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Gallant, Hansen, and Tauchen (1990) show how to use conditioning information

optimally to construct a sharper unconditional variance bound (the GHT bound) on

pricing kernels. The literature predominantly resorts to a simple but suboptimal

procedure that scales returns with predictive instruments and computes standard

bounds using the original and scaled returns. This article provides a formal bridge

between the two approaches. We propose an optimally scaled bound that coincides

with the GHT bound when the first and second conditional moments are known.

When these moments are misspecified, our optimally scaled bound yields a valid

lower bound for the standard deviation of pricing kernels, whereas the GHT bound

does not. We illustrate the behavior of the bounds using a number of linear and

nonlinear models for consumption growth and bond and stock returns. We also

illustrate how the optimally scaled bound can be used as a diagnostic for the

specification of the first two conditional moments of asset returns.

Hansen and Jagannathan (1991) derive a lower bound (the HJ bound) on

the standard deviation of the pricing kernel or the intertemporal marginal

rate of substitution as a function of its mean. Using only unconditional

first and second moments of available asset returns, the HJ bound defines

a feasible region on the mean-standard deviation plane of pricing kernels.

Whereas initially HJ bounds primarily served as informal diagnostic tools

for consumption-based asset pricing models [see Cochrane and Hansen

(1992) for a survey], its applications have rapidly multiplied in recent
years. They now include formal asset pricing tests [Burnside (1994),

Cecchetti, Lam, and Mark (1994), Hansen, Heaton, and Luttmer

(1995)], predictability studies [Bekaert and Hodrick (1992)], mean

variance spanning tests [Snow (1991), Bekaert and Urias (1996), De Santis

(1995)], market integration tests (Chen and Knez (1995)), mutual fund
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performance measurement (Chen and Knez (1996), Ferson and Schadt

(1996), Dahlquist and S€ooderlind (1999)), and others.

HJ bounds are computed by projecting the pricing kernel uncondition-

ally on the space of available asset payoffs and computing the standard

deviation of the projected pricing kernel. The larger this standard devia-
tion, the stronger the restrictions on asset pricing models. The standard

consumption-based asset pricing model with time-additive preferences

dramatically fails to lie inside the feasible region defined by the HJ bounds

computed using a variety of asset returns. However, the pricing kernels in

more recent models, such as the nonseparable utility model in Heaton

(1995) or incomplete markets model of Constantinides and Duffie (1996),

satisfy the bounds.

In this article we study the use of conditioning information to effectively
increase the dimension of the available asset payoffs and hence to improve

the bounds.1 Gallant, Hansen, and Tauchen (1990; hereafter GHT) show

how to use conditioning information efficiently. The procedure is in

principle straightforward. They construct an infinite space of available

payoffs combining conditioning information and a primitive set of asset

payoffs. The variance of the unconditional projection of the pricing kernel

onto that space is the efficient HJ bound, which we will term the GHT

bound.2

The GHT bound depends on the first and second conditional moments

of the asset payoffs. The GHT procedure has not been used very much in

practice, and researchers have mostly resorted to a simpler technique of

embedding conditioning information in the computation of HJ bounds.

They simply scale returns with predictive variables in the information set,

augment the space of available payoffs (and corresponding prices) with

the relevant scaled payoffs or returns, and compute a standard HJ bound

for the augmented space [see, e.g., Hansen and Jagannathan (1991),
Cochrane and Hansen (1992), Bekaert and Hodrick (1992), and many

others]. This procedure is much simpler to implement than GHT since it

does not require knowledge of conditional moments at all.

In this article we provide a formal bridge between the optimal but

relatively unknownGHT bound and the ad hoc scaling methods prevalent

in the literature. We prove twomain results. First, we answer the following

question: When scaling a return with a function of the conditioning

information, what is the function that maximizes the HJ bound? The
solution is an application of variational calculus. The resultant optimal

1 Other methods have been proposed to improve HJ bounds. Snow (1991) studies the restrictions on the
higher moments of the pricing kernel. Balduzzi and Kallal (1997) tighten the bounds by using the risk
premiums that the pricing kernel assigns to arbitrary sources of risk.

2 While GHT study both conditional as well as unconditional projections, we will only study unconditional
projections.
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scaling factor is decreasing in the conditional variance but is not mono-

tonic in the conditional mean. Second, we show that our bound, which we

term the optimally scaled bound, is as tight as the GHT bound when the

conditional moments are known.

The optimally scaled bound has three important properties. First, it is
efficient. Rather than arbitrarily scaling returns with an instrument, our

procedure optimally exploits conditioning information leading to sharper

bounds. We also use this property to explore the relation between

improvements in HJ bounds due to conditioning information and the

presence of return predictability.

Second, it is robust to misspecification of the conditional mean and

variance. Whereas the GHT bound is also efficient, it is only correct when

the conditional moments are accurate. If they are misspecified, the result-
ing bound may be larger than the variance of the true pricing kernel. Since

the optimal bound we derive is a standard HJ bound, it always provides a

bound to the variance of the true pricing kernel even if incorrect proxies to

the conditional moments are used.

Third, the optimally scaled bound is a useful diagnostic for the specifi-

cation of the first and second moments of asset returns. Our bound only

attains the maximum when the first and second conditional moments are

correctly specified. If they are not, the Hansen-Jagannathan frontier is not
even a parabola, so that misspecification is visually clear. We also suggest

a diagnostic test that can be used to formally compare the fit of alternative

specifications of the conditional mean and variance. Given the nonnegli-

gible modeling and parameter uncertainty regarding the first and second

conditional moments of asset returns, this property of our bound is likely

to be important in many finance applications.

We organize the article into three parts. Section 1 starts by clarifying the

relation between standard HJ bounds, the GHT bound, ad hoc scaled
bounds, and our optimally scaled bound. We then prove our two main

results, deriving an optimal scaling function and showing that the result-

ing bound reaches the GHT bound when the conditional moments are

correctly specified. Section 2 discusses the three main properties of our

optimally scaled bound. We end the section by comparing our work to

that of Ferson and Siegel (2001). They derive and study the optimal

scaling factor in the setting of mean-variance frontiers. Since there is a

well-known duality between Hansen-Jagannathan frontiers and the mean-
variance frontier, their results are similar to ours but there are also some

important differences.

Section 3 contains an empirical illustration. We estimate both an asym-

metric GARCH-in-mean model and a regime-switching model on U.S.

consumption growth, and bond and stock returns, and test the restrictions

of the standard consumption-based asset pricing model. This generaliza-

tion of the Hansen and Singleton (1983) model provides a natural null and
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alternative model for the first and second moments, whereas the GARCH

and regime-switching models provide two nonnested specifications for the

conditional mean and variance. We use these models to explore the role of

misspecification and robustness in the behavior of the various bounds. We

briefly discuss future potential applications of our results in a concluding
section.

1. Incorporating Conditioning Information into Variance Bounds

In this section we first review the standard HJ bound while setting up

notation in Section 1.1. In Section 1.2 we briefly review the standard way

of using conditioning information. Section 1.3 reviews the GHT bound.

Section 1.4 introduces the optimally scaled bound.

1.1. Unconditional variance bounds

Let there be a set of assets with payoff vector rtþ1 and price vector pt.

When the payoff is a (gross) return, the price equals one. Let the vector yt
denote the set of conditioning variables in the economy and let It be the
s algebra of the measurable functions of yt, that is, It is the information

set. The pricing kernel mtþ1 prices the payoffs correctly if

E½mtþ1rtþ1jIt� ¼ pt: ð1Þ

By the law of iterated expectations, this implies

E½mtþ1rtþ1� ¼E½ pt� � q: ð2Þ

Hansen and Jagannathan (1991) derive a bound on the volatility of mtþ1

that can be computed from asset payoffs and prices alone. This bound

follows from projecting the kernel onto the set of payoffs and a constant

payoff:

m�
tþ1 ¼ vþb0ðrtþ1 � mÞ ð3Þ

¼ vþðq� vmÞ0��1ðrtþ1 � mÞ, ð4Þ

where

v¼E½mtþ1� ¼E½m�
tþ1�, m¼E½rtþ1� ð5Þ

and

�¼E½ðrtþ1 � mÞðrtþ1 � mÞ0�: ð6Þ

The variance bound follows from realizing that varðmtþ1Þ � varðm�
tþ1Þ.

We denote the bound varðm�
tþ1Þ as s

2(v; rtþ 1) (or s
2(v)), since it depends
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on the mean of the kernel and the first two moments of rtþ1:

s2ðv; rtþ1Þ¼ ðq� vmÞ0��1ðq� vmÞ ð7Þ

¼A� 2BvþDv2, ð8Þ

where

A¼ q0��1q, B¼m0��1q, D¼m0��1m: ð9Þ

The parabola (v,s2(v)) is the HJ frontier. Note that if q equals one and

there exists a risk-free asset such that r f¼ (E[mtþ1])
�1, then s2(v; rtþ1) is

proportional to the square of the Sharpe ratio on the set of assets. Hence a

sharper HJ bound corresponds to a better risk-return trade-off on the

available assets.

To facilitate comparison with the derivations in GHT (1990), we pro-

vide an alternative formulation of m�
tþ1 in terms of the uncentered

moments of rtþ1:

m�
tþ1 ¼ðq� wmÞ0ðmm0 þ�Þ�1

rtþ1 þw ð10Þ

with

w¼ v� q0ðmm0 þ�Þ�1
m

1� m0ðmm0 þ�Þ�1
m

¼ v� b

1� d
, ð11Þ

where the definition of b and d is implicit.3 That m�
tþ1 unconditionally

prices the returns follows immediately by substituting Equation (10) into

Equation (1). The relation between w and v is apparent from taking the

expected value of m�
tþ1 in Equation (10):

v¼ q0ðmm0 þ�Þ�1
mþð1� m0ðmm0 þ�Þ�1

mÞw: ð12Þ

The intuition behind Equation (10) is rather straightforward. Rewrite

the equation as

m�
tþ1 ¼ q0ðmm0 þ�Þ�1

rtþ1 þð1� m0ðmm0 þ�Þ�1
rtþ1Þw:

The first part of the right-hand side expression is the projection of mtþ1

onto the original asset payoff space (not augmented with a constant pay-

off ). However, we would like to project m�
tþ1 on this space augmented

with a constant payoff. The coefficient multiplying w is the residual of the
projection of a unit payoff onto the rtþ1 space and hence orthogonal to

that space. Consequently, w is the projection coefficient of m�
tþ1 onto that

3 Equation (10) can be derived from Equation (4) directly using the identity (Fþ gg0)� 1¼F�1�F�1

g(I þ g 0F� 1g)�1g0F� 1 with F ¼ mm0 þ�, g¼m, and I the identity matrix.
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residual. The two parts together constitute the projection of m�
tþ1 onto the

rtþ1 space augmented with a constant payoff.

1.2 Scaled variance bounds

The presence of the conditioning variable yt allows construction of an

infinite-dimensional payoff space [see Hansen and Richard (1987)]. Let
zt¼ f(yt), where f is a measurable function and zt is an n� 1 vector. Scaled

returns are simply assets with payoffs equal to z0trtþ1 and prices z0tJ (where

J is an n� 1 vector of ones), and do not raise any difficulty in computing

standard HJ bounds.

Such scaling has an intuitive interpretation when excess returns,

retþ1 ¼ rtþ1 � r f , are scaled as in Bekaert and Hodrick (1992) and Cochrane

(1996). The gross ‘‘scaled’’ return, rtþ1 ¼ z0tr
e
tþ1 þ r f ¼ z0trtþ1 þð1� z0tJÞr f ,

can then be interpreted as a ‘‘managed’’ portfolio with zt
0J being

the time-varying proportion of the investment allocated to the risky

assets.

Scaling likely only improves the HJ bound if the weight zt has informa-

tion on future returns. In the literature, one sets zt¼Gyt, where G is a

selector matrix of ones and zeros selecting the variables in yt believed to

predict rtþ1 or to capture the time variation in the expected returns.

Most studies stack actual returns with scaled returns [see, e.g., Bekaert

and Hodrick (1992) and Cochrane and Hansen (1992)], considering the

system
rtþ1

rtþ1�yt

� �
. This amounts to considering many different zt’s where

each zt is represented by a selection matrix with only one nonzero element,
selecting a particular instrument out of the available instruments. It is

fairly unlikely that this is the optimal way to select from the set of

information variables. Therefore we sometimes refer to the bounds result-

ing from this ad hoc approach to scaling as ‘‘naive bounds.’’

1.3 The GHT variance bound

GHT (1990) show how to use conditioning information efficiently. Recall

that a scaled asset is a one-dimensional asset, r~tþ1 ¼ z0trtþ1, where zt is an

n-dimensional vector whose entries are measurable functions of yt (so
they belong to It). The space of all such scaled payoffs is an infinite-

dimensional conditional Hilbert space P¼fz0trtþ1 : 8ztg. GHT directly

project the pricing kernel onto this space augmented by a riskless payoff.

They show that the projected pricing kernel is4

m�
tþ1 ¼ð pt � wmtÞ

0ðmtm
0
t þ�tÞ�1

rtþ1 þw, ð13Þ

4 Note that the projection is an unconditional not a conditional projection.

The Review of Financial Studies / v 17 n 2 2004

344

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/17/2/339/1576985 by C

olum
bia U

niversity user on 18 O
ctober 2019



where mt is the conditional mean vector, �t is the conditional variance-

covariance matrix of the returns, and w is given by

w¼ v� b

1� d
, ð14Þ

Here the symbols b and d are the conditional analogues of the definitions

in Section 1.1.:

b¼E½m0
tðmtm

0
t þ�tÞ�1

pt� ð15Þ
and

d ¼E½m0
tðmtm

0
t þ�tÞ�1

mt�: ð16Þ
The GHT bound by definition is

s2
GHT ðvÞ ¼ varðm�

tþ1Þ: ð17Þ

It is a lower bound to the variance of all valid pricing kernels. The result in
GHT is not surprising given our alternative derivation of the standard

pricing kernels in Section 1.1. The GHT kernel is identical, replacing

unconditional with conditional moments and expected prices with actual

prices [compare Equations (10) and (13)]. This is because the kernel now

prices all payoffs conditionally. There is an equivalent representation of

the GHT kernel to the standard kernel representation in Equation (4), but

it involves the conditional mean of the pricing kernel, vt ¼Et½m�
tþ1�,

m�
tþ1 ¼ð pt � vtmtÞ

0��1
t ðrtþ1 � mtÞþ vt: ð18Þ

Hence vt is the price of a conditionally risk-free asset and v¼E[vt].

1.4 The optimally scaled variance bound

The approach in this article is different. Consider the family of infinitely

many one-dimensional scaled payoff spaces Pz ¼faz0trtþ1 : a 2 R1g
indexed by zt. There is an HJ bound s2(v; rtþ1) associated with each

scaling vector zt, which only depends on the unconditional moments of

z0trtþ1,

s2ðv; z0trtþ1Þ¼
ðE½z0tpt� � vE½z0trtþ1�Þ2

varðz0trtþ1Þ
: ð19Þ

Equation (19) simply applies Equation (7) to the single scaled return

z0trtþ1. The optimally scaled bound is the highest such HJ bound:

s2
OSBðv; z0trtþ1Þ¼ sup

zt

s2ðv; z0trtþ1Þ: ð20Þ

The question we answer is: What zt yields the best (largest) HJ bound?

Since zt¼ f(yt), this is a problem of variational calculus.
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Proposition 1. The solution to the maximization problem

s2
OSBðv; z0trtþ1Þ¼ sup

zt

s2ðv; z0trtþ1Þ: ð21Þ

is given by

z�t ¼ðmtm
0
t þ�tÞ�1ð pt � wmtÞ ð22Þ

where

w¼ v� b

1� d
, ð23Þ

with b and d are as defined in Equations (15) and (16). Furthermore, the

maximum bound is given by

s2
OSBðv; z0trtþ1Þ�s2ðv; z�0t rtþ1Þ ð24Þ

¼ að1� dÞþ b2 � 2bvþ dv2

1� d
, ð25Þ

where a is as defined as follows:

a¼E½ p0tðmtm
0
t þ�tÞ�1

pt�: ð26Þ

Proof. The appendix contains a formal proof. The proof proceeds in two

steps. First, the optimal functional form is solved for. Second, the remain-

ing constant parameter characterizing the function is solved for in a

separate maximization.

Not surprisingly, the optimal scaling factor depends on the conditional

distribution function only through the first and second conditional

moments. Whereas the optimal scaling factor is decreasing in the condi-

tional variance �t, it is not monotonic in the conditional mean mt. The

nonmonotonicity is easy to understand using the duality with the mean-
variance frontier. Consider two independent risky assets with a different

expected return but identical variance. In this case, the minimum variance

portfolio is the equally weighted portfolio. Also, the inefficient part of the

frontier goes through a point where the expected return is the return on

the lowest yielding asset and all funds are invested in that asset. When,

without loss of generality, the expected return on the best-yielding asset is

raised, the minimum variance point is raised as well, but the inefficient

part of the frontier still intersects the point where all is invested in the
lowest-yielding asset. The part of the new frontier beyond that point is

below the old frontier.

Both bounds s2
GHT ðvÞ and s2

OSBðvÞ depend on the conditional mean and

the conditional variance of the payoffs. When these moments are known
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to researchers, the relation between s2
GHT ðvÞ and and s2

OSBðvÞ is described
by the following proposition:

Proposition 2. For an n-dimensional payoff rtþ1 with price vector pt, con-

ditional mean mt, and conditional variance-covariance matrix �t,

s2
OSBðvÞ ¼ s2

GHT ðvÞ¼
að1� dÞþ b2 � 2bvþ dv2

1� d
, ð27Þ

where b, d, and a are defined in Equations (15), (16), and (26).

Proof. Since Pz2P (the GHT bound represents the most efficient way of

using conditional information), it follows that

s2ðv; z0trtþ1Þ� sup
z

s2ðv; z0trtþ1Þ¼s2
OSBðvÞ�s2

GHT ðvÞ: ð28Þ

From Proposition 1, we know that s2ðv; z�0t rtþ1Þ has the form described in

the proposition. Now consider the variance of m�
tþ1:

s2
GHT ðvÞ¼ varðm�

tþ1Þ¼E½ðz�0t rtþ1Þ2� � ðE½z�0t rtþ1�Þ2: ð29Þ

Using the expression for z�t , the law of iterated expectations, and simplify-

ing algebra, it follows that

s2
GHT ðvÞ¼ varðm�

tþ1Þ¼E½ð pt � wmtÞ
0ðmtm

0
t þ�tÞ�1ð pt � wmtÞ�

� E½ð pt � wmtÞ
0ðmtm

0
t þ�tÞ�1

mt�: ð30Þ

Using the definition for a, b, and d, the result follows.

This result is at first surprising. Our optimally scaled bound is a stan-

dard HJ bound for a scaled return. Since the scaling factor depends on v,

the mean of the pricing kernel, the optimally scaled bound is the ratio of a

quartic polynomial in v over a quadratic polynomial in vwhich is generally
not a quadratic polynomial in v. Nevertheless, when evaluated at the true

conditional moments, the quartic polynomial in the numerator becomes

the square of the quadratic polynomial in the denominator, and the

optimally scaled bound becomes quadratic in v. The optimal scaled fron-

tier becomes a parabola, identical to the GHT frontier. Since this insight is

useful later on, we prove it explicitly.

Corollary 1. Let

s2
OSBðvÞ ¼ s2ðv; z�0t rtþ1Þ ¼

A2

B
, ð31Þ

with

A¼E½z�0t pt� � vE½z�0t rtþ1�
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and

B¼ varðz�0t rtþ1Þ:

If the conditional moments are known, then A¼B.

Proof. First note that B¼s2
GHT ðvÞ, the GHT bound. Thus from Proposi-

tion 2, we know that

B¼ að1� dÞþ b2 � 2bvþ dv2

1� d
:

But A is given by

E½z�0t pt� � vE½z�0t rtþ1� ¼E½ð pt � wmtÞ
0ðmtm

0
t þ�tÞ�1ð pt � wmtÞ�

¼ a� wðb� dvÞ � bv: ð32Þ

Substituting for w¼ v�b
1�b

and collecting terms, the result follows. This

corollary provides the basis for a diagnostic test in Section 2.3.

2. The Optimally Scaled Bound: Discussion

Three important properties make the optimally scaled bound very useful

in applied work. First, if there is time variation in expected returns and

volatility, the optimally scaled bound should be sharper than standard ad

hoc bounds. In Section 2.1 we explore the relation between predictability

and the optimally scaled bound. Second, Section 2.2 discusses how the

optimally scaled bound is robust in that it always is a valid lower bound to

the pricing kernel, which is not the case for the GHT bound. Third,

Section 2.3 suggests how the optimally scaled bound could form the
basis of a diagnostic test for the correct specification of the first and

second moments. Finally, we discuss how our work relates to two recent

articles by Ferson and Siegel (2001, 2003).

2.1 Efficiency and predictability

Whereas the optimally scaled bound uses conditioning information effi-

ciently, it would be useful to derive conditions under which scaling

improves the bound. In particular, one would hope that predictable

variation in returns would result in sharper HJ bounds. Unfortunately it
is difficult to derive sufficient conditions, but it is straightforward to

derive a necessary condition. Let us, without loss of generality, focus on

a univariate return space. If the scaling factor zt is uncorrelated with the

first and second conditional moment of rtþ1 (i.e., covð pt, ztÞ¼
covðrtþ1, ztÞ¼ covðr2tþ1, z

2
t Þ¼ 0), then scaling the return with zt will
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decrease the HJ bound. To see this, note that

s2ðv; zrÞ¼ E2ðzÞðEð pÞ � vEðrÞÞ2

Eðz2ÞEðr2Þ � E2ðzÞE2ðrÞ

¼ ðEð pÞ � vEðrÞÞ2

Eðr2Þ � E2ðrÞ
� E2ðzÞðEðr2Þ � E2ðrÞÞ

Eðz2ÞEðr2Þ � E2ðzÞE2ðrÞ

¼s2ðv; rÞ� Eðr2Þ � E2ðrÞ
ðEðz2Þ=E2ðzÞÞEðr2Þ � E2ðrÞ

�s2ðv; rÞ,

where we omitted the time subscripts. The last inequality follows since
E½z2t �
E2½zt�

� 1. Intuitively, scaling by an independent random variable just adds

noise to the return. Conversely the scaling factor has to be correlated with

the future return for the scaled HJ bound to improve relative to the

standard bound. In other words, when the return is scaled with a con-

ditioning variable (e.g., a stock return with its lagged dividend yield), the
variable must predict the return in order for the HJ bound to improve.

This is intuitively clear: when a variable predicts an asset return, it may be

possible to create managed portfolios that improve the risk-return trade-

off as measured by the Sharpe ratio, and it is well-known that HJ bounds

and Sharpe ratios are closely related.

This intuition remains intact for the case where two-dimensional spaces

of the form

rtþ1

z0trtþ1

� �
, ð33Þ

where zt¼Gyt, are considered. In this case, since rtþ1 2 frtþ1, z
0
trtþ1g, we

know for sure that

s2ðv; rtþ1Þ�s2ðv; ðrtþ1, z
0
trtþ1ÞÞ, 8zt: ð34Þ

Even in this case, for the bound to strictly improve, predictable variation

in the conditional mean or variance is a necessary condition. To see this,

first note that the optimal scaling factor remains the same for this
‘‘stacked’’ return and scaled return case, which we show in the next

proposition.

Proposition 3. Suppose there is an asset vector with payoff rtþ1, price pt.

Let It denote the s algebra of the measurable functions of the conditioning

variables yt. Then the solution z�t to the maximization problem

sup
z

s2ðv; ðrtþ1, z
0
trtþ1ÞÞ ð35Þ

is given by

z�t ¼ðmtm
0
t þ�tÞ�1ð pt � wmtÞ: ð36Þ

The proof is given in the appendix.
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Now suppose mt and st are constants (i.e., there is no predictable

variation in conditional means or variances), then z�t is a constant and

rtþ 1 and z�0t rtþ1 are linearly dependent. It follows that

s2ðv; ðrtþ1, z
�0
t rtþ1ÞÞ¼s2ðv; rtþ1Þ. But since our bound is optimal, this

implies s2ðv; ðrtþ1, z
0
trtþ1ÞÞ�s2ðv; rtþ1Þ. Conversely, for the bound to

improve, zt must predict rtþ1. In the empirical illustrations below, we

will use standard scaling in the ‘‘stacked’’ space as indicated above.

Apart from our optimally scaled bounds, we will also report ‘‘stacked’’

optimally scaled bounds, s2ðv; ðrtþ1, z
�0
t rtþ1ÞÞ, which ought to be identical

to the optimally scaled bounds when the conditional moments are known.

Our work here is related to Kirby (1998), which is the only article we are

aware of that provides an explicit link between linear predictability and

HJ bounds. More specifically, he shows that theWald test of the null of no
predictability in a linear regression is proportional to the standard HJ

measure. He then uses this insight to investigate whether several asset

pricing models are consistent with the evidence on predictability. Our

work suggests that if the predictability is correctly described by a linear

predictive model, our optimally scaled return should lead to a sharper HJ

bound, and hence sharper restrictions on these asset pricing models.

Furthermore, our framework can also accommodate nonlinear predictive

relations.

2.2 Robustness

The GHT bound is given by varðm�
tþ1Þ, where mtþ1 depends on the con-

ditional mean mt and the conditional variance �t of the returns. In prac-
tice, these conditional moments are not known. We use a proxy for them

and thus a proxy m̂m�
tþ1 for m�

tþ1. In that case, the proxy for the GHT

bound, varðm̂m�
tþ1Þ, may either underestimate or overestimate varðm�

tþ1Þ.
When it overestimates, varðm̂m�

tþ1Þ fails to be a lower bound for the variance

of valid pricing kernels. On the other hand, the optimally scaled bound is

s2ðv, z�0t rtþ1Þ, where zt depends on the first two conditional moments.

When the conditional moments are unknown, z�t is unknown and so is

z�0t rtþ1. However, for every zt, s
2ðv; z0trtþ1Þ, remains a lower bound to the

variance of all pricing kernels, since s2ðv; z0trtþ1Þ is an HJ bound. Hence,

even when using a proxy for the conditional moments to get a proxy ẑz�t for
z�t , the resultant optimally scaled bound remains a valid lower bound to

the variance of pricing kernels.

This robustness property is important since conditional moments are

notoriously difficult to estimate from the data. GHT (1990) propose to use

the seminonparametric (SNP) method to estimate conditional moments.

The SNP method approximates the conditional density using a Hermite
expansion, where a standardized Gaussian density is multiplied with a

squared polynomial. In their preferred model, the leading term is a linear
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vector-autoregressive (VAR) model with autoregressive conditionally

heteroscedastic (ARCH) volatility. In GHT’s application on stock and

bond returns, the conditioning set is restricted to contain only past returns,

and SNP estimationmay be adequate. However, when the data-generating

process for returns contains jumps or regime switches and involves other
predictive variables, such as dividend yields or term spreads, it is not clear

that the SNP approach provides a good approximation.5 The risk of over-

estimating the variance bound can be avoided by applying our method.

Given an empirical specification for the conditional moments, our

‘‘optimally’’ scaled bound is as easy to implement as the original HJ

bounds, since we only need to compute unconditional moments. For

example, if we deem the time variation in the conditional mean to be

more important than the time variation in the conditional variance, we
obtain valid bounds by just replacing the conditional variance with

the unconditional variance. The resulting bound will not be optimal if

there truly is time variation in the conditional variance. However, it may

still be sharper than using arbitrary scaling.

2.3 Diagnostics

The fact that optimally scaled bounds computed from misspecified con-

ditional moments remain valid bounds that are best when the true condi-

tional moments are used suggests an interesting application of our
procedure. We can use the optimally scaled bound to diagnose the accu-

racy of competing models for the first two conditional moments. There are

several ways in which misspecification of the conditional moments may

manifest itself. First, it need not be the case that s2ðv; rtþ1Þ�s2ðv; z�0t rtþ1Þ.
Hence, misspecified conditional moments may reveal themselves through

poorly performing optimally scaled bounds relative to the conditional,

‘‘naively’’ scaled or stacked optimally scaled bounds.

Second, and most strikingly, the HJ bound need not be a parabola,
since its numerator is a quartic in v and its denominator a quadratic in v.

That is, misspecification should be visibly clear from graphing the optimal

bound and we will illustrate this behavior in the empirical section below.

This reasoning also makes it possible to develop a general diagnostic

test for the first and second conditional moments of asset returns.6 To

develop such a test, let’s revisit Corollary 1 in Section 1.4. The optimally

scaled bound can be written as A2

B
, where B is the GHT bound, and correct

moment specification impliesA¼B. This suggests a simple diagnostic test.

5 More and more research reveals that some of the predictable patterns detected in returns, even in linear
settings, may be spurious, [e.g., see Kirby (1997)].

6 We thank the referee for stimulating our thinking on this issue. The test in Kirby (1998) diagnoses the
performance of several asset pricing models with respect to linear predictability but does not accommo-
date heteroscedasticity.
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The GHT bound is a quadratic in v where the coefficients are nonlinear

functions of the three unconditional moments a, b, and d, defined above.

For the parabola A to coincide with B for all v’s, it should be the case that

its coefficients are equal to the coefficients in B. Rewrite A¼E½z�0t pt� �
vE½z�0t rtþ1� as E½ f1t þ f2tv þ f3tv

2� and denote the estimated constants a, b,
and d by âa, b̂b, and d̂d. It is straightforward to derive

f1t ¼ p0tðmtm
0
t þ�tÞ�1

pt þ
b

1� d
m0
tðmtm

0
t þ�tÞ�1

pt,

f2t ¼ � m0
tðmtm

0
t þ�tÞ�1

pt

1� d
� p0tðmtm

0
t þ�tÞ�1

rtþ1

� b

1� d
m0
tðmtm

0
t þ�tÞ�1

rtþ1,

f3t ¼ � m0
tðmtm

0
t þ�tÞ�1

rtþ1

1� d
:

To test the equality of A and B, we use the following orthogonality

conditions:

gt ¼

p0tðmtm
0
t þ�tÞ�1

pt � a

m0
tðmtm

0
t þ�tÞ�1

pt � b

m0
tðmtm

0
t þ�tÞ�1

mt � d

p0tðmtm
0
t þ�tÞ�1

rtþ1ð1� dÞþ ðm0
tðmtm

0
t þ�tÞ�1

rtþ1Þb� b

m0
tðmtm

0
t þ�tÞ�1

rtþ1 � d

2
66666664

3
77777775
, ð37Þ

where the first three conditions estimate and define the fundamental

constants, the fourth condition is a rewrite of E½ f2t� ¼�2b, including a
rescaling by 1� d̂d that ensures that all orthogonality conditions are of a

similar order of magnitude and the fifth condition is the rescaled version

of E½ f3t� ¼ d̂d=ð1� d̂dÞ. The restriction E½ f1t� ¼ âaþ b̂b2=ð1� b̂bÞ does not

yield any conditional moments restrictions since returns do not enter

this expression.
There are three parameters to be estimated, so that there are two over-

identifying restrictions, which can be tested using the usual statistic

Tg0TWgT , where gT is the mean of gt, T is the number of observations,

andW is a suitable weighting matrix; for example, obtained from a Newey

and West estimate (1987) of the inverse of the spectral density matrix of gt
at frequency zero. Note that whatever the dimensionality of returns, the

test is always a x2(2) and can be used to compare the performance of

nonnested models for the first and second conditional moments. Of
course, in a formal application, the sampling error in the parameters
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generating mt and �t should be taking into account. In a generalized

method of moments (GMM) context, this can be easily accomplished

employing a sequential GMM procedure, as in Bekaert (1994), Burnside

(1994), and Heaton (1995).

The economic intuition for the test is straightforward. In a standard
unconditional HJ framework, the HJ bound, which is the variability of the

projected pricing kernel, can be viewed as a quadratic form in the devia-

tions from risk-neutral pricing [see Hansen and Jagannathan (1991)]. Let’s

consider A : A¼E½z0t pt� � vE½z0t rtþ1�. If a risk-free asset exists, then v is the

inverse of the risk-free rate and A can be seen as the deviation from risk-

neutral pricing for the portfolio with weights zt (the optimally scaled

portfolio), since the first term is the expected actual price and the second

term is the risk-neutral price. Note that the portfolio weights do not need
to add up to one. B on the other hand is simply the variability of the

optimally scaled portfolio and at the same time the variability of the GHT

kernel. If the scaling is done with the correct moments, the variability of

the scaled return exactly equals the deviation of risk-neutral pricing.

This suggests another useful diagnostic statistic that could be used to

compare alternative models. One could simply select two economically

relevant v’s (v1 and v2, say) and create a quadratic form using the following

orthogonality conditions:

gt ¼
ztðv1Þ0pt � v1ztðv1Þ0rtþ1 � Bðv1Þ
ztðv2Þ0pt � v2ztðv2Þ0rtþ1 � Bðv2Þ

" #
, ð38Þ

where B(vi) is the GHT bound evaluated at vi and zt (vi) is the optimal

scaling function evaluated at vi. This statistic ignores the sampling error in

a, b, and d and the original model parameters, but can be viewed as a

distance measure to rank alternative models.

To fully explore the properties of diagnostic tests based on the optimally
scaled bound is beyond the scope of the present article. In our empirical

illustration we report the test developed in Equation (37) for a number of

different cases, including cases with simulated data where the true first and

second moments model is known.

2.4 Relation to Ferson and Siegel (2001, 2003)

Ferson and Siegel have two contemporaneous articles that are related to
the present article. Ferson and Siegel (2001) solve for unconditionally

minimum variance portfolios while using conditioning information effi-

ciently. They provide explicit solutions for the portfolio weights as a

function of the conditional means and volatilities of the available asset

returns, both when a risk-free asset exists and when it does not. Since there
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is a duality between HJ frontiers and mean standard deviation frontiers,

the Ferson and Siegel portfolios have some similarities to our optimally

scaled returns, as Ferson and Siegel note in a final section. However, there

are also many differences between our analyses so that our respective

articles should really be viewed as complements rather than substitutes.
First, the HJ bounds derived from the Ferson and Siegel procedure are

not as sharp as our bounds, because of the restriction that the portfolio

weights have to sum to one. To appreciate the potential effect of this

restriction, consider the extreme case where a researcher examines HJ

bounds using one asset return (the equity return, for example) and multi-

ple instruments (dividend yields, default spreads, and short rates, for

example). One would imagine that conditioning information should be

very valuable in increasing the HJ bound, but the Ferson and Siegel bound
would equal the unconditional bound, since the conditioning information

is useless with only one return, which forces the weight to be one for all t.

Second, the optimality proof in Ferson and Siegel basically guesses the

right solution for the optimal portfolio weight and verifies that it is

correct, so no variational analysis is used. Third, Ferson and Siegel do

not attempt to link their results to the GHT optimal HJ bound, and

finally, they assume the conditional moments to be correctly specified.

Whereas our focus is mostly on the relation between GHT bounds and
our optimally scaled bound, Ferson and Siegel extensively analyze the

form of the weight function, providing extensive intuition on the non-

linear relation between the optimal portfolio weight and the magnitude of

the expected return. In particular, extreme values for the expected return

for a risky asset decrease the optimal weight on that asset, providing an

interesting form of conservativeness to optimal scaling. This result applies

to our bounds too, since it derives from the influence of the expected

return on the uncentered second moment.
Ferson and Siegel (2003) is a purely empirical article that provides

useful information about the small sample properties of alternative

methods to embed conditioning information into HJ bounds. They com-

pare the naively scaled (multiplicative) bounds, the GHT bound, and a

bound based on their unconditionally efficient portfolios. Perhaps not

surprisingly, all bounds suffer from significant biases that increase the

bounds relative to their true values. They conclude that the parsimony of

the Ferson and Siegel (2001) bounds enhances their attractiveness in small
samples and that they are often close to optimal (i.e., close to the GHT

bound). The analysis in Ferson and Siegel (2003) also assumes correct

specification of the conditional moments. In a sense, our results

strengthen their conclusions since we show that the use of optimally scaled

bounds is robust to misspecification. We show that this remains true even

in the presence of significant nonlinearities as generated by a regime-

switching model.
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3. Empirical Application

3.1 The econometric model
3.1.1 An extension of Hansen and Singleton (1983). Let Ri

t be the loga-
rithm of the stock return (i¼ s) and the bond return (i¼ b) and let Xt be

the logarithm of gross consumption growth. Define

Yt ¼ ½Xt,R
s
t ,R

b
t �
0:

Hansen and Singleton (1983, henceforth HS) assume that yt follows a

VAR process with normal disturbances. HS then examine the restrictions

imposed by the standard consumption-based asset pricing model with

time-additive constant relative risk aversion (CRRA) preferences on the
joint dynamics of the variables. A critical assumption is the time invar-

iance of the conditional covariance matrix of yt. It is well known that in

this lognormal version of the consumption-based asset pricing model,

time variation in expected excess returns is driven by the time variation

in this covariance matrix. To accommodate predictability in excess

returns, a natural extension of the HS framework is to allow for hetero-

scedasticity using the GARCH-in-mean framework of Engle, Lilien, and

Robins (1987). Surprisingly, apart from an application to international
data [Kaminsky and Peruga (1990)], there is little work in this area. Two

reasons may be the parameter proliferation that occurs with multivariate

GARCH models and the lack of heteroscedasticity in consumption

growth (which may be due to a temporal aggregation bias7). Nevertheless,

we will use this familiar framework to illustrate the properties of our

‘‘optimally scaled bound.’’

Our first specification has two important features. First, we impose a

parsimonious factor structure on the conditional covariance matrix
inspired by Engle, Ng, and Rothschild (1990). Second, we allow negative

shocks to have a different effect on the conditional variance than positive

shocks, that is, we accommodate asymmetric volatility as in Glosten,

Jagannathan, and Runkle (1993) and Bekaert and Wu (2000). The

presence of asymmetry in stock return volatility is well known, but in a

previous version of this article [Bekaert and Liu (1998)] we also document

asymmetry in the conditional variance of quarterly consumption growth.

While it is intuitively plausible that uncertainty about future consumption
growth is higher in a recession than in a boom, we could not find articles in

the business cycle literature that document this phenomenon. In the

finance literature, the available empirical evidence is mixed. Ferson and

Merrick (1987) report U.S. consumption volatility to be higher in a non-

recession sample relative to a recession sample. Kandel and Stambaugh

7 See Bekaert (1996) for an elaboration of this point.
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(1990) find peaks in the standard deviation of U.S. consumption growth

to occur at the end of recessions or immediately after them.

For the multivariate setup, we begin by parameterizing an uncon-

strained model:

Yt ¼ ct�1 þAYt�1 þVt�1et ð39Þ

where

ct ¼
cxt

cst

cbt

0
B@

1
CA, ð40Þ

and et j It�1 is N(0,Ht) with Ht a diagonal matrix where the diagonal

elements, hiit, follow

hiit ¼ di þaihiit�1 þ kie
2
iit�1 þhiðmaxð0, � eiit�1ÞÞ2: ð41Þ

If hi> 0, volatility displays the well-known asymmetric property. The

et vector contains the fundamental shocks to the system. The error terms
of the system are linked to et through Vt. A parsimonious factor structure

arises by assuming that Vt is time invariant and upper triangular:

Vt ¼V¼
1 0 0

fxb 1 0

fxs fbs 1

0
B@

1
CA: ð42Þ

To further limit parameter proliferation, we set fbs¼ 0 and let the con-

sumption shock be the only factor. This is consistent with the standard

consumption-based asset pricing model, where consumption growth is the

only state variable. In addition, we set

ab ¼ kb ¼hb ¼as ¼ ks ¼hs ¼ 0: ð43Þ

All the time variation in volatility of the Yt system is driven by time-

varying uncertainty in consumption growth. The covariance of the error

terms becomes

�t ¼VHtV
0: ð44Þ

We denote its elements by sijt with i, j¼ x, b, s. Since the consumption-

based asset pricing model introduces elements of the conditional variance-

covariance matrix in the conditional mean, the unconstrained model

should allow the conditional covariance matrix to affect the conditional

mean as well. Therefore we let

cit ¼ vihxxt þ ci, ð45Þ
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where i is either b or s. This simple expression for the constant arises

because of the one-factor structure of the conditional covariance matrix.

The parameter vector to be estimated is

Q¼ ½vecðAÞ0, cx, cb, cs, vb, vs, fxb, fxs, dx,ax, kx,hx, db, ds�
0:

Hence there are a total of 22 parameters and it is clear that relaxation of

some of the parameter restrictions we impose would be stretching the data

too far. This unconstrained model serves as a natural alternative to the
model constrained by the consumption-based asset pricing model. Let g

be the CRRA and let b be the discount factor. The model implies

Et½Ri
tþ1� ¼ � 1=2siit � 1=2g2sxxt þ gsixt þ gEt½xtþ1� � ln b:

If conditional variances are constant, the time variation in the conditional

means of asset returns and consumption growth is proportional and the

proportionality constant is the CRRA. The restriction also shows the

role of g as the price of risk, with the risk being the covariance with

consumption. With our particular GARCH structure, the model further

simplifies to

Et½Ri
tþ1� ¼ � ðln bþ 1=2hiiÞ � 1=2ðg � fxiÞ2hxxt þ gEt½xtþ1�:

Note that hii does not depend on t for i¼ b, s because of Equation (43).

Our particular parameterization has the implication that increased uncer-

tainty about future consumption growth always decreases expected
returns. This seems at odds with the data where the price of risk has

been shown to move countercyclically. The model does predict that, if

shocks to returns depend positively on consumption shocks, an increased

covariance with consumption will drive up expected returns. Further-

more, the covariance with consumption increases when consumption

volatility increases because of the factor structure. However, this effect

is swamped by the Jensen’s inequality terms, which depend negatively

on consumption volatility. As a result, this comparative static is not
necessarily true for gross returns:

Et½exp½Ri
tþ1Þ� ¼ expð�ln b� g=2ðg � 2fxiÞhxxt þ gEt½xtþ1�Þ:

Depending on the relative size of the sensitivity to consumption shocks, fxi
and the CRRA, higher consumption volatility may now increase the gross

expected asset return. Empirically our unconstrained model potentially

allows for a positive relation between consumption volatility and expected

log returns and so we can test whether this feature of the model is a source

for rejection. The restricted parameter vector QR contains 14 parameters,

QR ¼ ½cx,A11,A12,A13,b, g, fxb, fxs, di,ax, kx,hx�
0, i¼ x, b, s:
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3.1.2 A nonlinear dynamic model. Although the above unconstrained

model features nonlinearities in the volatility dynamics, the conditional

mean is linear in the information variables. There are two reasons to

explore nonlinear models more explicitly. First, empirical research has

documented regime-switching behavior in both consumption growth and
equity return data [see, Whitelaw (2000) and Ang and Bekaert (2002)].

Second, if nonlinear predictability is present, it can be easily accommo-

dated in our optimally scaled bound, whereas naively scaled bounds are

not likely to reflect it.

Consequently we formulate a regime-switching version of the uncon-

strained VAR model of Section 3.1.1. With St a discrete regime variable

that can take on the values of one or two, we assume

Xt ¼mxðStÞþfxðStÞRb
t�1 þsxðStÞext , ð46Þ

Ri
t ¼miðStÞþfiðStÞRb

t�1 þ bisxðStÞext þsie
i
t, ð47Þ

where i ¼ b, s. Note that to avoid parameter proliferation, we constrained
the conditional mean dynamics to only depend on the past bond return,

but not on past consumption growth or stock returns. The correlation

between bond and stock returns in this model stems either from condi-

tional mean dynamics or from their joint dependence on consumption

shocks. The St variable follows a Markov chain with either constant

transition probabilities or transition probabilities that depend on the

past bond return. Ang and Bekaert (2002) find evidence of nonlinear

predictability in monthly equity returns using the short rate as an
instrument:

P¼PrðSt ¼ 1jSt�1 ¼ 1, It�1Þ¼
expða1 þ d1R

b
t�1Þ

1þ expða1 þ d1R
b
t�1Þ

, ð48Þ

Q¼PrðSt ¼ 2jSt�1 ¼ 2, It�1Þ¼
expða2 þ d2R

b
t�1Þ

1þ expða2 þ d2R
b
t�1Þ

: ð49Þ

The parameter vector for this system contains 20 elements, with two

additional parameters for the case of time-varying transition probabilities:

QRS ¼ ½mið jÞ,fið jÞ,sxð jÞ,sk, bk, aj, dj �,

with j¼ 1, 2 (denoting regime dependence), i¼ x, s, b, and k¼ s, b. It is

straightforward to derive a representation of this model that imposes the
restrictions of the consumption-based asset pricing model, as we did for

the model in Section 3.1.1. This requires imposing the restrictions

‘‘within’’ each regime. For reasons explained in the next section, we do

not use this model in the empirical illustration of the bounds.
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3.2 Data and estimation results

Our consumption measure is the sum of per capita real nondurables and

services consumption in the United States. These data were downloaded

from DATASTREAM. The stock return is the quarterly value-weighted

dividend-inclusive index return on the New York Stock Exchange
(NYSE), taken from Wharton’s website (http://wrdsx.wharton.upenn.

edu). The interest rate is the U.S. three-month Treasury-bill rate taken

from the Federal Reserve website. We use a dataset on weekly secondary

market rates (averages of daily) and use the rate closest to the end of the

month. All data run from the second quarter of 1959 to the end of 1996.

Table 1 shows the results from the unconstrained estimation. Despite

the presence of very large coefficients on the GARCH-in-mean term,

consumption growth and bond returns show strong autocorrelation as
they do univariately. Although the standard errors for the GARCH-in-

mean coefficients seem very small, they should be interpreted with much

caution. Standard errors computed from the cross-product of the first

derivatives of the likelihood are quite large and more adequately represent

the uncertainty regarding these parameter estimates. In fact, the likeli-

hood function is very flat with respect to these parameters, and a number

of locals exist where the GARCH-in-mean parameters are in fact positive.

This is not that surprising. Much work on GARCH-in-mean models for
stock returns [see Bekaert and Wu (2000) for a survey] has stressed the

weakness of a positive relation between stock return volatility and its

conditional mean. In this model, stock and bond returns are linked to

consumption volatility, which in turn drives asset return volatility. The

much smaller magnitude of consumption volatility relative to stock return

Table 1
Unconstrained GARCH-in-mean model

Equations Coefficients

Constant Xt�1 Rb
t�1 Rs

t�1

Xt 0.0030 0.361 �0.029 0.008
(0.0005) (0.033) (0.022) (0.005)

Rb
t 0.0056–162.65hxxt �0.198 0.738 �0.0002

(0.0006)(0.0001) (0.031) (0.037) (0.0043)
Rs

t 0.0188–58.02hxxt �1.734 1.029 0.077
(0.0083)(0.0003) (0.005) (0.014) (0.034)

Constant ai ki hi

h11t 0.000019 �0.0265 0.0008 0.2705
(0.000018) (0.0807) (0.7898) (0.0426)

h22t 0.000014 0 0 0
(0.000002)

h33t 0.006134 0 0 0
(0.00103)

fxb¼�0.0564 fxs¼ 3.182
(0.1425) (0.003)

The model estimated is described in Equations (39)–(45). Standard errors are in parentheses and are
robust to misspecification of the error distribution in the sense of White (1982). Parameter values without
standard errors reflect constrained parameters.
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volatility explains the large coefficients we find relative to the GARCH-in-

mean literature for stock returns. When we estimate a univariate

GARCH-in-mean model for stock returns, we find a GARCH-in-mean

parameter of 6.29 with a large standard error of 5.23. Note that there is

virtually no GARCH in the volatility dynamics, but strong asymmetry,
with the coefficient on positive shocks being slightly negative. This is

somewhat problematic since the conditional variance may theoretically

become negative, although it never does in-sample.

Not surprisingly, the constrained model (see Table 2) is rejected by a

likelihood ratio test. The chi-square test statistic is 75.32 with a p-value of

0.000 (there are eight restrictions). The CRRA is estimated to be 14.675

and the discount factor b is 1.071. Although the latter is greater than one,

we know fromKocherlakota’s (1996) work that the economy remains well
defined and, in fact, our parameter values are quite close to the ones he

uses to explain the equity premium puzzle. The estimation results reveal

that the key parameter the model attempts to match is the autoregressive

coefficient in the bond equation, which is almost perfectly matched. Given

the proportionality restrictions imposed by the model on expected returns,

this causes a bad fit for both stock returns and especially consumption

dynamics. Because the GARCH-in-mean parameters are pretty similar,

and are imprecisely estimated, it is very likely that the model rejection is
driven by this phenomenon.

Table 3 contains the estimation results for the regime-switching model.

The construction of the likelihood function for such models is by now

Table 2
Constrained GARCH-in-mean model

Equations Coefficients

Constant Xt�1 Rb
t�1 Rs

t�1

Xt 0.005 �0.018 0.050 0.0001
(0.0005) (0.005) (0.005) (0.0003)

Rb
t 0.0053–108.97hxxt �0.264 0.734 0.0012

Rs
t 0.0021–82.086hxxt �0.264 0.734 0.0012

g¼ 14.675 b¼ 1.071
(0.0376) (0.0082)

Constant ai ki hi

h11t 0.000022 �0.0652 0.00 0.3907
(0.000006) (0.0208) (0.00) (0.0876)

h22t 0.000013 0 0 0
(0.000002)

h33t 0.006457 0 0 0
(0.001009)

fxb¼�0.0877 fxs¼ 1.847
(0.0813) (0.0872)

The model estimated imposes the following constraint on the unconstrained model reported in Table 1;

Et½Ri
tþ 1� ¼� logbþ 1

2
hii

� �
� 1

2
½g�fxi �2hxxt þ gEt½Xi

tþ 1�:

The table reports all parameters, including parameters constrained by the model. Robust standard errors
are in parentheses.
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standard [see, for instance, Hamilton (1994)]. Identifying a global max-

imum in a regime-switching model is difficult and we followed an elabo-
rate procedure to ensure that we indeed identified the global maximum.

We first used 20 different sets of starting values, covering the parameter

space as widely as possible. We identified a number of local maxima and

then, for each local maximum, ran three to four estimations with starting

values randomized around the converged local optimum parameter

values. Finally, we ran some 20 estimations with starting values random-

ized around the global maximum converged values. The global maximum

we report in Table 3 has been confirmed more than 20 times in our
different estimation experiments.

Whereas the identification of regimes its typically driven by differences

in volatilities across regimes, we find the volatility of consumption shocks

to be very similar in the two regimes. However, regime 1 is a regime with

overall high consumption growth, whereas consumption growth in

regime 2 is often negative, although it depends positively and significantly

on the bond return. In this recession regime, expected asset returns are

high, consistent with the conventional wisdom. In the recession regime,
bond returns are negatively serially correlated. Bond returns have a small,

insignificant consumption beta, whereas stock returns have a large,

positive, and statistically significant consumption beta. We verified by

simulation that this model matches the first and second moments of the

data very well.

When we allow the transition probabilities to depend on the past bond

return, we find d1¼ 0.3785 with a standard error of 1.0048 and d2¼ 13.08

with a standard error of 8.65. A likelihood ratio test rejects the restriction
of constant transition probabilities at the 5% level.

For the sake of completeness, we should mention that we estimated two

other regime-switching models that we decided not to use in the empirical

illustration. First, we estimated the model in Table 3, subject to a set of

restrictions imposed by the consumption-based asset pricing model with

CRRA preferences. This model was strongly rejected by the data and the

Table 3
Regime-switching model

Equations Coefficients

Constant Rb
t�1 si bi

St¼ 1 St¼ 2 St¼ 1 St¼ 2 St¼ 1 St¼ 2
Xt 0.0055 �0.0103 0.005 0.813 0.0042 0.0042

(0.0005) (0.0020) (0.064) (0.306) (0.0017) (0.0003)
Rb

t 0.0009 0.0087 0.802 �0.721 0.0034 �0.0044
(0.0004) (0.0018) (0.051) (0.269) (0.0002) (0.0663)

Rs
t 0.0071 0.0332 1.31 1.11 0.0773 4.62

(0.0084) (0.0385) (1.19) (5.70) (0.0045) (1.52)

The model estimated is described in Equations (46)–(49). Standard errors are in parentheses and are
robust to misspecification of the error distribution in the sense of White (1982).
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CRRA coefficient was negative. Hansen and Singleton (1983) also found

convex utility for some of their specifications. Furthermore, we estimated

a model using only data on bond and stock returns. By freeing the regime

variable from having to fit regimes in consumption growth, we conjec-

tured that this model would provide a better fit with the return data.
However, this was not the case: the joint model estimated in Table 3

provides sharper HJ bounds!

3.3 The HJ bounds

This section illustrates the performance of our optimally scaled bound

along the three dimensions that we discussed in Section 2: efficiency,

robustness, and diagnostics.

We have four candidates for the computation of the conditional

moments we need in deriving the optimally scaled and GHT bounds: the
VAR model for stock and bond returns and consumption growth in its

unconstrained and constrained form, and the regime-switching model

with constant and time-varying transition probabilities. We will also use

these models as data-generating processes in simulations. Simulations

both serve to illustrate the effect of misspecifications where the condi-

tional moments are known and to help interpret data results that may be

sensitive to sampling error in our short sample. Simulations use 10,000

observations.8 Table 4 provides a complete guide to the figures we pro-
duce. Of importance is that we always focus on both stock returns, and

bond returns, and naive scaling uses the past bond and stock returns as

instruments for both returns.

3.3.1 Efficiency. Figure 1 uses the unconstrained VAR model and the

two regime-switching models to compute the conditional moments in the

optimally scaled bounds. Also on the graph are the unconditional and

naively scaled HJ bounds. Three results stand out. First of all, the differ-

ence between the unconditional and scaled bounds reveals considerable
predictability. The main source of the predictability is the autoregressive

component in bond returns.

Second, the difference between the various scaled bounds is small, but

the arbitrarily scaled bound is even somewhat sharper for small v’s than is

the optimally scaled bound computed from the unconstrained VAR. This

can be due to either misspecification of the conditional moments or

chance (sampling error). To examine this issue more closely, we first

produce the same graphs for a long simulated sample from the uncon-
strained model in Figure 2. We also show the GHT bound. As should be

8 We simulate 10,100 observations but discard the first 100 observations to reduce dependence on initial
conditions. Such dependence is unavoidable in the graphs using short sample data. Our sample estimates
of the HJ bounds may also be subject to the finite sample bias documented in Ferson and Siegel (2003),
but the number of asset returns we use is much smaller than theirs.
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Figure 1
HJ bounds for real data with conditional moments calculated from three models.

Table 4
Guide to figures

Figure No. Data-generating process Model for (mt, �t) Illustration

1 Data UC VAR, CP RS, TP RS Efficiency
2 Simulation, UC VAR UC VAR Efficiency
3 Simulation, TP RS TP RS Efficiency
4 Simulation, TP RS TP RS Efficiency
5 Data CO VAR Diagnostic
6 Simulation, CO VAR CO VAR Diagnostic
7 Simulation, TP RS all Diagnostic/Robustness
8 Simulation, TP RS all Diagnostic/Robustness
9 Simulation, CO VAR all Diagnostic/Robustness

10 Simulation, TP RS all Robustness
11 Simulation, CO VAR all Robustness

The data-generating process column records the origin of the data in the construction of the optimally
scaled and GHT bounds: actual data (‘‘data’’), simulated data from one of the models: UC VAR
(unconstrained VAR), CO VAR (constrained VAR), CP RS (regime-switching model with constant
transition probabilities), TP RS (regime-switching model with time-varying transition probabilities).
The simulated samples are of length 10,000. The model column records the model used in constructing
the conditional moments. The last column identifies the property of the optimally scaled bound the figure
purports to illustrate. Figures 10 and 11 graph GHT bounds; Figures 7–9 graph optimally scaled bounds.
The first six figures graph a variety of bounds, including unconditional HJ bounds (denoted by HJ in the
figures) and naively scaled bounds. For the scaled bounds, the instruments are the past returns for both
returns.
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the case, the GHT and optimally scaled bound are virtually on top of one

another and dominate ad hoc scaling, but only slightly. In other words, in

a world where the unconstrained model generates the data, naive scaling

will closely approximate the efficient use of the conditioning information.
In fact, since the unconstrained model describes the data rather well, the

dominance of the naively scaled bound in Figure 1 may be simply due

to sampling error, which we confirmed by performing simulations using

151 data points only.

It is no mystery why the use of the true conditional moments adds little

in this setting. The feature of the data that arbitrary scaling would most

likely fail to capture is the GARCH-in-mean feature, which happens to be

weak in quarterly data. The importance of optimal scaling in generating
sharper HJ bounds is likely more dramatic when strong non-linearities are

present. This brings us to the third important result captured by Figure 1:

the bounds generated by both regime-switching models are indeed sharper

than the naively scaled bound, with the sharpest bound delivered by the

most nonlinear model, the model with time-varying transition probabili-

ties. Hence there appear to be nonlinear conditional mean effects in the

data, but it is not surprising that they are not terribly strong in this
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Figure 2
HJ bounds for simulated data according to the unconstrained VAR model with conditional moments
calculated from the unconstrained VAR model.
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quarterly dataset. To investigate this further, Figure 3 simulates data from

the regime-switching model with time-varying transition probabilities and

produces the unconditional, naively scaled, optimally scaled, and GHT

bounds, the latter two using the true model to compute conditional
moments. As expected, the optimally scaled bound and the GHT bound

are practically on top of one another, but there is now a bit more of a

wedge between naive and optimal scaling. To further demonstrate that

naive scaling produces inefficient bounds when nonlinear predictability is

present, we simulate data from a regime-switching model with stronger

nonlinear predictability. In Figure 4, we use the parameter estimates from

Table 3, but multiply the parameters governing the state dependence of

the transition probabilities (d1 and d2) by 10. The wedge between the
naively scaled and the efficient optimally scaled and GHT bounds now

gets much larger.

3.3.2 Diagnostics. In Figure 5, which uses real data and the constrained

VAR model to generate the conditional moments, two results stand out.

First, the stacked optimally scaled bound gets pretty close to the naively

scaled bound, despite the misspecification of the conditional moments.
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Figure 3
HJ bounds for simulated data according to the regime-switching model with time-varying transition
probabilities with conditional moments calculated from the regime-switching model with time-varying
transition probabilities.
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Of course, the constrained model manages to reproduce the most impor-

tant aspect of the predictability, namely the autoregressive component in

bond returns, so this result is not so surprising. What may strike some

readers as surprising is the second main fact: the optimally scaled bound is

not a parabola. As we indicated above, if the moments are correctly
specified it ought to be. Since we know the model is rejected, the optimally

scaled bounds seem to provide a striking alternative specification test. Of

course, it is again possible that some quirk in the constrained model,

coupled with sampling error, generates this result. This is not the case.

Figure 6 uses data simulated from the constrained model. Since the model

for conditional moments is correctly specified in this case, we now obtain a

smooth parabola. We also produced these bounds for a number of simu-

lated samples of length 151 and never found the same ‘‘strange’’ behavior.
To illustrate the diagnostic power of the optimally scaled bound more

starkly, we can use simulations and our estimated data-generating pro-

cesses to generate misspecified bounds. Figure 7 uses observations simu-

lated from the model that best fits the data: the regime-switching model

with time-varying transition probabilities. We show the optimally scaled

bounds using the true model and the three other models to compute the

conditional moments. In the last three cases, the moments are of course
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Figure 4
HJ bounds for simulated data according to the time-varying transition probabilities (TP) regime-
switching model with conditional moments calculated from the TP regime-switching model (stronger
predictability).

The Review of Financial Studies / v 17 n 2 2004

366

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/17/2/339/1576985 by C

olum
bia U

niversity user on 18 O
ctober 2019



misspecified. The three models not constrained by the consumption-based

asset pricing model generate similar optimally scaled bounds with no

obviously visible misspecification. Of course, the bound from the true

model is the sharpest. However, the optimally scaled bound computed

using constrained VAR moments shows striking nonparabolic behavior
near the trough of the graph. The bound is also far from efficient, which

may suggest that misspecification may lead to very inefficient bounds. In

this rather stylized example, this is of course true by construction, but the

graph also shows that misspecified models (the unconstrained VAR and

the regime-switching model with constant transition probabilities) that get

the dynamics ‘‘almost’’ right yield rather tight bounds. Moreover, in the

case of misspecification, one can always do better by using the stacked

optimal bound. Figure 8 illustrates this by repeating Figure 7 with opti-
mally scaled stacked bounds. Of course, for the true model, the optimally

scaled and the optimally scaled stacked bound are identical. The con-

strained VAR model still generates a nonparabolic optimally scaled

bound, but the bound is now much closer to the true bounds.

As another illustration, Figure 9 generates data satisfying our worst

model, the constrained VAR model, but computes the optimally scaled

bound using moments according to the true and our three other, now

0.992 0.993 0.994 0.995 0.996 0.997 0.998
0

0.2

0.4

0.6

0.8

1

mean of pricing kernel

st
an

da
rd

 d
ev

ia
tio

n 
of

 p
ric

in
g 

ke
rn

el
HJ
Naive scaling
Optimal scaling
Optimal scaling (stacked)
GHT

Figure 5
HJ bounds for real data with conditional moments calculated from the constrained VAR model.
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misspecified models. Now, all misspecified models generate nonparabolic

optimally scaled bounds.

Finally, Table 5 produces the diagnostic test of Section 2.3 [see

Equation (37)], ignoring the sampling error in the original parameters,

but taking the sampling error in estimating the a, b, and d constants into
account. All test values are x2(2) and the p-values are in parentheses. We

first produce the test for the data, using all four of our models to compute

the conditional moments. The test rejects the constrained model, as did

the likelihood ratio test, at the 1% level. However, the diagnostic test also

provides a test of the first and second moment specification embedded in

the other models, including the regime-switching models. Here the test

fails to reject in each case with p-values of over 90%. Testing the con-

strained or unconstrained VAR models versus the regime-switching mod-
els would be a difficult task because of the presence of nuisance

parameters under the null. Our specification test clearly shows that the

models that do not impose the restrictions of the consumption-based asset

pricing model provide a reasonable specification of the first and second

moments, but that the constrained VAR model does not.

Our simulated samples offer a controlled environment to examine the

performance of the test. We consider 16 cases simulating data from
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Figure 6
HJ bounds for simulated data according to the constrained VAR model with conditional moments
calculated from the constrained VAR model.

The Review of Financial Studies / v 17 n 2 2004

368

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/17/2/339/1576985 by C

olum
bia U

niversity user on 18 O
ctober 2019



the four different models and computing the moments according to each

model (which will be misspecifying the conditional moments in three of

the four cases). Given the size of the simulated samples (10,000 observa-

tions), we expect to reject when the moments are clearly misspecified, as in

the constrained VAR model. The three other models all generate very
similar first and second moments, but for the test to be useful (i.e.,

consistent) it must be able to distinguish these small differences in condi-

tional moments and reject when given enough observations. This indeed

happens. Focusing on the simulation rows and columns in Table 5, the

moments are correctly specified along the diagonal, and there the test

yields small, insignificant test values. For all off-diagonal elements, the

moments are misspecified and the test should reject. It does in each and

every case at less than the 1% significance level. For entries involving the
constrained model, the test generates very large test values. We conclude

that the test is well-behaved.

3.3.3 Robustness. So far we have not focused on the GHT bounds very

much. Generally, optimally scaled bounds do not perform much worse or

better than the GHT bound. Moreover, our simulations reveal that the

GHT bounds quite often overestimate the variance of the true pricing
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Figure 7
Optimally scaled HJ bounds for simulated data according to the TP regime-switching model with
conditional moments calculated from different models.
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kernel. A first example is in Figure 10. In Figure 10, we generate data from

the regime-switching model with time-varying transition probabilities.

When we correctly specify the conditional moments, the GHT bound

mimics the behavior of the optimally scaled bound, which was graphed
in Figure 7: it starts out high on the left (a little over 1) and ends up at a

level of about 0.6 on the right. When we use the unconstrained VAR and

the constant transition probabilities regime-switching model, the GHT

bounds are not too different. Nevertheless, on the right-hand side of the

graph they slightly overestimate the true variability of the pricing kernel.

When we use misspecified moments from the constrained VARmodel, the

GHT bound generates values that are way too high for the bounds on

the right-hand side. When we use the constrained VAR model to generate
truth in Figure 11, a similar phenomenon appears. This time, the GHT

bound overestimates to varying degrees on the left-hand side of the graph

for all three misspecified models.

This lack of robustness is a serious drawback to the GHT bound. The

optimally scaled bound never exceeds the true GHT bound, but manages

to be quite close to it. Figures 7–9 amply demonstrate this fact. The top HJ

bound in these figures corresponds to the GHT bound in either Figure 10

0.992 0.993 0.994 0.995 0.996 0.997 0.998
0

0.2

0.4

0.6

0.8

1

Mean of pricing kernel

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 p

ric
in

g 
ke

rn
el

Optimal scaling (TP RS)
Optimal scaling (CP RS)
Optimal scaling (UC VAR)
Optimal scaling (CO VAR)

Figure 8
Optimal stacked HJ bounds for simulated data according to the TP regime-switching model with
conditional moments calculated from different models.
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or Figure 11. Importantly, when the moments are misspecified, the opti-

mally scaled bound always remains below the true bounds and the mis-

specification shows up in nonparabolic behavior of the bound. The latter

is particularly apparent in Figure 7. This surprising robustness should
make the optimally scaled bound the preferred method of incorporating

conditioning information efficiently.
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Figure 9
Optimally scaled HJ bounds for simulated data according to the constrained VAR model with condi-
tional moments calculated from different models.

Table 5
Diagnostic test

UC VAR CO VAR CP RS TP RS

Data 0.117 (0.9433) 14.97 (0.0006) 0.295 (0.8630) 0.050 (0.9751)
Sim. (UC VAR) 1.77 (0.4128) 761.55 (0.0000) 12.98 (0.0015) 24.37 (0.0000)
Sim. (CO VAR) 510.19 (0.0000) 0.543 (0.7620) 438.56 (0.0000) 374.00 (0.0000)
Sim. (CP RS) 23.00 (0.0000) 517.73 (0.0000) 0.666 (0.7167) 46.09 (0.0000)
Sim. (TP RS) 27.34 (0.0000) 834.22 (0.0000) 9.47 (0.0088) 3.52 (0.1720)

This table produces the diagnostic test proposed in Section 2.3 for 20 different environments, depending
on which model was used to construct the conditional moments and which data were used (actual data or
simulated samples of 10,000 observations according to one of the models). The model nomenclature is as
follows: UC VAR for unconstrained VAR, CO VAR for constrained VAR, CP RS for regime-switching
model with constant transition probabilities, TP RS for regime-switching model with time-varying
transition probabilities. All statistics are x2(2) distributed and p-values are in parentheses.
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4. Conclusion

With the continued interest of the finance profession in the use of (uncon-

ditional) HJ bounds on the one hand, and the growing evidence of time

variation in conditional means and variances of asset returns on the other

hand, it becomes important to optimally incorporate conditioning infor-

mation in these bounds. Our article provides a bridge between the insight-

ful, but complex analysis of GHT (1990), and the simple, but suboptimal
practice of arbitrarily scaling returns with instruments that predict them.

The advantage of the latter approach is that it always produces valid

bounds to the variance of the pricing kernel, whereas the GHT bound

may overestimate the variance of the pricing kernel when the conditional

moments are misspecified. In this article we derive the best possible scaled

bound, the optimally scaled bound. As does the GHT bound, this bound

requires specifying the conditional mean and variance of the returns and

we show that the optimally scaled bound is as good as the GHT bound
when these moments are correctly specified. When they are misspecified,

our bound is robust, in the sense that it will always produce a valid bound

to the variance of the pricing kernel since it is an HJ bound.
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Figure 10
GHT bounds for simulated data according to the TP regime-switching model with conditional moments
calculated from different models.
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There are potentially many interesting applications of our framework.

First, the bounds can be used to reexamine the predictability of asset

returns and to examine which instruments yield the sharpest restrictions

on asset return dynamics. In our application here, using the optimally

scaled bound does not sharpen the bounds dramatically. However, Ferson

and Siegel (2003) show cases where the efficient use of conditioning

information substantially increases the efficient volatility bound.
Second, the bounds can also yield information on expected return and

conditional variance modeling and serve as a diagnostic tool to judge the

performance of dynamic asset pricing models. The reason is that the

optimal scaling function depends on the conditional mean and conditional

variance of the returns and that the resulting HJ bound is best when they

represent the true conditional moments. We use this property of the

optimally scaled bound to develop a GMM-based specification test for

the first and second moments, but much more needs to be done. We
ignored the sampling error in the parameter estimates of the original

models, and did not examine the small sample properties of the test.9
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Figure 11
GHT bounds for simulated data according to the constrained VAR model with conditional moments
calculated from different models.

9 See Hansen, Heaton, and Yaron (1996) for a study of the small sample properties of GMM estimators.
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Third, using the duality with the mean-variance frontier, the optimally

scaled bound can be used in dynamic models of optimal asset allocation

that seek to maximize an unconditional mean-variance criterion. Fourth,

the bounds could be used in developing performance measures for port-

folio managers. In the standard mean-variance paradigm, there is no role
for a portfolio manager since the optimal portfolio weights are fixed over

time. In a dynamic setting, with changing conditional information, the

role of the portfolio manager is to adjust the portfolio weights according

to the arrival of information, preferably optimally.

Appendix

Proof of Proposition 1. The problem we would like to solve is

sup
z

s2ðv; z0trtþ1Þ¼ sup
z

ðE½z0tpt � vz0trtþ1�Þ2

E½ðz0trtþ1Þ2� � E2½z0trtþ1�
:

This is a well-defined problem since s2ðv; z0trtþ1Þ is bounded from above by the GHT bound

s2
GHT ðvÞ and from below by zero. Note that

E½z0tpt� ¼E½ f 0ðytÞpt�,

E½z0trtþ1� ¼E½ f 0ðytÞrtþ1� ¼E½ f 0ðytÞmt�,

E½ðz0trtþ1Þ2� ¼E½ f 0ðytÞEt½rtþ1r
0
tþ1� f ðytÞ� ¼E½ f 0ðytÞðmtm

0
t þ�tÞf ðytÞ�,

where mt and �t are the conditional mean vector and conditional covariance matrix of the

set of returns, respectively. So the above problem is reduced to the problem (we omit the

subscript t in the derivation),

sup
f ðyÞ

ðE½ð p� vmÞ0f ðyÞ�Þ2

E½ f 0ðyÞðmm0 þ�Þf ðyÞ� � E2½ f 0ðyÞm�
, ð50Þ

where

E½ð p� vmÞ0f ðyÞ�¼
Z

ð p� vmÞ0f ðyÞrðyÞdy, ð51Þ

E½ f 0ðyÞðmm0 þ�Þf ðyÞ�¼
Z

f 0ðyÞðmm0 þ�Þf ðyÞrðyÞdy, ð52Þ

E½ f 0ðyÞm� ¼
Z

m0f ðyÞrðyÞdy, ð53Þ

where y is a multidimensional vector and r( y) is the multivariate distribution function of y.

This is a variation-like problem and we adapt the calculus of variation technique to solve it.

Let g( y) ¼ f ( y) þ eh( y), where e > 0, the first-order condition with respect to e gives

E
ð p� vmÞ0h

E½ð p� vmÞ0f �

� �
¼E

ð f 0ðmm0 þ�Þ � E½m0f �mÞ0h
E½ f 0ðmm0 þ�Þf � � E2½m0f �

� �
, 8h,

where we write f or h instead of f( y) or h( y) whenever there is no confusion. This implies that

ð p� vmÞ
E½ð p� vmÞ0f �

¼ ððmm0 þ�Þf � E½m0f �m
E½ f 0ðmm0 þ�Þf � � E2½m0f �

: ð54Þ
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Note that the probability density function r( y) of y does not appear explicitly. Solving for f

from Equation (54), we obtain

f ¼ðmm0 þ�Þ�1 E½ f 0ðmm0 þ�Þf � � E2½m0f �
E½ð p� vmÞ0f �

ð p� vmÞ � E½m0f �m
� �

: ð55Þ

This completes our solution for the functional form of f( y), since the expectations on the

right-hand side of Equation (55) only depend on y through some constant parameters,

representing unconditional moments. Hence we obtain

f ¼ðmm0 þ�Þ�1ðapþlmÞ,

where a and l are constants. Further, note that the scaling by a constant does not change the

HJ bound, so we can solve f only up to a constant. We can thus let a ¼ 1.With the functional

form of the scaling factor known, we can determine the constant l [note that �l is w

in Equation (10)] by solving a standard maximization problem (instead of a functional

problem):

sup
l

gðlÞ¼max
l

ðE½ð p� vmÞ0ðmm0 þ�Þ�1ð pþ lmÞ�Þ2

E½ð pþ lmÞ0ðmm0 þ�Þ�1ð pþlmÞ� � E2½m0ðmm0 þ�Þ�1ð pþlmÞ�
ð56Þ

So we have

gðlÞ¼ ða� vbþlb� lvdÞ2

ðaþ 2lbþ l2dÞ � ðbþ ldÞ2
ð57Þ

where

a¼E½ p0ðmm0 þ�Þ�1
p�,

b¼E½ p0ðmm0 þ�Þ�1
m�,

d ¼E½m0ðmm0 þ�Þ�1
m�: ð58Þ

Now we can use the standard first-order conditions to determine l. The first-order condition

in l gives

0¼ 2ða� vbþlb� lvdÞðb� vdÞ
ðaþ 2lbþ l2dÞ � ðbþ ldÞ2

ð59Þ

� 2ða� vbþlb� lvdÞ2ðbþld � ðbþldÞdÞ
ððaþ 2lbþ l2dÞ � ðbþ ldÞ2Þ2

: ð60Þ

Factoring out (a� vbþlb�lvd ) (this is not a problem because l¼ vb�a
b�vd

is a minimum since

it leads to s2
OSBðvÞ¼ 0), we have

ðb� vdÞððaþ 2lbþl2dÞ � ðbþ ldÞ2Þ � ða� vbþ lb� lvdÞðbþ ld � ðbþldÞdÞ¼ 0:

Solving this equation gives

l¼ b� v

1� d
:

So the optimal scaling factor is

z�t ¼ðmtm
0
t þ�tÞ�1ð pt þ lmtÞ ð61Þ

and the optimally scaled return is

r�tþ1 ¼ð pt þlmtÞ
0ðmtm

0
t þ�tÞ�1

rtþ1: ð62Þ
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Substituting the optimally scaled returns into Equation (7), we obtain the optimally scaled

bound

s2
OSB ¼s2ðv; z�0t rtþ1Þ¼

a� ad þ b2 � 2bvþ bv2

1� d
: ð63Þ

We should remark that the above formulas constitute solutions to the first-order condition,

which is only a necessary condition for optimality. We need to verify that the solution is a

maximum.We can argue that the first-order condition is sufficient in the following way. Note

that in the problem of Equation (50),

sup
f ðyÞ

ðE½ð p� vmÞ0f ðyÞ�Þ2

E½ f 0ðyÞðmm0 þ�Þf ðyÞ� � E2½ f 0ðyÞm�

is homogeneous of degree zero in f( y), so it is equivalent to the problem:10

inf
f ðyÞ

E½ f 0ðyÞðmm0 þ�Þf ðyÞ� � E2½ f 0ðyÞm�

s:t: ðE½ð p� vmÞ0f ðyÞ�Þ2 ¼ 1:

Because both E[ f 0( y)(mm0 þ �) f ( y)] and (E[(p � vm)0f ( y)])2 are convex in f ( y) and there is

an interior point, this is a convex programming problem and there is a minimum. In fact, one

can easily verify that the solution is the one we obtained above.

Proof of Proposition 3. Note that the pricing kernel written in terms of scaled assets formed

using rtþ 1 and z0trtþ1 can always be written as ~zz0trtþ1 for some ~zzt. So we have

max
zt2It

s2ðv; rtþ1, z
0
trtþ1Þ¼max

zt2It
s2ðv; z0trtþ1Þ¼max

zt2It
s2ðv; z�0t rtþ1Þ,

but

s2ðv; z�0t rtþ1Þ�s2ðv; rtþ1, z
�0
t rtþ1Þ:

Combining the above two expressions, we get

s2ðv; rtþ1, z
�0
t rtþ1Þ¼s2ðv; z�0t rtþ1Þ:
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