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Abstract

We consider a network in which products consist of combinations of connecting edges and

each edge corresponds to a perishable resource. In our model, different revenue-maximizing

“controllers” determine the prices associated with different resources and the price of the

product is the sum of the prices of the constituent resources. At one extreme, a single

controller might set all resource prices – at the other extreme there would be a different

controller associated with each resource. We show that decentralized pricing always leads

to lower total revenue relative to centralized pricing. For the uncapacitated networks, we

develop bounds on the “price of anarchy” – the loss from totally decentralized control versus

centralized control – as the number of controllers increases. We present provably convergent

algorithms for calculating Nash equilibrium prices for both the uncapacitated and capacitated

cases. We present numerical analyses to illustrate the effect on producer and consumer

surplus of decentralization. While we develop our model in the context of airline pricing, it

is applicable to any service network such as freight transportation, pipelines, and toll roads

as well as to the more general case of supply chain networks.
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1 Introduction

We consider the problem of pricing on a network. The classic example is an airline that operates

a flight network with connections. In this case, it is standard to refer to the individual flights as

resources and the itineraries that passengers can fly using one or more combinations of flights

as products. The problem of how an airline should price and manage its products given an

underlying flight network has been widely studied – see Chapter 5 of Talluri and van Ryzin

(2004b) for a survey.

In this paper, we consider the case in which the the prices and availability of resources in a

network may be set by different firms, which we call controllers, each of whom is seeking to

maximize expected revenue or profit. The price that is quoted to a customer for a product is

the sum of the prices quoted by the controllers. This can be illustrated by the passenger airline

example in Figure 1. In this example, there are two flights, one from New York to Chicago and

one from Chicago to Los Angeles. We assume that the two flights connect so that three separate

products can be sold: a New York to Chicago product, a Chicago to Los Angles product, and

a New York to Los Angeles product connecting in Chicago. In the decentralized case, there

are two separate controllers, one for each flight. Each controller can set the price for his direct

product and a (possibly different) price for the connecting New York to Los Angeles product.

The market price for the connecting product is the sum of the prices set by the two controllers.

In airline terms, the New York to Los Angeles product is an interline connection and, assuming

that the two airlines involved are not partners, the price charged to the consumer would be the

sum of the prices set by the individual carriers. In contrast, a centralized controller would set

the prices for all three products in order to maximize total revenue.1

NY CHI LA 

3Itinerary 

1Itinerary 2Itinerary 

Airline A Airline B 

Figure 1: A simple network example from passenger airline industry

It is well known that two controllers setting the price for a single product in a network such

as that in Figure 1 will set a higher price than a single controller resulting in both lower total

1The calculation of airline interline fares is actually considerably more complex, however the basic concept is

the same; see Barnes (2012) for more details.
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producer surplus and consumer surplus. This is the classic case of double marginalization first

identified by Spengler (1950). Our work extends the concept of double marginalization in two

ways. First, we consider general networks of resources with arbitrary control structures. Second,

we consider the case in which individual resources may have constrained capacity as in an airline

or other service network. Our findings are quite consistent with the classic double marginaliza-

tion result – in the absence of capacity constraints, increasing the number of controllers tends

to increase price and decrease the total amount of both consumer and producer surplus. For

this case, we also provide bounds for the loss of consumer and producer surplus as a function of

the number of controllers. These bounds approach zero as the number of controllers approaches

infinity, which implies that the decentralized pricing case can be arbitrarily inefficient in terms of

revenue and consumer surplus loss relative to the centralized pricing case. The classic summary

of double marginalization is that “The only thing worse than a monopolist is two monopolists.”

We would extend that result to say that “The only thing worse than two monopolists is a network

of monopolists.”

The analysis of capacitated networks is more complex and we cannot make strong statements

about the relationship of consumer and producer surplus with the number of controllers. How-

ever, we present a provably convergent algorithm for calculating Nash equilibrium prices on ca-

pacitated networks. The proposed algorithm is based on a successive under-relaxation method

(Phillips (1984)) and efficiently computes the equilibrium prices for general networks. This

type of fixed point algorithm has been used to compute equilibrium of supply and demand in

multicommodity markets (Khilnani and Tse (1985)). To the best of our knowledge, this paper

presents the first algorithm offered to compute equilibrium prices for a general network with

perishable resources. Additionally, we present numerical examples illustrating different situa-

tions and show that, contrary to the unconstrained cases, there are situations in which consumer

surplus can increase with more controllers.

We note that our results are often described in terms of airlines, however, the results are quite

general and apply to any situation in which the mechanics of supply and demand can be de-

scribed by a network. This would include service networks such as telecommunications and

transportation as well as supply chain networks.
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2 Literature Review

Our work is related to several major areas of research. Our model is similar to the classical

revenue management models described in papers such as Gallego and van Ryzin (1994, 1997). It

is well-known that Nash equilibria in decentralized networks are not generally the most efficient

structure, in the sense that both the total revenue and consumer surplus can be improved

(Dubey (1986)). There has been considerable research about quantifying the efficiency gap

between centralized and decentralized networks –the so-called “price of anarchy”. Much of

this research is focused on competition in networks with congestion effects (Johari and Tsitsiklis

(2004), Acemoglu and Ozdaglar (2007)). Farahat and Perakis (2009, 2011) analyze the efficiency

of price competition among multi-product firms in differentiated oligopolies which offers gross

substitute products to consumers. Granot and Yin (2008) studies the pricing inefficiencies

and stability of coalitions under push and pull assembly systems. Yin (2010) investigates the

conditions that can lead to stable coalitions among perfectly complementary suppliers.

Our work is also related to the literature regarding supply chain coordination and double

marginalization. Basic references for supply chain coordination include the survey papers Ca-

chon (2003) and Chen (2003). The double marginalization concept dates back to Spengler (1950)

and has been widely applied to supply chains (Lariviere and Porteus (2001), Perakis and Roels

(2007)). A good survey of pricing efficiencies and inefficiencies in supply chain networks can be

found in Kaya and Őzer (2012).

One application of our work is airline networks where alliances and mergers have led to increasing

consolidation of the industry over the past 20 years. Park (1997), Park and Zhang (2000)

and Brueckner and Whalen (2000) use structural econometric models to measure the effects of

alliances on airfares and conclude that fares decrease significantly under alliance of flight legs

with vertical competition. Park (1997) and Park and Zhang (2000) also show (again empirically)

that economic welfare increases under alliances when the size of the markets is sufficiently large.

In addition to incorporating competition introduced to markets by decentralization to the clas-

sical network model of Gallego and van Ryzin (1997), our work also generalizes Yin (2010)’s

work by considering the capacity constraints for the network resources. Introducing capacity

constraints for perishable resources makes our model better suited to pricing problems in the rev-

enue management context. Another important contribution of our paper is using the successive
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under-relaxation method to efficiently calculate the Nash equilibrium prices in such capacitated

network structures. Using this algorithm, we are able to make counterintuitive observations

for capacitated networks, such as the fact that there are situations in which consumer surplus

increases after decentralization.

3 The Model

The key elements of our model are:

1. Products require one or more resources.

2. Resources can be combined according to a network structure to produce different products.

3. Controllers control one or more resources and set prices for the resources that they control.

4. Resources may be constrained or unconstrained. If a resource is constrained, the total

production of products using that resource cannot exceed its capacity.

5. All resources are perishable and have no residual value if they are not consumed.

6. Controllers seek to maximize revenue.

7. The price of each product is the sum of its resource prices.

8. The controllers can set different prices for the same resource based on the product using

that resource.

9. Prices are set once and do not change.

10. Demand for a product is a deterministic function of its price alone. There is no competition

among products in the network.

Elements 1 through 6 are standard in the network revenue management literature (Talluri and

van Ryzin (2004a), Phillips (2005)). The assumption of revenue maximization can be replaced

by profit-maximization with fixed unit costs without changing the nature of our results: more

complex unit cost structures would require additional analysis. Number 7 is non-restrictive: if

there is an additional party – say a distributor – that requires additional compensation to dis-

tribute a network product, this can be represented by adding an additional edge to the network
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with the distributor as the controller of that edge. Number 8 assumes that each controller can

distinguish among products using her resources and charge different prices based on product.

The assumptions of static prices and deterministic demand go together and are clearly simpli-

fications. The assumption that products in a network do not compete with each other is also

a simplification. We note that it is consistent with the many of the models originally used in

revenue management, however, there has recently been considerable research into incorporating

competition among products via so-called consumer choice models into network revenue man-

agement – the reader is referred to Talluri and van Ryzin (2004b), Gallego et al. (2004) and Liu

and van Ryzin (2008) for details.

Notation:

We reserve the letters i, j and k to index resources, products, and controllers, respectively.

Other notation is described as follows.

• M = number of resources (edges). Resources will also be called “legs”.

• N = number of products in the market. Each product is a combination of one or more

resources.

• K = number of controllers in the market. We must have 1 ≤ K ≤M .

• Ci > 0 = capacity of resource i.

• Sj = set of resources used by product j.

• Tk = set of resources controlled by controller k.

• Uk = set of products that use at least one resource controlled by controller k.

• yk = number of products that use at least one resource controlled by controller k, i.e.,

|Uk| = yk

• aij = resource to product incidence factor. In particular, aij = 1 if resource i is used in

product j and aij = 0 otherwise.

• bik = resource to controller incidence factor. In particular, bik = 1 if resource i is controlled

by controller k and bik = 0 otherwise.
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• ejk = product to controller mapping. In particular, ejk = 1 if aijbik = 1 for some i =

1, 2, . . . ,M and ejk = 0 otherwise. That is, ejk = 1 if controller k controls at least one

resource used in product j.

• Kj = number of controllers whose resources are used by product j. Kj =
∑

k ejk

• pjk = price that controller k charges for resources used in product j. We note that pjk is

only defined when ejk = 1. The number of prices is
∑

j

∑
k ejk.

• pj =
∑

k ejkpjk is the price of product j.

• λj = DjF̄j(pj) is the demand for product j as a function of price pj . We assume that

demand for each product is a continuous, downward sloping function of price. Hence

demand for each product j can be represented as the product of a constant Dj > 0 and a

function F̄j that is the c.c.d.f. of some probability distribution with density fj .

• rj = pjλj(pj) is the revenue from product j.

We assume that, for all products j, the demand functions are “regular” as defined in Gallego and

van Ryzin (1994). In particular, rj(λj) is continuous, bounded, and concave; and has a finite

maximizer λ∗j . Additionally, for each product j, there exists a null price p∞j > 0 (possibly ∞)

such that limp→p∞j λ(p) = limp→p∞j pλ(p) = 0. We also assume that all of the demand functions

display the Increasing Failure Rate (IFR) property (Lariviere (2006)), that is hj(p) = fj(p)/F̄j(p)

is an increasing function for all j and all 0 ≤ p ≤ p∞j .

We define T = {T1, T2, . . . , TK} as a network control structure. We call the case of a single

controller (K = 1) centralized pricing. The case where there is more than one controller, i.e.,

K ≥ 2, is called decentralized pricing, and K = M is the fully decentralized pricing case. We are

concerned with the set of prices associated with different network control structures.

In decentralized networks, each controller maximizes her own revenue. Controller k’s optimiza-

tion problem can be formulated as:

max
pjk

∑
j∈Uk

pjkDjF̄j(pjk + p−jk) (1)

s.t.
∑
j

aijDjF̄j(pjk + p−jk) ≤ Ci for i ∈ Tk

pjk ≥ 0
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where

p−jk =
∑

`:j∈U`,` 6=k
pj`

and we maintain the convention that the sum over an empty set equals 0.

For centralized networks, i.e., K = 1, this problem simplifies as follows:

max
pj

∑
j

pjDjF̄j(pj) (2)

s.t.
∑
j

aijDjF̄j(pj) ≤ Ci for i = 1, 2, . . . ,M

pj ≥ 0

This is the standard problem of pricing on a constrained network (see Talluri and van Ryzin

(2004b)).

4 The Unconstrained Case

We first consider the case in which resources are unlimited – that is Ci =∞ for i = 1, 2, . . . ,M .

In this case, the network pricing problem (1) is separable, hence we can optimize the revenue

of each product independently. Also, it is well-known that if hj(p) is increasing for 0 ≤ p ≤ p∞j
(IFR), then rj(p) is quasi-concave on 0 ≤ p ≤ p∞j , and a unique maximizer p∗j is guaranteed to

exist (Ziya et al. (2004)).

For centralized networks, let pcj be the maximizer of product j’s revenue function (‘c’ stands for

“centralized”). Then pcj must satisfy the first order condition:

F̄j(p
c
j)− pcjfj(pcj) = 0

⇒ pcj =
F̄j(p

c
j)

fj(pcj)
=

1

hj(pcj)
(3)

For decentralized networks, let peqjk and peqj denote the equilibrium price that controller k charges

for resources used in product j and total equilibrium price of product j, respectively (‘e’ stands

for “equilibrium”). The equilibrium prices of products are characterized by the following propo-

sition.

Proposition 1: When capacity is unconstrained, i.e. Ci = ∞ for i = 1, 2, . . . ,M , the decen-

tralized problem (1) has a Nash equilibrium in which the equilibrium prices peqj all satisfy the
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condition:

peqj = Kj/hj(p
eq
j ) (4)

Furthermore, this Nash equilibrium is unique among those that satisfy the condition pj < p∞j .

Proof For the case of a single controller, the result is immediate and corresponds to the well-

known revenue-maximizing monopoly price. In the case of multiple controllers (j : Kj ≥ 2) the

best response of player k is:

F̄j(pjk + p−jk)− pjkfj(pjk + p−jk) = 0

⇒ pjk = 1/hj(pjk + p−jk) (5)

Since the right hand sides of (5) are equal for all controllers k, the equilibrium is symmetric. By

virtue of the IFR property, this equilibrium is unique.

In this symmetric equilibrium, we have pej = Kjp
eq
jk. Therefore (5) becomes:

peqjk = 1/hj(Kjp
eq
jk) (6)

⇒ peqj = Kj/hj(p
eq
j ) (7)

Q.E.D.

We note, that in the case of a finite null price, p∞j for a product, there exist Nash Equilibria at

which pjk > p∞j for some k. However since no revenue is generated for any controller at these

equilibria, they are of no practical interest and we will henceforth ignore them.

4.1 The Price of Anarchy

We consider two components of the price of anarchy – producer surplus and consumer surplus.

We note that under our assumption of zero unit costs, producer surplus is equal to revenue.

4.1.1 The Effect of Decentralization on Revenue

We utilize equation (6) to derive our primary result on the price of anarchy in an unconstrained

network. To do so, we make the number of controllers involved in a product explicit by letting

pKj be the equilibrium price of product j in a decentralized network where K controllers manage

the resources used by product j.
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Proposition 2: When capacity is unconstrained for all resources:

• The price of a product in a decentralized network is strictly increasing in the number of

controllers involved in the product. Additionally, pKj ≤ K
L p

L
j , ∀K ≥ L.

• peqjk is strictly decreasing in the number of controllers involved in the product

• The total revenue of a product and the revenue of each controller is strictly decreasing in

the number of controllers involved in the product

• As the number of controllers increases, the equilibrium product price approaches the cutoff

price and revenue approaches 0, that is: limK→∞ p
K
j = p∞j and limK→∞ p

K
j F̄j(p

K
j ) = 0.

Proof The first part of the Proposition is immediate from equation (7) and the fact that, among

the demand functions with IFR property, the maximum price increase occurs for the one with

constant hazard rate (exponential demand function), and K
L is the increase rate in this case.

The second part is immediate from equation (6) noting that hj(Kjp
eq
jk) is an increasing function

of Kj . The third part follows since, as a consequence of the IFR condition, the revenue function

is quasi-concave and rj(p
K
j ) := pKj λj(p

K
j ) is strictly decreasing in K considering the fact that rj

is maximized when K = 1.

Finally, the last part follows since for any K ≥ 1, pKj is the unique solution of Φj(p
K
j ) = K

where Φj(p) = phj(p). We show that limpj→p∞j Φj(pj) = ∞. This is clearly true if p∞j = ∞. If

p∞j is finite, then, F̄j(p
∞
j ) = 0 implying that limpj→p∞j hj(pj) =∞ and hence limpj→p∞j Φj(pj) =

∞. Since Φj(p) is strictly increasing, we can write pK = Φ−1(K) and from the limit results,

limK→∞Φ−1
j (K) = p∞j as required. limK→∞ p

K
j F̄j(p

K
j ) = 0 follows from the assumption that

the demand function is regular. Q.E.D.

In the infinite-capacity case, the optimization problem is separable and the equilibrium prices

of products are independent. Therefore, we can express the prices of individual products as a

function of the number of controllers for some commonly used demand functions. Recall that

pKj is the equilibrium price for product j with K controllers and we define rKj = pKj λj(Kp
K
j )

as the corresponding total product revenue. Table 1 shows the equilibrium price and demand

values along with the ratios of the fully decentralized to centralized revenues for the products

with K controllers, for exponential and linear demand functions in an infinite capacity network.

Remark 1: The revenue ratio, (rKj /r
1
j ), goes to zero as K goes to infinity by the last part
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Demand Function λj(pj) pKj λj(p
K
j ) rKj /r

1
j

Exponential eaj−bjpj K
bj

eaj−K Ke1−K

Linear (aj − bjpj)+ Kaj
(K+1)bj

aj
K+1

4K
(K+1)2

Table 1: Effects of decentralization on revenues for exponential and linear demands

of Proposition 2. Hence the decentralized equilibrium solution can be arbitrarily inefficient in

terms of revenue loss relative to the centralized case.

Remark 2: Figure 2 shows that the revenue loss bound goes to zero much faster for the case

of exponential demand than linear demand.
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Figure 2: Revenue loss ratios by the number of controllers

Remark 3: Even though Proposition 2 suggests that centralization of an unconstrained network

is beneficial to controllers, such coalitions may not be stable. Proposition 6 of Yin (2010) shows

that coalitions with more than two perfectly complementary suppliers are not stable2 when

resource capacities are infinite for both exponential and linear-power (λ(p) = (a − bp)γ for

a, b, γ > 0) demand functions (for linear-power demand functions, coalitions with two suppliers

may not be stable either depending on the value of γ). If we consider coalitions for only one

product, our model leads to the same result. However, coalitions with more than two controllers

2A stable coalition is defined as a coalition structure in which no controller has a strictly profitable and feasible

deviation (Yin (2010)).
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Demand Function λj(pj) CSKj CSKj /CS
1
j

Exponential eaj−bjpj 1
bj
eaj−K e1−K

Linear (aj − bjpj)+ 1
2(K+1)2

a2j
bj

4
(K+1)2

Table 2: Effects of decentralization on consumer surplus for exponential and linear demands

can be stable in our model with both exponential and linear demand functions, due to the fact

that our model takes the network structure of the resources into account. To see this, assume

that each controller controls a single resource. In this case, for stability of a coalition with more

than two controllers, coalition members need to jointly control both products with two resources

and products with more than two resources (instead of controlling only one product using more

than two resources). For example, in a network with three serially connected resources, a stable

coalition can be formed among all three resource controllers, if the products with two resources

have sufficiently large demand relative to the product with three resources.

4.1.2 The Effect of Decentralization on Consumer Surplus

Decentralization of the networks affects consumers as well as producers. We quantify this effect

by calculating the ratio of consumer surplus under decentralized control to that under centralized

control. Let CSKj be the total consumer surplus generated for product j withK controllers. Note

that consumer surplus from product j is CSj =
∫∞
pj
λj(p)dp, which is decreasing in pj . Table 2

shows the equilibrium consumer surplus values along with the ratios of the fully decentralized

to centralized consumer surpluses for the products with K controllers for exponential and linear

demand functions in an infinite capacity network.

Note that these ratios are smaller than their counterparts for producer surplus (see Figure 3).

We conjecture that, as the number of controllers increases, “the chain of monopolies” reduces

total consumer surplus more rapidly than total producer surplus.

5 The Constrained Case

Capacitated networks do not lend themselves to the straightforward analysis that we applied

to unconstrained networks. The solution of the centralized problem (2) can be characterized
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Figure 3: Consumer surplus loss ratios by the number of controllers

by its KKT conditions. This problem can also be formulated with the demand rate being the

decision variable. By virtue of the assumption that demand functions are regular, this alternative

formulation becomes a strictly convex optimization problem with a unique solution (see Talluri

and van Ryzin (2004b)). Also, since there is a one-to-one relation between the demand and

pricing functions, we can conclude that the following KKT conditions of (2) are both necessary

and sufficient conditions for optimality:

pj =
1

hj(pj)
+
∑
i

aijµi j = 1...N (8)

µi(
∑
j

aijDjF̄j(pj)− Ci) = 0 i = 1...M (9)

µi ≥ 0 i = 1...M (10)

where µi ≥ 0, i = 1...M are the Lagrange multipliers with the interpretation as the marginal op-

portunity costs for resources i = 1...M , respectively. Condition (10) assures that these marginal

opportunity costs are nonnegative. Condition (8) is the usual Lagrangian optimality condition.

We can use the KKT conditions of Problem (1) to derive a set of simultaneous equations for the
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Nash Equilibrium prices in the decentralized problem.

pjk =
1

hj(pjk + p−jk)
+
∑
i

aijbikµi ∀ (j, k) pair (11)

µi(
∑
j

aijDjF̄j(pjk + p−jk)− Ci) = 0 i = 1...M (12)

µi ≥ 0 i = 1...M (13)

So, the NE of the capacitated decentralized problem (1) can be derived as a fixed point solution

of (11), given that we calculate the optimal dual prices using the complementary slackness

conditions given in equation (12).

5.1 The Price of Anarchy

For capacitated networks, finding analytical bounds for the price of anarchy is more complicated

than the uncapacitated case and closed form solutions are generally not computable. However,

we can still obtain some useful insights. Recall that the optimality and equilibrium conditions

for the centralized and decentralized prices are:

pcj =
1

hj(pcj)
+
∑
i

aijµ
c
i j = 1...N (14)

peqj =
Kj

hj(p
eq
j )

+
∑
i

aijµ
eq
i j = 1...N (15)

respectively, where the superscripts of µi’s are used to distinguish the centralized and decen-

tralized Lagrange multipliers, and we calculate µci and µeqi , i = 1...M using the corresponding

complementary slackness conditions. Note that (15) is derived by summing (11) over all k.

We know by Proposition 2 that the centralized optimal prices will always be smaller than the

decentralized prices for infinite capacity networks. Therefore, product demands are always larger

in decentralized systems and if a resource’s capacity constraint is binding in a decentralized

system, it will be binding for the centralized system as well. However, the reverse case may not

be true, i.e., there might be network structures whose centralized problem is capacity constrained

but decentralized problem is not. For such cases, we can derive equilibrium prices using equation

(4). We also know that, in the capacitated case, centrally optimal prices will be larger than their

uncapacitated counterparts in order to satisfy the capacity constraints. Hence, constrained-

centralized to unconstrained-decentralized revenue and consumer surplus ratios are always larger
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than the networks with infinite capacities. Therefore, revenue ratios shown in Table 1 and

consumer surplus ratios shown in Table 2 are lower bounds for this case as well.

We next study a simple network with two resources and three products (as in Figure 1).

Proposition 3: In the network structure of Figure 1, if all the capacity constraints are binding

when pricing is fully decentralized (K=2), then

pcj > peqj j = 1, 2 (single-resource products)

pcj < peqj j = 3 (multiple-resource product)

Proof If the capacity constraints are binding in the decentralized system, then they are also

binding in the centralized system as explained above. Hence we have

λ1(pc1) + λ3(pc3) = λ1(peq1 ) + λ3(peq3 ) = C1

λ2(pc2) + λ3(pc3) = λ2(peq2 ) + λ3(peq3 ) = C2

Clearly, if the price of one of the products using a single resource (i = 1, 2) increases after

decentralization, the price of the other single-resource product will also increase, and vice versa.

Now, assume to the contrary that

pcj < peqj j = 1, 2 (single-resource products) (16)

pcj > peqj j = 3 (multiple-resource product)

Then:

pc1 < peq1 ⇒ h1(pc1) < h1(peq1 ) by the IFR property

⇒ 1

pc1 − µc1
<

1

peq1 − µ
eq
1

by (14) and (15) (17)

⇒ µc1 < µeq1 (18)

and similarly

pc3 > peq3 ⇒ h3(pc3) > h3(peq3 ) by the IFR property

⇒ 1

pc3 − µc1 − µc2
>

2

peq3 − µ
eq
1 − µ

eq
2

>
1

peq3 − µ
eq
1 − µ

eq
2

by (14) and (15) (19)

⇒ pc3 − µc1 − µc2 < peq3 − µ
eq
1 − µ

eq
2 (20)

⇒ µc2 > µeq2 by (18) (21)

⇒ pc2 > peq2
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which contradicts (16). Q.E.D.

We also consider an arbitrary network structure where only a single resource’s capacity constraint

is binding in the decentralized problem (hence in the centralized problem as well). In such a

case, it is easy to conclude that the price of the product that uses only that specific resource

(say product k) will decrease after fully decentralization of the network. We can show this as

follows: Assume that resource i has a binding capacity constraint, then:∑
j

aijλj(p
c
j) =

∑
j

aijλj(p
eq
j ) (22)

If we assume to the contrary that pck ≤ p
eq
k , we have

hk(p
c
k) ≤ hj(p

eq
k )⇒ µci ≤ µ

eq
i

⇒ Kj

p− µeqi
>

1

p− µci
∀p and ∀j s.t. aij = 1 , j 6= k

⇒ peqj > pcj by the IFR property

which contradicts (22).

Even for these simple cases, we cannot derive conclusions about how much total revenue or

total consumer surplus changes as pricing is decentralized. We know that the total revenue

always (weakly) decreases after decentralization by the structure of the controllers’ optimization

problem. However, there are cases where total consumer surplus increases with more controllers

when the decentralized problem is capacity constrained. In fact, we derived numerical examples

for all possible cases, i.e., examples in which the price of a product with single/multiple con-

troller(s) inreases/decreases after decentralization of the network. We present these results in

Section 7.

6 Computing Equilibrium Prices

We next present provably convergent algorithms to calculate the Nash equilibrium prices, first

for the unconstrained and then for more general (constrained) networks.

6.1 Computing Equilibrium Prices in an Unconstrained Network

As noted in Section 4.1.1, the unconstrained problem is entirely separable. It is thus possible

to calculate the optimal price for each product separately by finding the unique value of pj
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such that pj = Kj/hj(pj) for each product. The prices charged by each controller can then be

calculated as pjk = pj/Kj . Since the revenue function is continuous and quasi-concave, this

can be done using line search. However, we have found that a Successive Under-Relaxation

algorithm is faster.

Proposition 4: Assume that fj(x) is IFR with corresponding hazard rate hj(x). Furthermore,

assume that hj(0) > 0 and (h′j(p)/h
2
j (p)) < E for all p ∈ (0, p∞j ). Then, there exists an ε > 0

such that the iterative process pkj (m) = αK/hj(p
k
j (m)) + (1 − α)pkj (m) will converge to the

unique equilibrium product price pj when initiated from any 0 < p0
j < p∞j .

Proof Define g(p) = αK/hj(p) + (1 − α)p. Then the desired equilibrium price is the unique

fixed point of g(p). Furthermore, it is well known that if there exists a 0 ≤ δ < 1 such that

||g′(p)|| < δ for all p ∈ (0, p∞j ), the iterative process defined in the proposition is contractive

and will converge to the fixed point (Isaacson and Keller (1966)). For the proposed process, this

condition is equivalent to:

0 < α <
2h2(p)

Kh′(p) + h2(p)

Set δ = 2
KE+1 . Then, δ < 2h2(p)

Kh′(p)+h2(p)
and any α < δ will generate a convergent sequence.

Q.E.D.

6.2 Computing Equilibrium Prices in a General Network

Recall that yk denotes the number of products that use at least one resource controlled by

controller k. Let Y = y1 + . . . + yK and P ∈ RY denote the vector of controller actions

(all controller-price combinations), i.e., it consists of prices charged by each controller k for each

product j that she controls. We can always restructure P so that first n1 of its elements are prices

of the products with single controllers. We also group the prices of a specific product charged

by different controllers together, i.e., P = [p1 p2 ... pn1 pn1+1,1 ... pn1+1,Kn1+1 ... pN,KN
]T (note

that n1 + (n1 + 1) ∗Kn1+1 + ...+N ∗KN = Y ). Let ` be the index that enumerates the entries

of P . Also let µ = [µ1 ... µM ] be the vector of Lagrange multipliers.

Considering the optimality conditions derived in equations (11) - (13), define the transformation

G(P ) such that

G`(P ) =
1

hj(pjk + p−jk)
+
∑
i

aijbikµi ` = 1...Y
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and the transformation Z(µ) such that

Zi(µ) =

µi + γ

∑
j

aijλj(pjk + p−jk)− Ci


+

i = 1...M

for some γ > 0. Then, we can apply the following Successive Under-Relaxation (SUR) algorithm

to compute the Nash equilibrium prices for Problem (1).

SUR Algorithm for Capacitated Networks:

Step 0: Initialize P 0 = [... pjk(0) ...] with 0 < pjk(0) < p∞j for all (j, k) and µ = 0. Set t=0;

Step 1:

while |pjk(t)− pjk(t− 1)| > ε for any (j, k) pair and for some ε > 0

µt+1 = Z(µt)

P t+1 = αG(P t) + (1− α)P t where 0 < α ≤ 1 is the relaxation coefficient

t = t+ 1

end

Our convergence proof for this algorithm uses the following theorem.

Theorem 1: Phillips (1984). Let S be a closed, convex subset of Rn. Let Q be the set of

transformations on Rn, H : S → S, with the following properties:

1. H is continuous and differentiable on S.

2. The spectral radius of H
′
, s(H

′
), is a norm everywhere in S.

3. The eigenvalues of H
′
(P̃ ) are real for all P̃ ∈ S, and there exists a and b, a ≤ b < 1 such

that all the eigenvalues of H
′
(P̃ ) lie between a and b for all P̃ ∈ S.

Let T ∈ Q. Then T has a unique fixed point P̃ ∗ ∈ S such that T (P̃ ∗) = P̃ ∗. Furthermore, there

exists an 0 < ε ≤ 1 such that the SUR algorithm will converge to this unique fixed point for any

0 < α < ε.

Proposition 5: Assume that fj(x) is IFR with corresponding hazard rate hj(x) and hj(0) > 0,

∀j. Then, there exists an 0 < α ≤ 1 such that the SUR Algorithm for Capacitated

Networks converges to the unique Nash equilibrium (NE).
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Proof Let S = [0, p∞1 ] × ... × [0, p∞N ]. The first condition of Theorem 1 holds by assumption.

We show the third condition holds by proving that G
′
(P ) is negative semi-definite for ∀P ∈ S.

In every iteration t, after calculating the new µi’s, i.e. µi(t + 1)’s, we perform the following

update for each pjk:

pjk(t+ 1) =
1

hj(pjk(t) + p−jk(t))
+
∑
i

aijbik

µi(t) + γ

∑
j

aijλj(pjk(t) + p−jk(t))− Ci

+

Therefore, G
′
(P ) is a block diagonal matrix, i.e.,

G
′
(P ) =



A1 0 0 ... 0

0 A2 0 ... 0

0 0 . .

. . . .

. . . 0

0 0 ... 0 An


where Aj = βjUKj , where

βj =


( 1
hj(pjk+p−jk)

)
′
+ γλ

′
j(pjk + p−jk) if − γ

(∑
j aijλj(pjk + p−jk)− Ci

)
< µi

( 1
hj(pjk+p−jk)

)
′

otherwise

and UKj is a Kj × Kj matrix of ones. The first term of βj is negative since the demand

distributions have the IFR property. The second term is also negative since γ > 0 and demand

is a decreasing function of price. Hence βj < 0, ∀j. Therefore each Aj is negative semi-definite, so

G
′
(P ) is also negative semi-definite, which implies that all eigenvalues of G

′
(P ) are non-positive

∀P ∈ S.

The smallest eigenvalue of G
′
(P ) is Kmaxβj̄ , where Kmax = maxjKj and j̄ is the index where

that maximum occurs. Since we assume hj(0) > 0, ∀j and IFR, we have hj(pjk) > 0, ∀P ∈ S,

and hence 1
hj(pjk) <∞, ∀P ∈ S. The second term of βj̄ is bounded by the assumption of regular

demand functions. So, all the eigenvalues of G
′
(P ) are lower bounded.

The second condition of Theorem 1 follows from the fact that G
′
(P ) is symmetric (therefore, all

its eigenvalues are real). Q.E.D.

Remark 4: Since the exponential demand function has a constant hazard rate, the first term of

βj vanishes. Hence we can make ‖G′(P )‖ < 1 by choosing γ sufficiently small, which means that
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we can make G a contraction mapping for exponential demand functions. Therefore, we can

use a simple line search algorithm by taking α = 1 in the SUR Algorithm for Capacitated

Networks.

7 Numerical Analysis

We calculated the prices and consumer and producer surpluses under different regimes for the

networks shown in Figure 4. Network 1 is a serial network. The other networks have “hub and

spoke” structures such as those commonly found in airlines and supply chains. In Networks 1,

Res. 1 

Res. 2 

Res. 3 

Res. 6 

Res. 4 

Res. 5 

Res. 1 Res. 2 
Res. 3 

Res. 4 

Res. 1 

Res. 2 

Res. 3 

Res. 4 Res. 6 

Res. 5 

Res. 7 

Res. 1 Res. 2 Res. 3 Res. 4 

Network #1 

Network #4 Network #3 

Network #2 

Figure 4: Common network structures

3, and 4, we calculated optimal prices under the two extreme control structures: centralized

pricing (K = 1) and fully decentralized pricing (T = {{1}, {2}, . . . , {M}}). For Network 2, we

compared centralized pricing with the case in which resources 1 and 2 had different controllers,

but resources 3 and 4 had the same controller (T = {{1}, {2}, {3, 4}}). In every case, we assume

that there is a product for all possible combinations of adjacent resources. We calculated optimal

prices in each network using both linear (λ(p) = (a − bp)+) and exponential (λ(p) = ea−bp)

demand functions. Parameter values for the demand functions can be found in the Appendix.

We compared the centralized and decentralized network revenue and consumer surplus under

three different scenarios: (1) infinite capacity for every resource, (2) capacity levels that only

constrain the centralized problem, and (3) capacity levels that constrain both centralized and

decentralized problems. By Proposition 2, the prices for the multi-controller scenarios will be

higher than the centralized problem, so the capacity levels in scenario 2 are higher than those
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in scenario 3. The capacity levels that we used in our examples can also be found in the

Appendix. Table 3 presents the changes in the total generated revenue and consumer surplus

from centralized to decentralized systems under these three scenarios.

Demand Change in Total Revenue Change in Total Consumer Surplus

Function Network Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Linear

1 -12.49% -10.75% -2.87% -41.37% -25.50% -1.02%

2 1-9.00% 1-5.65% -3.22% -33.06% -12.12% -3.76%

3 1-8.19% 1-8.00% -0.90% -40.96% -37.85% 5.73%

4 -12.66% 1-8.92% -4.87% -48.05% -30.84% -17.46%

Exponential

1 -30.86% -26.60% -13.70% -48.56% -31.00% -5.76%

2 -24.74% -22.32% -13.55% -41.39% -30.00% -8.41%

3 -18.51% -13.35% -2.09% -44.29% -20.74% 7.86%

4 -33.48% -30.04% -12.54% -57.20% -41.98% -5.35%

Table 3: Changes in total revenue and consumer surplus from centralized to decentralized net-

works

We used the algorithms described in Section 6 to solve for the prices in each scenario. As

algorithm parameters, we chose ε = 10−6 and γ = 10−5. We used α = 0.1 for the linear demand

case and α = 1 for the exponential demand case and initialized all the prices to one. The SUR

algorithm converged quite quickly for these small examples –the longest convergence time was

0.23 seconds for 780 iterations (for Network 4) using a laptop with 8GB RAM.

In all cases, total revenue was reduced by decentralization. Total consumer surplus was usually

reduced under decentralization, however, for Network 3 under Scenario 3, total consumer surplus

actually increased under decentralization for both the linear and exponential demand functions.

Under Scenario 3, the network is highly constrained so that all of the capacity constraints are

binding under both the centralized and decentralized cases. When pricing is centralized, the

prices of the single-resource products are higher than their optimal levels in order to satisfy the

capacity constraints. Under decentralization, double marginalization results in an increase in

the price of the multi-resource products resulting in a corresponding decrease in their demand.

This increases the residual capacity available for the single-product resources and their prices

drop towards their centralized values. For these cases, on the balance, the decreased prices of

the single-resource products outweighed the increased prices of the multi-resource products and

both consumer surplus and total surplus increased.
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For the unconstrained problems, revenue and consumer surplus loss ratios are ordered differently

for the four networks: even though Network 2’s revenue loss ratio is larger than Network 3,

the case is reversed for the consumer surplus loss ratio. The reason is that Network 2 has

three products with two distinct controllers and Network 3 has 15 products with two distinct

controllers and the revenue loss ratio of products with two controllers is smaller (9/8) than the

consumer surplus loss ratio (9/4).

We also explored the effects of different type of control structures on the network revenue. For

Network 1 with unconstrained resources, we compared two control structures. In one case there

are two controllers, one managing resources 1 and 2 and the other managing 3 and 4. In the

other case there are again two controllers, but one managing resources 1 and 3 and the other

managing resources 2 and 4. When we use the same parameters as the previous examples, the

revenue and consumer surplus loss ratios are 4.93% and 24.63% for the first control structure,

and 6.79% and 33.97% for the second control structure. This is in line with expectations since

there are more products with multiple controllers under the second control structure.

To answer the question of whether the capacity constraints of all the resources have similar

effects on the revenue losses, we decreased the capacity levels of resources one at a time for

the above network examples under both centralized and decentralized systems and observed

the effects on the total revenues. Table 4 presents the total revenue changes from uncapaci-

tated to one-resource-capacitated networks for Network 4: the decrease in the total network

revenue is significantly larger for a 50% cut in resource 4’s capacity (with respect to the op-

timal/equilibrium demand in uncapacitated case) compared to similar cuts in other resources’

capacities (we obtained similar results for the other network examples). This distinction arises

from the number of products that use each resource: cuts to the capacities of the resources used

by more products are more effective in revenue losses.

8 Summary and Conclusions

In this study, we showed that decentralized pricing in a network always leads to a reduction

in total product revenue relative to the centralized case and that more decentralization leads

to greater loss. In the case in which resources are unconstrained, decentralization also leads

to a loss of consumer surplus. We derived closed-form solutions for the revenue and price as a
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Total Revenue Change

Centralized Decentralized

Resource # Capacity/UD∗ Linear Exponential Linear Exponential

1 0.5 -5.25% -3.02% -7.57% -5.70%

2 0.5 -5.72% -3.12% -8.11% -5.69%

3 0.5 -6.01% -3.51% -8.59% -6.81%

4 0.5 -12.77% -7.37% -18.51% -13.22%

5 0.5 -5.65% -2.98% -8.10% -5.66%

6 0.5 -5.90% -3.14% -8.49% -5.94%

7 0.5 -5.85% -3.40% -8.38% -6.45%

Table 4: Effects of capacity cuts on total network revenue for Network 4. *UD: Uncapacitated

Demand

function of the number of controllers for the cases in which product demand curves are linear

or exponential.

When resources have constrained capacity, the situation is more complex. Total revenue always

decreases as the number of controllers increases. However, in certain cases, consumer surplus -

and total social surplus - can actually increase. When the capacity constraint is binding on one

or more resources, closed form solutions are no longer available for price or revenue. However, we

show that a Successive Under-Relaxation algorithm with suitable choice of relaxation parameter

is guaranteed to converge given mild assumptions on the forms of the demand functions.

Our study can be viewed as an extension of the well-known concept of double marginalization

(or horizontal externality) to networks: as the number of controllers in an unconstrained net-

work increases, both producer and consumer surpluses decrease relative to the single controller

case. This indicates that there can be an increase in consumer and producer surplus from the

consolidation of network industries such as airlines and pipelines in which there are many shared

products prior to the merger.
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Linear Exponential Linear Exponential

Network Product a b a b Network Product a b a b

1

1 100 2 4.61 2

3

16 128 4 5.02 4

2 95 2 4.59 2 17 138 5 5 5

3 110 2 4.62 2 18 150 5 4.97 5

4 105 2 4.6 2 19 130 4 4.98 4

5 140 4 5.01 4 20 130 4 4.99 3

6 150 4 5 4 21 145 5 5.05 5

7 130 4 4.98 4

4

1 100 3 4.61 3

8 80 1 4.41 1 2 110 3 4.59 3

9 85 1 4.4 1 3 105 2 4.62 2

10 120 3 4.8 3 4 95 2 4.6 2

2

1 100 2 4.61 2 5 90 3 4.61 3

2 95 2 4.59 2 6 100 3 4.58 3

3 110 2 4.62 2 7 105 2 4.6 2

4 105 2 4.6 2 8 150 5 4.99 5

5 140 4 5.01 4 9 130 4 5 4

6 150 4 5 4 10 145 5 5.04 5

7 130 4 4.98 4 11 154 5 5.02 5

8 145 4 4.99 4 12 148 4 5 4

9 85 1 4.4 1 13 140 5 4.97 5

10 75 1 4.41 1 14 125 4 4.98 4

3

1 100 3 4.61 3 15 150 5 4.99 5

2 110 3 4.59 3 16 130 4 5.02 4

3 105 2 4.62 2 17 145 5 5 5

4 95 2 4.6 2 18 154 5 4.97 5

5 90 3 4.61 3 19 148 4 4.98 4

6 100 3 4.58 3 20 72 1 4.38 1

7 140 4 4.98 2 21 82 2 4.4 2

8 150 5 4.99 5 22 76 3 4.37 3

9 130 4 5 4 23 75 2 4.38 2

10 145 5 5.04 5 24 80 2 4.4 2

11 154 5 5.02 5 25 84 1 4.37 1

12 148 4 5 4 26 77 1 4.42 1

13 135 4 4.97 5 27 88 2 4.41 2

14 140 4 4.98 4 28 80 2 4.4 2

15 126 5 4.99 5

Table 5: Demand function parameters used in Section 2.5: Numerical Analysis
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Capacity

Constrained Centralized Problem Constrained Decentralized Problem

Network Resource Linear Demand Exponential Demand Linear Demand Exponential Demand

1

1 280 150 180 70

2 280 150 180 70

3 280 150 180 70

4 280 150 180 70

2

1 220 170 180 70

2 250 170 200 70

3 220 170 180 70

4 220 170 180 70

3

1 390 200 278 100

2 390 200 278 100

3 390 200 278 100

4 390 200 278 100

5 390 200 278 100

6 390 200 278 100

4

1 380 200 255 100

2 380 200 255 100

3 380 200 255 100

4 600 400 350 100

5 380 200 255 100

6 380 200 255 100

7 380 200 255 100

Table 6: Capacity levels used in Section 2.5: Numerical Analysis


