two revenue figures are close to each other, which is because

buyers whose bids are accepted are almost the same regardless of the underlying distribution.

5.3 Stochastic Dynamic BPP Problem

Example 1 (continued): Recall the problem of a seller who has C=375 units to sell over T=15

time periods, where the buyers arrive with rate Λ=100 per period. The buyer valuation dis-

tribution is uniform on the range [µ(t) − $300K,µ(t) + $300K] where µ(t) = µ(t − 1) + δ(t),

δ(t) = {(−d, 0, d) w.p. (0.4, 0.2, 0.4)} and d ∼ U[0, $120K]. Suppose that µ(1)=$600K and the

buyers bid according to the function b∗(vb) = 0.5vb. In the base case, assume we do not account

24



for the salvage value of the seller, hence vs = 0.

We solve the scenario-based optimization problem for various seller valuation (vs), capacity (C),

and noise-size (d := |δ|) values with N=150 scenarios; and compare the results with the simple

“expected value (EV)” heuristic, where all stochastic variables in the problem are assumed to take

their expected values, and with the solution of the uncertain QC-formulation given in (23)-(27),

which we call “uncertain quadratically constrained (UQC)” solution. For all policies, we apply the

proposed bid values on a random sample of 1000 scenarios, compute the revenues in all cases, and

state the average of these revenues as a percentage of the absolute upper bound, i.e. the revenue

produced by the “clairvoyant” policy. For the closed-loop policy we also compute the worst-case

regret (z∗) within the scenarios used in the optimization model and state its ratio to the average

revenues. We also investigate the effect of reformulating and resolving the problem at the beginning

of each period according to current capacity and buyer valuations. All problems are solved via the

CVX package developed by Grant and Boyd [17] for MATLAB using a version 7.5.0 and on a

computer that has 4 GB of RAM. The results are given in the Tables 3, 4, 5 and 63.

“Table 3 about here”

Table 3: Changing vs
vs = 0 vs = $120K vs = $180K vs = $240K
z∗ avg. r. z∗ avg. r. z∗ avg. r. z∗ avg. r.

closed-loop $100K 93.28% $100K 91.21% $100K 89.32% $100K 86.24%
(6.2%) (8.6%) (10.7%) (14.2%)

EV heuristic - 70.81% - 60.44% - 57.72% - 60.18%
UQC solution - 43.12% - 43.17% - 44.17% - 47.13%

closed-loop (res.) - 96.36% - 95.35% - 93.98% - 91.10%
EV (resolved) - 90.17% - 88.84% - 87.62% - 85.73%

“Table 4 about here”

Table 4: Changing C
C = 185 C = 375 C = 560 C = 750

z∗ avg. rev z∗ avg. rev z∗ avg. rev. z∗ avg. rev
closed-loop $77.5K 90.80% $100K 93.28% $107.2K 94.94% $108.7K 95.74%

(9.3%) (6.2%) (4.7%) (3.8%)
EV heuristic - 66.64% - 70.81% - 74.47% - 78.51%

UQC solution - 82.17% - 43.12% - 29.48% - 22.80%
closed-loop (res.) - 93.58% - 96.36% - 97.72% - 97.97%

EV (resolved) - 82.80% - 90.17% - 93.16% - 94.85%

“Table 5 about here”

3Note that since the problem is resolved in each period, the z∗ value which indicates the in-sample performance
is not applicable for the iterative closed-loop policy.
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Table 5: Changing d
d = $60K d = $120K d = $240K d = $480K

z∗ avg. r z∗ avg. r z∗ avg. r. z∗ avg. r
closed-loop $48.6K 96.63% $100K 93.28% $384.5K 86.50% $894K 77.91%

(1.9%) (6.2%) (13.2%) (25.0%)
EV heuristic - 72.19% - 70.81% - 66.76% - 59.93%

UQC solution - 15.12% - 43.12% - 50.71% - 50.68%
closed-loop (res.) - 98.86% - 96.36% - 89.51% - 80.93%

EV (resolved) - 92.36% - 90.17% - 85.64% - 78.92%

“Table 6 about here”

Table 6: Changing N
N = 50 N = 150 N = 200 N = 250
z∗ avg. rev z∗ avg. rev z∗ avg. rev. z∗ avg. rev

closed-loop $84K 92.78% $100K 93.28% $122K 92.85% $124K 93.07%
(5.9%) (6.2%) (7.6%) (7.7%)

Here are a few remarks to note:

1. The worst case regret value is relatively low with respect to average revenues in almost all

cases. This is an indication that the closed-loop formulation is not too conservative.

2. The closed-loop policy always outperforms the open-loop formulation of the uncertain QC

problem, and the simple expected value heuristic. Moreover, there exist significant gains in

resolving the problem at the beginning of each period with the current data (and possibly

with more accurate future forecast figures).

3. The expected value heuristic also performs well if it is resolved at each period. This can be

explained by the fact that feedback-type policies perform well if tracked in a smart manner;

and is also in accordance with the findings of the literature, e.g. see Besbes and Maglaras [6]

for a similar argument again regarding the real-estate sector.

4. The gap between the simple expected value heuristic (resolved) and the closed-loop heuristic

(resolved) tends to be larger in the capacity-constrained settings. This is quite intuitive,

since the scenario-based approach can account for various states of the world and prevent

shortages; whereas the myopic approach does not have a pre-emptive nature.

5. Finally, both the in-sample (i.e. maximum regret) and out-of-sample (i.e. the revenue gap

in other scenarios) performances of the closed-loop policy do not vary much by increasing N
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after a critical number is reached. Moreover, this critical number of scenarios is expected to

be as low as N = 150 for a problem of the above size.

6 Conclusion

In this paper, we discussed the dynamic negotiation problems, particularly in a buyer’s market. We

started with the one-to-one negotiation problems and discussed how to account for uncertainty in

valuation distributions. Next, we extended our analysis to the dynamic environment: Starting with

the deterministic fluid problem, we observed the stationary nature of optimal pricing policy. We

were then able to extend the analysis to uncertain environments, and offer tractable and effective

solution methodologies for real life applications.

Our results offer various avenues for future research: First, several other dynamic negotiation

problems may be analyzed from the perspective we presented. Of these, the games that involve

strategic buyers is of utmost interest. Also, the closed-loop formulation and the structural re-

sults regarding the nature of the optimal pricing policies might be inspiring and insightful in the

formulation and solution of various other scenario-based robust optimization problems.

7 Appendix

7.1 Proof of Theorem 1

First, note that any optimal strategy should satisfy b(vb) ≤ vb and s(vs) ≥ vs to be feasible. This,

combined with the assumption that the optimal strategies are nondecreasing in the valuations of

the bidders, will be our implicit assumptions throughout the analysis and will be shown to hold.

In the minimax absolute regret minimization problem (7) of the seller, the innermost maximiza-
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tion takes the following values depending on the relationship among b, s and vs:

max
s′

[(kb+ (1− k)s′ − vs)1{b≥s′} − (kb+ (1− k)s− vs)1{b≥s}]

=


0 if b < vs

(b− vs) if vs ≤ b ≤ s

(b− vs)− (kb+ (1− k)s− vs) if b > s

That is, if the buyer bid is less than the seller’s valuation, then any feasible bid of the seller returns

zero net profit. If, the buyer bid exceeds vs, the seller achieves her maximum profit by selecting the

same bid as the buyer; which is the situation in the second and third cases in the above equivalence.

Observe that in the second case, the seller overbids; whereas in the last case, she underbids and

loses additional revenue she could have obtained if she had increased her bid up to b. Adding the

outside maximization problem, the mathematical quantity to be minimized by selecting s is:

max
b

max
s′

[(kb+ (1− k)s′ − vs) · 1{b≥s′} − (kb+ (1− k)s− vs) · 1{b≥s}]

=


0 if b < vs

(s− vs) if vs ≤ b ≤ s

(1− k)(b̄− s) if b > s

= max{(s− vs), (1− k)(b̄− s)} (32)

where b̄ is the unknown maximum value of the buyer’s bid b. Thus, the problem of the seller pours

into selecting the bid to minimize the maximum of two regret values: In situation 1, the regret

stems from overbidding and losing the chance to obtain positive return; whereas in situation 2, it

stems from bidding too low and losing the chance of higher profits.

Since the first of the quantities inside the maximization in (32) is increasing and the second is

decreasing in s, the minimizer is attained at the intersection point, i.e:

s∗ARMC(vs) = argmin
s

max{(s− vs), (1− k)(b̄− s)}

⇒ s∗ARMC(vs)− vs = (1− k)(b̄− s∗ARMC(vs))

⇒ s∗ARMC(vs) =
vs

2− k
+

(1− k)

2− k
b̄
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Via a symmetrical analysis for the buyers, we obtain b∗ARMC(vb) = vb
1+k + k

1+k ¯
s. Finally, since

s∗ and b∗ should be best responses to each other, we find that s∗ARMC(vs) = vs
2−k + (1−k)v̄b

2 +
k(1−k)

¯
vs

2(2−k)

and b∗ARMC(vb) = vb
1+k +

k
¯
vs
2 + k(1−k)v̄b

2(1+k) . Furthermore, when the equations (1) and (2) are solved

simultaneously for a game where both Fs and Fb are uniform, the resulting equilibrium bidding

functions are identical to s∗ARMC(vs) and b∗ARMC(vb). 2

7.2 One-to-one Negotiation Problem between Informed and Uninformed Agents

We know the solution to the one-to-one negotiation problem when (i) both the seller and the buyer

know each other’s distribution function, (ii) neither the seller nor the buyer know each other’s

distribution function, but they know the support of this function and employ ARMC approach

to decide their bid. In this note, we will analyze a third case: (iii) the seller knows the buyer

distribution function, Fb, while the buyer only knows the seller value range, [
¯
vs, v̄s] (or, vice-versa).

During the analysis, we will implicitly assume that s(.) and b(.) are increasing in the seller and

the buyer valuations respectively. At the end, we will show that this claim is true, provided that

Fb is a distribution function with decreasing hazard rate (DFR).

The revenue maximization problem of the seller takes the form:

Πs(s, vs) = max
s∈[vs,b̄]

∫ b̄

s
(kb+ (1− k)s− vs)gb(b)db,

= max
s∈[vs,b(v̄b)]

∫ v̄b

b−1(s)
(kb(vb) + (1− k)s− vs)fb(vb)dvb,

which is maximized at the value s that satisfies the following equation:

(1− k)(1− Fb(b−1[s]))b′(b−1[s])− fb(b−1[s])(s− vs) = 0 (33)

At this point, the seller does not know the function b(.), or its derivative b′(.). Thus, we turn

our attention to the buyer’s problem, which takes the form:

argmin
b

{
max
s

max
b′

[(vb − (kb′ + (1− k)s)) · 1{b′≥s} − (vb − (kb+ (1− k)s)) · 1{b≥s}]
}

(34)

= argmin
b

{
max{(vb − b), k(b−

¯
s)}
}

(35)
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given that the buyer employs ARMC approach, by the analysis in the proof of Theorem 1.

Observe that, if the buyer is able to characterize the value of the lowest seller bid,
¯
s = s(

¯
vs),

the solution of the equation (35) leads to the following bidding function:

b(vb) =
vb

k + 1
+

k
¯
s

k + 1
(36)

Hence, the seller’s problem is equivalent to finding the s value that satisfies:

(1− k)(1− Fb(s(k + 1)− k
¯
s))

1

k + 1
− fb(s(k + 1)− k

¯
s)(s− vs) = 0

by inserting the appropriate values of b and b′ into the equation (33).

Finally, note that the value of
¯
s is found from the equation:

(1− k)(1− Fb(
¯
s))

1

k + 1
− fb(

¯
s)(

¯
s−

¯
vs) = 0

which is then used to characterize the final form of the function b(.). This final part is only true if

s(.) is nondecreasing in vs, and a sufficient (but not necessary) condition to ensure this is that Fb

is a function with decreasing failure rate. A symmetrical problem can be solved for the case where

the buyer knows Fs while the seller only knows [
¯
vb, v̄b]. 2

7.3 Proof of Theorem 3

As before, our implicit assumptions are that the optimal strategies satisfy b(vb) ≤ vb and s(vs) ≥

vs; and that the optimal strategies are nondecreasing in the valuations of the bidders.

Since buyers are naive, their problem takes the form:

argmin
b
{max

s
max
b′

[(vb − (kb′ + (1− k)s)) · 1{b′≥s} − (vb − (kb+ (1− k)s)) · 1{b≥s}]} (37)

= max{(vb − b), k(b−
¯
s)} (38)

As they assume that the seller is playing a one-to-one game with them, they simply compute their

optimal bidding strategy by solving the two ARMC problems simultaneously, therefore reaching at
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the equilibrium bidding function of the one-to-one game, i.e. b∗ARMC .

However, the seller’s problem is now different: Given that buyers bid according to b∗ARMC , she

should select bid st = s, ∀t, that minimizes her maximum regret for all distribution functions Fb:

argmin
s
{max
Fb

max
s′

[ ∫ T

t=0
Λt[

∫ v̄b

b−1(s′)
(kb(vb) + (1− k)s′ − vs)fb(vb)dvb]dt

−
∫ min{T,T ′}

t=0
Λt[

∫ v̄b

b−1(s)
(kb(vb) + (1− k)s− vs)fb(vb)dvb]dt

]
}

where s′ is such that
∫ T

0 Λt
∫ v̄b
b−1(s′) fb(vb)dvbdt = C; and T ′ is such that

∫ T ′
0 Λt

∫ v̄b
b−1(s)[fb(vb)dvb]dt =

C, if s < s′.

Regarding the inner maximization problem, we have two cases:

Case (i): s < s′: In this case the seller underbids and fails to capture a higher profit. The loss

is at its maximum when all buyers have the highest valuation, i.e. fb(v̄b) = 1. Thus:

max
Fb

max
s′

{∫ T

t=0
Λt[

∫ v̄b

b−1(s′)
(kb(vb) + (1− k)s′ − vs)fb(vb)dvb]dt

−
∫ min{T,T ′}

t=0
Λt[

∫ v̄b

b−1(s)
(kb(vb) + (1− k)s− vs)fb(vb)dvb]dt

}
=

∫ T

t=0
Λt[(kb(v̄b) + (1− k)(b(v̄b))− vs)]dt−

∫ T

t=0
Λt[(kb(v̄b) + (1− k)s− vs)]dt

= ((1− k)(b(v̄b)− s)) min{C,
∫ T

t=0
Λt}dt

Case (ii): s > s′: In this case the seller overbids and fails to sell a proportion of her inventories.

This loss is at its maximum when all buyers bid just slightly below the seller’s bid s, i.e. fb(b
−1(s−

ε)) = 1 for small ε > 0. Thus, the two inner maximization problems take the form:

max
Fb

max
s′

{∫ T

t=0
Λt[

∫ v̄b

b−1(s′)
(kb(vb) + (1− k)s′ − vs)fb(vb)dvb]dt

−
∫ T

t=0
Λt[

∫ v̄b

b−1(s)
(kb(vb) + (1− k)s− vs)fb(vb)dvb]dt

}
=

∫ T

t=0
Λt[(k(s− ε) + (1− k)(s− ε)− vs)]dt− 0 = (s− vs) min{C,

∫ T

t=0
Λt}

Combining the two cases, the seller should bid to minimize the two maximum regrets, i.e. s =
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argmin max{(s − vs) min{C,
∫ T
t=0 Λt}, (1 − k)(b̄ − s) min{C,

∫ T
t=0 Λt}}. But these two regret terms

are the same terms as in the one-to-one game, only multiplied by a coefficient min{C,
∫ T
t=0 Λt}.

Thus, we arrive at the same conclusion as before; i.e. the seller bids as if Fb is uniform on its given

range, which also validates the buyers’ bidding game. 2
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