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We study the economic sources of stock–bond return comovements and their time variation
using a dynamic factor model. We identify the economic factors employing a semistruc-
tural regime-switching model for state variables such as interest rates, inflation, the output
gap, and cash flow growth. We also view risk aversion, uncertainty about inflation and
output, and liquidity proxies as additional potential factors. We find that macroeconomic
fundamentals contribute little to explaining stock and bond return correlations but that
other factors, especially liquidity proxies, play a more important role. The macro factors
are still important in fitting bond return volatility, whereas the “variance premium” is criti-
cal in explaining stock return volatility. However, the factor model primarily fails in fitting
covariances. (JEL G11, G12, G14, E43, E44)

Stock and bond returns in the United States display an average correlation
of about 19% during the post-1968 period. Shiller and Beltratti (1992) un-
derestimate the empirical correlation using a present value with constant dis-
count rates, whereas Bekaert, Engstrom, and Grenadier (2005) overestimate it
in a consumption-based asset pricing model with stochastic risk aversion. Yet,
these models generate realistically positive correlations using economic state
variables.

Figure 1 documents a more puzzling empirical phenomenon: the stock–bond
return correlation displays very substantial time variation. The figure graphs
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realized quarterly correlations measured using daily excess returns and a data-
implied low-frequency correlation based on the bivariate DCC-MIDAS model
of Colacito, Engle, and Ghysels (2009). We defer technical details about this
statistical model to Appendix A but come back to it below as it will serve as
an empirical benchmark for our study. Note that, during the mid-1990s, the
stock–bond correlation was as high as 60%, to drop to levels as low as −60%
by the early 2000s. There is a growing literature documenting this time varia-
tion using sophisticated statistical models (see also Guidolin and Timmermann
2006) but much less work trying to disentangle its economic sources. In par-
ticular, the negative stock–bond return correlations observed since 1997 are
mostly ascribed to a “flight-to-safety” phenomenon (e.g., Connolly, Stivers,
and Sun 2005), where increased stock market uncertainty induces investors to
flee stocks in favor of bonds. The large negative spikes in realized correlations
at the end of 1997 and the end of 1998 are both indeed associated with steep
decreases in stock market values, in October 1997, after a global economic
crisis scare, and in 1998, in the wake of the Russian crisis and the collapse of
LTCM. However, the 2002–2003 negative correlations coincide with a defla-
tion scare, where bad real economic prospects drove stock market values lower,
while low inflation expectations drove up bond market values. In line with this
intuition, Campbell, Sunderam, and Viceira (2009) recently propose a pricing
model for stock and bond returns and assign a latent variable to capture the
covariance between nominal variables and the real economy, which, in turn,
helps to produce negative comovements between bond and stock returns.

This article asks whether a dynamic factor model in which stock and
bond returns depend on a number of economic state variables can explain
the average stock–bond return correlation and its variation over time. Our
approach has a number of distinct features. First, we cast a wide net in
terms of state variables. Our economic state variables do not only include
interest rates, inflation, the output gap, and cash flow growth but also a
“fundamental” risk aversion measure derived from consumption growth data
based on Campbell and Cochrane’s (1999) model and macroeconomic
uncertainty measures derived from survey data on inflation and GDP growth
expectations. The latter variables may reflect true economic uncertainty, as
in David and Veronesi (2008), or heteroscedasticity, as in Bansal and Yaron
(2004) and Bekaert, Engstrom, and Xing (2009). In addition, we consider
liquidity proxies and the variance premium, a risk-premium proxy represent-
ing the difference between the (square of the) VIX (the option-based “risk-
neutral” expected conditional variance) and the conditional variance of future
stock prices (e.g., Carr and Wu 2009).

Second, while we have estimated simple linear state variable models with
various forms of heteroscedasticity, we focus our discussion on a state variable
model that imposes structural restrictions inspired by recent standard New-
Keynesian models and that incorporates regime-switching behavior. Both fea-
tures improve the fit considerably. We use a regime-switching model to ac-
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Figure 1
Realized and Conditional MIDAS Stock–Bond Return Correlation
This figure graphs realized quarterly correlations measured using daily returns, and the data-implied conditional
correlation based on the bivariate DCC-MIDAS model of Colacito, Engle, and Ghysels (2009). See Appendix A
for the technical details about this model.

commodate changes in monetary policy and to model heteroscedasticity in the
shocks. As we will demonstrate, heteroscedasticity is a key driver of the time
variation in stock–bond return correlations. Moreover, macrovariables have
witnessed important volatility changes over the sample period. For example,
the lower variability of inflation and output growth observed since the mid-to
late 1980s, the so-called Great Moderation, could conceivably lead to lower
correlations between stock and bond returns. Whether its timing actually helps
matching the time variation in the stock–bond return correlations remains to
be seen; it almost surely cannot explain the negative correlations at the end of
the 1990s.

Third, given our model structure, we decompose the performance of the
factor model in contributions of the various factors. This should provide use-
ful input to future theoretical modeling of stock–bond return comovements.
Moreover, we examine how well the model does with respect to each of the
correlation components: covariances and stock and bond return volatilities. We
hereby also add to the literature that examines the economic sources of stock
and bond return volatility (e.g., Schwert 1989; Campbell and Ammer 1993;
Engle, Ghysels, and Sohn 2008).

One final point is of note. Our analysis is mostly at the quarterly frequency.
This is the frequency at which data on the economic state variables used in
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the dynamic factor models are available. It may also be the highest frequency
at which a fundamentals-based model is expected to have explanatory power.
While we do characterize the variation in stock–bond return correlations using
daily return data to calculate ex post quarterly correlations,1 our main bench-
mark is the long-run component of the Colacito, Engle, and Ghysels (2009)
model. This flexible empirical model exploits the richness of daily data to es-
timate quarterly “low-frequency” correlations, directly comparable to the im-
plied correlations from our factor model.

The remainder of this article is organized as follows. Section 1 describes
the factor model and develops the state variable model used to identify the
economic factors. Section 2 details the estimation procedure and the model se-
lection. Section 3 analyzes the fit of the factor model for correlation dynamics,
whereas Section 4 decomposes the correlations into covariances and stock and
bond return volatilities. We find that macroeconomic fundamentals contribute
little to explaining stock and bond return correlations but that other factors,
especially liquidity proxies, play a more important role. The macro factors are
still important in fitting bond return volatility, whereas the “variance premium”
is critical in explaining stock return volatility. However, the factor model pri-
marily fails in fitting covariances. A final section concludes.

1. Dynamic Stock and Bond Return Factor Model

In this section, we present the general factor model linking stock and bond
returns to structural factors. Section 1.1 considers the general dynamic factor
model. Section 1.2 discusses the selection of the state variables and the model-
ing of their dynamics, which leads to the identification of the factors. Finally,
Section 1.3 discusses the modeling of the factor exposures.

1.1 The dynamic factor model
Let re,t denote the excess equity return and rb,t the excess bond return. We
assume the following dynamics for rt = (re,t , rb,t )

′:

rt = Et−1(rt ) + β ′
t Ft + εt , (1)

where Et−1(rt ) represents the expected excess return vector, βt = (βe,t , βb,t )

is an n × 2 matrix of respectively stock and bond return factor loadings, and Ft

is an n × 1 vector containing the structural factors. The vector εt = (εe,t , εb,t )
′

represents return shocks not explained by the economic factors. For now, we

1 Autocorrelation in daily stock and bond excess returns potentially biases our estimates of quarterly stock and
bond return volatilities and correlations. While we do find a moderate degree of autocorrelation in both stock
and bond returns, correcting for this bias [using four Newey and West (1987) lags] does not meaningfully alter
stock–bond return volatilities and correlations.
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model expected returns as constants but we investigate the robustness of our
results to this assumption in Section 3.3.

The time variation in the betas βe,t and βb,t is generally modeled as

βt = β (It−1, St ) , (2)

where It is the information set generated by a set of information variables at
time t , and St is a discrete variable following a Markov chain, which we use to
model sudden regime changes, as discussed below. The factors, Ft , represent
innovations to a set of state variables, Xt , and are distributed as

Ft ∼ N (O,�t ) , (3)

where �t is an n × n diagonal matrix containing the conditional variances
of the structural factors, which are potentially time varying. In particular, �t

generally may also depend on St . The off-diagonal elements are zero as we
enforce structural factors to be orthogonal. Under the null of the model, the
covariance matrix of the stock and bond return residuals, εt , is homoscedastic
and diagonal. We denote the residual variances by he and hb, respectively.

The factor model implies that the comovement between stock and bond re-
turns follows directly from their joint exposure to the same economic factors.
Let R be the set of values St can take on, and st represent realizations of St .

Then, the conditional covariance can be written as:

covt−1
(
re,t , rb,t

) =
∑
st ∈R

β ′
e (It−1, st )� ( st | It−1) βb (It−1, st ) P

[
st | It−1

]
.

(4)
When the betas do not depend on the regime, it simplifies to

covt−1
(
re,t , rb,t

) = β ′
e,t−1�t−1βb,t−1, (5)

where �t−1 is conditioned on It−1. By dividing the covariance by the product

of the stock and bond return volatilities, that is,
√

β ′
e,t−1�t−1βe,t−1 + he and√

β ′
b,t−1�t−1βb,t−1 + hb, we can decompose the model-implied conditional

correlation between stock and bond returns, ρt−1
(
re,t , rb,t

)
, as follows:

ρt−1
(
re,t , rb,t

) = β1
e,t−1β

1
b,t−1vart−1(F1

t )√
β ′

e,t−1�t−1βe,t−1 + he

√
β ′

b,t−1�t−1βb,t−1 + hb

+ ...

... + βn
e,t−1β

n
b,t−1vart−1(Fn

t )√
β ′

e,t−1�t−1βe,t−1 + he

√
β ′

b,t−1�t−1βb,t−1 + hb

. (6)

This decomposition clearly shows the standard effects of a linear factor model.
First, factors with higher variances have the largest effect on comovement.
Second, when the variance of a factor increases, its contribution to the co-
movement can become arbitrarily large. Third, if bond and stock betas have
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the same sign, increased factor variances lead to increased comovement and
vice versa. Consequently, to generate the substantial variation in comovements
documented in figure 1 in the context of this model, the volatility of the funda-
mentals must display substantial time variation. Moreover, to generate negative
covariances, it must be true that there is at least one factor to which bonds and
stocks have opposite exposures, and this factor must at times have substantial
relative variance. When betas vary through time, they can also generate sign
changes over time. When they are constant, however, the sole driver of time
variation in the covariance between stock and bond returns is the heteroscedas-
ticity in the structural factors. The betas determine the sign of the covariance.
We now motivate which factors should be included in the factor model from
the perspective of rational pricing models.

1.2 State variable model
1.2.1 Selection of state variables. In standard rational pricing models, the
fundamental factors driving stock and bond returns either affect cash flows or
discount rates. We start out with describing a standard set of macro factors,
then describe how we measure potential risk-premium variation. Finally, the
literatures on bond (Amihud and Mendelson 1991; Kamara 1994) and equity
pricing (Amihud 2002) have increasingly stressed the importance of liquidity
effects; so we consider two liquidity-related state variables as well.

Standard macro factors. Our macro factors include the standard variables
featured in macroeconomic models: the output gap,2 inflation, and the short
rate. All these variables may have both cash flow and discount rate effects,
so their effect on bond and stock returns is not always easy to predict. Be-
cause bonds have fixed nominal cash flows, inflation is an obvious state vari-
able that may generate different exposures between bond and stock returns.
Analogously, if the output gap is highly correlated with the evolution of real
dividends, it should affect stock but not bond returns.

However, both inflation and the output gap can also affect the real term struc-
ture of interest rates and therefore affect both bond and equity prices. Because
equities represent a claim on real assets, the discount rate on stocks should not
depend on nominal factors such as expected inflation. Yet, a recurring find-
ing is that stocks seem to be very poor hedges against inflation and their re-
turns correlate negatively with inflation shocks and expected inflation (e.g.,
Fama and Schwert 1977). One interpretation of this finding is that it represents
money illusion (Campbell and Vuolteenaho 2004), another that it represents
the correlation of inflation with rational risk-premiums (Bekaert and Engstrom
2010). In this article, we leave the sign of the exposures unconstrained, giving

2 The output gap uses a quadratic trend to measure potential output (see Appendix B for details).

2379

 at C
olum

bia U
niversity Libraries on A

ugust 13, 2010 
http://rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org


The Review of Financial Studies / v 23 n 6 2010

the model maximal power to explain the data. In standard models, the (ex-
pected) output gap may reflect information about real rates as well and hence
may induce positive correlation between stock and bond returns.

As is well known, the level of interest rates drives most of the variation in
bond returns, and we include a short-term interest rate as a factor in our model.
For long-term bonds, the relevant state variable is the long-term interest rate,
which can in turn be decomposed into a short-term real rate, a term premium,
expected inflation, and an inflation risk-premium. Increases in all these com-
ponents unambiguously decrease bond returns. To span the term and inflation
premium components, we likely need more information than is present in our
macro factors, and we therefore also use a number of direct “economic” risk-
premium proxies.

Risk-premium factors. We use measures of economic uncertainty and risk
aversion to capture stock and bond risk-premiums. For instance, Bekaert, En-
gstrom, and Grenadier (2005) show that stochastic risk aversion plays an im-
portant role in explaining positive stock–bond return correlations. The effects
of risk aversion are, however, quite complex. In the models of Bekaert, En-
gstrom, and Grenadier (2005) and Wachter (2006), increases in risk aversion
unambiguously increase equity and bond premiums, but their effect on inter-
est rates is actually ambiguous. A rise in risk aversion may increase the real
interest rate through a consumption smoothing effect or decrease it through a
precautionary savings effect. Bansal and Yaron (2004) and Bekaert, Engstrom,
and Xing (2009) stress economic uncertainty as a channel that may affect risk-
premiums and equity valuation. The effect of increases in uncertainty on eq-
uity valuation, while often thought to be negative, is actually ambiguous as
increased uncertainty may lower real interest rates through precautionary sav-
ings effects. Hence, an increase in uncertainty may cause bonds and stocks to
move in opposite directions depending on the relative strengths of the term
structure and risk-premium effects.

An alternative motivation for the use of uncertainty measures follows from
the learning models of Veronesi (1999) and David and Veronesi (2008). They
show that higher uncertainty about future economic state variables makes in-
vestors’ expectations react more swiftly to news, affecting both variances and
covariances of asset returns.

To capture economic uncertainty, we use the Survey of Professional Fore-
casters (SPF) to create measures of inflation and output gap uncertainty. We use
two measures of risk aversion. Our first measure is from Bekaert and Engstrom
(2010): They create an empirical proxy for risk aversion, based on the exter-
nal habit specification of Campbell and Cochrane (1999). This “fundamental”
risk aversion measure is generated solely by past consumption growth data
and behaves countercyclically. It is, however, unlikely that this measure fully
captures equity risk-premium variation. Recent work by Bollerslev, Tauchen,
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and Zhou (2009) shows that the variance premium, defined earlier, predicts
equity returns. Drechsler and Yaron (2009) extend the model by Bansal and
Yaron (2004) to allow for additional nonlinearities in the consumption growth
technology and show that this premium depends on risk aversion and the non-
Gaussian components of the model. We use an estimate of this risk-premium
as a factor, which helps us to interpret an often-cited non-fundamental expla-
nation for the occasionally observed negative stock–bond return correlations.
Connolly, Stivers, and Sun (2005) use the VIX-implied volatility measure as
a proxy for stock market uncertainty and show that stock and bond return
comovements are negatively and significantly related to stock market uncer-
tainty. They interpret this finding as reflecting “flight to safety,” where investors
switch from the risky asset, stocks, to a safe haven, bonds, in times of increased
stock market uncertainty, inducing corresponding price changes, and thus im-
plying a negative correlation between stock and bond returns. Because the vari-
ance premium depends positively on VIX movements but depends negatively
on the actual expected stock market volatility, we can determine whether this
“flight-to-safety” effect is due to the “risk-premium component” of the VIX or
rather reflects general stock market uncertainty.

Liquidity factors. We focus on transaction cost-based measures of illiquid-
ity. Liquidity can then affect the pricing of bonds and stocks in two main ways.
First, liquidity may affect the betas, as economic shocks may not be trans-
mitted quickly to observed returns in illiquid markets. This is a factor expo-
sure effect. Second, liquidity may be a priced factor, and shocks that improve
liquidity should increase returns. The impact of liquidity on stock and bond
return comovements then obviously depends on how liquidity shocks comove
across markets. For example, the monetary policy stance can affect liquidity in
both markets by altering the terms of margin borrowing and by alleviating the
borrowing constraints of dealers or by simply encouraging trading activity.
Liquidity effects may also correlate with the “flight-to-safety” phenomenon.
Crisis periods may drive investors and traders from less liquid stocks into
highly liquid Treasury bonds, and the resulting price-pressure effects may
induce negative stock–bond return correlations. Some of these effects may
persist at the quarterly frequency. Existing studies of the commonality in stock
and bond liquidity (Chordia, Sarkar, and Subrahmanyam 2005; Goyenko 2006)
are somewhat inconclusive as to which effect dominates. It is therefore impor-
tant to let illiquidity shocks enter the model relatively unconstrained.

Our measure of bond market illiquidity is a monthly average of quoted bid-
ask spreads of off-the-run bonds across all maturities, taken from Goyenko
(2006). Our measure of equity market illiquidity uses the “zero return” con-
cept developed in Lesmond, Ogden, and Trzcinka (1999) and is taken from
Bekaert, Harvey, and Lundblad (2007). It is the capitalization-based proportion
of zero daily returns across all firms, aggregated over the month. This mea-
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sure has a positive and high correlation with more standard measures, such as
Hasbrouck’s (2006) effective costs and Amihud’s (2002) price impact mea-
sures. Because liquidity has improved over time, both illiquidity measures
show near nonstationary behavior. For stocks, we first correct for the struc-
tural breaks induced by changes in tick size3 in 1997 and 2001 by using the
residuals from a regression on dummies for these break dates. Then, for both
stock and bond illiquidity, we subtract a moving average of the levels of the
previous four months from the current measures.

Eventually, we retain the following economic state variables: the output
gap (yt ), inflation (πt ), risk aversion (qt ), nominal interest rate (it ), cash flow
growth (cgt ), output uncertainty (ydt ), inflation uncertainty (πdt ), stock mar-
ket illiquidity (sliqt ), bond market illiquidity (bliqt ), and the variance pre-
mium (vpt ), for a total of ten state variables, which we collect in a vector Xt .

Appendix B provides full details about the measurement and construction of
those variables.

1.2.2 General state variable dynamics. To identify the structural factors,
Ft , we must specify the dynamics of the state variables, Xt . The general model
has the following form:

Xt = ψ (St ) + �1 (St ) Et (Xt+1) + �2 (St ) Xt−1 + 	 (St ) Ft , (7)

where ψ is a 10 × 1 vector of drifts, and �2 represents the usual feedback
matrix. We also allow the dynamics of the factors to depend on expectations
of future values, as is true in many standard macromodels through �1. 	 is a
10 × 10 matrix of structural parameters, capturing the contemporaneous cor-
relation between the fundamental state variables. Finally, all coefficient matri-
ces generally depend on St , which represents a set of latent regime variables,
modeled in the Hamilton (1989) tradition. The regime variables can capture
structural changes in the macroeconomic relations, as induced, for example,
by changes in monetary policy. Monetary economists debate the effects of het-
eroscedasticity in the fundamental shocks versus shifts in monetary policy on
the identification of economic and monetary policy shocks. By letting the con-
ditional variance of Ft also depend on regime variables, we accommodate both
interpretations of the data (see also below).

Without further restrictions, the model in Equation (7) is surely overparam-
eterized, but it nests a large number of reasonable dynamic models. For ex-
ample, assume �1 = 0 and eliminate the regime dependence in ψ , �2, and 	,

and we obtain a simple first-order VAR with heteroscedastic shocks. We esti-
mated several variants of such models, using a nonstructural identification of
the shocks in Equation (7) by imposing a Choleski decomposition. Such mod-
els were easily outperformed by a semistructural model, nested in Equation (7).

3 In 1997, quoted tick sizes decreased from eights to sixteens, and in 2001 a system of decimalization was
introduced.
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For this model, we split the state variables into two sets: “pure macrovari-
ables,” Xt,ma = [yt , πt , qt , it ]′ (recall that qt is computed from only consump-
tion data), and the other variables, Xt,nma = [cgt , ydt , πdt , sliqt , bliqt , vpt ]′ .
To model Xt,ma , we make use of a New-Keynesian model, which we describe
in the next subsection. To identify the shocks to Xt,nma , we use a simple empir-
ical model that recognizes that these factors may depend on the macrovariables
themselves. For example, Goyenko, Subrahmanyam, and Ukhov (2009) show
that inflation and monetary policy affect bond liquidity and that illiquidity in-
creases in recessions. Specifically, the model is

Xt,nma = ψnma (St ) + φnma Xt−1,nma + 	ma
nma Xt,ma + Ft,nma, (8)

with φnma a diagonal matrix; 	ma
nma a 6 × 4 matrix capturing the contemporane-

ous covariance with the macroeconomic state variables; and Ft,nma the vector
of (uncorrelated) “structural” shocks. With this model structure, the nonmacro
factors may partially inherit autoregressive dynamics from the pure macroe-
conomic variables, and the Ft,nma shocks must be interpreted as being purged
from the pure macro shocks. Finally, note that we allow the drifts to depend
on the regime variable, St . Because inflation and output uncertainty are likely
highly correlated with macroeconomic heteroscedasticity (Giordani and Soder-
lind 2003; Evans and Wachtel 1993), the assumption of heteroscedastic macro
shocks makes this dependence logically necessary. Regime-dependent drifts
may also help model the structural changes (Hasbrouck 2006; Goyenko 2006),
affecting the liquidity in both stock and bond markets.

1.2.3 A structural model for Xt,ma. The structural model for Xt,ma ex-
tends a standard New-Keynesian three-equation model (e.g., Bekaert, Cho, and
Moreno 2010) comprising an IS or demand equation, an aggregate supply (AS)
equation, and a forward-looking monetary policy rule, to accommodate time-
varying risk aversion:

yt = aI S + μEt (yt+1) + (1 − μ) yt−1 + ηqt − φ (it − Et (πt+1)) + F y
t

(9)

πt = aAS + δEt (πt+1) + (1 − δ) πt−1 + λyt + Fπ
t (10)

qt = αq + ρqqt−1 + Fq
t (11)

it = aM P + ρit−1 + (1 − ρ)
[
β(Smp

t )Et (πt+1) + γ (Smp
t )yt

] + Fi
t . (12)

The μ and δ parameters represent the degree of forward-looking behavior
in the IS and AS equations. If they are not equal to one, the model features
endogenous persistence. The φ parameter measures the impact of changes
in real interest rates on output, and λ the effect of output on inflation. They
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are critical parameters in the monetary transmission mechanism, and high and
positive values imply that monetary policy has significant effects on the real
economy and inflation. Because all these parameters arise from micro-founded
models (e.g., representing preference parameters), we assume them to be time
invariant.

The variable qt reflects time-varying risk aversion. We build on the model in
Bekaert, Engstrom, and Grenadier (2005) to append stochastic risk aversion to
the New-Keynesian IS curve (see Appendix C for details). The model nests a
variant of the Campbell and Cochrane (1999) external habit model, and qt rep-
resents the negative of their surplus ratio and thus the local curvature of the util-
ity function. While output shocks and risk aversion are negatively correlated in
the model, η in Equation (9) can nevertheless not be definitively signed. It re-
flects counteracting consumption-smoothing and precautionary savings effects
of risk aversion on interest rates.

The monetary policy rule is the typical forward-looking Taylor rule with
smoothing parameter ρ. However, as in Bikbov and Chernov (2008), we allow
systematic monetary policy to vary with a regime variable. There is substantive
evidence that monetary policy has gone through activist and more accommo-
dating spells (e.g., Cho and Moreno 2006; Boivin 2006). We let Smp

t take on
two values and it follows a standard Markov chain process with constant tran-
sition probabilities.

While it is theoretically possible to obtain the rational expectations solu-
tion of the model in Equations (9)–(12), the model implies highly nonlinear
restrictions on the parameters, further complicated by the presence of regime-
switching in the structural shocks. Bikbov and Chernov (2008) estimate a
slightly simpler version of this model incorporating term structure data and
note that, without these additional data, the identification of the regimes is
rather poor. Our strategy is different. We replace the forward-looking rational
expectations with survey forecast measures for expectations of the output gap
and inflation. Let Xt,sur be a vector containing the median of the individual
survey forecasts for the output gap and expected inflation plus two zeros. Us-
ing these forecasts, we write the model in compact matrix notation as

B11(Smp
t )Xt,ma = α + A11(Smp

t )Xt,sur + B12 Xt−1,ma + Ft,ma,

Ft,ma ∼ N (0, �t ) (13)

where A11, B11, and B12 follow straightforwardly from Equations (7) to (12),
leading to the following reduced form:

Xt,ma = c(Smp
t ) + �1(Smp

t )Xt,sur + �2(Smp
t )Xt−1,ma + 	(Smp

t )Ft,ma (14)

with 	(Smp
t )= B11(Smp

t )−1; c(Smp
t )=	(Smp

t )α; �1(Smp
t )=	(Smp

t )A11(Smp
t );

�2(Smp
t ) = 	(Smp

t )B12. The variable Smp
t switches certain structural parame-

ters in the A11 and B11 matrices. This structural model provides an economic
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interpretation to the contemporaneous relations between the state variables and
a natural identification of the shocks F y

t , Fπ
t , Fq

t , and Fi
t .

The model can be estimated using limited maximum likelihood (we do not
specify the dynamics of the survey forecasts). The use of the survey forecasts
therefore both adds additional information and permits the identification of
the structural parameters with a relatively easy and straightforward estimation
procedure. The quality of the model identification depends to a large extent on
the quality of the survey forecasts. A recent article by Ang, Bekaert, and Wei
(2007) suggests that the median survey forecast of inflation is the best inflation
forecast out of sample, beating time series, Philips curve, and term structure
models.4 The value of surveys is also increasingly recognized in state-of-the-
art term structure models (e.g., D’Amico, Kim, and Wei 2009; Chernov and
Mueller 2009) and monetary policy research.

1.2.4 Identification of Ft. In a simple VAR model, the Ft shocks can be
computed from observations on the Xt variables. However, in our model, the
Ft shocks also depend on St . We follow the typical Hamilton (1989) model,
where agents in the economy observe the regime, but the econometrician does
not. In estimating the state variable model, we hence make inferences about
the realizations of the regime variable St as well. Once these are identified,
we can simply retrieve Ft from the data using Equations (8) and (14). The
identification scheme works well because our estimation typically yields well-
behaved smoothed regime probabilities close to one or zero.

1.2.5 Variance dynamics of factors. The factors Ft are assumed to be
heteroscedastic with variance–covariance matrix �t . Our modeling of �t is
inspired by direct empirical evidence of changing fundamental variances.
Macroeconomists have noted a downward trend in the volatility of output
growth and inflation from 1985 onward (e.g., Stock and Watson 2002;
Blanchard and Simon 2001), a phenomenon known as the Great Moderation.
While some macroeconomists have attributed the Great Moderation to
improved monetary policy (Cogley and Sargent 2005), a possibility already
accommodated in our structural model, Sims and Zha (2005) and Ang,
Bekaert, and Wei (2008) have identified important cyclical changes in the
variance of fundamental shocks. We therefore model �t as a function of
a latent regime variable, St . We allow each shock to have its own regime
variable: St = {Sy

t , Sπ
t , Sq

t , Si
t , Scg

t , Ssliq
t , Sbliq

t , Svp
t }. Shocks to output and

inflation uncertainty share the same regime variable as output and inflation.
To retain tractability, we assume the regime variables to be independent

4 Elliott, Komunjer, and Timmermann (2008) document biases in output and inflation forecasts but argue that this
may be due to the common assumption that forecasters use a symmetric loss function. In an empirical exercise,
they find that only a modest degree of asymmetry is required to overturn rejections of rationality and symmetric
loss.
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Markov chain processes. Each regime variable can take on two values with
the transition probabilities between states assumed constant. In particular, for
each variable j , we have

var(F j
t |St ) = exp

(
α j (S j

t )
)

.

A regime-switching model does not accommodate permanent structural
breaks: at each point in time, there is a probability that the variance may revert
to a higher variability regime. We view such potential reoccurrence of similar
regimes, which may not have been observed for a long time, as plausible.
For example, the 2008–2009 crisis will likely prove the Great Moderation
to be a temporary rather than permanent phenomenon. The computational
and estimation complexities of state-of-the-art models accommodating both
structural changes and regime-switching behavior (Pesaran, Pettenuzzo,
and Timmermann 2006) make them hard to apply in our setting. We did
entertain alternative models in which the factor variances depend on the own
lagged state variables, X j

t−1. However, these models underperform the regime
switching models.

1.3 Time variation in betas
The benchmark model forces the betas to be constant, that is, βe,t = βe,

βb,t = βb. Simple affine pricing models imply that stock and bond return in-
novations are constant beta functions of the innovations in the state variables.
Linearized versions of many present value models for equity pricing (e.g.,
Campbell and Ammer 1993; Bekaert, Engstrom, and Grenadier 2005) imply
a similar constraint on the betas. While there are economic reasons for time
variation in betas, we deliberately limit the complexity of the models we con-
sider, for two reasons. First, time variation in the betas could spuriously pick
up non-fundamental sources of comovement. Second, with ten state variables,
allowing time variation in all betas very quickly leads to parameter prolifera-
tion that the amount of data we have cannot bear. We therefore consider a lim-
ited number of parsimonious models investigating the most likely economic
sources of time variation in the betas. In a first set of models, the betas depend
on instruments measured at time t − 1 (state-dependent betas); in a second set
of models, the betas depend on a subset of the regime variables, St , identified
in the state variable model (regime-switching betas).

1.3.1 State-dependent betas. We consider two different state-dependent
models. In a first model, we select a different economic source for beta varia-
tion for each factor. That is, for state variable i, the beta is modeled as

β i
j,t−1 = β i

j,0 + β i
j,1zi j

t−1, (15)
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where j = e, b and zi j
t−1 is a particular instrument, which we now describe

for each factor. First, in the model of David and Veronesi (2008), widening
the dispersion in beliefs increases the effect of economic shocks on returns.
Our measures of output and inflation uncertainty can be viewed as proxies
for belief dispersion (“uncertainty”) regarding economic growth and inflation
expectations. Hence, we let the sensitivity to output gap, inflation, and cash
flow growth shocks be a function of respectively output, inflation, and cash
flow uncertainty. The latter is proxied by the dispersion in cash flow predic-
tions obtained from the Survey of Professional Forecasters. Second, because
we use a constant maturity bond portfolio, interest rate changes affect the du-
ration of the portfolio and consequently its interest rate sensitivity. As interest
rates increase, the bond portfolio’s lower duration should decrease its sensi-
tivity to interest rate shocks. This line of thought applies to stocks as well,
as stocks are long-duration assets with stochastic cash flows. The duration of
a stock actually depends on its dividend yield. We therefore allow the betas
of stock returns with respect to interest rate shocks to be a function of the
level of the (log) dividend yield (corrected for repurchases), denoted by dyt .
Unfortunately, it is conceivable that behavioral factors may indirectly account
for the resulting time variation in betas if they are correlated with valuation
effects reflected in dividend yields. Third, we let the exposure to risk aver-
sion and variance premium shocks be a function of (lagged) risk aversion and
the lagged variance premium themselves. This permits nonlinear effects in the
relationship between risk aversion changes and stock and bond returns. The
effects of shocks to risk aversion may be mitigated at very high risk aversion
levels or they may be amplified if the economy is in or near a crisis. Finally,
we also allow for level effects in the liquidity betas: a liquidity shock may af-
fect returns less rapidly in illiquid markets. Hence, we allow the stock (bond)
liquidity beta to be a function of the lagged stock (bond) liquidity level.

In two alternative state-dependent models, all betas depend on either the
fundamental risk aversion measure or the variance risk-premium. Here, the
variance risk-premium is viewed as a market-based indicator of risk aversion.
In any pricing model, the price effects of economic shocks may depend on the
discount rate. For example, high discount rates may decrease the magnitude of
cash flow effects. Alternatively, Veronesi (1999) demonstrates how the degree
of risk aversion exacerbates the nonlinear effects of uncertainty on asset prices
in the context of a learning model. If risk aversion varies substantially through
time, such effects may be important.

1.3.2 Regime-switching betas. An alternative dynamic model for betas is
a regime-switching beta specification. While there are many reasons to expect
betas to show regime-switching behavior, we preserve the structural interpre-
tation of the implied stock–bond return correlation dynamics by using regime
variables exogenously extracted from the state variables, without using stock
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and bond returns. First, with the Lucas critique in mind, one model consid-
ers betas to be a function of Smp

t , the monetary policy regime. Second, both
theoretical work (David and Veronesi 2008) and empirical work (Boyd, Hu,
and Jagannathan 2005; Andersen et al. 2007) suggest that betas may depend
on the business cycle. Because many of our state variables have strong cor-
relations with the business cycle, we let each factor’s beta depend on its own
regime variable to allow this possibility.5 Finally, as discussed before, when
a market is very illiquid, shocks may take time to filter through into prices.
Consequently, we consider a model where all betas depend on the two liquid-
ity regime variables. While such liquidity effects may indeed reflect trading
costs, it is equally plausible that they reflect risk-premium variation, given our
quarterly data frequency.

2. Estimation and Model Selection

2.1 Model estimation
We follow a two-stage procedure to estimate the bivariate model presented in
Equation (1). In a first stage, we estimate the state variable model, then we
estimate the factor model conditional on the economic factor shocks identi-
fied in the first step. From an econometric point of view, it would be more
efficient to jointly estimate the factor and state variable models. However, an
important risk of a one-step estimation procedure is that the parameters of the
state variable model are estimated to help accommodate the conditional stock–
bond return correlation, which would make the economic interpretation of the
factors problematic.

We estimate the structural model using limited-information maximum like-
lihood because we replace unobservable conditional expected values by ob-
servable measures based on survey forecasts. We use quarterly data from 1968
to 2007, which we describe in detail in Appendix B. The state variable model
features ten state variables and nine regime variables (which must be integrated
out of the likelihood function), leading to a model with eighty-two parameters.
Therefore, we consider “pared-down” systems in addition to the full model.
We retain all parameters with t-statistics over 1, computed with White (1980)
heteroscedasticity-consistent standard errors, and re-estimate the constrained
system.6 Fortunately, the retained parameters from the constrained estimation
are remarkably similar to their unconstrained estimation counterparts. For the
regime-dependent intercepts in Xt,nma , we use a Wald test for equality across
regimes instead. If we fail to reject at the 24% level (corresponding roughly

5 For completeness, we estimated a model in which betas are a function of NBER dummies, but it performs less
well than the regime-switching beta model described here.

6 Given that the power of our tests may be weak, the “|t-stat| > 1” rule avoids eliminating variables that may
still be economically important. In addition, we always impose the economic restriction that φ must be positive,
setting its value at 0.1.
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to a t-stat = 1 criterion), we continue to use a regime invariant drift. With the
state variable model estimated, we identify the regimes and thus the factors at
each point in time; finally, we estimate the factor model in Equation (1) using
simple regression analysis.

2.2 State variable model selection and fit
An adequate state variable model must satisfy a number of requirements. First,
the model should accurately describe the dynamics of the state variables them-
selves. To this end, we perform a battery of specification tests on the residuals
of the state variable model. Appendix D describes these tests in detail. For
each equation, we test the hypotheses of a zero mean and zero serial correla-
tion (two lags) of the residuals, the unit mean and zero serial correlation (two
lags) for the squared residuals, and the appropriate skewness and kurtosis. In
performing these tests, we recognize that the test statistics may be biased in
small samples, especially if the data-generating process is as nonlinear as we
believe it to be. Therefore, we use critical values from a small Monte Carlo
analysis, which is also described in Appendix D. For both the mean and the
variance, we do the tests on the expected value and the serial correlation both
separately and jointly. Hence, there is a total of eighty ([3 + 3 + 2] × 10) such
tests. The model described above features only five rejections, two at the 5%
level and three at the 1% level. Table 1, panel A, reports the Monte Carlo p-
values of the joint test across means, variances, and higher moments for each
variable. We reject the model only for inflation uncertainty, probably because
of some remaining serial correlation, at the 5% level. The second line reports
Monte Carlo p-values for a covariance test. We use the state variable model
to uncover the factor shocks, and here we test for each shock as to whether its
joint covariances with all other factor shocks are indeed zero. We reject the hy-
pothesis of zero covariances at the 5% level only for the output gap and quite
marginally so. All in all, given the complexity of the model at hand, we view
its performance as a success.

Second, the model should also identify factor shocks that help explain the
stock and bond return covariance and volatility dynamics. We report two sets
of results for the constant beta model. In Panel B of table 1, we report a series
of specification tests; in Panel C, we report a number of model diagnostics.
The specification tests are applied to the estimated cross-product of the stock
and bond residuals from Equation (1), ẑt = ε̂e,t ε̂b,t , and to the standardized
stock and bond residuals individually, ẑt = ε̂e(b),t/

√
he(b), where he(b) is the

constant variance of the residuals of the factor model for respectively stocks
and bonds. Under the null hypothesis that the model is correctly specified and
captures stock–bond return dynamics, we have

E
[
ẑt

] = 0 (16)

E
[
ẑt ẑt−k

] = 0, for k ≥ 1. (17)
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Table 1
Specification tests for state-variable and factor model

Panel A: Specification Tests State Variable Model

yt πt qt it cgt ydt πdt sliqt bliqt vpt

Univariate Test 0.100 0.499 0.762 0.392 0.094 0.088 0.023 0.984 0.794 0.123

Covariance Test 0.045 0.183 0.301 0.243 0.073 0.063 0.343 0.419 0.489 0.120

Panel B: Specification Tests Factor Model (Constant Beta)

Mean Zero Mean AC Mean Joint Variance Asym

Covariance 0.076 0.236 0.148
Stocks 0.676 0.446 0.936 0.271 0.373
Bonds 0.316 0.483 0.675 0.388 0.992

Panel C: Model Selection Statistics

Distance Measures Corr Measures Regression Real Regression MD Wald Test

Model MD Real MD Real Const Slope Const Slope Real MD

Benchmark 0.186 0.243 0.394 0.389 −0.044 1.659 0.018 1.322 2.265 1.547
(0.099) (0.508) (0.092) (0.477) (0.132) (0.214)
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Table 1
(Continued)

Panel C: Model Selection Statistics

yt πt qt it cgt ydt πdt sliqt bliqt vpt

1. Results 1000 Simulations
Percentile 5% 0.176 0.237 0.275 0.248 −0.117 1.039 −0.065 0.864 - -
Percentile 95% 0.239 0.276 0.439 0.449 0.118 2.517 0.152 2.052 - -

2. Nonstructural State Variable Models
Homoscedastic 0.265* 0.298* - - - - - - - -
State-Dependent 0.245* 0.287* 0.160* 0.099* 0.164 0.594 0.170 0.754 7.815 11.606

(0.061) (0.608) (0.053) (0.477) (0.005) (0.001)
Regime-Switching 0.228 0.271 0.225* 0.258 0.152 0.702 0.179 0.483 8.714 15.448

(0.051) (0.318) (0.046) (0.262) (0.003) (0.000)
3. Alternative Structural State Variable Models

Homoscedastic 0.228 0.272 - - - - - - - -
State-Dependent 0.209 0.256 0.339 0.296 0.082 1.194 0.107 1.077 2.915 4.755

(0.089) (0.700) (0.076) (0.579) (0.088) (0.029)
4. MIDAS versus Realized Correlation

- 0.174 - 0.688 0.012 0.874 - - 1.789
(0.024) (0.074) (0.181)

Panel A reports the specification tests for the state variable model. The first line shows the Monte Carlo p-values from a joint test on the standardized residuals of a zero mean, unit
variance, no second-order autocorrelation in first and second moments, zero skewness, and zero excess kurtosis. The second line reports Monte Carlo p-values for a test of zero covariances
of the factor shocks of one state variable with the factor shocks of all other state variables. Panel B reports specification tests for the factor model with constant factor exposures. We
test for a zero mean and serial correlation (four lags) in the level, both individually and jointly. The variance column performs the serial correlation test on squared residuals. “Asym” is
a joint test for the sign bias and the negative and positive sign biases of Engle and Ng (1993). The first line applies tests to the estimated cross-product of the stock and bond residuals
from our benchmark factor model; the second and third line to the standardized residuals of the stock and bond equations, respectively. Panel C presents the model selection tests for the
constant factor model in which factors are generated using three different nonstructural and semistructural models, respectively with homoscedastic, state-dependent, and regime-switching
variances. The semistructural state variable model with regime-switching variances is our benchmark case. The distance measures compute the mean absolute deviation of the model-implied
correlations from respectively the MIDAS conditional correlations (column 1) and the realized correlations (column 2). The correlation measures compute the unconditional correlation
between our model-implied conditional correlations and respectively the MIDAS conditional correlations (column 3) and the realized correlations (column 4). We also report the constant
and slope coefficient of a regression of respectively the realized correlations and the MIDAS correlations on our model-implied conditional correlations. Estimation results are shown
respectively in columns 5 and 6 (for realized correlations), and columns 7 and 8 (for MIDAS correlations). Standard errors for the regression coefficients are reported in parentheses. The
errors accommodate potential serial correlation in the residuals using two Newey–West lags. Columns 9 and 10 report a Wald test of the joint hypothesis of a zero intercept and unit slope
for the two regressions. Panel C also shows the results of a Monte Carlo simulation applied to the factor model with constant factor exposures, as explained in Section 2.2. Distance and
correlation measures that fall outside the 90% confidence interval are denoted by a *. The bottom line of the table shows the model selection tests for the MIDAS correlations relative to the
realized correlations as an additional benchmark.
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We conduct the zero mean test and the serial correlation test (four lags) both in-
dividually and jointly within a GMM framework. The test statistics follow χ2

distributions with respectively 1, 4, and 5 degrees of freedom. For the cross-
product of the residuals, the zero mean test only rejects at the 10% level, and
the serial correlation test does not reject at any level. A joint test of Equa-
tions (16) and (17) fails to reject as well. Hence, the model appears to fit both
the average covariance level between bond and stock returns and some first-
order covariance dynamics reasonably well. The analogous tests for standard-
ized bond and stock residuals do not reject at any significance level. For the
stock and bond return residuals, we perform two additional tests: a test for se-
rial correlation on squared standardized residuals (the variance test), using four
lags again, and Engle and Ng’s (1993) “sign bias” tests. The latter tests whether
the model captures volatility asymmetry: negative shocks raise volatility more
than positive shocks (Campbell and Hentschel 1992; Bekaert and Wu 2000).
The actual tests check the validity of the orthogonality conditions (a), (b), and
(c):

(a) E
[(

ẑ2
t − 1

)
1
{
ẑt−1 < 0

}] = 0

(b) E
[(

ẑ2
t − 1

)
1
{
ẑt−1 < 0

}
ẑt−1

] = 0

(c) E
[(

ẑ2
t − 1

)
1
{
ẑt−1 ≥ 0

}
ẑt−1

] = 0,

where 1 represents an indicator function. These conditions correspond to re-
spectively the Sign Bias, the Negative Sign Bias, and the Positive Sign Bias
tests of Engle and Ng (1993). The sign bias test examines whether or not the
model captures the differential effect of negative and positive return shocks on
volatility. The negative (positive) sign bias test focuses on the differential effect
that large and small negative (positive) returns shocks have on volatility. The
joint test, denoted by “Asym,” is distributed as χ2 with 3 degrees of freedom.
Columns 4 and 5 in Panel B of table 1 report the test results. The model easily
passes both the “Variance” and “Asym” tests, with the p-values being at least
20%.

The model selection statistics, reported in Panel C of table 1, compare our
model-implied conditional correlations, calculated as in Equation (6), with two
benchmarks, namely realized correlations measured using daily returns of the
following quarter, and the data-implied low-frequency correlations based on
the MIDAS model referred to before. We expect the latter to give us a good pic-
ture of how the actual conditional correlations at the quarterly frequency vary
through time, whereas the former essentially tests the predictive power of the
models for future correlations. We consider several measures of “closeness.”
First, we compute the mean absolute deviation between the model-implied cor-
relation and the MIDAS correlation and the next quarter’s realized correlation.
Second, we compute the correlation between the two benchmark correlations
and the model-implied correlations. It may be that the model cannot fit the
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correlation level but performs well with respect to the time variation in cor-
relations. Third, we also test whether the constant and slope in a regression
of our two benchmark correlations onto our model-implied correlations are
zero and one, respectively. We also provide a joint test. These measures pro-
vide information on, inter alia, the relative variability of the various correlation
measures.

To better compare different models, we also create a statistical yardstick for
the magnitude of the different diagnostics. We start with the benchmark factor
model (see below), using constant betas in Equation (1). We then collect the
estimated betas for both stock and bond returns and their corresponding covari-
ance matrix and draw 1,000 different beta vectors from a normal distribution
with expected beta and variance–covariance matrix equal to the estimated beta
and variance–covariance matrix. With these simulated beta vectors, we create
distributions for all the model diagnostics, and we show the 90% confidence in-
tervals in the table. The first line of Panel C reports the diagnostic for our main
model with constant betas. The model produces correlations that are 18.6% dif-
ferent from the correlations produced by the MIDAS model and 24.3% differ-
ent from the realized correlations next quarter. For the latter, we can compare
the factor model’s performance with that of the MIDAS model (see last line).
The MIDAS model predicts realized correlations better than the factor model.
The MIDAS model’s fit is also outside the 90% confidence interval. The corre-
lation of the factor model-implied correlations with both MIDAS correlations
and realized correlations is relatively low at 0.394 and 0.389, respectively. The
MIDAS model has a 0.688 correlation with realized correlations. Finally, the
regressions show no mean bias, but the regression slope coefficients are larger
than one, though not significantly so. However, the confidence intervals from
the simulation experiment reveal that the regression constants and slopes likely
constitute weak tests of model fit.

Overall, the fit is satisfactory, albeit not great. In an earlier version of the ar-
ticle, we considered a large number of alternative models, in terms of numbers
of factors (considering models with fewer factors), the identification of the fac-
tors (considering nonstructural VARs), and the heteroscedasticity structure of
the factors (state dependent). The current semistructural model with regime-
switching factors outperforms these models using the measures of fit just
described. Panel C of table 1 illustrates this outperformance for a number of
alternative models: three nonstructural VARS (a homoscedastic model, a
model with state-dependent heteroscedasticity, and a model with regime-
switching volatility) and two structural models (a homoscedastic model and
a model where the heteroscedasticity is state dependent rather than regime
switching). In the state-dependent models, the conditional variance of the
shocks depends on the lagged level of the variable itself; the output, infla-
tion, and cash flow growth variances depend additionally on the lagged level
of their uncertainty measures. In terms of the distance measures, these mod-
els all perform worse on both diagnostics, significantly so for the nonstruc-
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tural homoscedastic and state-dependent models. Imposing structural restric-
tions and a regime-switching structure clearly improves the fit. The correlation
measures reveal a similar story. The alternative models all generate lower re-
gression slopes, which are in some cases very close to 1. Interestingly, the
Wald test rejects the zero intercept-unit slope hypothesis for all models but our
benchmark model. We discuss the fit of the benchmark model in more detail
in Section 4.

2.3 Estimation state variable model
To conserve space, we report parameter estimates for the state variable model
in Appendix E. We focus the discussion on the identification of regimes and
the volatility dynamics of the models as they determine the fundamental stock
and bond return correlations. In the New-Keynesian model, the structural pa-
rameters are of independent interest but a detailed discussion is beyond the
scope of this article.7 Let us only comment on the regime variable for system-
atic monetary policy in the interest rate equation. Our β estimates reveal an
activist monetary policy regime (with β = 2.09) and an accommodating mon-
etary policy regime (with β smaller and insignificantly different from 1). The
coefficient on the output gap, γ , is significantly positive in both regimes but
larger in the second regime.

Figure 2 plots the smoothed regime probabilities for all regime variables. All
models show significant regime-switching volatility both in statistical and eco-
nomic terms. Figure 3 plots the conditional volatilities of the various factors.
We discuss the two figures in tandem. We first focus on the regime variable af-
fecting the volatility of the output gap and inflation shocks. For both inflation
and output volatilities, there is a near-permanent switch to the low-volatility
regime, which is consistent with the idea of a Great Moderation. For output,
this switch occurs in 1988, for inflation only in 1992. Of course, in our regime-
switching model, there is a positive probability that the high-volatility regime
will reoccur. In terms of volatility levels (figure 3), inflation and output volatil-
ities are often but not always higher in NBER recessions.

A stronger countercyclicality is observed for interest rate shocks, which
are also less variable than inflation but more variable than output shocks. In
figure 2, Panel B, we see that the high interest rate volatility regime mostly
occurs during recessions, including the 1980–1982 Volcker period. This is con-
sistent with the results in Bikbov and Chernov (2008), who also categorize
the Volcker period as a period of discretionary monetary policy, with inter-
est rate shocks becoming more variable. Unlike Bikbov and Chernov (2008),
our structural model identifies systematic monetary policy to be activist dur-
ing this period. The model also shows that the 1990 and 2001 recessions were

7 We find mostly parameters in line with the extant literature, including a rather weak monetary transmission
mechanism (Bekaert, Cho, and Moreno 2010).
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accompanied by an accommodating monetary policy regime but that activist
monetary policy spells became more frequent from 1980 onward.

Panel C of figure 2 shows the regimes for the fundamental risk aversion
and variance premium factors. Fundamental risk aversion is notably higher
in the 1974–1975, 1980–1982, and early 1990s recessions, but not in 2001.
The high-volatility regime typically seems to outlast the recession itself and is
also relatively high around 1997. The variance premium regime is more clearly
countercyclical and also shows a peak toward the end of the sample. As Panel B
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Figure 2
Smoothed Probabilities of Regimes
This figure shows the smoothed probabilities of the nine independent regimes in our state variable model. The
different regimes are defined in Section 1.2.3 for the active monetary policy regime and Section 1.2.5 for the
different volatility regimes. Panel A shows the smoothed probability of a high output gap and inflation volatility
regime. Panel B shows the smoothed probability of a high interest rate volatility regime and the smoothed
probability of an active monetary policy regime in which the FED aggressively stabilizes the price level. Panel C
shows the smoothed probability of a high risk aversion volatility regime and of a high variance premium regime.
Panel D shows the smoothed probability of a high cash flow growth shock volatility regime. Finally, Panel E
shows the smoothed probability of a high stock and bond illiquidity regime. NBER recessions are shaded gray.

of figure 3 shows, the variance premium shock is multiple times more volatile
than the fundamental risk aversion factor.

The cash flow volatility regime (Panel D, figure 2) shows frequent shifts but
also appears to shift mostly into the lower-volatility regime post-1990, with the
exception of another switch into the high-volatility regime during the recession
of 2001. Note that these are cash flow shocks cleansed of the influence of the
macroeconomic state variables. The last panel in figure 2 shows the stock and
bond market illiquidity regimes. For stock illiquidity, the regime is mostly in
the high-variance state, only shifting occasionally to lower variances but most
notably doing so for a lengthy time period post-2001. For bond illiquidity,
the picture is similar, but the regime variable goes to the lower-volatility state
already around 1992, with only one spike up afterward. Figure 3 shows that
bond illiquidity shocks were mostly more variable than stock illiquidity shocks
until the shift to the low-variability regime in 1992 and mostly less variable
thereafter.
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Figure 3
Volatility of the Factors
This figure shows the conditional volatilities (annualized) of the various factors identified in our state variable
model. Panel A shows output, inflation, and interest rate volatility. Panel B shows risk aversion, the variance
premium, and cash flow volatility. Panel C shows stock and bond illiquidity volatility. Finally, Panel D shows
output uncertainty and inflation uncertainty volatility. NBER recessions are shaded gray.
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3. Correlation Dynamics

3.1 Model fit
Table 2 repeats the fit of the constant beta benchmark model, including the 90%
confidence intervals. All the other lines reflect the performance of the candidate
models for time variation in betas we discussed before. Because these models
have at least twenty parameters (ten factors with at least one interaction term),
we consider two versions of these models: an unrestricted version and a version
where sources of time variation leading to coefficients with t-stats less than one
in absolute value are removed, and the model re-estimated.

The most striking feature of the table is that the constant beta model proves
a very difficult to beat benchmark. Let’s first focus on the distance measures.
With respect to the distance relative to future realized correlations, seven of the
sixteen estimated models with time-varying betas perform significantly bet-
ter than the constant beta model, but barely so. In terms of distance to the
MIDAS model, the majority of the models perform worse than the constant
beta model and no model performs significantly better. The best models in
terms of distance measures are the models with either risk aversion or the vari-
ance premium as an instrument and the regime-switching models with either
the own regime variable or the illiquidity regime variables as sources of beta
variation. In terms of correlation with either the MIDAS benchmark or fu-
ture realized correlations, these same models also perform reasonably well,
with the exception of the illiquidity regime-switching beta model. Instead, the
model with the monetary policy regime betas performs better on this score.
However, the best model here clearly is the model where the variance pre-
mium is an instrument. Both its restricted and unrestricted versions lead to
correlations that are significantly higher than the constant beta model. Another
nice feature of this model is that the regression slopes are very close to one.
Moreover, our Wald test does not reject the joint null hypothesis of a zero in-
tercept and unit slope, suggesting a one-to-one relation between the MIDAS
(realized) and our model-implied correlations. We therefore select this model
as an alternative benchmark and note that the model with restrictions performs
slightly better.

Figure 4, Panel A, graphs the MIDAS conditional correlations together with
the correlations implied by the two benchmark models (constant betas and be-
tas that vary with the variance premium). Clearly, the benchmark models pro-
duce less variable correlation dynamics than the MIDAS model does. The con-
stant beta model never produces negative correlations, and while correlations
decrease around 2000, the model cannot match the steep decrease in correla-
tions the MIDAS model generates. The time-varying beta model does better
in this regard, which explains why it correlates more with the MIDAS model
than the constant beta model does. We now explore the economics behind the
correlations in more detail, starting with examining the beta exposures.
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Table 2
Model selection tests for model-implied conditional correlations

Distance Measures Corr Measures Regression Real Regression MD Wald Test

Factor Model MD Real MD Real Const Slope Const Slope Real MD

Panel A: Constant Betas

No Restrictions 0.186 0.243 0.394 0.389 −0.044 1.659 0.018 1.322 2.265 1.547
(0.099) (0.508) (0.092) (0.477) (0.132) (0.214)

Results 1000 Simulations
S.E. 0.021 0.013 0.052 0.064 0.074 0.479 0.066 0.365 - -
Percentile 5% 0.176 0.237 0.275 0.248 −0.117 1.039 -0.065 0.864 - -
Percentile 95% 0.239 0.276 0.439 0.449 0.118 2.517 0.152 2.052 - -

Panel B: State-Dependent Betas—Original State-Dependent Model

No Restrictions 0.215 0.255 0.416 0.409 0.134 1.022 0.160 0.819 10.549 15.918
(0.044) (0.261) (0.040) (0.220) (0.001) (0.000)

Restrictions 0.206 0.249 0.410 0.417 0.095 1.235 0.131 0.956 6.464 8.927
(0.053) (0.298) (0.048) (0.266) (0.011) (0.003)

Panel C: State-Dependent Betas—Risk Aversion as Instrument

No Restrictions 0.188 0.236* 0.452* 0.421 0.039 1.106 0.077 0.935 1.708 2.909
(0.058) (0.281) (0.053) (0.241) (0.191) (0.088)

Restrictions 0.193 0.242 0.475* 0.466* −0.002 1.809 0.051 1.453 8.052 6.501
(0.062) (0.375) (0.059) (0.349) (0.005) (0.011)

Panel D: State-Dependent Betas—Variance Premium as Instrument

No Restrictions 0.187 0.234* 0.444* 0.463* 0.037 1.092 0.089 0.826 1.465 2.647
(0.055) (0.235) (0.055) (0.224) (0.226) (0.104)

Restrictions 0.180 0.231* 0.477* 0.495* 0.004 1.324 0.064 1.004 2.794 1.968
(0.058) (0.265) (0.059) (0.256) (0.095) (0.161)

Panel E: Regime-Switching Betas—MP Regime Variable as Instrument

No Restrictions 0.198 0.250 0.476* 0.439 0.001 1.901 0.040 1.648 7.426 7.461
(0.068) (0.443) (0.063) (0.408) (0.006) (0.006)

Restrictions 0.193 0.249 0.489* 0.439 −0.037 2.013 0.002 1.799 6.648 6.521
(0.077) (0.476) (0.073) (0.448) (0.010) (0.011)

(continued)
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(Continued)

Panel F: Regime-Switching Betas—Own Regime Variable as Instrument

No Restrictions 0.180 0.234* 0.448* 0.470* −0.078 1.799 0.004 1.348 4.132 1.877
(0.086) (0.424) (0.081) (0.389) (0.042) (0.171)

Restrictions 0.180 0.235* 0.429 0.452* −0.115 1.918 −0.022 1.430 3.922 1.653
(0.099) (0.482) (0.091) (0.426) (0.048) (0.199)

Panel G: Regime-Switching Betas—Illiquidity Regime Variables as Instruments

No Restrictions 0.180 0.235* 0.415 0.429 0.029 0.913 0.082 0.698 0.211 2.089
(0.065) (0.235) (0.063) (0.228) (0.646) (0.148)

Restrictions 0.181 0.235* 0.384 0.414 0.032 0.915 0.089 0.671 0.204 2.153
(0.071) (0.264) (0.067) (0.247) (0.652) (0.142)

Panel H: State-Dependent RS Betas—MP Regime Var and Risk Aversion as Instruments

No Restrictions 0.235 0.266 0.372 0.382 0.161 0.532 0.176 0.508 15.602 24.802
(0.043) (0.205) (0.037) (0.173) (0.000) (0.000)

Restrictions 0.207 0.239 0.410 0.415 0.095 0.675 0.125 0.566 4.534 12.016
(0.050) (0.180) (0.043) (0.142) (0.033) (0.001)

Panel I: State-Dependent RS Betas—MP Regime Var and Variance Premium as Instruments

No Restrictions 0.229 0.267 0.291 0.295 0.141 0.556 0.167 0.438 10.237 17.649
(0.047) (0.197) (0.044) (0.179) (0.001) (0.000)

Restrictions 0.197 0.241 0.416 0.404 0.059 0.944 0.097 0.778 1.287 2.887
(0.059) (0.260) (0.057) (0.245) (0.257) (0.089)

MIDAS versus Realized Correlation

No Restrictions - 0.174* - 0.688 0.012 0.874 - - 1.789 -
(0.024) (0.074) (0.181)

This table presents the model selection tests for alternative beta specifications in the factor model. We differentiate between nine specifications for the factor exposures as explained in
Section 1.3. Panel A reports results for the constant beta specification. Next, we consider three specifications with state-dependent factor exposures, respectively using factor-specific state
variables as instruments (Panel B), risk aversion as instrument (Panel C), and the variance premium as instrument (Panel D). Consequently, we report results for three specifications with
regime-switching factor exposures, respectively using the monetary policy regime variable Smp

t as instrument (Panel E), the own regime variable as instrument (Panel F), and the illiquidity

regime variables Ssliq
t and Sbliq

t as instruments (Panel G). Finally, we have two specifications for the factor exposures combining regime variables with state variables, respectively using
the monetary policy regime variable Smp

t and risk aversion as instruments (Panel H), and the monetary policy regime variable Smp
t and variance premium as instruments (Panel I). For each

beta specification, we consider two cases, one without restrictions and one in which coefficients are forced to be zero if | t-stat | < 1 in the unrestricted case. To facilitate comparison, the first
panel also shows the results of the Monte Carlo simulation applied to the factor model with constant factor exposures (see Section 3.2). The distance measures compute the mean absolute
deviation of the model-implied correlation from respectively the MIDAS conditional correlation (column 1) and the realized quarterly correlation (column 2). The correlation measures
compute the unconditional correlation between our model-implied conditional correlation and respectively the MIDAS (column 3) and realized (column 4) correlation. To test the predictive
power of the various models for future correlations, we regress respectively the realized and the MIDAS correlation on our model-implied conditional correlation. Estimation results are
shown respectively in columns 5 and 6 (for realized correlation), and columns 7 and 8 (for MIDAS correlation). Standard errors for the regression coefficients are reported in parentheses.
The errors accommodate potential serial correlation in the residuals using two Newey–West lags. Columns 9 and 10 report a Wald test of the joint hypothesis of a zero intercept and unit
slope for the two regressions. Distance and correlation measures that fall outside the 95% (or 5%) percentile are denoted by a *. The bottom line of the table shows the model selection tests
for the MIDAS correlation relative to the realized correlation as an additional benchmark.
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Figure 4
Data-Implied and Model-Implied Moments
This figure plots the model-implied correlations (Panel A), the model-implied covariances (Panel B), the model-
implied stock volatility (Panel C), and the model-implied bond volatility (Panel D), for both the factor model
with constant exposures and the best performing factor model with time-varying exposures, which is the model
with the variance premium as instrument. In addition, we plot the data-implied conditional moments based on
the MIDAS model described in Appendix A.
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3.2 Factor exposures
Table 3 presents the beta estimates for the three retained models. Let’s first
focus on the constant beta specification. For equity returns, many factors are
either highly (fundamental risk aversion, bond illiquidity, and the variance risk-
premium) or borderline (the output gap, inflation, output and inflation uncer-
tainty, and stock market illiquidity) statistically significant. Only the interest
rate and bond illiquidity shocks significantly affect bond returns, however.
Nevertheless, more often than not the signs of the betas are consistent with
expectations. The risk aversion variables (fundamental and the variance risk-
premium) and the liquidity factors produce negative coefficients with only one
exception (the totally insignificant variance premium shock for bond returns),
consistent with them being discount rate factors. The interest shock is negative
for both bond and stock returns but is much more important for bond returns
both in economic magnitude and statistical significance. However, inflation
and the output gap matter more for equity returns (with a positive sign for the
output gap and a negative one for inflation), whereas they are insignificant for
bond returns. Output and inflation uncertainty only show some explanatory
power for stock returns, with a negative sign for output and a positive sign
for inflation uncertainty. The former could simply reflect a discount rate effect,
whereas the latter is potentially consistent with the learning models of Veronesi
(1999), in which uncertainty decreases the equity risk-premium.

To better gauge the economic importance of the factors in driving variation
in bond and stock returns, table 3 also reports the standard deviation of the
factors. For the statistically important factors in the stock return equation,
the effect of a one standard deviation change is mostly between 1% and 2%.
The economically most important factor, by far, is the variance premium, for
which a one standard deviation move changes stock returns by over 3.5%. For
bond returns, a one standard deviation positive shock to interest rates (bond
illiquidity) decreases bond returns by 1.8% (1.4%).

The next four columns in table 3 report the betas for two time-varying
beta specifications: one unrestricted and one zeroing out the coefficients with
t-stats less than 1 in absolute value. For equity returns, about half of the betas
are significantly related to the variance risk-premium. With one exception, the
coefficient on the variance risk-premium is positive. Recall that the variance
premium’s variance and level have a strong cyclical pattern, being higher in
recessions. Hence, the exposure of stocks to a cash flow shock such as the out-
put gap is increased in absolute magnitude in recessions, but the exposure to
discount rate shocks (including the variance premium itself) is mitigated. The
exception is the bond illiquidity beta, which is even more negative when the
variance risk-premium is high. For bond return betas, we fail to find significant
exposures to the variance premium.

Note that the bond and stock exposures are mostly of the same sign, ex-
plaining why the constant beta model cannot generate negative correlations.
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Table 3
Estimation results for the factor models

Stock Bond

Std. Constant Time-Varying Time-Varying Restr Constant Time-Varying Time-Varying Restr

Factors Factors β0 β0 β1 β0 β1 β0 β0 β1 β0 β1

y 0.090 10.723 −1.253 9.400 −1.865 9.675 −4.029 −4.695 −0.448 −4.029 -
(6.482) (11.469) (5.866) (11.143) (5.629) (3.326) (5.834) (2.544) (3.326)

π 0.276 −4.113 −10.055 3.478 −10.219 3.548 −0.735 −2.429 0.681 −0.735 -
(2.264) (3.320) (1.685) (3.331) (1.681) (0.995) (1.738) (0.777) (0.995)

q 0.140 −12.458 −13.142 0.429 −11.992 - −2.757 0.887 −1.560 −2.757 -
(4.686) (10.321) (3.922) (4.747) (3.065) (7.996) (3.211) (3.065)

i 0.178 −1.882 −18.374 7.365 −19.229 7.724 −10.020 −9.550 −0.179 −10.020 -
(3.434) (7.187) (3.739) (7.594) (3.919) (1.818) (3.924) (1.515) (1.818)

cg 0.823 −0.734 −0.886 0.089 −0.690 - −0.516 −1.378 0.244 −0.516 -
(0.723) (1.674) (0.682) (0.624) (0.529) (0.968) (0.279) (0.529)

yd 0.338 −3.396 −7.009 2.156 −7.674 2.571 −0.241 −0.545 0.227 −0.241 -
(2.136) (3.458) (2.108) (3.264) (1.883) (0.955) (1.767) (0.721) (0.955)

πd 0.537 2.355 1.540 0.544 2.527 - 0.616 1.079 −0.197 0.616 -
(1.236) (2.202) (1.157) (1.336) (0.727) (1.136) (0.521) (0.727)

sliq 1.131 −1.170 −1.261 −0.070 −1.389 - −0.435 −0.955 0.244 −0.435 -
(0.635) (1.141) (0.608) (0.593) (0.300) (0.580) (0.301) (0.300)

bliq 1.567 −1.724 −0.578 −0.620 −0.607 −0.632 −0.872 −1.003 0.033 −0.872 -
(0.340) (0.719) (0.368) (0.675) (0.343) (0.234) (0.393) (0.168) (0.234)

vp 1.205 −2.997 −5.026 0.543 −5.052 0.554 0.057 −0.039 0.058 0.057 -
(0.545) (0.706) (0.278) (0.592) (0.166) (0.250) (0.381) (0.108) (0.250)

This table reports the estimation results for the factor model with constant exposures and the best performing factor model with time-varying exposures, which is the model with the variance
premium as instrument. For the latter, we further differentiate between the model without and with restrictions. The estimated betas are shown with White (1980) heteroscedasticity-
consistent standard errors in parentheses. The first column further shows the standard deviation of the different factors to facilitate the interpretation of the beta estimates. The mean and the
standard deviation of our instrument (i.e., the variance premium) are respectively 2.126 and 1.724. Stock and bond returns are in quarterly percentages.
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However, with time-varying betas, the equity return exposures to inflation, the
interest rate, and output uncertainty switch signs at the end of the 1990s, con-
tributing to negative model-implied correlations. Hence, the model likely uses
the variance premium dependence to partially capture a “flight-to-safety” ef-
fect. When risk aversion is high in a recession or crisis, interest rates may be
low, increasing bond prices, but stocks are now positively correlated with in-
terest rate shocks and stock prices may fall.

3.3 Time-varying expected returns
Our model produces unconditional correlations that are slightly too low. In the
data, this correlation amounts to 19%, but the benchmark model produces an
average correlation of 14%. The average long-run MIDAS correlation is 21%.
One potential channel to increase unconditional correlations not present in our
current model is time variation in expected returns. For instance, in the model
of Bekaert, Engstrom, and Xing (2009), risk-premiums on stocks and bonds are
highly correlated, thus increasing the unconditional correlation between stock
and bond returns. In addition, mismeasurement of expected returns may affect
the estimation of conditional covariance dynamics. An assumption of constant
risk-premiums seems particularly strong in light of the important structural
shifts that we uncovered in the variances of fundamental variables such as in-
flation and the output gap. Such important changes may lead to abrupt changes
in risk-premiums, which are unaccounted for in our present model. In fact, Let-
tau, Ludvigson, and Wachter (2008) claim that the decline in macroeconomic
volatility may have led to a decline in the equity risk-premium.

We consider two extensions to our models to accommodate time variation
in expected stock and bond excess returns. First, we model expected excess
returns as a linear function of the lagged level of the default spread, short rate,
term spread, dividend yield, the consumption–wealth ratio [CAY from Lettau
and Ludvigson (2001)], and the variance premium. Second, we use the regime
probabilities identified in the structural factor model estimation as instruments
for expected returns in univariate regressions. The results are disappointing.
In the instrumental variables regression, the short rate, CAY, and the default
spread are significant predictors, with the same sign in the bond and stocks
return regressions. Thus, they can possibly help generate positive covariation
between stock and bond premiums. However, the increase in the unconditional
correlation is small and amounts to only 1.74%. Structural changes, as iden-
tified by the regime variables, do not seem to affect expected stock and bond
returns in a meaningful way.

3.4 Economic factor contributions
Our model counts ten state variables, prompting the question as to what extent
different factors contribute to the model’s fit. To determine this, we re-estimate
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Table 4
Economic contributions for model-implied conditional correlations

Distance Measures Corr Measures

Factor Model MD Real MD Real

Panel A: Constant Betas

Full Model 0.186 0.243 0.394 0.389
minus macro var 7.6 2.8 1.9 −0.3

minus yt , πt , it 6.4 2.6 2.6 0.5
minus qt 8.8 3.3 −0.6 −2.2

minus non-macrovar 33.9∗ 18.8∗ 30.7∗ 37.4∗
minus cgt 2.3 1.0 1.1 0.4
minus sliqt , bliqt 30.6∗ 16.8∗ 21.9∗ 26.7∗
minus ydt , πdt 6.8 2.6 −1.5 −2.3
minus vpt 2.9 1.6 5.8 5.3

Panel B: Time-Varying Betas

Full Model 0.180 0.231 0.477 0.495
minus macro var 10.5 7.4 6.3 6.8

minus yt , πt , it 8.1 5.7 10.7 10.5
minus qt 8.7 4.6 1.8 1.2

minus non-macrovar 36.1 22.4 23.6 24.4
minus cgt 2.1 1.0 1.0 0.5
minus sliqt , bliqt 31.9 19.6 20.0 21.7
minus ydt , πdt 2.5 1.4 −3.7 −4.5
minus vpt 1.0 0.7 2.8 2.0

This table shows the economic contributions of the different factors for the model-implied conditional cor-
relations. Panel A shows the results for the factor model with constant exposures. Panel B shows the results
for the best performing factor model with time-varying exposures, which is the model with the variance pre-
mium as instrument, imposing zero restrictions on parameters with absolute t-statistics below one. For both
panels, we repeat the results of the model selection tests of the model including all factors (line “Full Model”).
Next, we compute the model selection test measures leaving out certain factors. We differentiate between leav-
ing out macro factors and leaving out non-macro factors. For each measure we compute the deterioration of
the restricted model relative to the full model. For the distance measures, we compute the deterioration as
100 × (distance restricted model − distance full model)/distance full model. For the correlation measures, we re-
port the difference between the correlation measure for the full model and the correlation measure for the re-
stricted model, multiplied by one hundred. All numbers are expressed in percentages. In Panel A, a * means
that the restricted model performs significantly worse than the full model with constant betas, based on the
simulation results in table 2. MD stands for MIDAS; Real for realized.

the factor model, leaving out various factors, and then report the deterioration
in fit. The confidence intervals reported in table 2 can again tell us something
about the statistical significance of the worsening in fit, at least for the con-
stant beta model. Table 4 reports the results. We first split our variables into
pure macrovariables (the output gap, inflation, the interest rate, and the risk
aversion measure computed from consumption data), and the rest of the vari-
ables (uncertainty, cash flow growth, illiquidity, and the variance premium).

The main message is clear and consistent across the constant and time-
varying beta models: the fit worsens considerably more when dropping the
non-macrovariables as opposed to the macrovariables. Within the set of
macrovariables, fundamental risk aversion is relatively important for the dis-
tance measures but does not help in fitting the correlation with actual bond–
stock return correlations. Among the non-macrovariables, the cash flow vari-
able overall contributes the least, followed closely by the variance premium.
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Of course, the variance premium also contributes indirectly through its effect
on betas.

The main result undoubtedly is that the illiquidity variables are the most im-
portant contributors to the correlation dynamics. Recall that we actually find
that stocks and bonds both load negatively on stock and bond illiquidity, so
that liquidity variation induces positive correlation between stock and bond
returns. This common exposure was particularly helpful in the early part of
the sample (where liquidity was still poor), although no superclear subsample
patterns emerge. While more work in this area is surely needed, some recent
research helps give credence to our results. Li et al. (2009) show that sys-
tematic liquidity risk is priced in the bond market, but they do not consider
stock returns. Bansal, Connolly, and Stivers (2009) show that the usual stock
liquidity measures help predict stock and bond return correlations and have ef-
fects independent of the usual VIX—“flight-to-safety” effect. They focus on a
relatively short 1997–2005 period, however. Finally, Goyenko and Sarkissian
(2008) also document a strong link between bond illiquidity and stock returns
in forty-six different markets.

4. Covariance and Volatility Dynamics

4.1 Correlation decomposition
The correlation is a scaled statistic involving covariances, and both stock and
bond return volatilities. Using the MIDAS model as a “well-fitting” empirical
benchmark allows us to decompose the performance of our main model. Ta-
ble 5 repeats our standard diagnostic fit measures, but we now replace the three
components of the correlation, one-by-one, with their MIDAS counterparts.
For example, the line “MIDAS covariance” replaces the covariance produced
by the model by that of the MIDAS model. Clearly, the model’s fit improves
dramatically, nearly matching the fit of the MIDAS model, which is repeated
on the last line of the table. The exception is the constant in the regression,
which is now significantly positive, owing to the MIDAS model producing too
high covariances on average.

Not surprisingly, this must mean that the use of MIDAS volatilities is cor-
respondingly less important. While using MIDAS’s stock volatility leads to
improvements in most cases, using MIDAS’s bond volatility worsens the fit
relative to using the model’s. What is particularly striking is that the slope coef-
ficients in the regressions become quite small once the MIDAS bond volatility
replaces that of the factor model. As we will see below, this owes to the MIDAS
model producing quite volatile bond return volatility while the factor model
really only captures a small part of the variation in bond return volatility. Con-
sequently, the results here need not necessarily mean that the factor model fits
bond return volatility better than the MIDAS model. In fact, the poor distance
measures here result from the MIDAS model producing relatively low bond
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Table 5
Correlation decomposition

Distance Measures Corr Measures Regression Real Regression MD

Factor Model MD Real MD Real Const Slope Const Slope

Panel A: Constant Betas

Benchmark 0.186 0.243 0.394 0.389 −0.044 1.659 0.018 1.322
(0.051) (0.317) (0.040) (0.249)

MIDAS Covariance 0.104* 0.200* 0.938* 0.647* 0.083 0.945 0.081 1.078
(0.022) (0.090) (0.008) (0.032)

MIDAS Stock Volatility 0.175* 0.235* 0.409 0.397 −0.031 1.131 0.025 0.917
(0.048) (0.210) (0.038) (0.165)

MIDAS Bond Volatility 0.214 0.267 0.204 0.214 0.097 0.489 0.136 0.366
(0.044) (0.180) (0.034) (0.142)

Panel B: Time-Varying Betas

Benchmark 0.180 0.231 0.477 0.495 0.004 1.324 0.064 1.004
(0.035) (0.187) (0.028) (0.149)

MIDAS Covariance 0.111 0.205 0.943 0.642 0.084 1.003 0.081 1.161
(0.022) (0.097) (0.008) (0.033)

MIDAS Stock Volatility 0.192 0.232 0.439 0.466 0.008 0.831 0.070 0.617
(0.037) (0.127) (0.029) (0.102)

MIDAS Bond Volatility 0.221 0.263 0.312 0.332 0.084 0.535 0.127 0.396
(0.035) (0.123) (0.028) (0.097)

MIDAS All - 0.174 - 0.688 0.012 0.874
(0.024) (0.074)

This table shows results of the model selection tests for the model-implied conditional correlations imposing respectively the MIDAS data-implied covariance, stock volatility, and bond
volatility. Panel A shows the results for the factor model with constant exposures. Panel B shows the results for the best performing factor model with time-varying exposures, which is
the model with the variance premium as instrument. The first line of each model repeats the results of the model selection tests for the benchmark model without imposing the MIDAS
moments. The bottom line of the table shows the model selection tests for the MIDAS correlations relative to the realized correlations. MD stands for MIDAS; Real for realized.
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return volatility in the 1970s at the time that the benchmark model already
overshoots actual correlations.

The main conclusion to be drawn is that our factor model primarily suffers
from a poor fit of bond–stock return covariances. It appears that it does not
fit stock return volatility significantly worse than the MIDAS model does. Of
course, it remains possible that the MIDAS model also represents a poorly
fitting benchmark model for stock return volatility. We now investigate the
performance of the model with respect to the three components of correlation
in more detail.

4.2 Covariances
Table 6 reports our diagnostic measures but applied to covariances, rather than
correlations. We leave out the regression evidence because it proved not pow-
erful in distinguishing models. The overall fit of the covariances matches the
patterns we observed for correlations. The time-varying beta model is worse
than the constant beta model in terms of distance measures but produces higher
correlations with realized and MIDAS covariances.

In terms of the contributions of the various factors, the non-macrovariables,
particularly the liquidity variables, are most important. However, no single fac-
tor contributes in a meaningful way to lower the distance measure with respect
to the realized covariances. Yet, the model as a whole does perform better than
the unconditional mean.

4.3 Stock return volatility
Table 7 reports the same diagnostics for the conditional stock market volatil-
ity. The model does about as well as the MIDAS model in predicting future
realized stock return volatilities. Not surprisingly, the distance between the
MIDAS and factor models is rather small at less than 3%. While time-varying
betas lower the distance with respect to the MIDAS model, they increase it with
respect to predicting realized volatilities. The correlation between MIDAS con-
ditional volatilities and the ones produced by the economic factor model are
relatively high; yet the MIDAS model produces stock return volatilities that
are much more highly correlated with realized volatilities.

As a final diagnostic, we compute the R2 of the factor model for stock
returns. This is not only important to understand the fit with stock market
volatility: If the factors fit only a small fraction of the return variance, then it
is unrealistic to hope for a satisfactory fit for the covariance of stock and bond
returns. The literature on stock returns in particular has a long but controversial
exponent, arguing that stock returns are excessively volatile [for instance, the
old debate between Shiller (1981) and Kleidon (1986)].

We report the adjusted regression R2s, adjusted for ten regressors in the con-
stant beta model and twenty in the time-varying beta model. The adjusted R2s
are respectively 27% for the constant and 35% for the time-varying beta model.
These may appear low, especially when compared to the MIDAS model, which
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Table 6
Economic contributions for stock and bond return covariance

Distance Measures Corr Measures

Factor Model MD Real MD Real

Panel A: Constant Betas

Full Model 0.227 0.305 0.415 0.420

minus macro var 1.5 −4.5 1.7 −0.7
minus yt , πt , it 2.2 −3.3 2.1 0.2
minus qt 0.0 −5.9 0.4 −0.1

minus non-macro var 12.1 −4.7 21.4* 22.8*
minus cgt 0.2 −1.8 1.1 −0.6
minus sliqt , bliqt 9.3 −5.5 17.8* 15.4*
minus ydt , πdt −1.8 −5.7 −1.0 −0.8
minus vpt 0.7 0.2 2.5 2.3

Panel B: Time-Varying Betas
Full Model 0.258 0.302 0.416 0.517†

minus macro var −10.6 −3.9 0.8 6.4
minus yt , πt , it −17.5 −2.0 −5.0 10.8
minus qt 2.3 −1.3 8.0 4.6

minus non-macro var 10.9 3.7 33.2 25.5
minus cgt −1.4 −2.4 0.4 0.2
minus sliqt , bliqt 7.1 1.1 29.0 21.8
minus ydt , πdt −15.8 −8.1 −9.9 −3.0
minus vpt −5.6 −1.2 −3.2 0.4

MIDAS Benchmark - 0.251 - 0.615

This table shows the economic contributions of different factors for the model-implied conditional covariance.
Panel A shows the results for the factor model with constant exposures. Panel B shows the results for the best
performing factor model with time-varying exposures, which is the model with the variance premium as instru-
ment. For both panels, we repeat the results of the model selection tests of the factor model including all factors
(line “Full Model”). Next, we compute the model selection tests leaving out certain factors. We differentiate
between leaving out macro factors and leaving out non-macro factors. For each measure we compute the deteri-
oration of the restricted model relative to the full model. For the distance measures, we compute the deterioration
as 100 × (distance restricted model − distance full model)/distance full model. For the correlation measures, we
report the difference between the correlation measure for the full model and the correlation measure for the
restricted model, in percentages. The distance measures for the full model are multiplied by one hundred to
improve readability. In Panel A, * means that the restricted model performs significantly worse than the full
model, based on the simulation results in table 2. In Panel B, a † in the line for the full model with time-varying
betas means that the model performs significantly better than the full model with constant betas. MD stands for
MIDAS; Real for realized.

explains 66% of total stock market variance. However, the comparison is some-
what unfair. First, for the MIDAS model, our R2 counterpart takes the ratio of
the average conditional variance produced by the MIDAS model divided by
the unconditional stock market variance. We could compute a similar “model-
based” R2 for the factor model, which would be close to the regression R2 if
the conditional variances of the factors are relatively close to their empirical
counterparts. Fortunately, they are, with the biggest deviation (the model vari-
ance being 10% larger than the empirical variance) occurring for the variance
premium. Moreover, we cannot easily adjust the MIDAS model for “the num-
ber of regressors,” so a fairer comparison would be with an “unadjusted model
R2.” For the constant beta model, this R2 is 38.4%, and for the time-varying
beta model, it is even over 70%, better than the MIDAS model. Another way
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Table 7
Economic contributions for stock volatility

Distance Measures Corr Measures R2 Measure

Factor Model MD Real MD Real

Panel A: Constant Betas

Full Model 0.028 0.038 0.451 0.248 0.270

minus macro var 31.9 3.6 −14.4 −10.5 4.6%
minus yt , πt , it 14.3 1.0 −7.2 −4.8 2.0%
minus qt 21.5 2.2 −8.3 −6.6 3.0%

minus non-macro var 227.1* 120.8* 46.0* 31.0* 22.8%
minus cgt 8.1 1.6 0.5 0.3 −0.1%
minus sliqt , bliqt 86.9* 25.0* −17.0 −9.3 9.6%
minus ydt , πdt 24.7 2.9 −8.7 −5.8 0.8%
minus vpt 80.7* 36.2* 47.5* 30.9* 14.3%

Panel B: Time-Varying Betas

Full Model 0.024 0.046 0.541 0.187 0.347

minus macro var −0.9 −11.3 16.6 7.4 8.2%
minus yt , πt , it −17.5 −12.7 20.9 10.0 7.1%
minus qt −6.1 −7.0 −4.0 −4.0 2.7%

minus non-macro var 212.3 54.7 27.1 18.3 29.8%
minus cgt −2.1 −1.6 0.3 0.3 −0.1%
minus sliqt , bliqt 8.0 −15.7 0.2 −0.1 10.4%
minus ydt , πdt −11.2 −5.5 −2.1 −0.2 2.1%
minus vpt 62.9 −1.3 1.0 −0.7 20.7%

MIDAS Benchmark - 0.034 - 0.481 0.662

This table shows the economic contributions of different factors for stock volatility. Panel A shows the re-
sults for the factor model with constant exposures. Panel B shows the results for the best performing factor
model with time-varying exposures, which is the model with the variance premium as instrument. For both
panels, we repeat the results of the model selection tests of the factor model including all factors (line “Full
Model”). Next, we compute the model selection tests leaving out certain factors. We differentiate between
leaving out macro factors and leaving out non-macro factors. For each measure we compute the deteriora-
tion of the restricted model relative to the full model. For the distance measures, we compute the deterioration
as 100 × (distance restricted model − distance full model)/distance full model. For the correlation measures, we
report the difference between the correlation measure for the full model and the correlation measure for the
restricted model, in percent. The distance measures of the full model are expressed in standard deviation units.
The last column reports the adjusted R-squared from the factor model and the absolute deterioration in adjusted
R-squared when factors are eliminated. In Panel A, a * means that the restricted model performs significantly
worse than the full model with constant betas, based on the simulation results in table 2. MD stands for MIDAS;
Real for realized.

to assess this fit is that the average stock return volatility generated by the
time-varying beta model (with restrictions) is 14.6%, whereas stock market
volatility is 17.4%.

The contribution analysis generally shows again that the non-macrovariables
are relatively more important than the macrovariables. However, the macro-
variables do contribute something to the fit, especially with respect to the dis-
tance measures. Among the non-macrovariables, the illiquidity factors remain
very important but the variance premium is now the dominant factor. There is
a flurry of recent research on the properties of the variance premium, mostly
on its predictive properties with respect to stock returns (Bollerslev, Tauchen,
and Zhou 2009) . Our results imply that it is one of the main drivers of stock
market volatility. Its important role also explains the somewhat strange decom-
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position analysis for the distance measures relative to realized variances in the
time-varying beta model. There, leaving out the non-macrovariables worsens
the fit considerably, but seemingly no single economic variable is responsible
for the good fit, as leaving them out univariately or in pairs always leads to
improvements in fit. Because the variance premium enters the betas and the
factor model is re-estimated when factors are dropped, the model retains the
flexibility to match the data reasonably well through the beta exposures.

4.4 Bond return volatility
Table 8 reports diagnostics on the fit of bond return volatility. The MIDAS
benchmark performs slightly better with respect to the distance measures rela-
tive to realized volatilities. Because the average bond volatility is only 8.98%
(compared to 17.38% for stocks), the average distances are relatively worse
than for stock returns. In terms of correlations, the factor model’s bond volatil-
ity correlates only 18.3% with realized correlations and only 20.8% with the
MIDAS model’s bond volatility. The MIDAS model’s bond volatility also cor-
relates much more highly with realized volatilities. We conclude that the eco-
nomic model has actually a harder time fitting bond volatility than it does
stock market volatility. This is an interesting finding, as the academic litera-
ture has primarily looked for links between macroeconomic fundamentals and
stock market volatility. While some of the seminal articles have been skeptical
(e.g., Schwert 1989), some more recent articles did find a link. Flannery and
Protopapadakis (2002) show links between stock market volatility and inflation
and money growth; Hamilton and Lin (1996) establish a business cycle link for
stock market volatility; and Diebold and Yilmaz (2009) and Engle and Rangel
(2008) find a link between volatile fundamentals and volatile stock markets in
a cross-section of countries. On the contrary, the work on bond returns appears
surprisingly limited.

We find that the factor model explains about the same amount of variation
in bond returns as in stock returns (the adjusted R2 is 30% ). However, the fac-
tors contributing to this fit are very different than the factors explaining stock
returns. Here, the fundamental variables contribute the most to the fit; the non-
macrovariables contribute relatively little. Of the fundamental variables, the
short rate, not surprisingly, is the dominant factor. All in all, this “discrep-
ancy” between the factors explaining bond and stock returns is intriguing and
deserves further scrutiny. Baker and Wurgler (2008) recently find interesting
links between bonds and “bond-like” stocks, which they attribute to changes in
investor sentiment. Their main focus is on copredictability rather than comove-
ment, but it would be interesting to test whether fundamentals have a different
effect on bonds than on “bond-like” stocks. Also, their sentiment index may
capture value-relevant behavioral factors not captured by our risk aversion in-
dicators. In fact, none of our variables capturing discount rate factors (funda-
mental risk aversion, the variance premium, bond and equity market liquidity)
correlates more than 20% with the Baker–Wurgler index.
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Table 8
Economic contributions for bond volatility

Distance Measures Corr Measures R2 Measure

Factor Model MD Real Unc MD Real

Panel A: Constant Betas

Full Model 0.030 0.030 0.042 0.208 0.183 0.307

minus macro var 25.4* 23.4* 22.7* 14.3* 16.9* 12.7
minus yt , πt , it 25.7* 23.6* 23.0* 14.3* 16.9* 13.2
minus qt 5.2 3.9 6.1 0.9 1.0 0.2

minus non-macro var 4.3 −0.4 7.4 −7.8 −9.8 7.5
minus cgt 0.4 0.5 0.3 −0.6 −0.6 0.3
minus sliqt , bliqt 3.5 −1.2 6.9 −7.8 −9.9 8.5
minus ydt , πdt 2.6 1.6 3.6 −0.1 −0.1 −0.5
minus vpt −0.2 −0.2 −0.2 0.1 0.0 −0.5

MIDAS Benchmark - 0.019 0.024 - 0.651 −0.722

This table shows the economic contributions of different factors for bond volatility. Panel A shows the results
for the factor model with constant exposures. We repeat the results of the model selection tests of the factor
model including all factors (line “Full Model”). Next, we compute the model selection tests leaving out certain
factors. We differentiate between leaving out macro factors and leaving out non-macro factors. For each measure
we compute the deterioration of the restricted model relative to the full model. For the distance measures,
we compute the deterioration as 100 × (distance restricted model − distance full model)/distance full model. For
the correlation measures, we report the difference between the correlation measure for the full model and the
correlation measure for the restricted model, in percent. The distance measures of the full model are expressed in
standard deviation units. The last column reports the adjusted R-squared from the factor model and the absolute
deterioration in adjusted R-squared when factors are eliminated. In Panel A, * means that the restricted model
performs significantly worse than the full model with constant betas, based on the simulation results in table 2.

5. Conclusions

The substantial time variation in stock–bond return correlations has long been
viewed as puzzling. Without assessing what time variation in correlations a for-
mal model of fundamentals can generate, this may be a premature judgment.
For instance, much has been made of the negative correlation between bond
and stock returns in recent times. However, the real economy and the infla-
tion process have undergone some remarkable changes recently. In particular,
it is well known that output and inflation volatility have decreased substantially
since 1985. If bonds and stocks have similar exposures to these economic fac-
tors, their correlation should have decreased. It is also conceivable that these
fundamental changes have affected risk aversion, a factor on which bonds and
stocks may load with a different sign. While it remains difficult to think of eco-
nomic factors that would cause a sudden and steep decrease of stock–bond re-
turn correlations into negative territory, it remains useful to quantify how much
of the correlation dynamics can be attributed to fundamentals. This is what this
article sets out to do using a dynamic factor model with fundamental factors.

Importantly, we consider a large number of factors, both pure economic fac-
tors and factors measuring risk aversion and illiquidity. We also consider a
large number of model specifications, some with scant structural restrictions.
Interestingly, the performance of our fundamental models improves when fac-
tor shocks are partially “structurally” identified by means of a New-Keynesian
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model, and we focus the article mostly on this model. Overall, we fail to find
a fully satisfactory fit with stock–bond return correlations. Our model fails to
forecast realized correlations as well as a benchmark empirical model, using
the MIDAS framework of Colacito, Engle, and Ghysels (2009). While this
model is a backward-looking empirical model, it uses daily return data effi-
ciently and generally fits the data very well. Not unlike the pattern observed in
the data, our fundamental-based model generates positive correlation until the
end of the 1980s and decreasing correlations afterward. However, a model with
constant factor exposures fails to generate negative correlations. We do obtain
negative correlations when we allow the factor exposures to depend on a risk-
premium proxy extracted from options data, the so-called variance premium.
This model also produces time-varying correlations that correlate substantially
with correlation movements in the data, although the timing and magnitude are
far from perfect.

We then analyze our results along several dimensions, producing a variety
of useful directions for future research. First, given the long tradition of view-
ing stocks as excessively volatile, the poor fit of our factor model may simply
be due to its failure to account for actual stock return volatility. However, we
show that the model primarily fails in fitting covariances and that its fit with
respect to stock return volatility is actually relatively better than its fit with
respect to bond return volatility. Second, the factors most useful in explaining
correlations and covariances are the non-macrovariables, especially stock and
bond market illiquidity factors. Much more research must be directed toward
analyzing the dynamic effects of liquidity. A first-order issue is simply mea-
surement. There are a large number of liquidity proxies available, and many
liquidity series show erratic time-series behavior. To make sure our main con-
clusions are robust to measurement issues, we conduct two alternative esti-
mations. In the first exercise, we use a longer moving average filter (twelve
months) to create the stock market liquidity measure. In the second exercise,
we use an effective tick measure as an alternative stock market illiquidity
proxy. Goyenko, Subrahmanyam, and Ukhov (2009) show that this measure
has the highest correlation with benchmark high-frequency liquidity proxies
among a set of alternative measures. Our results are qualitatively robust; in
particular, the liquidity variables continue to dominate as factors driving co-
movements. For the second measure, stock market illiquidity does become a
relatively more important factor for stock returns. Third, there is an interest-
ing dichotomy between the fit of stock and bond market volatility dynamics.
For bonds, fundamental factors do play a relatively large role, but for stocks,
the liquidity factors and the variance premium are important factors. These
empirical results complicate the creation of general equilibrium models that
can jointly rationalize bond and stock pricing [see Bekaert, Engstrom, and
Grenadier (2005) for a recent effort].

Of course, we have focused our analysis on standard macro factors, and
more intricate models would likely yield variables that we have not considered.
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For example, during our sample period, globalization may have fundamentally
changed how assets are priced and global shocks may have become increas-
ingly important, perhaps even for a large and dominant country like the United
States. As another example, in models with incomplete markets, the distri-
bution of income and wealth may matter. Yet, our economic factors include
uncertainty measures (for both inflation and output forecasts), which may be
motivated using models involving heterogeneity and learning. However, we
find that these variables are not nearly as important in driving second moment
return dynamics as are liquidity variables. These liquidity factors may be cor-
related with the “flight-to-safety” effects that have been documented in the
literature (e.g., Connolly, Stivers, and Sun 2005) . In the end, our fundamental
model does not seem to produce an entirely satisfactory fit of the “flight-to-
safety” effects that are likely at the heart of the negative correlations observed
post-2000. To test this more formally, we re-estimated the factor model over
the 1986–2007 sample period, including the VIX as an additional factor. We
know that VIX increases are associated with lower correlations between bond
and stock returns, but it is conceivable that this effect is a pure discount rate
effect, captured by our two risk-premium measures, in particular, by the vari-
ance premium. However, we find that the VIX still comes in significantly with
a negative sign. While it is always possible that our variance premium estimate
is an imperfect proxy to the risk-premium variation hidden in VIX movements,
we believe research into “flight-to-safety” effects and their interaction with liq-
uidity factors remain of first-order importance to fully understand stock–bond
return comovements.

Appendix

A. A Component Model for Dynamic Stock–Bond Correlations

In a recent article, Colacito, Engle, and Ghysels (2009) introduce a component model for dynamic
correlations. Their model combines the DCC model of Engle (2002) and the GARCH-MIDAS
model of Engle, Ghysels, and Sohn (2008). Consider the vector of stock and bond excess returns
rt = [

re,t , rb,t
]′, and assume it follows the following process:

rt ∼ i id N (μ, Ht ) (A1)

Ht = Dt Rt Dt , (A2)

where μ is the vector of unconditional means, Ht the bivariate conditional variance–covariance
matrix, and Dt a two-by-two diagonal matrix with the conditional stock and bond return volatilities
on the diagonal, and

Rt = Et−1

[
ξt ξ

′
t

]
(A3)

ξt = D−1
t (rt − μ) . (A4)

This model is conveniently estimated in two steps. First, the conditional volatilities in Dt are
estimated, to be followed by the conditional correlation matrix Rt .
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A GARCH-MIDAS Component Model for Conditional Stock and Bond
Return Variances
Assume that the univariate return follows the following GARCH-MIDAS process:

ri,t = μi + √
mi,τ × gi,t ξi,t , i = {e, b} , t = (τ − 1) Ni

v + 1, ..., τ Ni
v, (A5)

where gi,t and mi,τ are the short- and long-run variance components of the daily returns of asset
i. The short-run component gi,t varies at the daily frequency t, while the long-term component
mi,τ —with a time subscript τ—only changes every Ni

v days. The short-run variance of stock and
bond returns follows a simple GARCH(1,1) process:

gi,t = (1 − αi − βi ) + αi

(
ri,t−1 − μ

)2

mi,τ
+ βi gi,t−1. (A6)

The low-frequency component mi,τ is a weighted sum of Li
v lags of realized variances (RV ) over

a long horizon:

mi,τ = m̄i + θi

Li
v∑

l=1

ϕl

(
ωi

v

)
RVi,τ−l , (A7)

where m̄i and θi are free parameters. The realized variances involve Ni
v daily non-overlapping

squared returns:

RVi,τ =
τ Ni

v∑
t=(τ−1)Ni

v+1

(
ri,t

)2
. (A8)

Because we compare the long-term MIDAS components with our quarterly model counterparts,
we set Ni

v equal to the number of trading days within one quarter. As a weighting function, we use
a beta function with decay parameter ωi

v :

ϕl

(
ωi

v

)
=

(
1 − l

Li
v

)ωi
v−1

Li
v∑

j=1

(
1 − j

Li
v

)ωi
v−1

. (A9)

The weight attached to past realized variances will depend on the two parameters ωi
v and Li

v. The
latter determines the number of lagged realized variances taken into account. The decay parameter
ωi

v determines the weight attached to those past realized variances. In the case of ωi
v = 1, the past

Li
v will receive an equal weight of 1/Li

v. In the likely case of ωi
v > 1, past realized variances will

gradually get less and less weight. The larger ωi
v, the larger the decay. In our empirical analysis,

we allow both the decay parameter ωi
v and the Li

v lags of realized variances to differ between
stock and bond returns. We select optimal values for both parameters using the likelihood profiling
procedure discussed in Engle, Ghysels, and Sohn (2008).
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Table A1

Panel A: Estimates for MIDAS Variance Model
α β μ m̄ θ ωv Li

v

Bond Volatility
Estim 0.847 0.099 0.0002 2.24E−06 0.016 3.314 8
St. Error (0.022) (0.015) (0.0001) (9.56E−06) (0.004) (0.830)

Equity Volatility
Estim 0.877 0.088 0.0006 3.55E−05 0.0084 1.044 3
St. Error (0.013) (0.014) (0.0001) (6.83E−06) (0.004) (0.034)

Panel B: Estimates for MIDAS Correlation Model
a b ωc Lc

Estim 0.050 0.899 4.531 12
St. Error (0.011) (0.028) (2.013)

A Component Model for Conditional Stock and Bond Return
Correlations

In the second step, we calculate correlations based on the standardized residuals ξt . More specifi-
cally, we first compute the following conditional statistics:

qi, j,t = ρ̄i, j,τ (1 − a − b) + aξi,t−1ξ j,t−1 + bqi, j,t−1 (A10)

ρ̄i, j,τ =
Li j

c∑
l=1

ϕl (ωc) ci, j,τ−l (A11)

ci, j,τ =
∑τ Ni j

c

t=(τ−1)Ni j
c +1

ξi,kξ j,k√∑τ Ni j
c

t=(τ−1)Ni j
c +1

ξ2
i,k

∑τ Ni j
c

t=(τ−1)Ni j
c +1

ξ2
j,k

(A12)

where the weighting scheme is similar to the one used in Equation (A9). The long-run correla-

tion ρ̄i, j,τ is a weighted sum of Li j
c lags of realized correlations, calculated on Ni j

c daily non-
overlapping returns. As we did for the long-run variance, we consider one quarter of such daily
returns. The conditional correlations between stock and bond returns at the daily frequency can
then be easily calculated as

ρe,b,t = qe,b,t√
qe,e,t

√
qb,b,t

. (A13)

The correlation estimates then populate Rt ; of course, our benchmark model uses the low-
frequency component, ρ̄i, j,τ .

Estimation Results

Panel A of the table above reports the estimation results for the conditional bond and equity return
variances. All parameters are significant at the 1% level. The sums of α and β are 0.946 and 0.965,
for bonds and stocks, respectively. The likelihood profiling procedure selects an optimal number
of lags of realized variances of respectively eight quarters for bonds and three quarters for stocks.
The decay parameter ωi

v is substantially larger than 1 for bonds, indicating that the weight attached
to past realized bond return variances decreases rapidly with the number of lags. For equity
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volatility, in contrast, the parameter estimate is close to one, implying a relatively flat weight-
ing function. The long-term components of stock and bond return volatility are plotted in Panels
C and D of figure 4, respectively.

Panel B shows the estimation results for the MIDAS conditional stock and bond return correla-
tions. The likelihood function peaks at twelve lags of quarterly realized correlations. The estimate
of the decay parameter ωc implies a rather rapidly decreasing weighting function. The a and
b parameters are both highly significant, and their sum of 0.949 is significantly below 1. The
long-term component of stock and bond return correlations is plotted in Panel A of figure 4.
The long-term correlation is around its unconditional value of 20% during most of the 1980s,
to increase to levels up to 60% in the late 1990s. The stock–bond return correlations drops
to slightly negative levels at the end of the 1990s, to become extremely negative (up to −60%)
around 2003.

B. Data Appendix

Our dataset consists of stock and bond returns and a number of economic (fundamental) state
variables for the United States. Our sample period is from the fourth quarter of 1968 to the fourth
quarter of 2007, for a total of 157 observations. The economic state variables are seasonally ad-
justed. We now describe the exact data sources and how the variables are constructed:

1. Stock Excess Returns (re): End-of-quarter NYSE/AMEX/NASDAQ value-weighted returns
including dividends, from the Center for Research in Security Prices (CRSP) Stock File
Indices. The returns are in excess of the U.S. three-month Treasury bill rate.

2. Bond Excess Returns (rb): End-of-quarter returns on ten-year Treasury bonds, from the
CRSP U.S. Treasury and Inflation Module, in excess of the U.S. three-month Treasury bill
rate.

3. Output Gap (y): The output measure is real Gross Domestic Product (GDP), from the Bureau
of Economic Analysis. The gap is computed as the percentage difference between output and
its quadratic trend.

4. Expected Output Gap (ye): The expected output gap is constructed as follows:

Et
[
yt+1

] = Et

[
gt

gt

(
gt+1

trt+1
− 1

)]

= gt

Et

[
gt+1

gt

]
trt+1

− 1,

where gt is the level of real GDP at time t, and trt the (quadratic) trend value of real GDP
at time t. We use survey-based expectations of the level of real GDP for the current and next

quarter to measure Et

[
gt+1

gt

]
. The source is the Survey of Professional Forecasters (SPF), and

we use the median survey response.

5. Output Uncertainty (yd): Average SPF respondents’ assessment of real output uncertainty,
taken from Bekaert and Engstrom (2010).

6. Inflation (π ): Log difference in the Consumer Price Index for All Urban Consumers (All
Items), from the Bureau of Labor Statistics.

7. Expected Inflation (πe): Median survey response of expected growth in the GDP deflator
over the next quarter, from the Survey of Professional Forecasters (SPF).

8. Inflation Uncertainty (πd): Average SPF respondents’ assessment of inflation uncertainty,
taken from Bekaert and Engstrom (2010).

9. Fundamental Risk Aversion(q): Our measure of fundamental risk aversion is based on the
external habit specification of Campbell and Cochrane (1999), and taken from Bekaert and
Engstrom (2010).
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Table A2

Const CC RV CAY TS DS R2

Param −0.0826 0.0006 0.2752 0.2961 0.0031 0.0095 50.19
pval 0.003 0.0230 0.0004 0.001 0.082 0.049

10. Nominal Risk-free Rate (i): three-month Treasury bill (secondary market rate) from the
Federal Reserve.

11. Cash Flow Growth (cg): Dividend growth including repurchases, taken from Bekaert and
Engstrom (2010). The source for the dividends is CRSP. The source for the repurchases
is Securities Data Corporation. Dividend growth is transformed into cash flow growth using
the ratio of repurchases to (seasonally adjusted) dividends.

12. Stock Market Illiquidity (sliq): Capitalization-based proportion of zero daily returns across
all firms, obtained from Bekaert, Harvey, and Lundblad (2007). We take the end-of-quarter
value of this monthly measure.

13. Bond Market Illiquidity (bliq): Monthly average of quoted bid-ask spreads across all maturi-
ties, taken from Goyenko (2006). He uses securities of one month; three months; and one, two,
three, five, seven, ten, twenty, and thirty years to maturity, and deletes the first month of trad-
ing, when the security is “on-the-run,” as well as the last month of trading. Consequently, he
calculates a monthly equally weighted average of quoted spreads from daily observations for
each security. Finally, the market-wide illiquidity measure is calculated as an equally weighted
average across all securities for each month. We take the end of quarter value as a quarterly
measure, and then subtract the previous four-month average to remove nonstationary behavior.

14. Variance premium (vp): We calculate the variance premium (on a quarterly basis) by
subtracting the fitted MIDAS variance from the VIX squared. The VIX is the implied
volatility of highly liquid S&P500 index options, and is taken at the end of the quarter from
the Chicago Board of Options Exchange (CBOE). Unfortunately, the VIX is only available
from January 1986 onward. For the 1968–1985 period, we use a projection on the following
explanatory variables (see table A2): the Michigan Consumer Confidence Index (CC), the
Realized Variance (RV), the consumption–wealth ratio (CAY), the Term Spread (TS), and the
Default Spread (DS). This specification resulted after insignificant variables were removed
from a richer specification, estimated on 1986–2007 data, also involving liquidity and
sentiment variables.

The variables stock return, bond return, (expected) output gap, (expected) inflation, interest
rate, and cash flow growth are expressed in percentages on a quarterly basis. The stock illiquidity,
bond illiquidity, and variance premium are multiplied by one hundred to make them similar in
order of magnitude. The uncertainty measures and the risk aversion measure are the original series
as taken from Bekaert and Engstrom (2010).

C. An IS Equation with Stochastic Risk Aversion

In a typical model with external habit à la Campbell and Cochrane (1999) , the log of the real
pricing kernel mt+1 is given by

mt+1 = −γ�ct+1 + γ�qt+1, (C1)

where �ct+1 is (logarithmic) consumption growth, and γ is the curvature parameter in the utility
function (we ignore the discount factor β, without any consequence for the derivations to follow):

U (Ct ) =
(

Ct − Ht

1 − γ

)1−γ

. (C2)
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We define qt as log (Qt ) , where Qt = Ct
Ct −Ht

is the inverse of the surplus ratio. The dynamics of
qt are specified as follows:

qt = μq + φqq qt−1 + σqq
√

qt−1ε
q
t , (C3)

where μq , φqq , and σqq are parameters, and ε
q
t a standard normal innovation process. Note that

ε
q
t is the sole source of conditional uncertainty in the stochastic risk aversion process. Note also

that the fact that we model qt as a square root process makes the conditional variance of the pricing
kernel depend positively on the level of Qt .

The consumption process is defined as

�ct = Et−1 [�ct ] + σcc
√

qt−1

[(
1 − λ2

) 1
2

εc
t + λε

q
t

]
, (C4)

where σcc and λ are parameters, and εc
t a standard normal innovation process specific to the

consumption growth process. We do not need to specify the conditional mean dynamics as we will
solve for the interest rate as a function of expected consumption growth. Furthermore, we assume
that εc

t and ε
q
t are jointly N (0, I ), so that

Covt−1 [�ct , qt ] = λσqqσccqt . (C5)

It is easy to see that λ is the conditional correlation between “risk aversion” and consumption
growth. This correlation would be −1 in the Campbell–Cochrane setup, and is generally expected
to be negative to induce countercyclical risk aversion.

In any lognormal model, we have

rt = −Et
[
mt+1

] − 1

2
V art

[
mt+1

]
, (C6)

where rt is the real interest rate. From (C1), (C3), and (C4), it follows that

V art
[
mt+1

] = γ 2qt

[
σ 2

cc + σ 2
qq − 2λσqqσcc

]
. (C7)

Substituting in (C6), and using (C1), we obtain

rt = γ Et
[
�ct+1

] − γ
[
μq + (

φqq − 1
)

qt
] − γ 2

2
qt

[
σ 2

cc + σ 2
qq − 2λσqqσcc

]

= −γμq + γ Et
[
ct+1

] − γ ct + η̃qt (C8)

with η̃ = −γ
(
φqq − 1

) − γ 2

2

[
σ 2

cc + σ 2
qq − 2λσqqσcc

]
.

Solving for ct , we find that

ct = −μq + Et
[
ct+1

] − 1

γ
rt + ηqt , (C9)

where η = η̃
γ = (

1 − φqq
) − γ

2

[
σ 2

cc + σ 2
qq − 2λσqqσcc

]
. If qt is persistent, and for sufficiently

high γ , and sufficiently negative λ, we likely have η < 0, but its sign is generally indeterminate.
To turn (C9) into an IS equation, two more steps are required. First, we define

rt = it − Et
[
πt+1

] + πr , (C10)

where πr is a term arising from a Jensen’s inequality. Consequently, we implicitly assume a con-
stant inflation risk-premium. Second, we must get from ct to detrended output. One common way
to do this is to assume that

yt = ct + gt , (C11)

where gt is a demand shock assumed i id, reflecting all the “gaps” between output and consump-
tion (such as government spending). If we linearly detrend, that is, ỹt = yt − δt , we get

ỹt = c̃t + gt . (C12)
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Substituting (C10) and (C12) into (C9), we obtain

ỹt = αI S + Et+1
[
ỹt+1

] − 1

γ

(
it − Et

[
πt+1

]) + ηqt + F y
t , (C13)

where αI S reflects a collection of all the constant terms and F y
t = −gt .

D. Specification Tests for the State Variable Model

Univariate tests

Consider the following model, which encompasses our reduced-form state variable model:

yt = μ (St ) + Xt−1β + σ (St ) εt . (D1)

For our purposes, it suffices to assume that St can take on two values, 1 or 2. Let πt−1 be the con-
ditional probability of St = 1, and πt−1 the corresponding probability of St = 2. We can define
the residuals for the model as

qt = yt − Xt−1β − (
πt−1μ1 + (

1 − πt−1
)
μ2

)
, (D2)

where μ1 and μ2 are the means in respectively regime 1 and 2. The conditional variance Vt−1 of
qt is

Vt−1 = πt−1σ 2
1 + (

1 − πt−1
)
σ 2

2 + πt−1
(
1 − πt−1

)
(μ2 − μ1)2 , (D3)

where σ 2
1 and σ 2

2 are the variances in respectively regime 1 and 2. As calculated in Timmermann
(2000), the conditional skewness Skt−1 is given by

Skt−1 =
πt−1

(
1 − πt−1

)
(μ1 − μ2)

(
3

(
σ 2

1 − σ 2
2

)
+ (

1 − 2πt−1
)
(μ2 − μ1)2

)
[
πt−1σ 2

1 + (
1 − πt−1

)
σ 2

2 + πt−1
(
1 − πt−1

)
(μ2 − μ1)2

] 3
2

, (D4)

while the conditional Kurtosis K is equal to

Kt−1 =
πt−1

{
3σ 2

1 +(μ1−μ)4+6σ 2
1 (μ1−μ)2

}
+(

1−πt−1
){

3σ 2
2 +(μ2−μ)4+6σ 2

2 (μ2−μ)2
}

[
πt−1σ 2

1 +(
1 − πt−1

)
σ 2

2 +πt−1
(
1 − πt−1

)
(μ2 − μ1)2

]2
.

(D5)
To perform tests using GMM, we actually use the unconditional probabilities π and compute
unconditional moments V, Sk, and K . (We also performed tests using ex ante probabilities, but
then must use unscaled versions of Skt−1 and Kt−1. The results were qualitatively similar.)

We test for a zero mean and no second-order correlation by testing whether or not b1, b2, and
b3 are zero in

E [qt ] − b1 = 0

E
[
(qt − b1)

(
qt−1 − b1

)] − b2 = 0

E
[
(qt − b1)

(
qt−2 − b1

)] − b3 = 0.
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Define q̃t as (qt − b1)2 /V − 1. We test for a well specified variance by testing whether or not
b4, b5, and b6 are equal to zero:

E
[
q̃t

] − b4 = 0

E
[
q̃t q̃t−1

] − b5 = 0

E
[
q̃t q̃t−2

] − b6 = 0.

We test for excess skewness by testing whether or not b7 is equal to zero in

E
[
(qt − b1)3

]

E
[
(qt − b1)2

] 3
2

− Sk − b7 = 0,

and for excess kurtosis by testing whether or not b8 is equal to zero in

E
[
(qt − b1)4

]

E
[
(qt − b1)2

]2
− K − b8 = 0.

We estimate b1 to b8 using GMM with a Newey–West (1987) weighting matrix with number
of lags equal to 5. The tests for zero mean, unit variance, zero skewness, and zero excess kurto-
sis follow a χ2 (1) distribution, the tests for second-order autocorrelation a χ2 (2) distribution.
We also perform a small sample analysis of the test statistics. For each series, we use the esti-
mated parameters from the state variable model to simulate a time series of similar length as our
sample. For 500 of such simulated time series, we calculate the test statistics, and use the resulting
distribution to derive empirical probability values.

Covariance Test

To investigate whether our state variable model adequately captures the covariance between the
factor shocks, we test whether the following conditions hold:

E
[
qi,t q j,t

] = 0, for i = 1, .., N ; j = 1, .., N ; i 	= j,

where N represents the number of state variables. A joint test for the covariances between all factor
shocks follows a χ2 distribution with N (N − 1) /2 degrees of freedom. We also test for each
of the N variables whether its shocks have a zero covariance with all other factor shocks. This test
follows a χ2 distribution with 9 degrees of freedom. As for the univariate tests, we also perform
a small sample analysis of the test statistics.

E. Estimation Results State Variable Model

The table below reports the estimation results of the semistructural state variable model discussed
in Section 1.2.
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Table A3

Panel A: Constants

yt πt qt it cgt ydt πdt sliqt bliqt vpt

Regime 1 −0.064 0.014 0.075 0.030 −0.510 2.447 −0.129 −1.710 −0.028 0.024
(0.099) (0.032) (0.044) (0.043) (0.911) (0.738) (0.280) (0.818) (0.032) (0.013)

Regime 2 1.405 −0.264 0.006
(0.605) (0.108) (0.003)

Panel B: Structural Parameters

μ η φ δ λ ρq

1. Output, Inflation and Risk Aversion Parameters
Estim 0.665 0.028 0.100 0.379 0.098 0.982
St.error (0.046) (0.023) (0.101) (0.060) (0.011)

ρ β(Smp
t = 1) β(Smp

t = 2) γ (Smp
t = 1) γ (Smp

t = 2)

2. Monetary Policy Parameters
Estim 0.832 2.093 0.829 0.878 1.415
St.error (0.038) (0.353) (0.197) (0.363) (0.321)

ρcg ρyd ρπd ρsliq ρbliq ρvp

3. Feedback Parameters of Non-Macro Variables
Estim −0.130 0.921 0.968 0.652 0.536 0.553
St.error (0.117) (0.019) (0.012) (0.067) (0.068) (0.081)

Panel C: Gamma Matrix for Non-Macro Variables

yt πt qt it cgt ydt πdt sliqt bliqt vpt

cgt 0.431 - 0.254 −0.210 1 0 0 0 0 0
(0.208) (0.228) (0.113)

ydt −0.223 −0.173 −0.445 0.260 0 1 0 0 0 0
(0.147) (0.127) (0.147) (0.086)

πdt 0.249 - - 0.128 0 0 1 0 0 0
(0.077) (0.078)

sliqt 0.371 0.143 0.387 - 0 0 0 1 0 0
(0.159) (0.148) (0.197)

bliqt - - - - 0 0 0 0 1 0

vpt - −0.004 - 0.003 0 0 0 0 0 1
(0.002) (0.002)

2423

 at Columbia University Libraries on August 13, 2010 http://rfs.oxfordjournals.org Downloaded from 

http://rfs.oxfordjournals.org


T
he

R
eview

ofF
inancialStudies

/v
23

n
6

2010

Table A3
(Continued)

Panel D: Volatility Parameters

yt πt qt it cgt ydt πdt sliqt bliqt vpt

Regime 1 0.129 0.367 0.226 0.290 1.584 0.531 0.889 1.288 2.061 0.027
(0.039) (0.050) (0.049) (0.044) (0.334) (0.154) (0.212) (0.103) (0.138) (0.005)

Regime 2 0.075 0.214 0.061 0.070 0.411 0.265 0.208 0.188 0.138 0.007
(0.011) (0.025) (0.010) (0.011) (0.061) (0.029) (0.025) (0.035) (0.016) (0.001)

Panel E: Transition Probabilities

Sy
t Sπ

t Sq
t Si

t Scg
t Ssliq

t Sbliq
t Svp

t Smp
t

P 0.907 0.850 0.904 0.849 0.585 0.969 0.964 0.550 0.908 HIGH
(0.112) (0.117) (0.073) (0.116) (0.263) (0.032) (0.034) (0.227) (0.085)

Q 0.975 0.929 0.954 0.911 0.884 0.921 0.966 0.907 0.934 LOW
(0.027) (0.056) (0.038) (0.070) (0.087) (0.117) (0.036) (0.064) (0.058)

This table reports the estimation results of the state variable model as outlined in Section 1. Panel A reports the drift parameters of the fundamental state variables. The parameters are
expressed in percentages. The drift parameters for the state variables ydt , πdt , and vpt are allowed to switch according to respectively the regime variables Sy

t , Sπ
t , and Svp

t . Panel B reports
the structural parameters of the state variable model. Part 1 shows the structural parameters of the IS, AS, and risk aversion equation. Part 2 shows the structural parameters of the monetary
policy rule. Part 3 shows the feedback parameters of the non-macrovariables. Panel C reports the parameters of the gamma matrix for the non-macrovariables. Panel D shows the regime-
switching volatilities of the structural factors. The volatilities are expressed in percentages on a quarterly basis. Panel E reports the transition probabilities for the nine regime-switching

variables. The regime-switching variables are respectively denoted as Sy
t , Sπ

t , Sq
t , Si

t , Scg
t , Ssliq

t , Sbliq
t , Svp

t , and Smp
t . The parameter P is the probability to stay in the high volatility state

(active monetary policy state for Smp
t ). The parameter Q is the probability to stay in the low volatility state (accommodating monetary policy state Smp

t ). Standard errors are reported in
parentheses.
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