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ABSTRACT

We investigate the expectations hypotheses of the term structure of interest rates
and of the foreign exchange market using vector autoregressive methods for U.S.
dollar, Deutsche mark, and British pound interest rates and exchange rates. We
examine Wald, Lagrange multiplier, and distance metric tests by iterating on ap-
proximate solutions that require only matrix inversions. Bias-corrected, con-
strained VARs provide Monte Carlo simulations. Wald tests grossly overreject
the null, Lagrange multiplier tests slightly underreject, and distance metric tests
overreject. A common interpretation emerges from the small sample statistics.
The evidence against the expectations hypotheses is much less strong than under
asymptotic inference.

ACCORDING TO THE EXPECTATIONS HYPOTHESIS, information in current interest
rates provides the conditional expectation of future asset prices. The expec-
tations hypothesis of the term structure of interest rates ~EH-TS! states that
the current term spread between a long-term interest rate and a short-term
interest rate is the expected value of a weighted average of the expected
future changes in the short-term interest rate. This theory, popularized in
the writings of Fisher ~1930!, Keynes ~1930!, and Hicks ~1953!, continues to
be a way that many economists think about the determination of long-term
interest rates. Fisher ~1930! and Keynes ~1930! also discuss the expectations
hypothesis in the foreign exchange market ~EH-FX!, which states that the
interest-rate differential between two currencies is the conditional expected
value of the rate of depreciation of the high interest-rate currency relative to
the low interest-rate currency. Because of covered interest arbitrage, the
interest differential equals the forward premium, which is the percentage
difference between the forward exchange rate and the spot rate. Hence, the
EH-FX is equivalent to the unbiasedness hypothesis, which is the proposi-
tion that the logarithm of the forward exchange rate is an unbiased predic-
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tor of the logarithm of the future spot rate. Many economists also currently
view the EH-FX as the way that forward exchange rates are determined.

These expectations hypotheses ~EHs! continue to have adherents because
most modern asset pricing theories imply either that expected future inter-
est rates and exchange rates are related to current interest rates directly
through the EHs or with the addition of risk premiums to the EHs. If these
risk premiums are constant, the EHs can be said to hold because the tem-
poral variation in expected future asset prices drives the variability in cur-
rent interest rates. If the risk premiums are variable, the EHs will not hold,
but the literature has had surprisingly little success generating risk premi-
ums that explain the empirical evidence.

Empirical tests of the EHs are too numerous to enumerate. For the EH-
FX, the statistical evidence surveyed by Hodrick ~1987!, Bekaert and Hodrick
~1993!, and Engel ~1996! strongly rejects the hypothesis. In particular, high
interest rate currencies do not depreciate as much as is predicted by the
theory. For the EH-TS, the evidence is more mixed. The EH-TS is often
strongly rejected with U.S. dollar ~USD! interest rates, although Longstaff
~2000! cannot reject the EH-TS at the very short end of the USD term struc-
ture. Also, for the currencies of a number of other countries, standard tests
often fail to reject at any horizon.1

There are three main potential reasons for the rejection of the EHs. First,
the EHs are based on the assumption of rational expectations and unlimited
arbitrage. It may be that irrational investors make systematic forecast er-
rors, and the ability of rational investors to profit from this situation is
limited by their risk aversion. Second, the presence of time-varying risk
premiums means that standard tests of the EHs omit the variables captur-
ing the risk premium. If these variables are correlated with interest rates,
the estimated coefficients would be pulled away from those implied by the
EHs. Third, the tests themselves may lead to false rejections because of
their poor properties in finite samples, which can be caused by highly per-
sistent variables, peso problems, or learning.2 Bekaert et al. ~1997, 2001!
and Valkanov ~1998! analyze the poor finite sample behavior of EH-TS tests,
and Baillie and Bollerslev ~2000!, Maynard and Phillips ~1998!, and Roll and
Yan ~2000! argue that poor small-sample behavior may explain the results of
EH-FX tests. These papers note that if standard tests are poorly behaved in
small samples, inference based on standard asymptotic distribution theory
is distorted, and alternative methods of inference are necessary.

In this paper, we reconsider the EHs in a vector autoregressive ~VAR!
framework. Apart from standard Wald tests, we also investigate Lagrange
multiplier ~LM! and distance metric ~DM! tests that require imposition of

1 Campbell and Shiller ~1991! and Bekaert, Hodrick, and Marshall ~1997! examine the USD
evidence. For other currencies see Hardouvelis ~1994!, Dahlquist and Jonsson ~1995!, Gerlach
and Smets ~1997!, and Bekaert, Hodrick, and Marshall ~2001!.

2 An early reference to the small-sample problem is Mankiw and Shapiro ~1986!. Evans
~1996! surveys the peso-problem literature, and Lewis ~1989! is an early example of the role of
learning.
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the null hypothesis in the estimation. Because the restrictions of the EH-TS
are highly nonlinear, estimating under these restrictions is generally a non-
trivial exercise. We develop an easy-to-implement procedure that extends
the suggested estimator of Newey and McFadden ~1994! and that works quite
well. Once we have estimated the VAR subject to the constraints of the EHs,
we can use this system as a data generating mechanism to investigate the
small-sample properties of the various tests. We find that the Wald test, the
test predominantly used in the literature, has by far the worst small-sample
properties. Conducting inference with Wald tests would therefore often be
very misleading, since the sizes of the tests are quite poor. The DM tests also
overreject, but less strongly than the Wald tests. The LM tests, on the other
hand, are slightly conservative. Overall, the LM tests perform the best. When
reconsidering the evidence on the EHs for the USD, the Deutsche mark
~DEM!, and the British pound ~GBP!, we find that inference with the small-
sample distributions considerably weakens the case against the EHs.

The paper is organized as follows. Section I examines the conditions under
which the EHs arise in a no-arbitrage framework. Section II details several
econometric approaches to testing the EHs, developing both standard re-
gression tests and the more novel VAR-based tests we propose. Section III
brief ly describes the data on interest rates and exchange rates. Section IV
examines the small-sample properties of the various tests using bootstrap
and Monte Carlo analysis. Section V applies the tests to the data. The con-
clusions summarize our findings and ref lect on the usefulness of our test
procedures and the technique for imposing nonlinear constraints in other
settings.

I. The Expectations Hypotheses

By the EH-TS for a particular currency j, we mean that the continuously
compounded zero-coupon n-period interest rate, it, n

j , equals the average of
the current and expected future short interest rates plus a maturity specific
constant:

it, n
j 5

1

n (
h50

n21

Et ~it1h
j ! 1 an

j , ~1!

where we drop the maturity subscript for one period rates.
By the EH-FX, we mean the proposition that the conditional expectation

of the continuously compounded rate of appreciation of currency j relative to
currency k equals the differential between the continuously compounded in-
terest rates for the two currencies plus a constant. Let St denote the currency-k
price of currency j. Then, with lower-case letters indicating either natural
logarithms of upper-case counterparts or continuously compounded interest
rates, the EH-FX is

Et ~st1n 2 st ! 5 an
k, j 1 n~it, n

k 2 it, n
j !. ~2!
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It is straightforward to demonstrate that these expectation hypotheses are
consistent with a class of modern financial models in which assets are priced
by no arbitrage restrictions. In economies that do not admit arbitrage, any
return denominated in currency j, Rt11

j , satisfies

Et ~Mt11
j Rt11

j ! 5 1, ~3!

where Mt11
j denotes the currency-j pricing kernel. When the returns and the

pricing kernels are log-normally distributed, equation ~3! implies the following:

Et ~mt11
j ! 1 0.5Vt ~mt11

j ! 1 Et ~rt11
j ! 1 0.5Vt ~rt11

j ! 1 Ct ~mt11
j , rt11

j ! 5 0, ~4!

where the conditional variance and covariance are denoted Vt ~.! and Ct ~.!,
respectively. Because the rate of return associated with the continuously
compounded one-period interest rate is in the time t information set, equa-
tion ~4! implies that

it
j 5 2@Et ~mt11

j ! 1 0.5Vt ~mt11
j !# . ~5!

To derive the implications for the term structure of interest rates, consider
the continuously compounded, one-period rate of return on an n-period bond,
rbt11, n

j [ it, n
j 1 ~n 2 1!~it, n

j 2 it11, n21
j !. Using equations ~4! and ~5! we find

Et ~rbt11, n
j ! 2 it

j 5 2@0.5Vt ~rbt11, n
j ! 1 Ct ~mt11

j , rbt11, n
j !# . ~6!

The right-hand side of equation ~6! is a constant for any bond-pricing model,
such as Vasicek’s ~1977!, in which the logarithmic pricing kernel is condi-
tionally homoskedastic. Let this constant be denoted cn

j. By using the defi-
nition of the rate of return on the bond and the relation between logarithmic
bond prices and yields to maturity, equation ~6! implies

nit, n
j 5 it

j 1 Et @~n 2 1! it11, n21
j # 1 cn

j . ~7!

Recursive application of equation ~7! and use of the law of iterated expecta-
tions implies equation ~1! with an

j [ (h52
n ch

j .
Note that any currency-j return can be converted into a currency-k return

by multiplying by St110St , which recognizes that one must first purchase
one unit of currency j with currency k and then resell the currency j return
for currency k. Hence, if markets are complete, and by using equation ~3! for
each currency, we find that the difference of the logarithms of the pricing
kernels equals the rate of appreciation of currency j relative to currency k:

mt11
j 2 mt11

k 5 st11 2 st . ~8!
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We can derive the implications for the EH-FX by taking the conditional ex-
pectation of equation ~8! and substituting from equation ~5! evaluated for
each of the currencies:

Et ~st11 2 st ! 5 ~it
k 2 it

j! 1 0.5Vt ~mt11
k ! 2 0.5Vt ~mt11

j !. ~9!

As with the term structure, the EH-FX is true in economies with condition-
ally homoskedastic logarithmic pricing kernels. It is possible to derive gen-
eral expressions for the term premiums and foreign exchange premiums in
terms of the conditional moments of the logarithm of the pricing kernel un-
der much weaker conditions than log-normality. The Appendix demonstrates
that the conditions for the EHs to hold are constancy of all second and higher
order conditional moments of the log pricing kernel.

The logic that leads to equation ~9! can also be used to verify that equation
~2! holds for the n-period maturity. Note that st11 2 st 1 it

k 2 it
j is a one-

period excess rate of return that also satisfies equation ~6!. After substitut-
ing into equation ~6!, the right-hand side is then the one-period foreign
exchange risk premium previously indicated by a1

k, j. When both the one-
period EH-FX holds and the n-period EH-TS holds in both currencies, the
n-period foreign exchange premium is constant and equals

an
k, j 5 Et @~st1n 2 st ! 2 n~it, n

k 2 it, n
j !# 5 na1

k, j 2 n~an
k 2 an

j!. ~10!

An investment of a unit of currency k in the n-period currency-j bond earns
the currency-j term premium and n times the one-period foreign exchange
premium. The opportunity cost is the currency-k term premium.

II. Econometric Procedures

This section develops several alternative econometric approaches to test-
ing the EHs derived in equations ~1! and ~2!. We begin with traditional single-
equation specifications and then consider tests based on unconstrained and
constrained VARs. Since the validity of the asymptotic distributions of the
various test statistics is questionable in the sample sizes we have available,
we do not present any estimation results until we have developed all of the
statistics and explained how we will assess their finite sample properties.

The derivation of the asymptotic properties of the test statistics relies on
Hansen’s ~1982! generalized method of moments ~GMM!, which uses orthog-
onality conditions defined by the theory to develop tests. The orthogonality
conditions are based on the assumption of rational expectations, which im-
plies that the realization of a random variable is equal to its conditional
expectation plus an error term that is orthogonal to the information set used
to form the expectation. To represent a vector of orthogonality conditions
specified by the expectation theories, let yt be a vector of data in the time t
information set, and let xt21 be a vector of instruments that are in the time
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t 2 1 information set. Let h~ yt , xt21, u! be a vector-valued function of the
data and the parameters to be estimated, u, with the property that

Et21 @h~ yt , xt21, u!# 5 0 ~11!

when the null hypothesis is true and the function is evaluated at the pa-
rameter u0. Let the vector ht be an error process defined by the rational
expectations assumption applied to equation ~11!, and define the vector zt [
~ yt
' , xt21
' !' and the vector-valued function of the data and the parameters,

g~zt , u! [ ht J xt21. Then, the unconditional orthogonality conditions used
in a GMM estimation are

E @g~zt , u!# 5 0. ~12!

Estimation uses the corresponding sample moment conditions for a sample
of size T :

gT ~u! [
1

T (
t51

T

g~zt , u!. ~13!

The parameters are estimated by minimizing the GMM criterion function
which is a quadratic form in the sample orthogonality conditions using a
weighting matrix, W:

JT ~u! [ gT ~u!'WgT ~u!. ~14!

Hansen ~1982! demonstrates that the optimal weighting matrix is a consis-
tent estimate of the inverse of

V [ (
h52`

h5`

E @g~zt , u!g~zt2h , u!' # . ~15!

Let the gradient of the sample orthogonality conditions be GT ~u! [ ¹u gT ~u!,
and let VT represent a consistent estimate of V. When the weighting matrix
is chosen optimally as VT

21, the GMM asymptotic distribution theory implies
that

!T~ Zu 2 u0! r N @0, ~GT
' VT

21 GT !21 # , ~16!

where Zu denotes the parameter estimate and the symbol r denotes conver-
gence in distribution. The standard errors implicit in equation ~16! are auto-
correlation and heteroskedasticity consistent.

1362 The Journal of Finance



A. Regression Tests

It is straightforward to derive ordinary least squares ~OLS! regression
tests of the various expectation hypotheses. Under rational expectations,
equation ~2! evaluated for n 5 1 becomes

st11 2 st 5 a1
k, j 1 b1

k, j~it
k 2 it

j! 1 et11, ~17!

where et11 is the rational expectations error term and the null hypothesis is
that the slope coefficient equals one. A GMM estimation based on the or-
thogonality of the error term to a constant and the interest differential re-
duces to OLS estimation of equation ~17!, and setting h 5 0 in equation ~15!
produces heteroskedasticity consistent standard errors.

Campbell and Shiller ~1991! propose two distinct regression tests of the
EH-TS based on equation ~1!. The first specification test can be derived
directly from equation ~1! under the assumption of rational expectations:

1

n (
h50

n21

~it1h
j ! 2 it

j 5 2an
j 1 bn

j~it, n
j 2 it

j! 1 nt1n21. ~18!

The null hypothesis is again that the slope coefficient equals one, and the
estimation uses the fact that the error term, nt1n21, is orthogonal to a con-
stant and the term spread at time t. While OLS provides the parameter
estimates, appropriate GMM standard errors must allow for the serial cor-
relation of the errors induced by overlapping observations by setting h 5
n 2 1 in equation ~15!.

The second specification test of Campbell and Shiller ~1991! is derived by
rearranging equation ~7! and using rational expectations:

it11, n21
j 2 it, n

j 5
2cn

j

~n 2 1!
1 gn

j
1

~n 2 1!
~it, n

j 2 it
j! 1 jt11. ~19!

The OLS specification uses the orthogonality of the error term, jt11, to a
constant and the adjusted term spread, and the null hypothesis is again that
the slope coefficient equals one. Standard errors can be constructed by set-
ting h 5 0 in equation ~15!. When only constant maturities are available,
this specification test is often performed with it11, n

j on the left-hand side
instead of it11, n21

j . Bekaert et al. ~1997! note that this change of variables
leads to an upward bias in the prediction of the slope coefficient such that
values greater than one are expected under the null hypothesis, even
asymptotically.

B. Tests from Unconstrained Vector Autoregressions

It is also possible to develop GMM-based tests of the expectation hypoth-
eses using the orthogonality conditions of a VAR. With a VAR, one can test
the theory directly as well as calculate implied slope coefficients that are
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analogous to the directly estimated OLS slope coefficients discussed above.
Below, we examine VARs that involve a two-country framework using data
from three developed economies to investigate the various EHs. For conve-
nience of presentation, we number the currencies and use standard currency
abbreviations in the following way: one for the USD, two for the DEM, and
three for the GBP. Thus, it

1 is the USD short interest rate, and spt
2 is the

spread between the DEM long interest rate and the DEM short interest
rate. Since all rates of change of exchange rates are expressed versus the
USD, Dst

k is the rate of appreciation of the USD relative to currency k, for
k 5 2,3. The variables in the VAR are the rate of appreciation of the USD
relative to a currency k, the USD interest rate, the currency-k interest rate,
the USD spread, and the currency-k spread. To develop the econometric model,
stack the five variables into the vector yt [ ~Dst

k , it
1, it

k ,spt
1,spt

k!' . Then, let
an Kth-order VAR represent the demeaned data generating process for yt :

yt11 5 (
k51

K

Yk yt2k11 1 ht11, ~20!

where the parameters Yk represent five-dimensional square matrixes of co-
efficients, and ht11 is the vector of innovations that is orthogonal to the
time t information set. The first-order companion form of the VAR can be
represented using the vector xt [ ~ yt

' , yt21
' , . . .yt2K11

' !' :

xt11 5 Qxt 1 jt11. ~21!

The parameter matrix, Q, is a 5K-dimensional square matrix with the Yk
matrixes stacked horizontally in the first five rows, a 5~K-1! identity matrix
beneath these parameters on the left, and zeroes elsewhere. The innovation
vector, jt11 [ ~ht11

' ,0 . . . 0!' , has variance matrix S. With this specification
there are ~25K! parameters in u0.

We use the VAR parameters and the asymptotic distribution in equation
~16! to generate test statistics that are based on implied counterparts of the
OLS slope coefficients. We can also develop tests of the full restrictions of
the EHs in the VAR framework. To derive these tests, we need to consider
the implications of the EHs for the coefficients of the VAR.

Although the EHs are based on the full information set of economic agents,
as long as that information set includes the information on the right-hand
sides of the VAR equations, the law of iterated expectations implies that we
can use the VAR to test the theories. From the companion form of the VAR
in equation ~21!, we know that forecasts of xt1h, based on the information in
the VAR at time t, may be generated as

Et
x~xt1h! 5 Qhxt , ~22!

where the expectation is with respect to the information set of the VAR. The
EHs consequently imply highly nonlinear sets of restrictions on the param-
eters. To derive the constraints on the parameters, define the indicator vec-
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tors, ej , which have dimension 5K, a one in the jth position, and zeroes
elsewhere. The vector of restrictions from the EH-FX for one-period interest
rates may be written as

e1
' Q 5 ~e3

' 2 e2
' !. ~23!

Next, consider the derivation of the restrictions of the EH-TS for each cur-
rency. For the USD interest rates, equation ~1! implies the following restric-
tions on the underlying parameters of the VAR:

e4
' 5 e2

' @~10n!~I 2 Qn !~I 2 Q!21 2 I # . ~24!

The analogous restrictions associated with the EH-TS of the foreign cur-
rency interest rates are

e5
' 5 e3

' @~10n!~I 2 Qn !~I 2 Q!21 2 I # . ~25!

The representations of the EHs in equations ~23! through ~25! allow esti-
mation of implied slope coefficients that are analogous to the directly esti-
mated OLS coefficients. For example, the implied slope coefficient from the
VAR that is analogous to the slope coefficient in equation ~17! is

b1
k,1 5

e1
' QC~e3 2 e2!

~e3 2 e2!'C~e3 2 e2!
, ~26!

where C is the unconditional variance of xt , which is computed from vec~C! 5
~I 2 Q J Q' !21vec~S!. The numerator of equation ~26! is the covariance
between the expected future rate of appreciation of the USD versus currency
k and the interest differential, while the denominator is the variance of the
interest differential. Similarly, the implied slope coefficient for the USD EH-TS
analogous to equation ~18! is the covariance between the average of the ex-
pected future interest rates and the current interest rate spread divided by
the variance of the current spread:

bn
1 5

e2
' @~10n!~I 2 Qn !~I 2 Q!21 2 I #Ce4

e4
' Ce4

. ~27!

The implied OLS coefficient corresponding to equation ~19! for the USD which
uses the substitution of the n-period rate for the n 2 1 period rate is

gn
1 5

~e4 1 e2!'~Q 2 I !Ce4~n 2 1!

e4
' Ce4

. ~28!
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To develop Wald tests of the three expectation hypotheses, let the null
hypotheses in equations ~23! through ~25! be summarized by

H0 : a~u0! 5 0, ~29!

where a~u0! is a 15K-dimensional vector that is nonlinear in the underlying
parameters. Let the sample counterpart of this vector be aT ~u!, let the gra-
dient of the constraints with respect to the parameters be AT [ ¹uaT ~u!, and
let BT [ GT

' VT
21 GT . Then, it follows from a Taylor’s series approximation

that

!TaT ~ Zu! r N~0, AT BT
21 AT

' !. ~30!

A Wald test of the null hypothesis asks how close are the constraints to being
satisfied at the unconstrained parameter values. The test statistic follows
from the asymptotic distribution in equation ~30!:

TaT ~ Zu!'~AT BT
21 AT

' !21aT ~ Zu! r x2~15K !. ~31!

C. Estimation Under the Null Hypothesis

Both distance metric statistics, which are based on intuition from maxi-
mum likelihood, and Lagrange multiplier statistics require estimation of the
parameters subject to the highly nonlinear constraints of equation ~29!, which
is quite difficult. One approach to constrained estimation follows Melino’s
~1983! and Sargent’s ~1979! maximum likelihood estimation of the EH-TS,
which imposes significant restrictions on the eigenvectors of Q. Melino ~1983!
includes more conditioning information than Sargent ~1979!.

To understand these restrictions, consider a first-order VAR in which the
five eigenvalues of Q are distinct. In this case, we can do an eigenvalue
decomposition:

Q 5 PLP 21, ~32!

where L is the diagonal matrix of eigenvalues and P is the matrix with the
corresponding eigenvectors in its columns. Now, to derive the restrictions of
the EHs, substituting from equation ~32! into equation ~23! and multiplying
from the right-hand side by P implies

e1
' PL 5 ~e3

' 2 e2
' !P. ~33!

Let the diagonal elements of L be lj , and let the rows of P be Pi , with
distinct elements Pij . Since P1 can be normalized to a row vector of ones, this
constraint implies

P3j 5 P2j 1 lj . ~34!
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By substituting equation ~32! into equations ~24! and ~25! and simplifying,
we find

e4
' P 5 e2

' P @~10n!~I 2 Ln !~I 2 L!21 2 I # ~35!

and

e5
' P 5 e3

' P @~10n!~I 2 Ln !~I 2 L!21 2 I # . ~36!

The restrictions in equations ~34! through ~36! imply that the 10 free pa-
rameters of the constrained estimation of a first-order VAR are the five eigen-
values and the five parameters of the second row of the eigenvectors. All
other parameters are functions of these fundamental parameters. Since the
eigenvalues can be complex conjugates, direct estimation of the constrained
system is quite complicated because the search must be conducted over po-
tentially complex numbers.

To estimate the parameters, u, subject to the constraints in equation ~29!,
we instead follow an indirect route that extends the estimator proposed by
Newey and McFadden ~1994!. Define the Lagrangian for the constrained
GMM maximization problem to be

L~u, g! 5 2~102!gT
' ~u!VT

21 gT ~u! 2 aT ~u!'g, ~37!

where g is a vector of Lagrange multipliers. Let an overbar denote estimates
subject to the constraints. Then, the first-order conditions for this problem
can be written as

F 0

0 G 5 F 2GT
' VT

21!TgT ~ Nu! 2 AT
' !T Tg

2!TaT ~ Nu!
G. ~38!

While equation ~38! is nonlinear in the parameters, we can derive an ap-
proximate asymptotic solution using the law of large numbers and a Taylor’s
series expansion. Recognize that

!TgT ~u0! r N~0, V!, ~39!

!TgT ~ Nu! ' !TgT ~u0! 1 GT!T~ Nu 2 u0!, ~40!

and

!TaT ~ Nu! ' !TaT ~u0! 1 AT!T~ Nu 2 u0!. ~41!
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Under the null hypothesis, aT ~u0! 5 0. Hence, when we substitute from equa-
tions ~40! and ~41! into the first-order conditions, we find

F 0

0
G 5 F 2GT

' VT
21!TgT ~u0!

0
G2 F BT AT

'

AT 0
GF !T~ Nu 2 u0!

!T Tg
G. ~42!

The formula for a partitioned inverse implies that

F BT AT
'

AT 0
G21

5 F BT
2102 MT BT

2102 BT
21 AT

' ~AT BT
21 AT

' !21

~AT BT
21 AT

' !21AT BT
21 2~AT BT

21 AT
' !21 G ~43!

where MT [ I 2 BT
2102 AT

' ~AT BT
21 AT

' !21AT BT
2102 is an idempotent matrix.

Thus, the asymptotic distribution for the constrained estimator and the
Lagrange multiplier is

!T~ Nu 2 u0! r N~0, BT
2102 MT BT

2102! ~44!

!T Tg r N @0, ~AT BT
21 AT

' !21 # . ~45!

Although direct maximization of the Lagrangian in equation ~38! is feasible,
it is often computationally difficult. We instead extend the approach sug-
gested in Newey and McFadden ~1994!, who demonstrate how to derive a
constrained consistent estimator starting from an initial unconstrained con-
sistent estimator and using only matrix algebra. Let Du represent an initial
consistent unconstrained estimate. Then, we have

gT ~ Nu! ' gT ~ Du! 1 GT ~ Nu 2 Du! ~46!

aT ~ Nu! ' aT ~ Du! 1 AT ~ Nu 2 Du!. ~47!

After substituting into the first-order conditions and solving, we find

Nu ' Du2 BT
2102 MT BT

2102 GT
' VT

21 gT ~ Du! 2 BT
21 AT

' ~AT BT
21 AT

' !21aT ~ Du! ~48!

Tg ' 2~AT BT
21 AT

' !21AT BT
21 GT

' VT
21 gT ~ Du! 1 ~AT BT

21 AT
' !21aT ~ Du!. ~49!

While Newey and McFadden ~1994! note that the estimators in equations
~48! and ~49! are consistent, they do not satisfy the constrained optimization
problem exactly. In constructing our constrained estimates, we iterated on
equations ~48! and ~49!, substituting the first constrained estimate for the
initial consistent unconstrained estimate to derive a second constrained es-
timate, and so forth. We stopped the iterative process when the resulting
constrained estimate satisfied the constraints, that is, when aT ~ Nu! 5 0.
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The values of the Lagrange multipliers are not zero at the constrained
parameter estimates when imposition of the constraints significantly affects
the value of the objective function. An LM test asks whether we can reject
the hypothesis that the multipliers are jointly zero. From equation ~45!, the
LM test for an Kth-order system is

T Tg '~AT BT
21 AT

' ! Tg r x2~15K !. ~50!

A GMM-based distance metric ~DM! test, analogous to a likelihood ratio
test, can also be developed. Typically, this test is constructed as the sample
size times the difference between the GMM objective function evaluated at a
constrained estimate and the GMM objective function evaluated at the un-
constrained estimate using the same weighting matrix in each estimation.
Since our unconstrained problem is just identified, the value of the GMM
objective function is zero in this case. Hence, the DM test for an Kth-order
system is

TgT ~ Nu!'VT
21 gT ~ Nu! r x2~15K !. ~51!

III. The Data

Table I presents some summary statistics for the variables. All variables
are measured in percentage points per annum. Monthly rates of apprecia-
tion are annualized by multiplying by 1,200. While this transformation does
not affect the interpretation of the mean returns, the annualized standard
deviation is not the standard deviation associated with an annual holding
period. The sample period is January 1975 to July 1997. The exchange rates

Table I

Summary Statistics for All Variables
The currencies are numbered one for the USD, two for the DEM, and three for the GBP. The
continuously compounded rate of appreciation of the USD versus currency j is Dst

j. The one-
month interest rate for currency j is it

j. The spread between the 12-month interest rate and the
1-month interest rate for currency j is spt

j. The sample contains 270 monthly observations from
January 1975 to July 1997. All variables are measured in percentage points per annum.

Autocorrelations

Variable Mean Std. Dev. Minimum Maximum 1 2 3

Dst
2 21.084 40.617 2120.068 132.234 20.019 0.105 0.030

Dst
3 1.661 39.987 2163.297 157.455 0.083 0.036 20.013

it
1 7.943 3.520 3.059 20.081 0.968 0.932 0.899

it
2 6.011 2.445 2.248 14.907 0.975 0.960 0.945

it
3 10.652 3.373 4.647 20.204 0.957 0.920 0.880

spt
1 0.164 0.925 24.882 1.823 0.817 0.673 0.554

spt
2 0.071 0.683 23.240 2.666 0.805 0.722 0.666

spt
3 20.429 1.106 24.273 1.898 0.817 0.707 0.638
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and Eurocurrency interest rates are obtained from Datastream. The dollar-
based exchange rates are calculated from the quoted sterling exchange rates,
which are closing middle rates provided by Reuters.

Notice that the rates of appreciation are quite volatile and have very small
autocorrelations. The one-month interest rates are all highly autocorrelated,
and the spreads between 12-month rates and 1-month rates are persistent
but not as highly autocorrelated as the short rates. Use of interest rates and
spreads as predictors of the rates of appreciation is consistent with the idea
that predictable changes in asset prices are small relative to their unpre-
dictable changes.

IV. Econometric Analysis of Test Statistics

The goal of this section is twofold. We first integrate our analysis with the
recent evidence on the small-sample characteristics of standard regression
tests of the EH-TS and the EH-FX. Various authors, including Schotman
~1996!, Bekaert et al. ~1997, 2001!, and Valkanov ~1998!, have demonstrated
that the standard regression tests of the EH-TS are ill-behaved in small
samples under a variety of data generating processes ~DGPs!. In particular,
small-sample biases arise for essentially the same reason that Kendall ~1954!
discusses in the context of estimation of the parameters of autoregressive
processes. The regressors are serially correlated lagged dependent variables.
Although the parameter estimates are consistent, the absence of strict exo-
geneity of the regressors implies bias in small samples.3 In EH-TS tests, the
regression coefficients are upwardly biased and their small-sample distri-
butions are very dispersed. Tauchen ~1985! and Baillie and Bollerslev ~2000!
also show that EH-FX regressions suffer from a similar problem. Unfortu-
nately, research about the small-sample problems of doing inference about
the validity of the EHs does not arrive at a common conclusion.

Our VAR model imposes the three EHs while matching the time-series
properties of the data. Hence, we derive the small-sample distributions of
the regression coefficients under the null hypothesis within a model that
accommodates realistic persistence in both the foreign and local interest
rates and Granger causality of interest rates both by spreads and exchange-
rate changes. Moreover, we compare the distributions of the standard re-
gression coefficients with the distributions of the slope coefficients implied
by the VAR. If the VAR adequately captures the dynamics of the data, we
obtain slightly more efficient estimates in some instances. For example, the
long-run ~12 month! unbiasedness test and the test of equation ~18! lead to
the loss of data, which is not the case in the VAR.

A second goal of this section is to examine whether alternatives to the
simple Wald test have superior small-sample properties. By imposing the
nonlinear constraints on the VAR dynamics, we are also able to examine
the relative size and power properties of the Wald, LM, and DM tests de-

3 Stambaugh ~1999! provides a recent Bayesian treatment of these issues.
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scribed in Section III.4 Given the well-known problems with Wald tests in
general ~as discussed in Dufour ~1997!, Gregory and Veall ~1987!, Burnside
and Eichenbaum ~1996!, and Hansen, Heaton, and Yaron ~1996!!, it may well
be that these other tests have superior small-sample properties.

A. Alternative Data Generating Processes

We use two DGPs in the Monte Carlo analysis. Both start from an uncon-
strained five-variable VAR. In principle, we could then apply the iterative
scheme described in Section III to find the VAR parameters that impose the
null. However, as Bekaert et al. ~1997! note, the estimated VAR parameters
are biased in small samples. Hence, these parameters do not constitute a
relevant starting point.

The bias correction we implement proceeds as follows. We use the esti-
mated unconstrained VAR parameters to generate 100,000 artificial data
sets of 269 observations using an i.i.d. bootstrap of the residuals. We reesti-
mate the VAR parameters from these replications of the initial data. The
bias in the estimated parameters is estimated by the difference between the
known parameters of the DGP and the means of the Monte Carlo distribu-
tions based on the 100,000 replications. We then bias correct the original
estimates by adding these biases to the original unconstrained estimates.
This yields a bias-corrected set of unconstrained parameters, which are also
used in simulations to represent an alternative hypothesis in which there
are violations of the EHs. To determine bias-corrected parameters that sat-
isfy the null hypothesis, we use the bias-corrected unconstrained parameters
to simulate a very long series ~70,000 observations plus 1,000 starting val-
ues that are discarded!, which is then subjected to the iterative estimation
scheme described in Section III. These parameters are our bias-corrected
constrained parameters.

In all cases, we use a first-order VAR as that is the order chosen by the
Schwarz criterion. Table II reports these test statistics in Panel A along with
Cumby-Huizinga ~1992! l-tests for residual serial correlation in Panel B.
Only for the residuals of the USD and DEM spreads in that VAR do we find
any evidence inconsistent with the first-order model. The three panels of
Table III report the unconstrained parameter estimates with their bias-
corrected counterparts for the three VARs. Table IV reports the estimates of
the VAR coefficients that are constrained to satisfy the EHs.

Comparing the coefficients in Tables III and IV highlights the differences
in the constrained and unconstrained dynamics. It is immediately apparent
in the first equation of Table III for the EH-FX that the coefficients on the
interest rates have the wrong sign, but their standard errors are large. The
coefficients on the lagged spreads, which ought to be zero under the null, are
also large, but so are their standard errors. It is less obvious how imposing

4 Ligeralde ~1997! examines the small-sample performance of various methods of construct-
ing Wald tests. The differential performance across alternatives is mostly due to how one deals
with the serial correlation induced by the overlapping error structure in the data. In our VAR
setting however, this overlapping data problem does not arise.
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the constraints of the EH-TS changes the short-run dynamics, but exami-
nation of equations ~2! and ~3! in Tables III and IV reveals a pattern. Al-
though the term spreads for all three currencies are significant predictors of
one-month-ahead interest rate for the same currency in the unconstrained
VARs, if the EH were true, the feedback coefficients of future interest rates
on past spreads would be larger. Finally, note that bias correction primarily
serves to increase the coefficients along the diagonal of the parameter ma-
trix, which increases the persistence of the VAR.

In all of our experiments, we use the constrained coefficients that are
estimated from simultaneously imposing the EHs. For the first DGP, we
bootstrap the original residuals from the unconstrained VAR, and recon-
struct constrained and unconstrained data, using either the constrained in-
tercepts and slope coefficients or the unconstrained parameters, respectively.
Whereas the sample size for each experiment is 269, each experiment gen-
erates an initial 1,000 observations that are discarded. We also check the
validity of the computer code by letting the sample size become very large
and verifying convergence to the asymptotic distributions. We conduct this
bootstrap procedure for both the DEM–USD and the GBP–USD VARs.

Although the bootstrap procedure captures skewness and leptokurtosis in
the data, it is potentially unrealistic because it destroys higher order depen-

Table II

VAR Order Tests
The currencies are numbered one for the USD, two for the DEM, and three for the GBP. The
continuously compounded rate of appreciation of the USD versus currency j is Dst

j. The one-
month interest rate for currency j is it

j. The spread between the 12-month interest rate and the
1-month interest rate for currency j is spt

j. The sample contains 270 monthly observations from
January 1975 to July 1997. The VAR is a five-variable system in ~Dst

j , it
1, it

j ,spt
1,spt

j ! for j 5 2
or 3. The minimized value of the Schwarz criterion indicates the lag length of the VAR. Small
p-values for the Cumby-Huizinga l-tests indicate possible residual serial correlation for the
individual equations that would be inconsistent with a first-order VAR.

Panel A: Schwarz Criteria

VAR Lag 1 Lag 2 Lag 3 Lag 4

DEM–USD 1.677 1.805 2.062 2.414
GBP–USD 3.87 4.176 4.571 4.823

Panel B: P-values for Cumby-Huizinga l-tests

VAR
DEM–USD Lag 1 Lags 1–3 Lags 1–6

VAR
GBP–USD Lag 1 Lags 1–3 Lags 1–6

Dst
2 0.798 0.459 0.625 Dst

3 0.443 0.637 0.377
it

1 0.321 0.536 0.187 it
1 0.306 0.598 0.217

it
2 0.703 0.868 0.310 it

3 0.805 0.987 0.148
spt

1 0.049 0.228 0.188 spt
1 0.687 0.766 0.799

spt
2 0.024 0.082 0.107 spt

3 0.358 0.726 0.811
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Table III

Unconstrained VAR Dynamics with OLS
and Bias-Corrected Coefficients

The currencies are numbered one for the USD, two for the DEM, and three for the GBP. The
continuously compounded rate of appreciation of the USD versus currency j is Dst

j. The one-
month interest rate for currency j is it

j. The spread between the 12-month interest rate and the
1-month interest rate for currency j is spt

j. The sample contains 270 monthly observations from
January 1975 to July 1997. The first-order VAR is a five variable system in ~Dst

j , it
1, it

j ,spt
1,spt

j!
for j 5 2 or 3. The first coefficients are labeled Coef. and are ordinary least squares estimates;
the second estimates are labeled Bias-Corrected and are adjusted for small-sample bias as
explained in the text. The standard errors, ~s.e.!, are heteroskedasticity consistent.

Panel A: DEM–USD

Coef. Dst21
2

Bias-Corrected
~s.e.!

Coef. it21
1

Bias-Corrected
~s.e.!

Coef. it21
2

Bias-Corrected
~s.e.!

Coef. spt21
1

Bias-Corrected
~s.e.!

Coef. spt21
2

Bias-Corrected
~s.e.!

Dst
2 20.026 1.706 20.518 3.812 26.431

20.011 1.667 20.020 3.837 25.936
~0.075! ~1.277! ~1.692! ~5.629! ~4.459!

it
1 0.000 1.030 20.035 0.287 20.175

0.000 1.039 20.020 0.273 20.165
~0.001! ~0.036! ~0.024! ~0.164! ~0.123!

it
2 0.002 20.021 1.001 20.209 0.312

0.002 20.023 1.012 20.207 0.303
~0.001! ~0.011! ~0.012! ~0.071! ~0.073!

spt
1 0.000 20.036 20.015 0.699 0.019

0.000 20.033 20.018 0.725 0.023
~0.001! ~0.018! ~0.015! ~0.066! ~0.056!

spt
2 20.001 0.032 20.038 0.152 0.655

20.001 0.029 20.033 0.147 0.684
~0.001! ~0.011! ~0.012! ~0.047! ~0.063!

Panel B: GBP–USD

Coef. Dst21
3

Bias-Corrected
~s.e.!

Coef. it21
1

Bias-Corrected
~s.e.!

Coef. it21
3

Bias-Corrected
~s.e.!

Coef. spt21
1

Bias-Corrected
~s.e.!

Coef. spt21
3

Bias-Corrected
~s.e.!

Dst
3 0.060 1.524 20.390 1.405 4.709

0.077 1.555 20.273 1.486 4.625
~0.080! ~1.441! ~1.151! ~4.288! ~3.498!

it
1 20.002 1.023 20.019 0.272 20.072

20.002 1.042 20.019 0.266 20.075
~0.001! ~0.038! ~0.023! ~0.150! ~0.103!

it
3 0.001 0.025 1.022 20.078 0.370

0.001 0.017 1.035 20.086 0.361
~0.001! ~0.034! ~0.041! ~0.085! ~0.106!

spt
1 0.001 20.042 0.010 0.693 0.060

0.001 20.042 0.013 0.718 0.064
~0.001! ~0.020! ~0.013! ~0.059! ~0.047!

spt
3 20.001 0.027 20.081 0.184 0.602

20.001 0.028 20.075 0.183 0.630
~0.001! ~0.018! ~0.022! ~0.065! ~0.061!
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Table IV

Constrained VAR Dynamics with OLS
and Bias-Corrected Coefficients

The currencies are numbered one for the USD, two for the DEM, and three for the GBP. The
continuously compounded rate of appreciation of the USD versus currency j is Dst

j. The one-
month interest rate for currency j is it

j. The spread between the 12-month interest rate and the
1-month interest rate for currency j is spt

j. The sample contains 270 monthly observations from
January 1975 to July 1997. The first-order VAR is a five variable system in ~Dst

j , it
1, it

j ,spt
1,spt

j!
for j 5 2 or 3. The first coefficients are labeled Coef. and are estimates that satisfy the con-
straints of the three expectation hypotheses; the second estimates are labeled Bias-Corrected
and are adjusted for small-sample bias as explained in the text. The standard errors, ~s.e.!, are
heteroskedasticity consistent.

Panel A: DEM-USD

Coef. Dst21
2

Bias-Corrected
~s.e.!

Coef. it21
1

Bias-Corrected
~s.e.!

Coef. it21
2

Bias-Corrected
~s.e.!

Coef. spt21
1

Bias-Corrected
~s.e.!

Coef. spt21
2

Bias-Corrected
~s.e.!

Dst
2 0.000 21.000 1.000 0.000 0.000

0.000 21.000 1.000 0.000 0.000
~0.076! ~1.357! ~1.789! ~5.986! ~4.618!

it
1 20.001 1.034 0.007 0.475 20.021

0.000 1.022 0.020 0.401 0.018
~0.001! ~0.038! ~0.028! ~0.179! ~0.130!

it
2 0.000 20.031 1.014 20.152 0.393

0.001 20.021 1.109 20.139 0.414
~0.001! ~0.011! ~0.012! ~0.075! ~0.072!

spt
1 0.001 20.042 20.009 0.626 0.022

0.000 20.029 20.025 0.707 20.025
~0.001! ~0.019! ~0.017! ~0.068! ~0.059!

spt
2 0.000 0.037 20.019 0.175 0.720

20.001 0.025 20.027 0.160 0.692
~0.001! ~0.011! ~0.011! ~0.051! ~0.063!

Panel B: GBP-USD

Coef. Dst21
3

Bias-Corrected
~s.e.!

Coef. it21
1

Bias-Corrected
~s.e.!

Coef. it21
3

Bias-Corrected
~s.e.!

Coef. spt21
1

Bias-Corrected
~s.e.!

Coef. spt21
3

Bias-Corrected
~s.e.!

Dst
3 0.000 21.000 1.000 0.000 0.000

0.000 21.000 1.000 0.000 0.000
~0.077! ~1.664! ~1.370! ~5.327! ~4.026!

it
1 20.001 1.026 20.008 0.413 20.065

20.001 1.026 20.006 0.397 20.039
~0.001! ~0.039! ~0.025! ~0.158! ~0.108!

it
3 0.001 20.024 1.066 20.176 0.486

0.000 20.032 1.064 20.202 0.478
~0.001! ~0.034! ~0.041! ~0.091! ~0.111!

spt
1 0.001 20.033 0.009 0.698 0.072

0.001 20.034 0.007 0.714 0.044
~0.001! ~0.019! ~0.013! ~0.059! ~0.047!

spt
3 20.001 0.027 20.084 0.199 0.609

0.000 0.037 20.081 0.230 0.617
~0.001! ~0.018! ~0.022! ~0.066! ~0.061!
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dence in the residuals ~e.g., volatility clustering!.5 To accommodate temporal
heteroskedasticity and its potential effects on small-sample distributions,
we also use a Monte Carlo experiment based on a parameterized model of
the residuals. We use the same conditional mean coefficient matrices as in
the bootstrap DGP, but we draw the error terms according to a multivariate
GARCH model.

The GARCH model is similar to the factor GARCH models of Engle, Ng,
and Rothschild ~1990!, Bekaert and Harvey ~1997!, and Bekaert et al. ~1997!.
We model the innovation vector, ht , as a factor structure with the innova-
tions of the short rates in the two countries as the factors. Thus,

ht 5 Fet ~52!

with

F 5 3
1 f12 f13 0 0

0 1 0 0 0

0 f32 1 0 0

0 f42 f43 1 0

0 f52 f53 0 1

4 . ~53!

Note that the innovation in the USD interest rate affects the innovation in
the foreign interest rate, but the foreign interest rate shock does not affect
the USD interest rate innovation. In effect, f32 determines the correlation
between the two fundamental shocks to the system. In equation ~52!, the
vector et represents the idiosyncratic innovations. Hence, Et21 @et et

'# 5 Ht ,
where Ht is a diagonal matrix. As a result, the conditional covariance matrix
of the innovations, ht , which is denoted St , can be written as St 5 FHt F '. We
assume that elements in Ht corresponding to the two factors and the condi-
tional exchange rate variance follow a GARCH~1,1! process ~see Bollerslev
~1986!!. For the conditional variances of the interest rates, we augment the
model to allow the conditional variance to depend on the past interest rate
as in the univariate model of Gray ~1996!. Thus, the model for the condi-
tional variances can be written as follows:

ht
j 5 bj ht21

j 1 aj ~et21
j !2 1 vj ~it21

j !, j 5 2,3. ~54!

The modification to the usual GARCH model accommodates the dramatic
shift in short-rate volatility during the monetary targeting period of 1979–
1982. In this model, the conditional variances of the 12-month term spreads

5 We experimented with stationary bootstrap methods, as in Politis and Romano ~1994! and
Politis, Romano, and Wolf ~1997!, which allow for dependence, but they do not seem well suited
for problems where the data are highly persistent but residuals ought to be uncorrelated.
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and the rate of change of the exchange rate have three components: a com-
ponent linear in the conditional variance of the USD short rate, a component
linear in the conditional variance of the foreign short rate, and an idiosyn-
cratic component. Compared to other multivariate GARCH models, the model
is very parsimonious with only 18 parameters. This parsimony is achieved
by restricting the covariance matrix to depend only on the conditional vari-
ances of the two short rates.

To estimate the model in equations ~52!–~54!, we exploit the block-
diagonal nature of the information matrix and estimate the multivariate
GARCH model from the VAR residuals, using quasi-maximum likelihood.
Hence, we assume normal innovations to construct the likelihood function,
although the true distribution of the innovations may not be normal. White
~1982! and Bollerslev and Wooldridge ~1992! show that the resulting esti-
mator is consistent and asymptotically normal.

Tables V and VI contain the estimation results for the GARCH models for
the DEM and USD rates and the GBP and USD rates, respectively. We first
discuss the DEM–USD system. The conditional variances of the USD and
DEM short rates are moderately persistent with large ARCH coefficients.
There is some remaining time variation in the idiosyncratic component of
the conditional variance of the exchange rate, but it shows little persistence.
The exchange rate shows small, but statistically significantly positive factor
loadings with respect to both the USD and the DEM interest rates.6 The
USD term spread residual is negatively correlated with the USD short-rate
shock, as is expected, and it only weakly depends on the DEM rate. The
DEM spread residual is also strongly negatively correlated with the DEM
short rate, but it is correlated positively with the USD short rate. This does
not necessarily imply that unexpected increases in the USD short rate steepen
the German yield curve, since the USD short rate is positively related to the
DEM short rate, and increases in the DEM short rate increases f latten the
yield curve.

Table VI reports the GBP–USD system. The estimates are in many ways
qualitatively similar to the DEM–USD system, although the conditional vari-
ances of both the USD and GBP short rates show more persistence. We
again find positive exchange-rate factor loadings with respect to both the
USD and GBP interest rate shocks, but the GBP interest rate effect is sta-
tistically insignificant. The factor loadings for the spreads also have the
same signs as in the DEM–USD system. The covariance between the USD
and GBP interest rate shocks is much lower than the comparable one be-
tween the USD and DEM interest rates. The USD–GBP system does some-
what underpredict the unconditional variances of both the USD and the
GBP interest rates.

6 In traditional theories of exchange rate determination, the correlation of exchange rate
innovations with interest rate innovations depends on whether the shock causing interest rates
to move ref lects a change in expected inf lation or in the expected real rate. The latter case
predicts a positive correlation for the USD and a negative correlation for the DEM. That is, if
the USD ~DEM! short rate unexpectedly rises, the dollar ~mark! ought to appreciate.
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As mentioned above, the innovations in the Monte Carlo experiments are
drawn either from the bootstrap procedure or the GARCH models, and the
DGP satisfies the null of the EHs using the bias-corrected, constrained VAR
parameters. The bias-corrected, unconstrained VARs serve as natural alter-
native models.

B. Properties of Test Statistics in Finite Samples

From the DGPs described above, we simulate 25,000 artificial samples of
269 observations. We focus on two sets of results. First, we investigate the
small-sample distributions of the various regression coefficients in the stan-
dard regressions used to test the EHs. Second, we examine the performance

Table V

DEM–USD GARCH Model
The currencies are numbered one for the USD and two for the DEM. The continuously com-
pounded rate of appreciation of the USD versus the DEM is Dst

2. The one-month interest rate
for currency j is it

j. The spread between the 12-month interest rate and the 1-month interest
rate for currency j is spt

j. The sample contains 270 monthly observations from January 1975 to
July 1997. The residuals from the first-order VAR in ~Dst

2, it
1, it

2,spt
1,spt

2! are used to estimate
a GARCH model, as in equations ~52! through ~54!. The coefficient estimates are from maxi-
mum likelihood, and the standard errors, ~s.e.!, are heteroskedasticity consistent.

Coef. Dst
2

~s.e.!
Coef. it

1

~s.e.!
Coef. it

2

~s.e.!
Coef. spt

1

~s.e.!
Coef. spt

2

~s.e.!

Dst
2 1.0000 0.0019 0.0014 0.0000 0.0000

~0.0006! ~0.0004!

it
1 0.0000 1.0000 0.0000 0.0000 0.0000

it
2 0.0000 0.4689 1.0000 0.0000 0.0000

~0.0672!

spt
1 0.0000 20.6217 20.0370 1.0000 0.0000

~0.0919! ~0.0494!

spt
2 0.0000 0.1882 20.6053 0.0000 1.0000

~0.0847! ~0.0675!

vj

~s.e.!
bj

~s.e.!
aj

~s.e.!

h1, t 0.1461 0.00002 0.0980
~0.0155! ~0.00173! ~0.0691!

h2, t 0.00006 0.5355 0.2222
~0.00002! ~0.1182! ~0.0761!

h3, t 0.00004 0.4642 0.2777
~0.00001! ~0.0881! ~0.0890!

h4, t 0.00003 0.0000 0.0000
~0.000002!

h5, t 0.000014 0.0000 0.0000
~0.000001!
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of the three test statistics ~Wald, LM, and DM! in terms of size and power
against the alternative hypothesis.

Tables VII and VIII present some relevant characteristics of the small-
sample distributions of the slope coefficients in the various regression tests
under the two different data generating processes, the bootstrap in Table VII
and the GARCH model in Table VIII. We report only the left-hand tail area
quantiles because the sample parameter estimates are all less than the null
value. We consider both OLS regression coefficients and regression coeffi-
cients implied by the VAR parameters.

A comparison of the means and the medians for the distributions of the
OLS coefficients indicates that they show little asymmetry. The biases, de-
fined as the deviations of the mean values of the empirical distributions
from the values under the null hypothesis, are rather small for the EH-FX

Table VI

GBP–USD GARCH Model
The currencies are numbered one for the USD and three for the GBP. The continuously com-
pounded rate of appreciation of the USD versus the GBP is Dst

3. The one-month interest rate for
currency j is it

j. The spread between the 12-month interest rate and the 1-month interest rate
for currency j is spt

j. The sample contains 270 monthly observations from January 1975 to July
1997. The residuals from the first-order VAR in ~Dst

3, it
1, it

3,spt
1,spt

3! are used to estimate a
GARCH model, as in equations ~52! through ~54!. The coefficient estimates are from maximum
likelihood, and the standard errors, ~s.e.!, are heteroskedasticity consistent.

Coef. Dst
3

~s.e.!
Coef. it

1

~s.e.!
Coef. it

3

~s.e.!
Coef. spt

1

~s.e.!
Coef. spt

3

~s.e.!

Dst
3 1.0000 0.0013 0.00007 0.0000 0.0000

~0.0006! ~0.00087!

it
1 0.0000 1.0000 0.0000 0.0000 0.0000

it
3 0.0000 0.1289 1.0000 0.0000 0.0000

~0.0376!

spt
1 0.0000 20.5175 20.0475 1.0000 0.0000

~0.0867! ~0.0864!

spt
3 0.0000 0.1302 20.8097 0.0000 1.0000

~0.0514! ~0.0795!

vj

~s.e.!
bj

~s.e.!
aj

~s.e.!

h1, t 0.1243 0.000000 0.2004
~0.0143! ~0.00023! ~0.0914!

h2, t 0.000019 0.6877 0.2215
~0.000021! ~0.1185! ~0.0727!

h3, t 0.000033 0.7657 0.0991
~0.000014! ~0.0662! ~0.0355!

h4, t 0.000027 0.0000 0.0000
~0.000002!

h5, t 0.000035 0.0000 0.0000
~0.000003!
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tests and the EH-TS tests based on equation ~18!. The biases are consider-
ably larger for the tests based on equation ~19!, but most of this bias is due
to the maturity mismatch between the 12-month interest rate used in the
test and the 11-month interest rate that should be used. Hence, the bias
largely remains present even in samples of 50,000. The biases in the EH-TS

Table VII

Empirical Distributions of the Regression Coefficients
Under the Null of the Expectation Hypotheses

with Bootstrap Innovations
The table provides summary statistics for the empirical distributions of slope coefficients in
regressions with data generated from a constrained VAR with a bootstrap of the residuals. An
R indicates the direct regression, and an I indicates an implied regression from an uncon-
strained VAR. The first-order VAR is a five-variable system that includes the rate of appreci-
ation of the USD versus currency j, the 1-month interest rates on the USD and currency j, and
the spreads between the 12-month interest rate and the 1-month interest rate for the USD and
currency j, either the DEM or the GBP. The summary statistics are the Mean, Median, Stan-
dard Deviation ~Std. Dev.! and the 0.5 percent, 2.5 percent, and 5 percent quantiles. FX1 and
FX12 are the 1-month and 12-month EH-FX tests as in equation ~17!. CUR1 and CUR2 refer to
EH-TS tests as in equations ~18! and ~19!, where CUR signifies the USD, DEM, or GBP interest
rates. The point estimate is Sample Stat., and the asymptotic standard error of the estimate is
Asymp. s.e.

Slope Mean Median Std. Dev. 0.5% 2.5% 5%
Sample

Stat.
Asymp.

s.e.

Panel A: DEM–USD VAR

FX1-R 1.009 0.991 0.926 21.503 20.793 20.470 20.527 0.923
FX1-I 1.011 0.997 0.955 21.543 20.808 20.490 20.498 0.979
FX12-R 0.924 0.922 1.022 21.979 21.103 20.737 20.273 0.467
FX12-I 0.941 0.938 0.939 21.447 20.806 20.500 20.729 0.982
USD1-R 1.073 1.070 0.194 0.591 0.699 0.756 0.466 0.142
USD1-I 1.025 1.031 0.440 0.590 0.729 0.783 0.664 0.280
USD2-R 1.505 1.493 0.516 0.183 0.510 0.682 0.237 0.929
USD2-I 1.488 1.479 0.782 0.155 0.505 0.677 0.271 0.777
DEM1-R 1.028 1.028 0.143 0.658 0.748 0.793 0.558 0.151
DEM1-I 0.990 0.993 0.193 0.673 0.762 0.803 0.669 0.148
DEM2-R 1.507 1.513 0.361 0.488 0.774 0.903 0.146 0.368
DEM2-I 1.495 1.504 0.415 0.480 0.750 0.886 0.193 0.339

Panel B: GBP–USD VAR

FX1-R 1.052 1.045 0.673 20.778 20.261 20.035 21.654 0.911
FX1-I 1.050 1.045 0.680 20.801 20.277 20.048 21.662 0.936
FX12-R 0.985 0.990 0.741 21.107 20.507 20.231 20.867 0.651
FX12-I 0.986 0.992 0.644 20.784 20.293 20.081 21.341 0.942
USD1-R 1.059 1.057 0.197 0.556 0.679 0.737 0.466 0.142
USD1-I 1.018 1.010 1.567 0.557 0.710 0.766 0.624 0.348
USD2-R 1.512 1.502 0.509 0.163 0.530 0.698 0.237 0.929
USD2-I 1.500 1.489 0.954 0.124 0.503 0.672 0.255 0.707
GBP1-R 1.054 1.052 0.174 0.608 0.720 0.774 0.839 0.176
GBP1-I 1.007 1.009 0.289 0.622 0.739 0.786 0.817 0.241
GBP2-R 1.546 1.536 0.425 0.462 0.730 0.859 0.938 0.483
GBP2-I 1.535 1.525 0.580 0.415 0.705 0.840 0.928 0.467
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tests are consistent with the results in Bekaert et al. ~1997!, where biases
only become quite substantial for longer maturities.

Now consider the dispersion of the slope coefficients. The standard devi-
ations of the empirical distributions in Panels A and B of Table VII are
larger than their corresponding values in Table VIII except for those asso-

Table VIII

Empirical Distributions of the Regression Coefficients
Under the Null of the Expectation Hypotheses

with GARCH Innovations
The table provides summary statistics for the empirical distributions of slope coefficients in
regressions with data generated from a constrained VAR with a GARCH model of the residuals.
An R indicates the direct regression, and an I indicates an implied regression from an uncon-
strained VAR. The first-order VAR is a five-variable system that includes the rate of appreci-
ation of the USD versus currency j, the 1-month interest rates on the USD and currency j, and
the spreads between the 12-month interest rate and the 1-month interest rate for the USD and
currency j, either the DEM or the GBP. The summary statistics are the Mean, Median, Stan-
dard Deviation ~Std. Dev.! and the 0.5 percent, 2.5 percent, and 5 percent quantiles. FX1 and
FX12 are the 1-month and 12-month EH-FX tests as in equation ~17!. CUR1 and CUR2 refer to
EH-TS tests as in equations ~18! and ~19!, where CUR signifies the USD, DEM, or GBP interest
rates. The point estimate is Sample Stat., and the asymptotic standard error of the estimate is
Asymp. s.e.

Slope Mean Median Std. Dev. 0.5% 2.5% 5%
Sample

Stat.
Asymp.

s.e.

Panel A: DEM–USD VAR

FX1-R 0.998 0.998 0.226 0.359 0.545 0.631 20.527 0.923
FX1-I 0.998 0.997 0.229 0.343 0.539 0.626 20.498 0.979
FX12-R 0.962 0.971 0.259 0.173 0.416 0.522 20.273 0.467
FX12-I 0.965 0.972 0.246 0.224 0.445 0.544 20.729 0.982
USD1-R 1.053 1.058 0.131 0.703 0.790 0.833 0.466 0.142
USD1-I 1.047 1.068 1.991 0.679 0.807 0.855 0.664 0.280
USD2-R 1.421 1.398 0.343 0.633 0.807 0.898 0.237 0.929
USD2-I 1.405 1.397 2.440 0.585 0.796 0.888 0.271 0.777
DEM1-R 1.116 1.114 0.242 0.504 0.647 0.719 0.558 0.151
DEM1-I 1.066 1.085 1.531 0.416 0.680 0.757 0.669 0.148
DEM2-R 1.626 1.603 0.658 0.029 0.391 0.585 0.146 0.368
DEM2-I 1.589 1.589 2.548 20.058 0.361 0.558 0.193 0.339

Panel B: GBP–USD VAR

FX1-R 1.002 1.003 0.288 0.227 0.430 0.530 21.654 0.911
FX1-I 1.002 1.003 0.290 0.228 0.429 0.527 21.662 0.936
FX12-R 0.898 0.910 0.546 20.645 20.216 20.018 20.867 0.651
FX12-I 0.914 0.920 0.458 20.320 0.005 0.151 21.341 0.942
USD1-R 1.071 1.072 0.180 0.597 0.715 0.772 0.466 0.142
USD1-I 1.024 1.030 0.236 0.621 0.736 0.790 0.624 0.348
USD2-R 1.579 1.554 0.454 0.521 0.761 0.877 0.237 0.929
USD2-I 1.573 1.549 0.553 0.507 0.753 0.872 0.255 0.707
GBP1-R 1.021 1.024 0.083 0.798 0.851 0.879 0.839 0.176
GBP1-I 1.010 1.015 0.135 0.828 0.876 0.902 0.817 0.241
GBP2-R 1.344 1.336 0.164 0.966 1.046 1.089 0.938 0.483
GBP2-I 1.342 1.334 0.232 0.959 1.044 1.087 0.928 0.467
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ciated with the DEM term structure. This ref lects the inability of the GARCH
models to match the fat tails in the data. The standard deviations of the FX
slopes for the DEM in Panel A are much larger than the standard deviations
of the term structure slopes, but they are not noticeably larger than the
asymptotic standard errors except for the regression at the 12-month hori-
zon. This is true in Panel B for the GBP as well, except that the standard
deviations of the FX slopes are now smaller than the asymptotic values.
Notice also that the left tails of the distributions of the FX tests in Table VII
include substantially negative values. The slope coefficients from equation
~19! also show much more dispersion than those from equation ~18!. Note
that these results are similar across the two currencies.

The small-sample distributions for the implied regression coefficients from
the VARs are quite similar to the distributions of the OLS regression coef-
ficients. Overall, the biases are slightly smaller, but with a few exceptions
for the GBP, the quantiles are remarkably alike across the two sets of coef-
ficients. This indicates that the VAR generally provides a good description of
the relevant dynamics of the data. Note, though, that the dispersion of the
small-sample distributions is sometimes larger for the EH-TS tests because
there are a few extreme observations.7

Tables IX, X, and XI focus on the small-sample properties of the various
test statistics from estimation of unconstrained VARs.8 Table IX considers
properties of the small-sample distribution from the bootstrap DGP. We con-
sider first the EH-FX tests individually for 1-month and 12-month horizons
and jointly for both horizons. We then consider the EH-TS tests for the USD
and for the DEM in Panel A and for the USD and the GBP in Panel B.
Finally, we consider joint tests of all three EHs. As noted above, with a
first-order VAR, each individual test imposes five restrictions on the VAR
parameters. Hence, the appropriate asymptotic distributions for comparison
purposes are the x2~5! for the individual tests, x2~10! for the joint FX test,
and x2~15! for the simultaneous test of all EHs.

Panel A of Table IX reveals that the means of the small-sample distribu-
tions are slightly higher than the corresponding chi-square means, in all but
one case ~the joint LM test!. The upward bias is most severe for the Wald
tests and very small for the LM tests. A similar relation holds for the dis-
persions of the test statistics. The DM tests and especially the Wald tests
show much more dispersion than their corresponding asymptotic distribu-
tions. The distributions of the Wald tests are significantly shifted to the
right, as are the distributions of the DM tests, but less dramatically so. The
LM tests actually show slightly less dispersion than the corresponding chi-
square distributions. Given these findings, it is not surprising that the em-

7 Occasionally, the implied coefficients show rather extreme standard deviations that can be
traced to outliers caused by VAR nonstationarity. The removal of one outlier typically suffices
to bring the standard deviation back in line with the other results.

8 These test statistics are asymptotically pivotal because their limiting distributions do not
depend on any unknown parameters in contrast to the distributions of the regression coeffi-
cients. Statisticians argue that examining asymptotically pivotal statistics improves finite-
sample inference. See Berkowitz and Kilian ~2000!, for example.
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Table IX

Empirical Distributions of Wald, Lagrange Multiplier,
and Distance Metric Tests Under the Null of the

Expectation Hypotheses with Bootstrap Innovations
The table provides summary statistics for the empirical distributions of tests from an uncon-
strained VAR when the data are generated from a constrained VAR with a bootstrap of the
residuals. The first-order VAR is a five-variable system that includes the rate of appreciation of
the USD versus currency j, the 1-month interest rates on the USD and currency j, and the
spreads between the 12-month interest rate and the 1-month interest rate for the USD and
currency j, either the DEM or the GBP. The summary statistics are the Mean, Median, Stan-
dard Deviation ~Std. Dev.! and the 90 percent, 95 percent, and 99 percent quantiles for the Wald
~W!, Lagrange multiplier ~LM!, and distance metric ~DM! tests. FX1 and FX12 are the 1-month
and 12-month EH-FX tests. The asymptotic distribution is a x2~5!. FX1-12 examines the one-
month and twelve-month joint EH-FX test. The asymptotic distribution is a x2~10!. The EH-TS
tests are labeled by currency. The asymptotic distribution is a x2~5!. Joint-EH is a simulta-
neous test of the restrictions of the EH-FX and the EH-TS in each currency. The asymptotic
distribution is a x2~15!. The sample statistic is Sample Stat., and its asymptotic p-value is
Asymp. p-value.

Mean Median Std. Dev. 90% 95% 99%
Sample

Stat.
Asymp.
p-value

Panel A: DEM–USD VAR

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.23 5.30 4.23 11.67 14.35 20.18 6.953 0.224

FX1 LM 5.08 4.59 2.91 8.98 10.61 13.73 5.666 0.340

FX1 DM 6.19 5.32 4.06 11.67 14.16 19.40 8.770 0.119

FX12 W 6.20 5.23 4.35 11.66 14.37 21.57 6.740 0.241

FX12 LM 5.07 4.57 2.91 8.97 10.60 13.81 6.093 0.297

FX12 DM 6.13 5.28 4.01 11.51 13.95 18.92 9.993 0.079

x2~10! 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 11.09 9.09 9.99 18.57 23.93 41.60 8.063 0.623

FX1-12 LM 10.38 10.02 3.82 15.51 17.16 20.55 9.133 0.520

FX1-12 DM 12.82 12.11 5.51 20.14 22.53 27.69 12.110 0.278

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

USD W 7.98 6.55 5.91 15.17 18.91 29.20 14.898 0.011

USD LM 5.65 5.20 2.98 9.72 11.24 14.00 12.627 0.027

USD DM 6.80 5.99 4.10 12.31 14.60 19.52 18.134 0.003

DEM W 7.28 6.01 5.29 13.83 17.32 26.24 19.890 0.001

DEM LM 5.37 4.93 2.92 9.33 10.79 13.80 10.971 0.052

DEM DM 6.76 5.88 4.51 12.48 14.89 20.20 24.498 0.000

x2~15! 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 25.63 23.54 11.76 40.56 47.46 63.66 47.758 0.000

Joint-EH LM 14.96 14.76 4.16 20.41 22.15 25.35 21.336 0.126

Joint-EH DM 18.19 17.77 5.91 25.62 27.98 32.97 27.937 0.022
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pirical critical values do not correspond with the asymptotic ones. The LM
tests slightly underreject at the asymptotic critical value in some cases, but
in general their small-sample distributions are far closer to the asymptotic
distributions than those of the other test statistics. The distortions of the
Wald test appear worst for the EH-TS tests. The distortions of the Wald test
also worsen considerably when the number of restrictions increases. For ex-
ample, whereas the 99 percent quantile for a x2~15! is 30.58, the 99 percent
value in the small-sample distribution of the Wald test for all restrictions in
the DEM-USD system is 63.66.

Panel B of Table IX reports the same characteristics for the GBP system.
All the observations made above remain valid, but we now record a few more
instances in which the empirical mean of the LM tests is slightly below the
asymptotic mean. In general, the closeness of the results between the two
panels is extremely encouraging. For example, the means of the small-

Table IX—Continued

Mean Median Std. Dev. 90% 95% 99%
Sample

Stat.
Asymp.
p-value

Panel B: GBP-USD VAR

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.30 5.38 4.21 11.79 14.35 20.58 17.664 0.003

FX1 LM 4.98 4.55 2.76 8.70 10.15 13.00 9.340 0.096

FX1 DM 6.18 5.37 3.94 11.45 13.76 18.71 15.678 0.005

FX12 W 6.24 5.26 4.29 11.75 14.39 20.80 16.622 0.005

FX12 LM 4.98 4.56 2.77 8.74 10.09 13.09 9.753 0.083

FX12 DM 6.15 5.35 3.92 11.39 13.62 18.58 15.050 0.010

x2~10! 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 13.08 10.48 13.64 21.74 28.16 55.84 23.728 0.008

FX1-12 LM 10.34 10.04 3.70 15.30 16.93 19.89 14.962 0.133

FX1-12 DM 12.89 12.33 5.24 19.99 22.43 27.07 26.197 0.003

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

USD W 8.00 6.61 5.85 15.07 18.87 28.51 13.247 0.021

USD LM 5.61 5.20 2.89 9.53 10.97 13.58 7.813 0.167

USD DM 6.95 6.14 4.15 12.57 14.87 19.86 13.154 0.022

GBP W 7.96 6.38 6.21 15.40 19.66 30.91 4.666 0.458

GBP LM 5.54 5.08 3.03 9.67 11.23 14.38 4.086 0.537

GBP DM 6.86 5.99 4.32 12.71 15.21 20.53 6.032 0.303

x2~15! 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 27.65 25.15 13.22 44.32 52.50 71.86 55.511 0.000

Joint-EH LM 14.81 14.64 3.93 20.01 21.57 24.43 20.109 0.168

Joint-EH DM 18.04 17.72 5.30 25.18 27.34 31.16 27.937 0.022
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Table X

Empirical Distributions of Wald, Lagrange Multiplier,
and Distance Metric Tests Under the Null

of the Expectation Hypotheses with GARCH Innovations
The table provides summary statistics for the empirical distributions of tests from an uncon-
strained VAR when the data are generated from a constrained VAR with a GARCH model of the
residuals. The first-order VAR is a five-variable system that includes the rate of appreciation of
the USD versus currency j, the 1-month interest rates on the USD and currency j, and the
spreads between the 12-month interest rate and the 1-month interest rate for the USD and
currency j, either the DEM or the GBP. The summary statistics are the Mean, Median, Stan-
dard Deviation ~Std. Dev.!, and the 90 percent, 95 percent, and 99 percent quantiles for the
Wald ~W!, Lagrange multiplier ~LM!, and distance metric ~DM! tests. FX1 and FX12 are the
1-month and 12-month EH-FX tests. The asymptotic distribution is a x2~5!. FX1-12 examines
the 1-month and 12-month joint EH-FX test. The asymptotic distribution is a x2~10!. The EH-TS
tests are labeled by currency. The asymptotic distribution is a x2~5!. Joint-EH is a simulta-
neous test of the restrictions of the EH-FX and the EH-TS in each currency. The asymptotic
distribution is a x2~15!. The point estimate is Sample Stat., and its asymptotic p-value is
Asymp. p-value.

Mean Median Std. Dev. 90% 95% 99%
Sample

Stat.
Asymp.
p-value

Panel A: DEM-USD VAR

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.05 5.16 4.04 11.47 13.87 19.32 6.953 0.224

FX1 LM 5.02 4.52 2.88 8.98 10.54 13.68 5.666 0.340

FX1 DM 5.94 5.12 3.83 11.11 13.39 18.25 8.770 0.119

FX12 W 6.14 5.10 4.34 11.75 14.47 21.09 6.740 0.241

FX12 LM 5.06 4.55 2.92 9.08 10.59 13.84 6.093 0.297

FX12 DM 6.00 5.17 3.89 11.32 13.60 18.40 9.993 0.079

x2~10! 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 15.87 12.36 15.81 27.75 37.03 68.33 8.063 0.623

FX1-12 LM 10.34 9.96 3.96 15.66 17.45 21.12 9.133 0.520

FX1-12 DM 12.33 11.67 5.25 19.44 21.96 27.15 12.110 0.278

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

USD W 9.05 6.79 8.26 17.93 23.98 40.39 14.898 0.011

USD LM 5.91 5.36 3.30 10.39 12.13 15.73 12.627 0.027

USD DM 7.10 6.17 4.50 13.13 15.73 21.50 18.134 0.003

DEM W 8.71 6.71 7.40 17.29 22.22 36.63 19.890 0.001

DEM LM 5.93 5.37 3.30 10.47 12.16 15.64 10.971 0.052

DEM DM 7.16 6.20 4.50 13.27 15.90 21.52 24.498 0.000

x2~15! 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 27.47 24.29 14.68 45.29 54.27 79.32 47.758 0.000

Joint-EH LM 15.42 15.17 4.45 21.36 23.24 26.62 21.336 0.126

Joint-EH DM 18.25 17.82 5.77 25.99 28.50 33.02 27.937 0.022
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sample distributions for the EH-FX tests are at most 0.10 apart across the
two tables. For the individual EH-TS tests, we have four sets of results
~the USD twice, the DEM, and the GBP!. Across these four sets of results,
the 95 percent quantiles vary between 17.32 and 19.66 for the Wald test,
between 10.79 and 11.24 for the LM test ~the corresponding chi-square value
is 11.07!, and between 14.60 and 15.21 for the DM test. This is a clear il-
lustration of the remarkable robustness across currencies of our distribu-
tions, and it nicely illustrates the relative qualities of the test statistics.

Table X repeats all of these results for the GARCH DGP. All of the results
remain robust. To illustrate, let us focus on the joint tests, since they feature
the largest distortions. The means of the Wald tests are 27.47 in the DEM–
USD system and 28.22 in the GBP–USD system, and the 95 percent quan-
tiles are 54.27 and 56.33, respectively. The distortions here are somewhat
larger than for the bootstrap results, where the 95 percent quantiles are

Table X—Continued

Mean Median Std. Dev. 90% 95% 99%
Sample

Stat.
Asymp.
p-value

Panel B: GBP–USD VAR

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

FX1 W 6.25 5.30 4.22 11.78 14.32 20.31 17.664 0.003

FX1 LM 4.97 4.51 2.79 8.72 10.26 13.21 9.340 0.096

FX1 DM 6.05 5.24 3.86 11.27 13.54 18.42 15.678 0.005

FX12 W 6.42 5.30 4.60 12.31 15.29 22.57 16.622 0.005

FX12 LM 5.06 4.61 2.84 8.92 10.43 13.59 9.753 0.083

FX12 DM 6.20 5.37 3.97 11.55 13.86 18.95 15.050 0.010

x2~10! 10.00 9.34 4.47 15.99 18.31 23.21

FX1-12 W 16.52 13.20 14.77 28.52 37.33 70.07 23.728 0.008

FX1-12 LM 10.25 9.91 3.78 15.28 17.03 20.19 14.962 0.133

FX1-12 DM 12.57 11.96 5.17 19.61 22.04 26.68 26.197 0.003

x2~5! 5.00 4.35 3.16 9.24 11.07 15.09

USD W 8.23 6.27 7.17 16.34 21.23 36.32 13.247 0.021

USD LM 5.52 5.01 3.10 9.73 11.41 14.66 7.813 0.167

USD DM 6.73 5.86 4.28 12.50 15.05 20.40 13.154 0.022

GBP W 7.89 5.97 6.87 15.89 20.67 33.70 4.666 0.458

GBP LM 5.41 4.85 3.13 9.69 11.39 14.82 4.086 0.537

GBP DM 6.65 5.68 4.35 12.55 15.18 20.56 6.032 0.303

x2~15! 15.00 14.34 5.48 22.31 25.00 30.58

Joint-EH W 28.22 24.95 15.04 46.73 56.33 80.91 55.511 0.000

Joint-EH LM 14.78 14.59 4.13 20.26 21.95 25.08 20.109 0.168

Joint-EH DM 17.76 17.45 5.41 25.01 27.17 31.21 27.937 0.022
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Table XI

Empirical Size and Power of Wald, Lagrange Multiplier, and Distance Metric Tests
The table provides empirical sizes and powers from the empirical distributions of test statistics from an unconstrained VAR when the data are
generated from a constrained VAR. The first-order VAR is a five-variable system that includes the rate of appreciation of the USD versus
currency j, the 1-month interest rates on the USD and currency j, and the spreads between the 12-month interest rate and the 1-month interest
rate for the USD and currency j, either the DEM or the GBP. The empirical size is the percent of the Monte Carlo experiments generated when
the null hypothesis is true in which the test statistic exceeds the five percent asymptotic critical value. The power of the test is the percent of
the empirical distribution generated when the alternative hypothesis is true that exceeds the five percent critical value of the empirical distri-
bution generated when the null hypothesis is true. The tests statistics are the Wald ~W!, Lagrange multiplier ~LM!, and distance metric ~DM!
tests. The symbol B signifies the bootstrap DGP distributions, and the symbol G signifies the GARCH model DGP distributions. FX-1 and FX-12
are the 1-month and 12-month EH-FX tests. Joint FX is the simultaneous test of both horizons. The EH-TS tests are labeled by currency. Joint
is a simultaneous test of the restrictions of the EH-FX and the two EH-TS.

DEM-USD GBP-USD

FX-1 FX-12 Joint FX EH-USD EH-DEM Joint FX-1 FX-12 Joint FX EH-USD EH-GBP Joint

Panel A: Empirical Size

W-B 11.8 11.5 10.5 21.9 17.8 44.6 12.1 12.0 15.6 21.8 22.0 50.6
LM-B 4.1 4.0 3.0 5.4 4.4 1.2 3.2 3.1 2.5 4.8 5.3 0.7
DM-B 11.6 11.3 15.2 14.3 14.7 11.9 11.2 11.1 15.4 15.1 15.4 10.6
W-G 11.1 11.9 25.9 26.2 24.9 47.7 12.2 13.4 28.5 22.6 21.2 49.9
LM-G 3.9 4.0 3.5 7.7 7.9 2.3 3.3 3.6 2.9 5.8 5.7 1.1
DM-G 10.2 10.8 13.2 16.8 17.4 12.8 10.6 11.7 13.7 14.5 14.7 10.0

Panel B: Empirical Power

W-B 55.8 49.7 45.1 80.1 95.3 95.8 77.8 72.7 60.2 69.1 45.6 91.8
LM-B 54.1 51.1 52.0 84.4 95.5 96.1 64.0 70.9 79.5 72.5 47.6 91.8
DM-B 55.2 52.8 54.1 88.2 97.7 98.9 72.0 78.1 85.5 76.1 49.5 95.3
W-G 57.8 54.8 12.5 95.6 74.3 98.6 67.8 61.9 31.2 95.3 94.1 99.8
LM-G 56.2 57.6 53.0 97.9 83.7 99.0 56.5 59.8 99.1 96.9 95.4 99.9
DM-G 58.0 58.7 54.2 98.4 85.4 99.5 61.8 66.8 99.4 97.4 95.7 99.9
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47.46 and 52.50, respectively. Compared to the 95 percent critical value of a
x2~15! of 25, the size distortions are considerable. There is also a significant
rightward shift for the DM test. Its mean is 18.25 in the DEM–USD system
and 17.76 in the GBP–USD system. The 95 percent quantiles are 28.50 and
27.17, respectively. Apart from showing a much smaller distortion relative
to the Wald test, the small-sample distribution of the DM test is also more
alike across currencies and DGPs. The 95 percent quantiles in the bootstrap
case are 27.98 for the DEM–USD system and 31.16 for the GBP–USD case.
The LM test is again the best behaved. The mean of its distribution is 15.42
for the DEM–USD system and 14.78 for the GBP–USD system, which is
very close to the mean of the x2~15!. Since the empirical distributions of the
LM tests have smaller variances than the asymptotic distributions, it is not
surprising that the 95 percent quantiles are lower than the corresponding
value of 25 for a x2~15!. The 95 percent quantiles are 23.27 in the DEM–
USD system and 21.95 in the GBP–USD system. The undercoverage of the
LM test is worst for the joint test. Since the 95 percent critical values in the
bootstrap case were 22.15 for the DEM–USD system and 21.57 for the GBP–
USD case, this test also shows remarkable robustness across currencies and
DGPs.

In Table XI, we focus on the empirical size and the empirical power of the
various tests at the nominal five percent significance level. The empirical
size of a test is the percent of the Monte Carlo experiments conducted under
the null hypothesis in which the test statistic exceeds the asymptotic critical
value associated with a five percent, type-one error. These values are re-
ported in Panel A. The empirical power of a test is the percent of Monte
Carlo experiments conducted under the alternative hypothesis in which the
test statistic exceeds the empirical critical value. These critical values are
reported in Tables IX and X. Panel B of Table XI reports the values for the
empirical powers of the tests where the alternative hypothesis is the uncon-
strained VAR.

Whereas all tests show size distortions, the Wald test has by far the worst
size properties. Its empirical size for a five percent nominal test is at least
10.50 percent. The empirical size is considerably worse for the EH-TS tests,
reaching 26.2 percent for the USD test in the DEM–USD GARCH DGP. For
the joint test of the EHs, the empirical sizes of the Wald tests vary between
44.6 percent and 50.6 percent. Since this test has been the one used most in
empirical work, these findings may potentially change inference regarding
the validity of the EHs. The DM tests also have size distortions for the
EH-FX tests with a largest empirical size of 15.4 percent, but the sizes of the
DM tests are smaller than those of the corresponding Wald tests, except in
one case. The empirical sizes of the LM tests for a five percent nominal size
vary between 0.7 percent and 7.9 percent. In the majority of the cases, the
sizes of the LM tests are smaller than five percent, and in virtually half of
the cases the empirical size is within one percent of the nominal size.

To assess the power of the tests, we use the unconstrained VAR as the
alternative hypothesis. We find that the power of the tests depends critically
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on which of the null hypotheses is tested and to some extent on the DGP. For
the DEM–USD system, the EH-TS tests are more powerful than the EH-FX
tests. Note that the information set considered for the EH-FX test is larger
than what is typically considered in regression tests, where changes in for-
eign exchange rates are regressed on an interest differential. Here the co-
efficients on the interest rates are allowed to be different in absolute magnitude
and the spreads are allowed to predict changes in exchange rates. The power
of the FX tests hovers around 55 percent. For the test of the EH-TS in the
DEM, the power is very high for the bootstrap DGP ~in excess of 95 percent!
and between 74.3 percent and 85.4 percent for the GARCH system. For the
USD term structure, the roles are reversed, with the GARCH system yield-
ing more powerful tests, generally in excess of 95 percent. Nevertheless,
even for the bootstrap system, power is still in excess of 80 percent. For the
joint EH-FX test, power is slightly in excess of 50 percent for the LM and
DM tests, but drops to 45.1 percent for the Wald test in the bootstrap DGP
and to 12.5 percent for the Wald test in the GARCH DGP.

For the GBP system, power is always higher for the EH-FX tests than in
the DEM–USD system. We find that empirical power in these tests varies
between 56.5 percent and 99.4 percent. EH-TS tests for the USD and the
GBP are less powerful with the exception of the GBP tests for the GARCH
system, in which they exceed 94 percent in every case.

For the joint tests of the EHs, there is uniformly high power. For the
GARCH system, the LM and DM tests have power over 99 percent. While
the power is generally smaller for the bootstrap DGP, it never falls below
91.8 percent.

We also check to see that all tests are consistent in that power goes to one
when the sample is increased. Simulations of samples with 50,000 observa-
tions reveal powers very close to 1.00 for all tests. For our small samples of
269 observations, it is important to assess which tests are most powerful. Of
course, we already know that the LM test has superior size properties and
should be the preferred test, if it has comparable power to the other tests.
Across the two DGPs, the two currencies, and the various tests, we can
make a total of 24 power comparisons. In 21 cases, the DM test is most
powerful and comes in second in the three other cases. The LM test is never
the most powerful test, but comes in second in 18 cases. Moreover, whereas
the Wald test is sometimes more powerful than the LM test, when it is not,
its power is substantially below that of the other tests.

Taken together, our results strongly suggest avoiding use of the Wald test.
The DM test has reasonable size properties, but its use would lead to over-
rejection of the null hypothesis. It is also quite powerful when applied cor-
rectly. The LM test is by far the best test. It has very good size properties,
and it has good power. In some cases, it may turn out to be a slightly con-
servative test, which fails to reject the null when it is false. Ironically, the
LM test is arguably the least used of all in applied work. Having established
the small-sample properties of the various test statistics allows us to revisit
the evidence on the EHs in the data.
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V. Statistical Analysis of the Data

This section evaluates the validity of the EHs using the small-sample dis-
tributions developed above. Two types of evidence are interpreted. First, we
consider the regression evidence corresponding to equations ~17!, ~18!, and
~19! for slope coefficients from ordinary least squares ~OLS! regressions and
the corresponding implied coefficients ~IOLS! from the VAR. Then, we con-
sider the test statistics from the VARs.

A. The Regression Evidence

Consider first the results in Table VII. For the DEM–USD rate, the slope
coefficients corresponding to equation ~17! of 20.527 ~OLS! and 20.498 ~IOLS!
fall between the 2.5 percent and 5 percent quantiles of the empirical distri-
butions. After allowing for a two-sided test, this evidence is consistent with
the large-sample inference one would do based on asymptotic standard
errors of 0.923 ~OLS! and 0.979 ~IOLS!, which produces p-values of 0.1 for
the null that the slope coefficient is one. Similarly, for the GBP–USD rate,
the coeff icient estimates of 21.654 ~OLS! and 21.662 ~IOLS! are well
below the 0.5 percent quantile of the empirical distributions. Hence, the
small-sample inference supports the asymptotic inference that rejects the
null at smaller than a one percent marginal level of significance. The evi-
dence for both of these rates at the 12-month horizon is not quite as strong.

The situation for the term structure is in many ways the reverse of the
above. We now reject the EH-TS for the USD at the one percent level for
equation ~18! and at the five percent level for equation ~19!. We reject very
strongly in the DEM term structure, but we do not reject at all in the GBP
term structure.

Similar inference can be drawn from the distributions in Table VIII be-
cause the GARCH model generally produces less dispersion in the slope co-
efficients. The p-values of the FX tests would actually be smaller than the
asymptotic p-values.

B. The VAR Tests

Analysis of Tables IX and X indicates that use of empirical critical values
generally weakens the evidence against the EHs for the Wald and DM tests.
Consider a researcher who conducts inference using Wald tests and their
asymptotic critical values, which is undoubtedly the most common approach
in the literature. Such a researcher would conclude that there is strong evi-
dence against the EH-FX for the GBP–USD but not in the DEM–USD, that
the EH-TS is rejected for the USD and the DEM but not for the GBP. Notice,
though, that a joint test of all the EHs would reveal very strong evidence
against the hypotheses in both currency markets and all three term structures.

When empirical critical values are used, the evidence against the EHs
weakens considerably. In fact, all tests fail to reject at the one percent mar-
ginal level of significance, and most of the joint evidence yields ~marginal!
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five percent rejections. Given the LM test’s superior size properties, a re-
searcher using such a test, even with the asymptotic critical values, would
typically reach the right conclusion.

Note that using the appropriate empirical critical values for the different
tests generally leads to a more common interpretation of the data across the
tests than is afforded from the asymptotic distributions. For example, in the
joint test of all the EHs in the DEM–USD system, which is reported in
Table IX, the Wald, DM, and LM test statistics are 47.76, 27.94, and 21.34,
respectively. Since the five percent critical value of a x2~15! is 25, asymp-
totic inference is quite different depending on the statistic chosen. The re-
sults in Table IX indicate that each of the statistics is quite close to the 95
percent quantiles of the empirical distributions, which are 47.46, 27.98, and
22.15, respectively.

VI. Conclusions

The goal of this paper is to evaluate the expectations hypotheses of the
term structure of interest rates and of the foreign exchange market using
alternative statistical techniques and extensive Monte Carlo methods. We
find no evidence against the EH-FX for the DEM–USD foreign exchange
market, but we marginally reject it for the GBP–USD market at either the
5 percent or 10 percent marginal level of significance depending on the test
statistic. The lack of strong evidence against the EH-FX for these major
currencies is consistent with the findings of Huisman et al. ~1998! and Ban-
sal and Dahlquist ~2000!, who use panel data techniques with 15 and 28
countries, respectively.

For the EH-TS, the evidence is more mixed. There is no evidence at all
against the EH-TS for the GBP, weak evidence against the EH-TS for the
USD ~at most five percent rejections!, and somewhat stronger evidence against
the EH-TS for the DEM, where the DM test rejects at the one percent level
for both DGPs. However, the other tests reject at the 5 percent or 10 percent
level depending on the DGP. The joint tests of the EHs never reject at the
1 percent level and the strongest evidence against the joint hypotheses oc-
curs in the GBP–USD bootstrap system, where the Wald and DM tests reject
at the 5 percent level and the LM test at the 10 percent level.

These rejections are much less dramatic than the asymptotic distributions
imply. In general, we find severe size distortions in the Wald tests and to a
lesser extent in distance metric tests. The test with the best performance for
our sample size is the Lagrange multiplier test. While estimation of VARs
subject to highly nonlinear restrictions is often technically demanding, we
find that iterating on the approximate solution of Newey and McFadden
~1994! easily converged to estimators that satisfied the constraints.

This technique is not only useful in formulating alternative test statistics
to the usual Wald tests, it also delivers the dynamics of the data under the
null hypothesis. This allows the straightforward development of Monte Carlo
experiments to analyze the small-sample distributions of test statistics. There
are also many environments in which contrasting constrained with uncon-
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strained dynamics can yield useful insights. As one example, consider the
effect of monetary policy on the aggregate economy. Policy analysis, such as
Bernanke, Gertler, and Watson ~1997!, often uses VARs to trace out these
effects. If some of the effects occur through changes in long rates, it may be
instructive to compare the predictions of models estimated under the EH
with unconstrained VAR dynamics, especially since the EH is a working
hypothesis of many policy makers.

While the distortions in the test statistics provide a partial rehabilitation
to the EHs, it remains inconsistent with the data. Moreover, our results
cannot be generalized to other currencies. There are several possible ways to
go in explaining the findings. First, it is unlikely that the EHs are literally
true because of the requirement that risk premiums are constant. Indeed,
Bekaert et al. ~2001! find that allowing for a small amount of variation in
term premiums in the bond market improves the ability of the EH-TS test
statistics to match the data. Second, although we allow for a rich data-
generating process, it may be that the real world is more complicated and
that peso problems may consequently plague the statistical analysis. Once
again, Baillie and Bollerslev ~2000!, Bekaert et al. ~2001!, and others have
experimented with alternative DGPs that may provide richer and more re-
alistic environments than our constrained VARs.

Appendix

This appendix examines the implications of economies that do not admit
arbitrage for the expectations hypothesis of the term structure of interest
rates.9 From equation ~3!, the n-period interest rate can be written as follows:

it, n 5 2
1

n
log@Et @exp~mt1n, n!##, ~A1!

where the log of the n-period pricing kernel is mt1n, n [ (i51
n mt1i . A Taylor’s

series expansion of exp~mt1n, n! around the mean yields the following
expression:

exp~mt1n, n! 5 exp@Et ~mt1n, n!#F1 1 (
p51

` @mt1n, n 2 Et ~mt1n, n!# p

p! G. ~A2!

Therefore,

Et @exp~mt1n, n!# 5 exp@Et ~mt1n, n!#F1 1 (
p52

` nt, n~ p!

p! G, ~A3!

where nt, n~ p! is the pth conditional central moment of mt1n, n.

9 These derivations first appeared in an early version of Bekaert, Hodrick, and Marshall
~2001!.

Expectations Hypotheses Tests 1391



By applying equation ~A3! repeatedly for n 5 1, and replacing interest
rates by conditional expectations of pricing kernels as in equation ~A1!, we
derive the following general term premium:

at, n 5
1

n FEtS(
i51

n

logF1 1 (
p52

` nt1i21,1~ p!

p! GD 2 logS1 1 (
p52

` nt, n~ p!

p! DG. ~A4!

To compute the foreign exchange risk premium, use the complete markets
assumption to express exchange rate changes in terms of conditional pricing
kernels and then use the results in equations ~A1! through ~A3! to obtain:

Et ~Dst11! 5 Et ~mt11
j ! 2 Et ~mt11

k !

5 ~it
k 2 it

j! 1 logF1 1 (
p52

` nt,1
k ~ p!

p! G 2 logF1 1 (
p52

` nt,1
j ~ p!

p! G.

~A5!

Under log normality, the last two terms reduce to half the difference of the
conditional variances of the two log pricing kernels, as in equation ~9! in the
paper.
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Discussion

MATTHEW RICHARDSON*

BACK IN THE EARLY 1980S, there was an explosion of research in finance that
focused on the econometrics for testing whether a given portfolio is mean-
variance efficient. A number of high-quality papers in this literature care-
fully investigated and compared different test methodologies, such as the
Wald, Lagrange Multiplier, and various Likelihood Ratio statistics.1 One ma-
jor finding in this literature was that the Wald statistic, which derives from
the unrestricted model, generally performed poorly relative to restricted frame-
works as used by the Lagrange Multiplier and Likelihood Ratio test statistics.

I bring up this well-known example from the finance literature because
the paper by Bekaert and Hodrick here can be viewed in parallel to what
took place a few decades ago. In fact, given that the fixed income and foreign
exchange literature is so large and has performed numerous empirical in-
vestigations of the expectations hypothesis, it is surprising there has been
no analogous investigation of test methodologies as in the mean-variance
efficient testing literature.

There are perhaps a few reasons for this oversight. First, there have not
been many investigations of the expectations hypothesis across multiple coun-
tries and horizons in a joint unified framework. Therefore, for many previ-
ous applications, only a few restrictions were actually tested. Generally
speaking, the largest differences occur between test statistics in restricted
and unrestricted settings when the researcher faces multiple restrictions
and complex covariance matrices, which effectively decrease the sample size.
Second, many previous researchers were more interested in the unrestricted

* Stern School of Business, New York University.
1 See, for example, Gibbons ~1982!, Jobson and Korkie ~1982!, Amsler and Schmidt ~1985!,

Shanken ~1985!, and Gibbons, Ross, and Shanken ~1989!, among others.
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