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 I. Introduction 

 

This paper is motivated by Figure 1.  The figure counts the number of citations 

made by U.S. patents to published scientific papers.  As the reader can see, these counts 

have gone up dramatically over the last few years.  In fact, these counts have grown much 

more quickly than the aggregate number of patents, the number of scientific publications, 

or the level of public sector R&D.1   

Figure 1 is interesting because it may imply that the nature of the relationship 

between “academic science” and “industrial innovation” has changed.  In some sense, 

inventors may be finding that academic science is more useful in the process of creating 

new technology than it used to be.  This is significant, because in the United States and 

elsewhere, the large postwar expansion in public funding for scientific research has been 

predicated on the belief that investments in “basic science” would stimulate economic 

growth in the long run.  If the positive impact of these investments in basic science on 

industrial innovation has been increasing in recent years, then this would have interesting 

implications for U.S. science policy and, potentially, for the prospects of continued 

technology-driven economic growth. 

To better understand what Figure 1 implies, I begin with an in-depth study of the 

citing patents, themselves.  What kinds of patents cite academic science?  How do citing 

patents differ from patents that do not cite academic research?  How have these patterns 

changed over time?  What kinds of academic articles get cited?  How has the distribution 

of citations across patent assignees changed over time?  The paper directly addresses 

these questions and takes a first step towards measuring the impact of these knowledge 

flows on research productivity.   Finally, using data from a sample of California research 

universities, the paper produces estimates of the innovative output of these sample 

campuses, controlling for public R&D expenditure across campuses and disciplines.  The 

implications of these results are discussed in the conclusion. 

 

                                                 
1   I am certainly not the first person to document this increase.  These trends have been analyzed by Narin, 
Hamilton, and Olivastro (1997) and are clearly evident in the most recent edition of the National Science 
Board’s Science and Engineering Indicators.  See also Hicks et. al. (2001).     
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II.  Patent Citations of Academic Papers as Indicators of Knowledge Spillovers 

 

Prior Research on University-Industry Research Interaction 

 A number of studies have examined aspects of the impact of academic science on 

industrial innovation.  A full review of even the recent literature is beyond the scope of 

this paper, so I will only mention a few studies from the streams of research on which my 

paper directly builds.2  One such stream has used case studies or surveys in an attempt to 

assess both the magnitude of this impact and the channels through which it flows.3  

Mansfield (1995) directly interviewed industrial research directors to obtain their 

assessments of the impact of academic research on industrial R&D.  Cohen et. al. (1994) 

have continued in this tradition, surveying a large cross-section of firms on the impact of 

academic science on their own research productivity and the means by which these 

knowledge flows are mediated.4  A second stream of research has undertaken quantitative 

studies of knowledge spillovers from academic research.  Jaffe (1989) and Adams (1990) 

were early contributors to this literature.  More recently, Jaffe et. al. (1993, 1996, 1998) 

have used data on university patents and citations to these patents to quantify knowledge 

spillovers from academic science.5  A related stream of research has undertaken 

quantitative analysis of university-industry research collaboration.  Contributors include 

Zucker et. al. (1998) and Cockburn and Henderson (1998, 2000).  A number of papers in 

this literature have studied “start-up” activity related to academic science or academic 

scientists, such as Zucker et. al. (1998) or Audretsch and Stephan (1996).  Finally, several 

recent studies have examined university licensing of university generated inventions, 

such as Barnes et al. (1998), Mowery et. al. (1998), Shane (2000, 2001), and Thursby and 

Thursby (2002).  

 

Patent Citations to Academic Papers 

                                                 
2   For a more comprehensive review of the more recent literature, see Agrawal (2001).  The literature on 
this topic by both economists and noneconomists goes back several decades.  See, for instance, Marquis 
and Allen (1966), Price (1965), Lieberman (1978), Schmookler (1966), and Sherwin and Isenson (1967). 
3   A more historical perspective is provided by Rosenberg and Nelson (1994).  See also Mowery (1981). 
4   Many others have contributed to this “case study/survey” literature, including Faulkner and Senker 
(1995) and Gambardella (1995).   
5   Barnes, Mowery, and Ziedonis (1998) and Mowery, Nelson, Sampat, and Ziedonis (1998) have 
undertaken a similar study for a smaller number of universities.  See also Agrawal and Cockburn (2003). 
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This paper will use patent citations to academic papers to measure “knowledge 

spillovers” between academic science and industrial R&D.  It is not the first research 

project to use such data – Francis Narin and his collaborators have pioneered the use of 

these data in large-sample “bibliometric” analysis.6  As indicators of knowledge 

spillovers from academia to the private sector, these data have a number of advantages.  

The academic promotion system creates strong incentives for academic scientists to 

publish all research results of scientific merit.  As a consequence, the top-ranked research 

universities generate thousands of academic papers each year.  The available data show 

that patent citations to these papers have been growing very rapidly over the last several 

years, far outstripping the growth rates in patenting, publications, or R&D spending.  

Figure 1, which shows national growth in such citations, is taken directly from a recent 

edition of the NSF’s S&E Indicators.7 

In response to the Bayh-Dole Act and other public policy measures, universities 

have increased the extent to which they patent the research of university-affiliated 

scientists.  They have also increased the extent to which they license these patented 

technologies to private firms.  Nevertheless, it is clear to observers that only a tiny 

fraction of the typical research university’s research output is ever patented, and only a 

fraction of this set of patents is ever licensed.  Agrawal and Henderson (2002) strongly 

emphasize this point in their recent study, and point to additional corroborating evidence.   

Given this, patent citations to academic papers may provide a much broader window 

through which to observe knowledge spillovers from academia to the private sector than 

the available alternatives.   

I will investigate patent citations to academic science using two distinct empirical 

approaches.  I start with a random sample of 30,000 utility patents, approximately 4,500 

of which make at least one citation to “science.”  Using these data, I can examine how 

citing patents differ from others.  I will also present a number of tests of the geographic 

localization of knowledge spillovers.  Finally, I can assess whether patents that make 

                                                 
6  See Narin et. al. (1997) and Hicks et. al. (2001) for recent examples of this work.  Other recent studies 
employing patent citations to papers include Fleming and Sorenson (2001), Sorenson and Fleming (2001), 
and Lim (2001). 
7  Figure 1 is constructed from data placed on the NSF web site which tracks the increase in patent citations 
to scientific and technical articles, of which those authored by scientists at research universities constitute 
the largest part. 
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references to scientific publications are “better” than patents that do not.   This would be 

consistent with, but not proof of, the view that knowledge spillovers from “academic 

science” are actually beneficial to the citing inventors. 

 In tracking patent citations to papers, one would like to control for the R&D 

inputs associated with the generation of these papers.  I do this by using information on 

the universe of patent citations to the papers generated by two university systems --  the 

University of California and Stanford --  over the 1987-1996 period.  In the context of 

this data set, I have constructed measures of academic output for the specific university 

systems mentioned above.  These measures will include annual counts of papers, counts 

weighted by the degree to which these papers are cited in subsequent academic papers, 

and counts weighted by the degree to which these papers are cited in subsequently 

granted patents, broken down by campus and field of technology.  These output measures 

can then be regressed on measures of institutional attributes, including levels of R&D 

input.  One can think of this as estimating an academic “production function,” where one 

of the output measures provides a quantitative indication of the extent to which scientific 

research in field i at institution j impacts the subsequent activity of commercial inventors.   

 

III. Evidence from the Random Sample 

 

 I begin by presenting evidence drawn from a random sample of nearly 30,000 

U.S. utility patents.8  Given the sample size, I can be reasonably confident that sample 

trends will be reflective of trends in the underlying population.  Because this data source 

may be unfamiliar to some readers, it is worthwhile to spend some time simply reviewing 

basic trends and tendencies in the raw data.   

 

Graphing Trends in Patent Citations to Academic Science 

 Figure 2 examines the distribution of citations across scientific fields, where the 

designation of field reflects the nature of the science being cited by the patent, rather than 
                                                 
8   Comprehensive data on the citations made by these patents to nonpatent documents were provided by 
CHI Research, under a contract which prevents them from being made publicly available to all researchers.  
Regression analysis of these patents required that the data from CHI Research be linked to data in the 
NBER Patent Citation database.  For a small number of the CHI patents, no link could be found, so the data 
base on which regression analysis is based has slightly more than 29,800 observations. 
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the technological class of the patent itself.  It is immediately obvious that the most 

frequently cited fields are “biomedical research” and “clinical medicine.”  While there 

are also substantial numbers of citations to other sciences, these two fields, which we will 

collectively refer to as “biomedical science,” constitute the majority of citations when 

one aggregates across time.   

 Figure 3 gives the reader a sense of how changes in the number of patents citing 

science over time have largely been driven by changes in the number of patents making 

citations to “biomedical science.”  The date here is the date of application of the citing 

patent, and the graphs demonstrate that there has been a sharp acceleration in the number 

of citing patents in recent years, with most of this increase driven by an increase in the 

number of patents citing biomedical science.  Figure 4 extends this analysis by counting 

not the number of citing patents, but rather the number of citations to science made by 

those patents, and graphing that together with the total number of citations made by 

patents in classes typically associated with drugs, medicines, and other applications of 

“biotechnology.”  Figure 4 strongly suggests that much of the increase in the increase in 

aggregate patent citations to science in Figure 1 is driven by citation activity in these 

patent classes. 

 Figure 5 illustrates the breakdown in citations to scientific papers by category of 

cited institution.  As one can see, scientific papers generated by universities are the most 

frequently cited kind of scientific publication.  However, there are a substantial number 

of citations made to the academic publications of private firms.  This underscores the 

reality that many large corporate R&D departments, particularly in the chemicals and 

pharmaceuticals industries, encourage their staff to publish in the scientific literature.9  A 

much smaller fraction of total citations go to papers generated by nonprofit, non-

university research organizations, including government agencies, national laboratories, 

and private research foundations.   

 Figure 6 illustrates the extent to which the science pool upon which U.S. patents 

draw is a global one.  As can be seen, approximately 41% of the science citations made 

by U.S. patents are made to institutions located outside the United States.  In a sense, this 

                                                 
9   For studies on why firms might allow R&D personnel to publish, see Cockburn and Henderson (1998) 
and Stern (1999). 
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is not surprising, given that approximately half of the patents granted by the U.S. Patent 

and Trademark Office over the last 20 years have been made to foreign inventors.  

Although this graph does not do so, it is possible to look at science citations made by 

U.S. inventors.  These tend to be made to predominately U.S. institutions, and foreign 

inventors show a similar tendency to disproportionately cite science generated in their 

own countries.10 

 It is also of interest to plot the histogram for lags between the publication of an 

academic article application date of the patent that cites it.  This is graphed out in Figure 

7.  As is immediately obvious, the modal lag between paper publication and grant 

application is three years, suggesting that spillovers from academic science to industrial 

research are quite rapid.  Note that the left tail of this distribution actually includes a 

small number of negative lags.  In some cases, this appears to represent coding error in 

terms of the publication date of the paper, but in others, it seems that (forthcoming) 

papers are being cited by patent applicants even prior to their publication in the literature.  

The distribution is clearly skewed to the right – papers continue to receive citations long 

after publication – and the picture suggested by this graph is strongly reminiscent of the 

double-exponential functional form used by Jaffe and Trajtenberg (1996, 2002) in their 

pathbreaking work on the modeling of patent citations to previous patents.   

 Finally, a geographic perspective on patent citation activity is provided in Figure 

8.  This figure shows the density of patent citations to academic science over the entire 

sample period, mapped to geographic space.  Citing patents are assigned to U.S. counties 

based on the address of the first inventor, and the vertical dimension in this figure gives 

the number of patents making citations to science.  Clearly, citation activity is localized 

in the East and West Coasts, and reflects the “bicoastal” distribution of both industrial 

and academic research activity. 

 

Practitioner Perspectives from Field Interviews 

 One of the useful features of the citations data used in this section is that it is quite 

easy to identify highly cited scholars and “intensively citing” firms – that is, firms whose 

patents frequently cite scientific research conducted by various kinds of institutions, 

                                                 
10   This pattern of disproportionately “intranational” citation was noted by Narin (1995). 
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including universities.  To date, I have contacted 7 academics from various scientific 

disciplines and campuses, most of them “highly cited” by patents.  I have also 

interviewed 7 corporate executives from “intensively citing” firms who were closely 

connected to corporate patenting and R&D efforts as well as 2 independent patent 

lawyers involved in intellectual property issues.   

 One issue of particular interest in these interviews was the extent to which the 

recent surge in citations to academic papers represents a real increase in the incidence of 

knowledge spillovers versus simply a change in citations practices.  Every interviewee 

involved in bioscience agreed with the view that the “knowledge spillovers” from 

academic research to corporate R&D have grown increasingly strong over recent years, 

and most believed that the increase in citations, in part, reflected that.  These increased 

spillovers stem in part from a fundamental change in the way pharmaceutical and 

biomedical products firms conduct research.  Modern drug discovery techniques are 

closely based on relatively recent biological science.  The compression of the product 

development cycle in these industries has led to a situation in which major new 

discoveries in academic science touch off a product development race in which leading 

firms immediately start applied research programs based on these new scientific 

discoveries.  Pharmaceutical firms no longer patent only narrowly defined chemical 

compounds but also gene sequences, CDNA products, and research methodologies – and 

these more complicated inventions generally draw heavily on multiple sources of 

academic science.   

Several interviewees also pointed out that, in the biotechnology sector, the 

boundary between “academic” and “commercial” research has blurred as academic 

scientists have founded independent firms, served on the scientific advisory boards of 

biotech firms, or entered into long-term consulting relationships with firms without ever 

relinquishing their academic positions.  The presence of hundreds of such individuals 

with a foot in both worlds constitutes a kind of human bridge through which important 

new scientific knowledge quickly diffuses to corporations.  Since individual academics 

are now competitors and collaborators in commercial product development, it is not 

surprising that citations to their scientific work are increasing. 
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Econometric Results from the Random Sample 

 Having described some features of the raw data, and having related some of the 

impressions of practitioners in the field, I now seek to obtain econometric estimates of 

the conditional impact of various attributes of citing patents on the probability of citation 

of science, holding others constant.  The nature of the data suggests several alternative 

approaches.  One approach is to run logit regressions in which the dependent variable is a 

binary variable equal to 1 if the patent in question made at least one reference to 

“science.”  Independent variables of interest include dummy variables for the 

(application) year of the patent cohort, the technology category of the patent, the category 

of organization to which the patent is assigned, and a crude measure of geographic 

proximity between the region in which the (first) inventor of the patent is located and the 

region(s) in which academic science is produced. 

 Collapsing the number of patent citations made to science to a binary variable 

may “throw away” useful information.  An obvious alternative approach is to take as the 

dependent variable the number of citations made to science, generating a count variable 

that varies from zero to 103 in my sample.  The appropriate statistical model is one which 

takes into account the count nature of the dependent variable.  I have used the negative 

binomial model, running regressions of the number of academic citations on the same set 

of independent variables listed in the previous paragraph. 

 A third potential approach is to focus only on those observations for which I 

observe at least one citation to academic science.  The paper presents results obtained 

from a truncated negative binomial model.  While this approach ignores the differences 

between citing and nonciting patents, it generates some benefits in that I can conduct 

more nuanced comparisons of citing patents to one another.  In particular, I can include in 

these regressions a continuous measure of geographic distance between the location of 

the patent inventor and the location where the cited science was generated – a measure 

which does not exist for nonciting patents.   

 With all of these statistical approaches, there are also different ways in which I 

can define “academic science” and thus measure patent citations to it.  The most 

comprehensive such measure is to include in our counts all nonpatent citations which 

appear to be to “scientific documents,” including conference proceedings and technical 
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manuals.  A narrower measure would be to count all references to articles in journals 

tracked by the Institute for Scientific Information database.  This database tracks many (if 

not most) of the peer-reviewed journals across all major scientific disciplines, more 

precisely corresponding to the output of “academic science.”  A still narrower measure 

would count only references to university-authored papers in tracked journals.  This 

distinction is useful because, in some scientific disciplines, large corporate R&D labs and 

public science agencies generate a substantial contribution to “academic science,” 

publishing in the same journals as their university-affiliated peers.   

 Table 1 presents results based on a logit specification.  The first five rows present 

the coefficients on dummy variables equal to one if the patent assignee falls into one of 

the five listed categories:  university, non-profit R&D organization (many of these are 

research hospitals), U.S. government agency (i.e., NASA), foreign (foreign firms, 

individuals, and government agencies are all placed in this category), and “other” (the 

largest fraction of which are U.S. individuals).  The reference category here is private 

firms.  It is immediately clear that universities, nonprofit R&D organizations, and U.S. 

government agencies are all more likely to cite academic research than are firms.  This 

differential gets generally more pronounced as one restricts the definition of what 

constitutes academic science.  That being said, the vast majority of citing patents are 

generated by firms.  Though not shown here, regressions run using only firm data do not 

reveal patterns of citation qualitatively different from those shown in this and the next 

several tables. 

 The next set of dummy variables corresponds to the technology class of the citing 

patent.  Using a taxonomy developed by Adam Jaffe and Manuel Trajtenberg, I have 

aggregated the primary patent classes of the U.S. Patent and Trademark Office patent 

classification system into six groups – chemicals, communications/computers, 

drugs/medical, electronics/electrical machinery (not directly computer related), 

mechanical devices, and a catch-all “other” category which constitutes the reference 

group in these regressions.11  Patents in the drugs/medical category stand out as being 

disproportionately likely to cite.  This differential effect gets dramatically stronger as I 

                                                 
11   I thank Adam Jaffe for providing this taxonomy in electronic form.  Note that there are several hundred 
primary patent classes. 
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narrow the definition of academic science across columns.  Depending on the definition 

of the dependent variable, the chemicals category ranks second in terms of likelihood of 

citing. 

 The next variable attempts to gauge the extent to which invention building on 

academic research is geographically localized.  “Science center” is a dummy variable 

equal to 1 if the patent inventor is located in one of the top 100 U.S. counties in terms of 

generation of scientific publications.  Not surprisingly, this variable is positive and 

statistically significant at conventional levels.  Patents generated in regions with high 

levels of proximate scientific research are disproportionately likely to cite science.  

However, it is hard to view this as strong evidence of geographic localization of 

spillovers from academic research.  I will return to this point in a moment. 

 All regression specifications are run with patent application year cohort effects.  

While the coefficients are not shown in Tables 1-3, the results from Table 1, column 1 are 

graphed out in Figure 9, along with the 95% confidence bounds.  What is evident from 

this graph is a pronounced rise in the tendency of patents to cite over time, controlling for 

the increase in university patenting and changes in the distribution of patents over classes 

with different tendencies to cite science.  However, the most pronounced rise in this 

tendency came during the early 1980s.  Unfortunately, due to data limitations in the 

random sample, I am unable to examine in detail the increase in citations reflected in the 

cohorts of patents granted after 1996.   

 Table 2 presents a similar set of regression results using the full count of citations 

as the dependent variable and a negative binomial regression approach.  For the most 

part, the qualitative picture of citation patterns is similar to that of the logit regressions.  

The interpretation of the coefficients has changed slightly, in that the reported 

coefficients indicate the percent change in citations associated with a unit change in the 

reported variable.  Therefore, column 3 indicates that drug/medical patents generate 

nearly 400% more citations than the reference group.  Though not shown here, I also 

experimented with so-called “zero-inflated” negative binomial (ZINB) regressions, along 

the lines of Lambert (1992).  This technique allows the econometrician to allow the 

propensity to cite at all to be determined by a different statistical process than that which 

determines how much a patent cites, conditional on it citing at least once.  These 
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experiments were motivated by the observation that the majority of patents in the data set 

make no citations at all, and there may plausibly be some unobserved latent variable 

(proximity to academic science in the technology space) which determines citation.  

However, experiments with ZINB regressions yielded results that were not qualitatively 

different from the results reported here.  Furthermore, specifications tests did not indicate 

that a ZINB specification was preferred.  Figure 10 graphs out the application year cohort 

effects for the regression shown in column 1.   

 Table 3 presents results that focus only on observations where at least one citation 

to academic science is observed.  The appropriate statistical model is a truncated negative 

binomial model.  A brief technical treatment of the estimator is given in the appendix.  

These regressions were motivated by the desire to compare citing patents to one another 

along dimensions for which there are no corresponding measures for nonciting patents.  

Among these are the average linear distance between the patent inventor and the cited 

science source.  Note that this variable is only available in cases where the cited science 

sources could be geographically located, which means that some citing patents are not 

included in this regression.  In addition, only measured distance between the patent 

inventor and cited science sources located in the United States was used in calculating 

average linear distance.12  Care must therefore be taken in comparing these regression 

results to those of the earlier tables.  The coefficient on the distance variable “Ave_Dist” 

is positive but statistically indistinguishable from zero.  This suggests that, while citing 

patents are disproportionately likely to arise in regions with high levels of academic 

research, they cite research from a range of sources, not all of which are geographically 

proximate.  This finding, in turn, suggests that care needs to be taken in thinking about 

the policy implications of the results indicative of geographic localization of academic 

knowledge spillovers. 

 Given the somewhat ambiguous findings regarding geographic localization, I  

present one more test, which explicitly takes into account the skewed distribution of 

innovative activity across U.S. regions.  Following Jaffe et. al. (1993), I match each of 

the citing patents with a nonciting “control” patent issued on the same date in the same 

                                                 
12   This stems from a limitation in the data set initially provided by CHI Research, which provided 
information on the geographic address of the cited institution only when that institution was located inside 
the United States. 
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patent class as the citing patent.  Let pc be the probability that a citation comes from the 

same county as that in which the cited “science source” is located.  Let p0 be the 

corresponding probability for a randomly drawn control patent.  I test for “geographic 

localization of knowledge spillovers” using the following test statistic: 
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0
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−
=       (1) 

where the two terms in the numerator are the sample proportion estimates of pc and p0.  

The null hypothesis that pc=p0 is easily rejected at conventional levels.13 

 Other than the results on geographic localization, the general qualitative patterns 

of the earlier tables are consistent with the results of Table 3.  One interesting difference 

is that the coefficient on the foreign assignee dummy is positive and significant.  

Evidently, foreign patents are less likely to cite, but, conditional on citing at least once, 

they cite relatively heavily.   

 

Does Citation of Academic Science Make Inventions Better? 

 The discussion of trends in the citations data above is of limited interest unless the 

knowledge spillovers indicated by these citations are actually enhancing the research 

productivity of the firms and other organizations that receive them.  Are innovators 

learning from academic science in such a way that they are able to produce more 

inventions than they otherwise could or better inventions than they otherwise could?  

Alternatively, does the information generated by academic science allow them to invent 

in areas in which they could not work without the pre-existing foundation of academic 

science on which to build?   

 It is very difficult to establish the technological dependence of a particular 

invention on a cited scientific article without engaging in an in-depth study of the 

invention and extensive interviews with its inventors.  However, I can seek to measure 

whether or not patented inventions that cite UC or Stanford academic science are 

systematically “better” than patents that do not.  The micro literature on patents has 

suggested several measures of patent “quality” – quantitative features of the patent 
                                                 
13   This test was conducted using both the “state” and the “county” as the regional unit of analysis.  The t-
statistic of the difference in ratios was 11.27 for state-level comparisons, 11.03 for county-level 
comparisons.    
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document – that have been demonstrated to be positively correlated with the ex-post 

commercial and technological importance of the patent.  Three such measures include 

counts of ex-post (or “forward”) citations, counts of claims contained in the patent 

document, and a measure of “generality” proposed by Henderson, Jaffe, and Trajtenberg 

(1998).  This latter measure is a quantitative index of the diversity of technological fields 

across which ex-post citations occur.  An invention whose citations come from multiple 

technological fields can be thought of as having a more “general” impact than an 

invention whose citations come from a single technological field.  The formal definition 

of the index is 
2

1

1 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

iN

k i

ik
i Nciting

Nciting
Generality       (2) 

where the numerator in the expression measures the number of citations to patent i 

coming from patent class k, while the denominator measures the total number of citations 

to patent i across all classes. 

 Table 4 presents the results of regressions in which these three measures of 

quality are the dependent variable, a dummy variable indicating patents which cite 

academic research is the chief independent variable of interest, and I use as controls 

measures of the patent cohort (application year) and technological field.  The results in 

Table 4 suggest that patents citing academic research are significantly better according to 

all three indices of patent quality. 

However, in this context, it is very difficult to interpret this result in a causal way.  

Are patents that cite academic research “better” because they cite, or do they tend to cite 

academic research from UC and Stanford more frequently because they are “better”?  At 

this level of aggregation, it is difficult to determine which interpretation is correct.  

 

IV. Evidence from an Academic Production Function 

 

Basic Empirical Approach 

Since the early 1970s, there has been a large shift in federal government research 

resources away from the physical sciences and toward the life sciences.  Might this shift 

in the distribution of research resources account, in part, for the large measured impact of 
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“biotech-related” sciences on industrial innovation?14  In this section, I seek to address 

this problem by estimating what amounts to an “academic production function.”  Taking 

as my sample the University of California’s campuses and research institutes and 

Stanford University, I will measure the “science output” of these university systems 

across campuses, scientific fields, and time.  This science output, measured using a 

number of alternative indices, will be regressed on, among other things, total R&D 

spending, the number of enrolled graduate students, the number of postdoctoral 

researchers, and measures of average faculty salary across institutions and years.  For 

concreteness, the estimating equation can be written as 

ijtitijtijtijttjiijt SalPGRQ εββββααα +++++++= 4321     (3) 

where Q is some measure of science output for institution i in scientific field j in year t. 

 While a number of alternative output measures could be constructed and used, I 

will consider three.  First, I will include a simple count of papers published by campus i, 

in field j, in year t.  Second, I will weight these counts by the subsequent citation of these 

papers in the scientific literature.  Third, I will weight the paper counts by the subsequent 

citation of these papers in patents.  This last measure of scientific output will be of 

particular interest, as I can view it as a measure of the impact of a “campus-field” on 

subsequent private sector invention.    

On the right hand side of the equation, the α ’s are estimated campus, scientific 

field, and year fixed effects.  R is a measure of R&D input, the largest part of which is 

publicly funded.  It makes sense to think of academic output as being the result of a stock 

of current and appropriately depreciated past R&D investment.  Therefore, results are 

presented using an R&D stock rather than a flow.  G and P measure the numbers of 

enrolled graduate students and employed postdoctoral researchers, respectively.15  Sal is a 

measure of the average salary of scientific faculty across all departments.  Since I do not 

have the breakdown by scientific field, it is indexed i,t. 

Preliminary results from regressions of various version of (7) are presented in 

Table 5.  Table 6 presents the regression coefficients on the campus and field dummy 

variables for column 3 of Table 5.  Table 7 presents the results of a simple ANOVA that 

                                                 
14   I wish to thank Ariel Pakes for pointing out the importance of controlling for inputs. 
15   The use of simple lags of G and P yielded results qualitatively similar to those shown in this draft. 
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gives the reader a sense of the fraction of the total variance in outcomes that can be 

ascribed to campus and field effects.  The lessons of these results can be summarized as 

follows. 

First, field effects account for a rather large share of the total variance in 

outcomes.  Examination of the production function results indicates that the biotech-

related fields of science are “productive,” even accounting for their higher levels of 

funding.  Second, campus effects also account for a nontrivial share of the total variance 

in outcomes, though this is a much smaller share than field effects.   The campuses that 

are generally regarded as more “prestigious” are also the ones that seem to be more 

“productive.”  Third, increases in research funding yield increases in research output, but 

the measured impact is far less than one-for-one.  To some extent, this may reflect the 

inadequacy of the measures of research input as well as long lags in the academic 

“production” process. 

 

VII. Conclusions 

 

Based on the results presented in this paper, I would like to conclude by making 

five observations.  First, relative to other indicators of knowledge flow from academia to 

the private sector, citations to academic papers are relatively numerous, rich, and 

available across campuses and scientific disciplines.  Quite simply, there is a great deal of 

information to be mined from this source, and the existing literature has only begun this 

process.  In making this statement, I do not mean to imply that study of, for instance, 

licensing of university-generated patents is unimportant or uninteresting – far from it.  I 

merely wish to emphasize that patent citations to science are worthy of academic 

scrutiny. 

Second, this paper presents evidence that the propensity of successive cohorts to 

cite academic science has been growing over time, controlling for changes in the 

distribution of patents across fields over time and controlling for the rise in university 

patenting.  One interpretation of this is that industrial research is steadily getting “closer” 

to academic science.  Of course, this is not the only plausible interpretation of my 
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finding, and further research is needed to confirm just what this increasing propensity to 

cite science actually means.16   

Third, I have presented ample evidence that citations to academic science are 

highly concentrated in a small number of technologies.  In particular, “biotech” related 

technologies and sciences play an extremely strong role in explaining overall trends in 

citations.  In the light of recent research on the interaction between public science and 

private innovation in the pharmaceutical industry, this is hardly surprising. 

Fourth, analysis at the patent level suggests that the incidence of citation of 

academic science is positively associated with measures of invention “quality.”  While 

this evidence is consistent with the idea that knowledge spillovers from academia make 

private inventions better, for reasons discussed at length in the paper, this does not 

constitute proof that the chain of causality runs from citation to invention quality.  

Certainly, further analysis is needed at the assignee (firm) level. 

Finally, preliminary evidence based on an academic production function suggests 

that the relatively high impact of bioscience research on commercial invention does not 

seem to be driven purely by the relatively generous funding that university researchers in 

these fields have received.     

There are a number of directions in which the research contained herein could be 

extended.  For instance, to understand better the forces driving the aggregate increase in 

patent citations to academic papers, it would be useful to control for changes in the level 

and distribution across fields of potentially cited papers, as well as persistent differences 

across fields of science in the degree to which papers tend to be cited by patents.  In their 

studies of patent citations to previous patents, Jaffe and Trajtenberg (1996, 2002) have 

taken such an approach.  Branstetter (2003) has begun an investigation along these lines, 

using a “citation function” approach inspired by the work of Jaffe and Trajtenberg. 

 

                                                 
16   Branstetter (2003) examines this issue in greater detail. 
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Technical Appendix:  The Truncated Negative Binomial Estimator 

 

Sketch Derivation of the Estimation Technique 

A complete derivation of this model is given in Cameron and Trivedi (1998).  

This brief description draws heavily on Cameron and Trivedi (1998) and uses their 

notation. 

The mean and variance of the Poisson distribution truncated at zero are 
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A more general negative binomial distribution truncated at zero, which is what is used in 

the paper, would have the following first two moments: 
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Note that the truncated Poisson, unlike the standard Poisson model, does not have 

equal first and second moments.  As pointed out by Cameron and Trivedi (1998), 

misspecification of the distribution implies that the first conditional truncated moment, 

which depends on the correct probability of zero value, will also be misspecified, 

resulting in inconsistent estimates of our parameters if the parent distribution is 

incorrectly specified. 

 The left-truncated Poisson model can be estimated by maximum likelihood 

methods.  Let the log likelihood estimation be based on n independent observations, such 

that 
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Figure 1  Patent Citations to Academic Research
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Figure 2  Distribution of Citations Across Science Categories
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Figure 3  Increase in Citations over Time
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Figure  4  Total Citations and Citations by Drug/Medicine Patents
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Figure 5  Academic Citations by Cited Institution Category
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Figure 6    U.S. versus Foreign Institutions
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Figure 7     Lags between paper publication and patent application
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Figure 8 Geographic Location of Citing Patents 
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Table 1  Logit Regressions on the Determinants of Academic Citation 

 

Variable Category Variable 
 

All citations ISI 
journals 
only 

University-affiliated 
authors 

Universities 
 

1.698 
(.117) 
 

1.73 
(.115) 

2.27 
(.123) 

Nonprofit R&D 
organization 
 

1.329 
(.247) 

1.23 
(.251) 

1.53 
(.274) 

U.S. government 
agency 
 

.584 
(.126) 

.818 
(.141) 

.640 
(.204) 

Foreign assignee 
 

-.158 
(.043) 
 

-.161 
(.055) 

-.371 
(.084) 

Type of Assignee 

Other 
 

-1.04 
(.070) 
 

-1.07 
(.094) 

-.831 
(.124) 

Chemicals 
 

1.63 
(.069) 
 

2.02 
(.104) 

2.14 
(.172) 

Communications/ 
Computers 
 

1.63 
(.073) 

1.58 
(.113) 

1.57 
(.187) 

Drugs/Medical 
 

2.36 
(.075) 
 

2.94 
(.107) 

3.40 
(.171) 

Electronics 
 

1.42 
(.071) 
 

1.64 
(.107) 

1.59 
(.179) 

Technology Class 

Mechanical devices 
 

.028 
(.085) 
 

.001 
(.137) 

.081 
(.228) 

Science Center 
 

 .364 
(.044) 
 

.421 
(.055) 

.503 
(.075) 

Application Cohort 
Effects 
 

 Yes Yes Yes 

Obs 
 

 29,876 29,876 29,843 

Log-Likelihood 
 

 -10,882.552 -7,302.910 -3,928.787 
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Figure 9  Application Year Cohort Effects, Logit Regression
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Figure 10  Application Year Cohort Effects, Negative Binomial Regressions
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Table 2  Negative Binomial Regressions on the Determinants of Academic Citation 

 

Variable Category Variable 
 

All citations ISI 
journals 
only 

University-affiliated 
authors 

Universities 
 

1.60 
(.146) 
 

1.90 
(.173) 

2.51 
(.225) 

Nonprofit R&D 
organization 
 

1.09 
(.319) 

1.42 
(.377) 

1.56 
(.495) 

U.S. government 
agency 
 

.623 
(.165) 

.758 
(.206) 

.618 
(.290) 

Foreign assignee 
 

-.527 
(.048) 
 

-.474 
(.063) 

-.579 
(.095) 

Type of Assignee 

Other 
 

-1.089 
(.065) 
 

-1.06 
(.088) 

-.685 
(.125) 

Chemicals 
 

1.94 
(.066) 
 

2.30 
(.092) 

2.45 
(.140) 

Communications/ 
Computers 
 

1.65 
(.074) 

1.42 
(.105) 

1.34 
(.161) 

Drugs/Medical 
 

2.90 
(.078) 
 

3.46 
(.104) 

3.97 
(.151) 

Electronics 
 

1.42 
(.069) 
 

1.61 
(.097) 

1.41 
(.150) 

Technology Class 

Mechanical devices 
 

.020 
(.075) 
 

-.041 
(.113) 

-.403 
(.194) 

Science Center 
 

 .436 
(.050) 
 

.492 
(.064) 

.649 
(.091) 

Application Cohort 
Effects 
 

 Yes Yes Yes 

Obs 
 

 29,876 29,876 29,876 

Log-Likelihood 
 

 -20,695.575 -12,510.80 -6,641.674 
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Table 3   Truncated Negative Binomial Regressions on Citing Patents 

 

Variable Category Variable 
 

All citations ISI 
journals 
only 

University-affiliated 
authors 

Universities 
 

.653 
(.095) 
 

.837 
(.121) 

1.11 
(.173) 

Nonprofit R&D 
organization 
 

.592 
(.234) 

.919 
(.300) 

.774 
(.442) 

U.S. government 
agency 
 

-.066 
(.161) 

-.122 
(.209) 

.353 
(.393) 

Foreign assignee 
 

.584 
(.366) 
 

.960 
(.478) 

1.41 
(.752) 

Type of Assignee 

Other 
 

.176 
(.137) 
 

.150 
(.177) 

.185 
(.260) 

Chemicals 
 

.471 
(.167) 
 

.782 
(.217) 

1.07 
(.358) 

Communications/ 
Computers 
 

.024 
(.180) 

-.155 
(.236) 

.047 
(.390) 

Drugs/Medical 
 

.711 
(.167) 
 

1.21 
(.217) 

1.71 
(.354) 

Electronics 
 

.018 
(.176) 
 

.274 
(.228) 

.024 
(.376) 

Technology Class 

Mechanical devices 
 

-.123 
(.222) 
 

-.142 
(.292) 

-.871 
(.507) 

Ave_Dist 
 

 .249 
(.204) 
 

.412 
(.274) 

.492 
(.474) 

Citations to Patents 
 
 

 .016 
(.003) 

.009 
(.003) 

.001 
(.005) 

Application Cohort 
Effects 
 

 Yes Yes Yes 

Log-Likelihood 
 

 -3,240.90 -2,573.40 -1,645.36 
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Table 4  Results on Quality Differentials 
 
 
Variable 
 

Coefficient Std. Err. Implied Difference 

Claims 
 

2.25 .220 15.1% 

Forward 
Citations 
 

.581 .101 5.5% 

Generality 
 

.029 .008 7.5% 

 
Table 1 reports the regression coefficient on a dummy variable identifying patents that 
cite scientific research.  Regressions control for technological field and application year 
effects.  The measures of patent quality in the table are used as the dependent variable in 
the regression, as in Henderson, Jaffe, and Trajtenberg, 1998. 
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Table 5  Results of an Academic Production Function 
 
 
Variables Total publications Publications 

weighted by 
academic citations 

Publications 
weighted by patent 
citations 

Log(total R&D stock)     .174 
   (.022) 
 

  .136 
 (.023) 

  .049 
 (.024) 

Log(post-docs)    .148 
  (.021) 
 

  .158 
 (.026) 

  .061 
 (.033) 

Log(grad enrollment)    .120 
  (.034) 
 

  .126 
 (.042) 

  .217 
 (.057) 

Log (real avg salary)   .433 
 (.144) 
 

 -.991 
 (.182) 

   .432 
  (.827) 

Constant   0.76 
 (.589) 
 

  8.41 
 (.757) 

  -3.77 
  (3.12) 

Field Effects  Yes 
 

 Yes  Yes 

Institution Effects  Yes 
 

 Yes  Yes 

Results of column three include year fixed effects. 
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Table 6 Campus and Field Dummy Variables 
 
 
Variable Coefficient Standard Error 
Stanford 
 

.595 .313 

Berkeley 
 

.506 .222 

Davis 
 

.577 .144 

Irvine 
 

.169 .137 

UCLA 
 

.257 .181 

UCSD 
 

.368 .174 

UCSF 
 

.396 .261 

UCSB 
 

.501 .136 

Riverside 
 

.294 .134 

Biology 
 

.303 .152 

Biomedical Research 
 

3.95 .168 

Chemistry 
 

1.40 .138 

Geoscience 
 

.112 .108 

Engineering/Technology 
 

1.18 .145 

Physics 
 

1.35 .114 

Psychology 
 

.033 .108 

The reference campus is UC-Santa Cruz.  The reference field is “mathematics/statistics.”  
The coefficients in this table are obtained from the regression of Table 3, column 3.
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Table 7     ANOVA of the Variance in Outcomes 
 
 
 Root MSE=.8499 R-squared=.7165  
      
Source Partial SS df MS F Prob>F 
Model 
 

1241.17 16 77.57 107.39 0.00 

Field 1019.60 7 145.66 201.65 0.00 
Institution 
 

86.05 9 9.56 13.24 0.00 

Residual 491.19 680 .722   
Total 1732.36 696 2.489   
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