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Abstract 

We documen t  extreme bias and  dispersion in the small-sample d is t r ibut ions  of four 
s tandard  regression-based tests of the expectat ions hypothesis  of the term structure  of 
interest  rates. The biases arise because of the extreme persistence in shor t  interest  rates. 
We derive approx imate  analyt ic  expressions for the biases under  a simple f irst-order 
autoregressive da ta  generat ing process for the shor t  rate. We then conduct  M o n t e  Car lo  
exper iments  based on a bias-adjusted first-order autoregressive process for the shor t  rate 
and  for a more  realistic b ias-adjusted V A R - G A R C H  model  incorpora t ing  the shor t  rate 
and  three term spreads. Conduc t ing  inference with the small-sample d is t r ibut ions  of test 
statistics ra ther  t han  with their  asymptot ic  d is t r ibut ions  provides a more  consis tent  
rejection of the expectat ions hypothesis.  Plausible sources of measurement  error  in shor t  
and  long yields do not  salvage the expectat ions hypothesis.  
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1. Introduction 

The expectations hypothesis is probably the oldest and most studied theory of 
the term structure of interest rates (see Fisher, 1896; Lutz, 1940). Although the 
modern finance literature has developed more sophisticated models of the term 
structure, the empirical evidence against the basic expectations hypothesis is far 
from conclusive and offers several interesting puzzles. 

For  example, Campbell and ShiUer (1991) find different results with US data 
depending on the regression specification and the maturity of the bonds. In brief, 
the change in the US long-term interest rate does not behave as predicted by the 
theory. The regressions indicate that actual long-term rates move in the opposite 
direction from that predicted by the theory. The predictions of the expectations 
hypothesis for long rates are rejected very strongly at the short end of the term 
structure and quite comfortably at the long end using the traditional asymptotic 
distribution theory. On the other hand, the regressions indicate that future 
short-term rates move in the direction predicted by the expectations hypothesis. 
The theory is still rejected at the short end of the term structure, but this 
empirical specification does not reject the expectations hypothesis at the long 
end of the term structure. Campbell and Shiller (1991, p. 505) note that these two 
sets of results produce an apparent paradox: 

The slope of the term structure almost always gives a forecast in the wrong 
direction for the short-term change in the yield on the longer bond, but gives 
a forecast in the right direction for long-term changes in short rates. 

Campbell and Shiller use two regression tests involving term spreads and 
two specification tests from vector autoregressions in changes in short rates 
and term spreads. A fifth specification test uses forward rates as in Fama (1984). 
An earlier version of this paper (Bekaert et al., 1996) reports results for this fifth 
specification test. Because both the analytical biases and the Monte Carlo 
simulations for this test are similar to those of the second Campbell-Shiller 
specification test, we focus on the two regression tests and the two VAR 
statistics. 1 

The purpose of this paper is to reexamine the econometric methodology 
underlying these different specification tests. Our  main contribution is to 

1The regression test based on forward rates has delivered rejections of the expectations hypothesis at 
the short end of the maturity spectrum using US data (see Fama, 1984; Fama and Bliss, 1987; 
Stambaugh, 1988), but Jorion and Mishkin (1991) found no evidence against the expectations 
hypothesis using longer maturities and data from the United States, the United Kingdom, Germany, 
and Switzerland. Hardouvelis (1994) also found less evidence against the expectations hypothesis 
with international data using the Campbell-Shiller (1991) specification tests. 
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demonstrate that all regression-based tests of the expectations hypothesis are 
severely biased in small samples. We show that the high persistence of short- 
term interest rates induces extreme bias and extreme dispersion into the small- 
sample distributions of the test statistics. Intuitively, the well-known downward 
bias in estimating autocorrelations (see Marriott and Pope, 1954; Kendall, 1954) 
translates into a large upward bias in the slope coefficients of standard tests of 
the expectation hypothesis because the dependent variables depend on future 
short rates and the regressors depend negatively on current short rates. This bias 
is an example of the biases in regressions on persistent, predetermined, but not 
necessarily exogenous regressors studied by Stambaugh (1986), Mankiw and 
Shapiro (1986), and Elliott and Stock (1994). 

The bias makes it important to use well-designed Monte Carlo simulations to 
derive the small-sample distributions of test statistics. Evaluating the econo- 
metric analysis of the expectations hypothesis using the small-sample distribu- 
tions may strengthen rejections (because of the positive bias) or weaken 
rejections (because of the increased dispersion). While Campbell and Shiller 
(1991) and others have used Monte Carlo methods to assess the validity of their 
asymptotic distribution theory and have reported that the asymptotic theory is 
not to be trusted, the typical Monte Carlo experiment has not adjusted for the 
small-sample bias in the coefficients that are estimated to form the data-generat- 
ing process. 

The organization of the paper is as follows. Section 2 examines some em- 
pirical evidence on the expectations hypothesis using the four statistical 
tests mentioned above. Section 3 analytically derives first-order approxi- 
mations to the small-sample biases for these specification tests assuming a 
first-order autoregressive model for the short rate. Section 4 examines 
Monte Carlo evidence on the four tests under the first-order autoregres- 
sion data-generating process. Section 5 considers Monte Carlo simulations 
for a more realistic data-generating process for the short rate and the 
term spreads. We model the short rate as part of a vector autoregression 
that includes three spreads between longer maturity rates and the short rate 
and that has conditionally heteroskedastic innovations. Our conditional 
volatility model combines a factor GARCH structure with a square-root 
process. In Section 6 we discuss whether measurement error explains departures 
from the expectations hypothesis. The last section provides some concluding 
remarks. 

2. An update of empirical evidence on the expectations hypothesis 

We follow Campbell and Shiller (1991) in defining the expectations hypothesis 
of the term structure as the requirement that continuously compounded long- 
term interest rates (the yields on long-term pure discount bonds) be weighted 
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averages of expected future values of continuously compounded short 
interest rates, possibly with an additive time-invariant term premium. 
Formally, 

l n - - 1  
r ( t , n ) = -  ~ E t r ( t + i ) + ~ c , ,  (1) 

n i = o  

where r (t, n) denotes the continuously compounded annualized yield on a bond 
with n periods to maturity at time t, r (t) denotes the one-period short rate, and 
~cn is a constant term premium. 

A number of tests of Eq. (1) have been proposed in the literature. First, as 
noted by Campbell and Shiller (1991), Eq. (1) implies that a maturity-specific 
multiple of the term spread, r (t, n) - r(t) ,  predicts future changes in the long bond 
yield. In particular, the slope coefficient, al, should equal unity in the following 
regression: 

1 
r ( t  + 1, n - -  1) -- r ( t ,  n) = ~o + ~1 ~ J r ( t ,  n) - -  r(t)] + e(t + 1). 

t n - -  l )  
(2) 

Second, Eq. (1) implies that the current term spread should forecast a 
weighted average of future changes in short interest rates. Campbell and Shiller 
(1991) note that the slope coefficient, 31, should equal unity in the following 
regression: 

1 - [ r ( t  -t- i) - r ( t  -t- i - 1)] = 3o -t- 31 Jr( t ,  n) - r(t)] + ~(t -t- n - 1). 
i=1 

(3) 

The second and third columns of Table 1 report evidence on Eqs. (2) and 
(3) for the period May 1952 to December 1995, a total of 524 monthly observa- 
tions. The data from May 1952 to February 1991 are from McCulloch 
and Kwon (1993), and the data from March 1991 to December 1995 are from 
Robert Bliss, as discussed in Bliss (1994). These former data are computed using 
the cubic-spline procedure of McCulloch (1975) and McCulloch and Kwon 
(1993). Bliss (1994) does not adjust the yields for tax effects, while the 
McCulloch-Kwon (1993) data are tax-adjusted. After the late 1980s, the tax 
adjustments are extremely small or zero. In Table 1, the short rate has a 1-month 
maturity. 

Notice that the estimated slope coefficients for Eq. (2) are significantly below 
unity for all maturities, and the point estimates are negative. Furthermore, the 
point estimates become more negative as yields of longer-term bonds are used to 
form the dependent variable and the term spread. In contrast, the point esti- 
mates of the slope coefficients in Eq. (3) are all positive, and as the horizon 
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Table 1 
Estimates and asymptotic standard errors 

The sample period is May 1952 to December 1995 (524 observations) for Eq. (2) and the VARs, with 
commensurately fewer observations at the ends of the samples for Eq. (3). The column labeled Eq. (2) 
reports the slope coefficients from regressions of the change in the yield on an n-period bond on 
[1/(n - 1)] times the term spread between the n-period yield and the short rate. The column labeled 
Eq. (3) reports the slope coefficients from regressions of the weighted average of changes in future 
short rates on the term spread. The last two columns report statistics based on a fourth-order 
bivariate VAR in the change in the short rate and the n-period term spread. The two statistics are the 
correlation between the theoretical spread that satisfies the expectations hypothesis and the actual 
spread and the ratio of the standard deviation of the theoretical spread to the standard deviation of 
the actual spread. Asymptotic standard errors are in parentheses, and the p-values associated with 
the hypothesis that the statistics equal one are in square brackets. 

n Standard dev. 
(months) Eq. (2) Eq. (3) Correlation ratio 

12 - 0.819 0.329 0.759 0.404 
(0.620) (0.174) (0.236) (0.129) 
[0.003] [0.0001] [-0.307] [-0.00004] 

36 - 1.673 0.440 0.913 0.373 
( 1.255) (0.271) (0.164) (0.245) 
[0.033] [0.039] [-0.596] [-0.010] 

60 - 2.320 0.569 0.960 0.407 
(1.479) (0.324) (0.080) (0.272) 
[-0.025] [0.183] [,0.617] [-0.029] 

increases ,  the  e s t i m a t e d  s lope  coeff ic ients  b e c o m e  ins ign i f i can t ly  d i f ferent  f r o m  

u n i t y ?  

In  a d d i t i o n  to  the  s i n g l e - e q u a t i o n  regress ion  tests in Eqs.  (2) a n d  (3), C a m p b e l l  

a n d  Shi l le r  de r ive  tests of  Eq.  (1) based  on  a b i v a r i a t e  v e c t o r  a u t o r e g r e s s i o n  

(VAR)  in the  c h a n g e  in the  sho r t  rate,  A r ( t )  =- r ( t )  - -  r ( t  - -  1), and  the  t e r m  

spread ,  s ( t ,  n) - r ( t ,  n) - r (t). T o  u n d e r s t a n d  the  V A R  stat is t ics ,  let  A d e n o t e  the  

f i r s t -o rde r  c o m p a n i o n  f o r m  of  the  V A R  p a r a m e t e r  m a t r i x  a n d  let  w(t) d e n o t e  

the  c o r r e s p o n d i n g  c o m p a n i o n - f o r m  v e c t o r  of  regressors ,  w ( t ) =  J A r ( t ) ,  s ( t ,  n),  

A r ( t - 1), s ( t - 1, n) . . . . .  A r ( t - j ) ,  s ( t - j ,  n)]', whe re  the  lag l eng th  of  the  V A R  

i s j  + l .  F r o m  Eq.  (1), the  t e r m  s p r e a d  tha t  satisfies the  e x p e c t a t i o n s  h y p o t h e s i s  is 

ZAt this point in the paper, we are defining the concept of statistical significance relative to the 
asymptotic distributions of the OLS estimators with conditionally heteroskedastic standard errors 
as in Newey and West (1987). As we shall see in Sections 3 and 5 below, the small-sample 
distributions of these estimators differ substantially from their asymptotic counterparts, which 
creates severe distortions in the sizes of the tests. Inference with the asymptotic distribution is 
consequently untrustworthy. 
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n 1 Y.i = 1 [1 - (i/n)]E~ [A r(t + i)]. Campbell and Shiller note that the VAR produces 
expected changes in the short rate from which one can obtain an expression for 
the time-varying part of 'theoretical spread', denoted s'(t, n): 

n - 1  

s'(t, n) =-- ~ (1 -- i/n)el'Ai w(t), (4) 
i=1 

where el is an indicator vector with one in the first row and zeros everywhere 
else. 

The statistics proposed by Campbell and Shiller as tests of the expectations 
hypothesis are the correlation between s'(t, n) and s(t, n) and the ratio of the 
standard deviation of s'(t, n) to the standard deviation of s (t, n). Both statistics 
are functions of the coefficients of the VAR and the covariance matrix of the 
VAR innovations. Under the expectations hypothesis, both should equal one. 
The columns of Table 1 labeled 'Correlation' and 'Standard Dev. Ratio' report 
these statistics for our sample period. Notice that the asymptotic distribution 
theory underlying the correlation statistic does not provide evidence against the 
null hypothesis, whereas the ratio of the standard deviations provides quite 
strong evidence against the expectations hypothesis. For  the longer maturities, 
the correlation statistic is quite close to its theoretical value of unity, whereas the 
ratio of the standard deviations is always less than 0.5. 

3. Analytical approximations of the biases in tests of the expectation hypothesis 

In this section, we derive first-order approximations to the small-sample 
biases for the four specification tests of the expectations hypothesis under the 
following AR(1) model for the short rate: 

r(t + 1) =/~ + pr(t) + v(t + 1). (5) 

We choose the AR(1) for analytical tractability and to clearly illustrate the link 
between the small-sample biases and the degree of persistence in the short-rate 
process. Although a highly serially correlated AR(1) model is a reasonable 
approximation of the monthly short-rate data, the implications of the AR(1) 
model for term spreads are somewhat counterfactual. 3 Therefore, we also 
present results in Section 5 for an alternative data-generating process based on 
a conditionally heteroskedastic VAR. 

3An unpublished paper by Tauchen (1985) analogously uses an AR(1) process for the spot  exchange 
rate to investigate the bias in regression tests of the expectations hypothesis that  the forward 
premium is an unbiased predictor of the ex post rate of depreciation. 
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Table 2 reports the ordinary least squares (OLS) estimates of #, p, and a (the 
standard deviation of v(t + 1)) in Eq. (5), denoted by/2,/3, and, ~, respectively. 
These estimates are reported for the sample corresponding to 524 observations 
in Table 1. We also report bias-adjusted values of #, p, and a. Kendall (1954) 
shows that, to a first-order approximation, 

l + 3 p  O ( 1 )  E ( / 5 ) - p -  ~ +  ~ , (6) 

where T denotes the sample size. The bias adjustment in Table 2 unwinds the 
bias in Eq. (6) such that the 'bias-adjusted p' is (/5 + (I/T))~(1 - (3/T)) = 0.9840. 
Thus, the bias equals -0.0075 for the 524 observations and the estimated p. The 
bias-adjusted kt and bias-adjusted ~r modify/2 and 6 to insure that the uncondi- 
tional mean and standard deviation of r(t) remain unchanged by the bias 
adjustment in p. 

We now derive first-order approximations for the four specification tests of 
the expectations hypothesis. (The proofs of the propositions are given in the 
appendix.) 

Proposition 1. Under Eqs. (1) and (5), the expected value of the slope coefficient of 
the first specification test in Eq. (2) is 

- n ( 1  - p " - x )  
E(&I) = 1 + [E( /5)-  p ] .  (7) 

n(1 -- p) -- (1 -- p") 

Denote the coefficient multiplying the bias in/3 in Eq. (7) by q~(p, n) and the 
bias in /3 by 01. Note that both O(p,n) and 01 are negative. Therefore, the 

Table 2 
A first-order autoregressive model for the short  interest rate 

The sample is monthly  data  from May 1952 to December 1995 (524 observations). The OLS 
estimates are given with a hat, and 'bias-adj.' denotes the values of the parameters after adjusting for 
small-sample bias. For p, the bias adjustment  is p =(/3 + ( 1 / T ) ) / ( 1 - ( 3 / T ) ) .  For #, the bias 
adjustment  is/~ = ~(1 - p)/(1 - t3). For a, the bias adjustment  is a = & [(1 -- p2)/(1 - ~2)]0.s. 

r(t) = # + pr(t - 1) + au(t) 

u(t) ~ N(O, 1) 

~5 0.9765 
Bias-adj. p 0.9840 
/~ 0.1285 
Bias-adj. # 0.0875 
& 0.6115 
Bias-adj. a 0.5055 
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est imate of  the slope coefficient ~1 is biased upward.  Note  also that  th( p, 2) = 
- 2 / ( 1  - p) and ~b(p, oc ) = - 1/(1 - p). While the bias decreases as the hor izon 
n increases, the bias is still substant ia l  for large values of  n, especially if p is near  
unity. Fo r  example,  at the five-year ma tur i ty  (n = 60), ~b(0.9840, 60) = - 108.93, 
which combined  with the es t imated value of the bias in/3 of - 0.0075 produces  
an expected value of ~1 of 1.817, a value substant ial ly larger than  the a symp-  
totic value of unity. Analytical  values for the expected values of  the slope 
coefficients for o ther  values of  n are repor ted  below in co lumn 2 of panel  A in 
Table  3. 

When  n is large, da ta  on bonds  of slightly different matur i t ies  are often 
unavailable.  As a result, researchers modi fy  Eq. (2) by using a cons tan t  matur i ty  
in the regressand, r(t + 1, n) - r(t, n). While this app rox ima t ion  m a y  seem rela- 
tively innocuous,  it in t roduces an app rox ima t ion  error  into the regression in 
addi t ion to the smal l -sample  bias. Under  our  da ta-genera t ing  process in Eq. (5), 
we can analyt ical ly determine the size of  this app rox ima t ion  error. 

Proposition 2. Under Eqs. (1) and (5), the expected value of the slope coefficient of 
the first specification test usin9 the approximation for the regressand described 
above is 

E(~I) ----- 1 + c(p, n) + q~z(P, n)01, (8) 

where 

c (p ,  n)  = 
- n ( 1  - p)p" + p(1 - p") 

n(1 - p) - (1 - p") 

and 

- ( n  - 1 ) ( 1  - p")  
(~z(P, n) = n(1 - p) - (1 - p") '  (9) 

The  bias term q52 (p, n) is quite similar to q~(p, n), derived above  in Propos i t ion  1. 
The  app rox ima t ion  error  te rm c (p, n) is positive, can differ substant ial ly f rom 
zero, and most  impor tan t ly ,  does not  change as the sample  size increases. Fo r  
n = 2, c(p, n )=  p. While the app rox ima t ion  error  becomes  smaller  for large 
values of  n, it is still substant ia l  for matur i t ies  often used in empirical  work.  Even 
with matur i t ies  as high as five years (n = 60), c(0.9840, 60) = 0.722, which makes  
the expected value of &l equal  to 2.534 for the 524 observat ions,  ra ther  than  the 
popula t ion  value of unity. The  analytical  biases in this specification test are 
repor ted  in co lumn 2 of panel  B in Table  3. 

The  second specification test, Eq. (3), is also subject to severe smal l -sample  
bias. 
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Table 3 
Monte  Carlo distributions of the slope coefficients and VAR-based statistics 

The Monte Carlo evidence is based on 5000 replications. The data-generating process is an AR(1) 
model for the short rate: 

r(t + 1) = 0.0875 + 0.9840r(t) + 0.5055u(t + 1), 

where u(t) is a N(0, 1) variable and the parameters are the bias-adjusted parameters from Table 2. 
The sample size is 524, and the horizon is n months.  The column labeled 'Analytical Estimate'  
contains the expected values of the distributions predicted by the analytical derivations in Section 3. 
The columns labeled Mean, ~, 1%, 5%, and 10% are the sample mean, the s tandard deviation, and 
the respective quantiles of the empirical distributions. The panels correspond to five different tests. 
Eq. (2) reports the slope coefficients from regressions of the change in the yield on an n-period bond 
on [l /(n - 1)] times the term spread between the n-period yield and the short rate. In panel B, the 
same regression is run but the (n - 1)-period yield at time t + 1 is approximated by the n-period 
yield at time t + 1. Eq. (3) reports the slope coefficients from regressions of the weighted average of 
changes in future short rates on the term spread. Panels D and E report statistics based on 
a first-order bivariate VAR in the change in the short rate and the n-period term spread. The two 
statistics are the correlation between the theoretical spread that satisfies the expectations hypothesis 
and the actual spread and the ratio of the s tandard deviation of the theoretical spread to the 
s tandard deviation of the actual spread. 

Analytical 
n estimate Mean a 1% 5% 10% 

Panel A: Eq.(2) 

12 1.918 2.018 1.355 - 0 . 0 6 9  0.265 0.531 
36 1.864 1.958 1.276 - 0 . 0 0 6  0.308 0.559 
60 1.817 1.906 1.206 0.049 0.346 0.583 

Panel B: Eq.(2)(with  approximation error) 

12 2.844 2.942 1.345 0.872 1.203 1.467 
36 2.678 2.771 1.266 0.821 1.133 1.382 
60 2.534 2.622 1.198 0.777 1.072 1.307 

Panel C: Eq.(3) 

12 1.469 1.506 0.648 0.454 0.646 0.781 
36 1.463 1.469 0.545 0.448 0.690 0.820 
60 1.461 1.440 0.464 0.477 0.717 0.857 

Panel D: VAR statistics (order = 1) correlation coefficient 

12 1.0 0.998 0.004 0.981 0.991 0.994 
36 1.0 0.9998 0.0004 0.998 0.9991 0.9994 
60 1.0 0.9999 0.0001 0.9994 0.9997 0.9998 

Panel E: VAR statistics (order = 1) s tandard deviation ratio 

12 1.225 1.475 0.616 0.456 0.639 0.773 
36 1.225 1.355 0.457 0.480 0.665 0.792 
60 1.225 1.273 0.357 0.509 0.692 0.812 
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Proposition 3. Under Eqs. (1) and (5), the expected value of the slope coefficient of 
the second specification test in Eq. (3) is 

n-1  
- (1 - p )  o r ,  ( l O )  E[31]  = 1 + n(1 - p) - (1 -- p") j=a 

where Oj denotes the small-sample bias in the OLS estimate of p j. 

Using results f rom Kendal l  (1954, Eq. (20)), we derive the following first-order 
app rox ima t ion  to O j: 

I 0j -L F 3 T - (n --  1) 

For  n = 2, the bias is - 0 x / ( 1  - p), which is one-half  of  the smal l -sample  bias in 
Eq. (2). Fo r  longer horizons,  addi t ional  bias terms must  be added. In co lumn 2 of 
panel  C in Table  3, we repor t  biases for this specification. Interestingly,  they are 
substantial ly smaller  than  for specification (2). Of  course, this specification 
implies the loss o fn  - 1 observa t ions  relative to the first specification, which will 
be reflected in the Mon te  Car lo  results in the next section. Finally, specification 
(3) implies that  the error  term e (t + n - 1) is a moving  average  process of  order  
n - 1. Several studies (Hodrick,  1992; Richardson  and  Stock, 1989) have noted 
the poo r  smal l -sample  proper t ies  of test statistics based on kernel es t imators  of 
the asympto t ic  var iance of the O L S  est imators  in ana logous  situations. 4 

We now turn to biases in the two VAR-based  statistics under  the main ta ined  
assumpt ion  that  the short  rate is genera ted by Eq. (5). We derive analytical  
approx ima t ions  of  the biases for a f irst-order VAR. In the M o n t e  Car lo  experi- 
ments  below, we show results for bo th  a f irst-order and a four th-order  VAR, the 
lat ter  being the order  used in Campbel l  and Shiller and  in Table  1. To  simplify 
notat ion,  let r/(p, n) - (l/n)(1 - p")/(1 - p) - 1. Unde r  the expecta t ions  hypo th-  
esis and the da ta-genera t ing  process of Eq. (5), the te rm spread is s(t, n) = 
r/(p, n)r  (t). The  f irst-order VAR can then be written: 

rl(p,n)r(t + 1) = Ao + A \q(P, n)r(t)J + e(t + 1). (12) 

Let ~] denote  the O L S  es t imator  of  A. It  follows f rom Eqs. (5) and (12) that  

[: pl im(A) = ~(p, n) . (13) 
P 

4To conserve space, we do not report results for standard errors or t-statistics. The interested reader 
is referred to Bekaert, Hodrick, and Marshall (1996) for evidence that the t-statistics for Eq. (3) are 
much more severely biased than those for Eq. (2). 
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We can write the theoretical spread as follows: 

s' (t, n) = x, Ar (t) + y, s (t, n), (14) 

where x. and y. are the implied coefficients from Eq. (4) and are functions of the 
estimated A parameters. When x, and y. are evaluated using plim(,4), x. = 0 
and y, = 1. Hence, in an infinite sample the correlation of the theoretical spread 
and the actual spread would be one, and the ratio of their standard deviations 
would also equal one. In finite samples, however, x. and y, are biased. The biases 
in x, and y, are functions of the bias matrix of the VAR coefficients, which we 
denote E[B]. While both of the VAR-based statistics could inherit a bias from 
the biases in x, and y,, it turns out that only the standard deviation ratio is 
biased. 

Proposition 4. To a first-order approximation, the correlation of the theoretical 
spread s'(t, n) and the actual spread s(t, n) is unbiased in small samples, but the 
ratio of the standard deviation of the theoretical spread to the standard deviation of 
the actual spread is biased: 

([ bias, E m: 1 + ~ (~ -~ ,  n) 

To a first-order approximation, the biases in x.  and y. are 

el' , -  1 
(x, bias, y, bias) ~ - -  ~ (n - j) 

n j = l  

x AJ+ A t Ji.k A j - t - a  E[Bi, k] - (0, 1), 
i = I  k = l  

(16) 

where Ji. k is the indicator matrix with one in the i-k position and zeros everywhere 
else, and E[Bi, k] denotes the bias in the (i, k)th element of A. 

To implement Proposit ion 4, we need to determine the bias matrix E[B] of 
the VAR coefficients. It is extremely difficult to derive a first-order approxima- 
tion to this bias matrix when Ao (the constant term in the VAR) is unknown. For  
this reason, we present a first-order approximation to E[B] for the simpler case 
in which the unconditional means of the variables in the VAR are known. 
(Without loss of generality, these means can then be set equal to zero, since the 
VAR can be estimated with 'de-meaned'  data.) It is likely that this approxima-  
tion understates the magnitude of the bias. In the univariate case of Eq. (5), 
Kendall (1954) shows that the first-order approximation to the bias in ~ is 
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- (1  + 3p)/T when ~ is unknown, but only - 2 p / T  when # is known. In the 
next section, we will compare these first-order approximations to the average 
values of our Monte Carlo estimates. 

The VAR coefficients are nonlinear functions of the following random 
variables: 

Q =_ ~r=, v(t + 1)r(t) 

E t 2 1 r ( t )  2 (17) 

and 

v = yf=' v(t + 1)r(t - 1) 
2 , \ 1  r ( t -  1) 2 

(18) 

The OLS estimator for the VAR parameters for a sample of size T can be 
written as 

Q + v  ] 
.4 = plim (~]) + B - plim (i]) + t/(p, n)(1 + Q + p) 

Q+V 
l + Q + p  

(19) 

The bias matrix E[B] is a nonlinear function of the moments of Q and V: 

Q =- E[Q], V - E[V],  var [Q], and cov[Q, V]. 

Q(Q + p) - v 
1 - (Q + p)2 

Q (O + p) - v 
~(p, n) 

1 - (Q + p)2 

Proposition 5. 
E[B] in Eq. (19) are given by 

0. 2 + pQ - V 1 [1 + 
E ( B , , ) =  1 - ( Q + p )  2 -~ 1 - ( Q + p ) 2  

p)Z)] var 
+ (O. ~ + pO_ - ~7)(1 + 3 ( 0  + j [Q] 

(1 ~ ( ~ +  p)2)2 

2(O + p) 
- (1 - (Q + p)~)~ cov [Q, v ]  

(~+ff 1 I1 E ( B ~ ) = I + O + p  ( l + ~ + p ) ~  

1 
(1 + 0 + p) 2 cov(Q, v ) ,  

E(B21) = tl(p, n)E(B1a), and E(B12) = E(B22)/tl(p, n). 

To a second-order approximation, the elements of the bias matrix 

2(2Q + p)(Q + p) 

1 - (O + p)~ 

C0 + ¢) q 
(1 + Q + p)j  var(Q) 

(20) 

(21) 
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We report analytical values for the biases in the VAR statistics in column 2 of 
panels E and F in Table 3. The moments  of Q and V are derived using 200,000 
Monte Carlo experiments. We use Monte  Carlo approximations to the mo- 
ments of Q and V because analytic approximations to var I-Q] and cov [Q, V] 
are extremely difficult to derive. Kendall (1954) shows that E I-Q] ~ - 2 p / T ,  and 
E[V] ~ -2pZ/T. Our Monte  Carlo estimates of these means are extremely 
close to the Kendall approximations. 

4. Monte carlo results for an AR(1) data-generating process 

Kendall (1954) notes that derivations of first-order bias may be of doubtful 
validity for values of p near unity. This intuition has been confirmed by 
numerous papers on unit roots (see Stock, 1994, for a recent survey of the unit 
root literature). Kendall also notes that the distribution of ~ is highly skewed, so 
that use of the expected value as a criterion of bias is itself open to question. 
Moreover, the derivations of the biases in the VAR statistics involve some 
approximations. For  all of these reasons, it is important  to examine Monte 
Carlo evidence regarding the slope coefficients in the regression tests and the 
VAR statistics. In the interest of brevity, we report only the mean, the standard 
deviation, and the left-tail behavior of the small-sample distributions for the 
slope coefficients. Table 3 reports results for the 524-observation case coinciding 
with our sample. 

The results of the Monte Carlo experiments in Table 3 support  the accuracy 
of the theoretical bias calculations for the specifications corresponding to Eqs. 
(2) and (3). For  Eq. (2), the theoretical estimates are all 95% of the mean values of 
the Monte Carlo experiments. For  Eq. (2) with the approximation error, the 
theoretical estimates are all 97% of the means of the Monte  Carlo experiments. 
For Eq. (3), the theoretical estimates are between 97.5% and 101.5% of the 
means of the Monte Carlo experiments. 

The Monte Carlo analysis confirms the pitfalls in using the approximation 
n ~ n - 1 for the long-term bond without recognizing that the specification is 
biased. In fact, at n -- 60, the coefficient must only be less than 1.072 to have 
a 5% rejection in a one-tailed test. 

The two VAR statistics (panels D and E of Table 3) have different small- 
sample properties. The correlation statistic has virtually no bias as is predicted 
by the analytical results. The distribution of the statistic is also very tight. Of  
course, this statistic may have low power. The theoretical estimate of the ratio of 
the standard deviations performs somewhat less well. For n = 12, the value of 
1.225 is only 83% of the mean value of the Monte Carlo experiments. The 
underestimate was anticipated since the theoretical estimate assumes that the 
means of the variables in the VAR are known. For larger values of n, the 
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approximation is more accurate. For  n = 60, the analytical estimate is 96% of 
the mean value of the Monte Carlo experiments. 

5. Analysis with an alternative data-generating process 

5.1. The VAR-GARCH model 

The data-generating process of Section 4 is unrealistic along two important 
dimensions. First, short rates are conditionally heteroskedastic (see Gray, 1996, 
for a recent discussion). Incorporating heteroskedasticity in the data-generating 
process typically implies a highly leptokurtic unconditional distribution for 
short rates. Because quite large samples are required for conventional asymp- 
totic distribution theory to work well with leptokurtic distributions (Bollerslev 
et al., 1992), this feature of the data may worsen the bias and increase the 
dispersion of the small-sample distributions. 

Second, the autoregressive data-generating process implies that the term 
spread is a fixed multiple of the short rate. Consequently, the spread is perfectly 
correlated with the short rate and inherits its persistence. 5 The analysis in 
Stambaugh (1986) suggests that our results may be sensitive to this stochastic 
singularity in our data-generating process. Stambaugh shows that the bias in the 
slope coefficient of a regression of a dependent variable (such as the change in 
the long rate) on an AR(1), predetermined regressor (such as the term spread) 
depends on the persistence of the regressor and the correlation between the 
innovations of the original regression and the innovations in the AR(1) process 
for the regressor. With an AR(1) data-generating process for the short rate, this 
latter correlation is exactly minus one, which exaggerates the biases compared 
to a model with imperfect correlation between spreads and the short rate. 
Similarly, by counterfactually making the persistence of the term spread as large 
as the persistence of the short rate, the autoregressive data-generating process 
may further exaggerate the biases. 

The purpose of this section is to determine the robustness of our analytical 
results to a more realistic data-generating process. We begin by modeling the 
short rate and the term spreads using a second-order vector autoregressive 
process with conditionally heteroskedastic innovations. Since the expectations 
hypothesis implies that term spreads are the optimal predictors of future short 
rate changes, we introduce three term spreads in the VAR to serve as informa- 
tion variables forecasting future short rates, in addition to the lagged short rate. 

5We thank the referee for pointing out the potential importance of these implications of the AR(1) 
process. 
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At this point, we do not impose the expectations hypothesis (see below for 
further discussion). Formally, let y(t)= It(t), s(t, 12), s(t, 36), s(t, 60)]', and 
assume that a pth order VAR adequately describes the four series: 

p 

y( t )=~ + ~ C~y(t--j) + e(t). (22) 
j = l  

A second-order VAR is chosen by the Schwarz (1978) selection criterion. 
Furthermore, we model the innovation vector as a factor structure with 
the innovations of the short rate and the 60-month term spread as the factors. 
That is, 

e (t) = Fe(t) (23) 

with 

1 0 0 0 ]  

/2, 1 0 f24 (24) 

In Eq. (23) the vector e(t) represents the idiosyncratic innovations. Hence, 
E[e(t) e(t)'] I ( t -  1)] = H(t), and H(t) is a diagonal matrix. As a result, the 
conditional covariance matrix of the innovations e (t), denoted by ~2 (t), can be 
written as £2(t)= FH(t)F'. We assume that each diagonal element in H(t) 
follows a GARCH(1,1) process (see Bollerslev, 1986) augmented with a square- 
root process as in the univariate model of Gray (1996). The square-root process 
helps to accommodate the dramatic shift in short-rate volatility during the 
monetary targeting period of 1979-1982: 

h(t , i )=7,x/r( t -  1 ) + e i e ( t - l , i )  2 + f l , h ( t - l , i ) ,  i =  1,2,3,4. (25) 

In this model, the conditional variances of the 12-month and 36-month 
term spreads have three components: a component linear in the condi- 
tional variance of the short rate, a component linear in the conditional vari- 
ance of the long-term spread, and an idiosyncratic component. The model 
nests a one-factor model in which the short rate is the only factor driving 
the conditional volatility of y(t). However, the one-factor model is firmly 
rejected in favor of the two-factor model using a likelihood ratio test. More- 
over, the idiosyncratic components of the residuals of the spreads from 
the one-factor model remain very highly correlated. The two-factor model 
still implies that higher variability of the short rate leads to higher variabi- 
lity of all term spreads. Compared to other multivariate GARCH models 
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(see, for example, Kroner and Ng, 1995), the model is very parsimonious 
with only 17 parameters. This parsimony is achieved by restricting the 
covariance matrix so that its depends only on the conditional variances of 
the short rate and the long-term spread. The model is therefore similar to 
the factor GARCH models of Bekaert and Harvey (1997) and Engle et al. 
(1990). 

To estimate the model in Eqs. (22k{25), we first exploit the block-diagonality 
of the information matrix to obtain estimates of the VAR parameters, #, Ca, and 
C2, using ordinary least squares. We then estimate the multivariate GARCH 
model from the VAR residuals, using quasi-maximum likelihood. Hence, we 
assume normal innovations to construct the likelihood function although the 
true distribution of the innovations may not be normal. White (1982) and 
Bollerslev and Woolridge (1992) show that the resulting estimator is consistent 
and asymptotically normal. 

One problem with the above approach is that the estimated VAR para- 
meters are likely to be biased in small samples. Therefore, prior to generat- 
ing the residuals, we correct for bias in the VAR parameters using the 
following Monte Carlo methodology. We estimate an unconditional 
covariance matrix for the innovations based on the OLS point estimates. 
We generate new data for the short rate and the spreads by assuming 
that the innovations of the VAR are normally distributed using the esti- 
mated covariance matrix. In each experiment we generate 626 values of 
each variable using the unconditional means as starting values, and we 
discard the first 100 values before rerunning the second-order VAR with 
524 observations on the dependent variables. The differences between 
the OLS point estimates and the averages of the OLS point estimates for 
200,000 experiments are then added to the original OLS point estimates to 
get the bias-adjusted values. The GARCH estimation uses the resulting 
residuals. 

We checked the validity of our bias-adjustment procedure by estimating an 
additional 200,000 VARs using the bias-adjusted parameters as the data- 
generating process. The means of these Monte Carlo experiments reproduce the 
original OLS estimates up to the third decimal place. 

The final step of the data-generating process involves obtaining data that 
satisfy the expectations hypothesis by construction. As noted above, the expec- 
tations hypothesis imposes restrictions on the VAR parameters. Let A denote 
the first-order companion form of the (bias-corrected) VAR parameter matrix, 
and let z(t) be the stacked eight-by-one companion form for y(t) and y(t - 1). 
Then, the 'theoretical spreads' that satisfy the expectations hypothesis are 
given by 

l n--1 
s ' ( t , n ) = -  ~ e l ' A i z ( t ) - r ( t ) ,  (26) 

Y/ i = O  
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where el is the eight-by-one indicator vector defined above. We use the bias- 
corrected VAR parameters from the unconstrained system to construct theoret- 
ical spreads as in Eq. (26). 6 

One can easily calculate the time series properties of the theoretical spreads 
for the sample of data used in the estimation. The autocorrelations of the 
theoretical spreads match the autocorrelations of the actual term spreads much 
better than the term spreads implied by the autoregressive data-generating 
process. For example, the first-order autocorrelations of the 12-, 36-, and 
60-month theoretical spreads versus those of the actual spreads are 0.58 versus 
0.69, 0.83 versus 0.84, and 0.88 versus 0.88, respectively. Of course, we know 
from Table 1 that the expectations hypothesis is not supported by the data. 
Hence, there must be dimensions along which the time series properties of the 
theoretical spreads do not match those of the actual spreads. It turns out that 
the standard deviations of the theoretical spreads are smaller than those of the 
actual spreads. The standard deviations of the 12-, 36-, and 60- month theoret- 
ical spreads are 57 %, 63 %, and 66% of the standard deviations of the respective 
actual spreads. The correlations of the theoretical spreads with the short rate are 
also more negative than the respective correlations between the actual spreads 
and the short rate. The correlations of the 12-, 36-, and 60-month theoretical 
spreads with the short rate are -0 .52,  -0 .68,  and -0 .74  versus the respective 
correlations for the actual spreads of 0.08, -0.16,  and -0.23.  Of course, the 
correlations of the theoretical spreads and the short rate are less negative than 
the - 1 implied by the AR(1) data-generating process. 

5.2. E s t i m a t i o n  resu l t s  

Tables 4 and 5 contain the estimation results for the VAR-GARCH model. 
Panel A in Table 4 reports the parameter estimates of the second-order VAR 
and the bias-corrected counterparts. The eigenvalues of the resulting companion 
form of the original parameter matrix and the bias-corrected parameter matrix 
are reported in panel B of Table 4. Notice that, as with the AR(1) case, bias 
adjustment increases the persistence of the series since the maximal eigenvalue 
increases, but none of the eigenvalues have moduli larger than one. Hence, the 
bias-adjusted VAR system is stationary. Although the term spreads are not 

6This approach is similar to that of Campbell and Shiller (1991), who use bivariate VARs in the 
change in the short rate and the term spread. As an alternative data-generating process, we 
considered estimation of the four-variable VAR subject to the restrictions of the expectations 
hypothesis. Although it is straightforward to write down the restrictions, as in Melino (1983), our 
attempts to estimate the VAR subject to these constraints failed. Furthermore, heteroskedasticity in 
short rates makes it harder to construct an arbitrage-free economy in which the expectations 
hypothesis holds. This is further discussed in Bekaert et al. (1995). 
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Table 4 
A four-variable VAR-GARCH data-generating process 

The sample period is May 1952 to December 1995. Panel A reports the parameter estimates 
of a second-order VAR for y(t)= [-r(t), s(t, 12), s(t, 36), s(t, 60)]', where r(t) is the short rate at 
time t and s(t, n) represents the n-month term spread at time t. Heteroskedasticity-consistent 
standard errors are in parentheses. The bias-adjusted coefficients in panel A are derived from 
a Monte Carlo experiment in which 200,000 VARs are estimated using the original OLS 
point estimates as the data-generating process. New data are constructed assuming that the 
innovations of the VAR are normally distributed using the estimated covariance matrix. For  each 
experiment, 626 values of the y(t) are generated using the unconditional means as starting 
values, and the first 100 values are discarded before running the VAR with 524 observations. 
The differences between the original point estimates and the averages of the 200,000 experiments 
are then added to the point estimates to get the bias-adjusted values. The last line reports the 
adjusted R 2. Panel 13 reports the eigenvalues of the companion forms for the original estimates 
and the bias-adjusted estimates. Panel C reports the 1-test for serial correlation (Cumby and 
Huizinga, 1992) using the first four autocorrelations of the residuals (1(4)), and the Ljung-Box 
(1978) test applied to the squared residuals using four autocorrelations. Both test statistics 
are distributed as X2(4). Ku stands for excess kurtosis, Sk stands for skewness and BJ is the 
Bera-Jarque (1982) normality test. The p-values in brackets are based on the relevant asymptotic X 2 
distributions. 

Panel A: VAR parameter estimates 

Coef. Short Bias 12-Mo. Bias 36-Mo. Bias 60-Mo. Bias 
Rate Adj. Spread Adj. Spread Adj. Spread Adj. 

Const. 0.003 - 0.068 0.083 0.090 0.075 0.091 0.091 O. 109 
(0.069) (0.050) (0.058) (0.060) 

r(t - 1) 1.274 1.284 0.053 0.052 --0.083 -0.085 -0.178 -0 .180 
(0.118) (0.085) (0.087) (0.093) 

r(t - 2 )  -0 .304 -0.302 -0.032 -0.034 0.108 0.105 0.206 0.203 
(0.119) (0.086) (0.086) (0.092) 

s(t - 1 ,  12) 0.519 0,520 0.245 0.252 -0.471 -0.471 -0.611 -0.609 
(0.324) (0.192) (0.240) (0.258) 

s(t - 2 ,  12) -0.085 -0.094 0.157 0.170 0.083 0.089 0.143 0.151 
(0.262) (0.163) (0.193) (0.207) 

s(t - 1, 36) 0.032 0.033 0.016 0.017 0.378 0.388 -0.053 -0.051 
(0.595) (0.414) (0.489) (0.513) 

s(t - 2 ,  36) -0.631 -0.643 0.510 0.518 0.697 0.726 0.388 0.410 
(0.442) (0.327) (0.366) (0.381) 

s(t - 1, 60) 0.108 0.110 0.291 0.291 0.543 0.540 1.013 1.017 
(0.462) (0.327) (0.368) (0.388) 

s(t - 2 ,  60) 0.274 0.289 -0.545 -0 .560 --0.539 -0.568 -0.207 -0 .230 
(0.374) (0.278) (0.299) (0.312) 

Adj. R 2 0.962 0.530 0.748 0.806 
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Table 4. (continued) 

Panel B: eigenvalues 

327 

Not  bias-adjusted Bias-adjusted 

-- 0.369 -- 0.373 
- -  0.240 -- 0.248 

0.067 - 0.07 li 0.064 
0.067 + 0.071i 0.064 
0.657 0.674 
0.812 0.827 
0.931 0.937 
0.986 0.997 

Panel C: diagnostics for the VAR residuals 

- 0.066i 
+ 0.066i 

1(4) Q2(4) Ku Sk BJ 

r(t) 3.660 91.11 10.98 - 1.110 2742.0 
[0.454] [0.000] [0.000] [0.000] [0.000] 

s(t, 12) 3.149 110.0 4.865 0.537 541.9 
[0.533] [0.000] [0.0001 [0.000] [0.000] 

s(t, 36) 2.732 125.5 5.247 0.255 606.6 
[0.604] [0.0130] [0.000] [0.0171 [0.0001 

s(t, 60) 3.598 108.0 6.434 0.329 913.3 
[0.463] [0.000] [0.000] [0.0021 [0.0001 

individually statistically significant predictors of the future short rate, a j oint test 
reveals significant predictive power. A Wald test on the six term spread coeffi- 
cients in the short-rate equation yields a value of 34.05, well above the critical 
value for a 1% significance level. The diagnostic tests in panel C reveal that the 
residuals are serially uncorrelated but display significant heteroskedasticity and 
deviations from normal distributions. We do not perform a Monte Carlo 
analysis of the properties of the VAR because its purpose is to serve as a more 
realistic data-generating process than the AR(1) model. Undoubtedly, statistics 
such as the Schwarz (1978) criterion, the Wald test for predictability of the short 
rate, and the Wald test of the expectations hypothesis are all subject to small- 
sample bias. 

Panel A of Table 5 reports the parameter estimates from the GARCH model. 
The coefficients of the square-root processes are all significant, indicating that 
conditional variances of both the short rate and the spreads increase with the 
level of the short rate. The GARCH parameters display the persistence that is 
typical for the conditional variance processes of financial data. Not  surprisingly, 
the residuals of the term spreads have statistically negative factor loadings with 
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Table 5 
A four-variable VAR-GARCH data-generating process 

The sample period is May 1952 to December 1995. Panel A reports parameter estimates of 
a multivariate GARCH model in the bias-corrected residuals of the VAR in Table 4. The innovation 
vector of the VAR follows a factor structure with the short rate and the 60-month term spread as the 
factors: 

~(t) = Fe(t), 

I 1 0 0 0 ]  

1 0 f2, 
F=lf2a~l 0 1 , ' 

The vector e(t) represents the idiosyncratic innovations, with E[e(t) e(t)' I I(t  - 1)] = H(t) and H(t) 
a diagonal matrix. The conditional covariance matrix of the innovations e(t) is l'~(t) and equals 
FH(t)F' .  Each diagonal element in H(t) follows: 

h(t, i) = 7', v/~t~ t - 1) + cqe(t - 1, i) 2 -F ~ih(t  - 1, i) i = 1,2,3,4. 

Estimation is by quasi-maximum likelihood, and White (1980) standard errors are in paren- 
theses. Panel B reports diagnostic tests on the standardized idiosyncratic shocks, z ( t , i ) =  
e(t, i)/H(t,  ii) °'5 (i = 1,2, 3, 4), where i (ii) denotes the ith (iith) element in the vector (matrix). The 
second column tests whether the first four autocorrelations of z(t, i) are zero, the third column tests 
whether the first four autocorrelations ofz(t, i )  2 - -  1 are zero as in Bekaert and Harvey (1997). In the 
fourth column, the first test statistic examines whether the short rate residual is uncorrelated with 
the three idiosyncratic shocks e(t, i) (i = 2, 3, 4) and the test statistic for the 60-month term spread 
examines whether e(t, 4), the idiosyncratic shock of the 60-month term spread, is uncorrelated with 
e(t, 2) and e(t, 3), the idiosyncratic shocks of the other term spreads. P-values based on the relevant 
asymptotic ~2 distributions are reported in brackets. In panel C, normality tests are applied to the 
idiosyncratic innovations scaled by their conditional volatilities, z(t, i), for i = 1,2, 3, 4. Ku stands for 
excess kurtosis, Sk stands for skewness, and BJ is the Bera-Jarque (1982) normality test. The 
asymptotic p-values are in brackets. 

Panel A: volatility parameter estimates 

~'~ ~i /31 f ,  f~4 

r(t) 0.0067 0.322 0.659 1 0 
(0.0016) (0.015) (0.015) 

s(t, 12) 0.0011 0.141 0.800 - 0.435 0.839 
(0.0002) (0.018) (0.018) (0.046) (0.002) 

s(t, 36) 0.0003 0.122 0.795 - 0.611 1.039 
(0.00004) (0.021) (0.021) (0.042) (0.0002) 

s(t, 60) 0.0007 0.139 0.857 - 0.690 1 
(0.0003) (0.003) (0.003) (0.036) 
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Table 5. (continued) 

Panel B: Diagnostics for the standardized idiosyncratic shocks 

329 

Serial correlation Serial correlation Orthogonality of 
of standardized of squared standardized idiosyncratic 
idiosyncratic shocks idiosyncratic shocks shocks 

r(t) 7.415 3.284 4.053 
[0.116] [0.511] [0.256] 

s(t, 12) 10.721 2.988 
[0.029] [0.560] 

s(t, 36) 11.756 3.390 
[0.019] [0.495] 

s(t, 60) 5.003 4.100 3.584 
[0.287] [0.393] [0.167] 

Panel C: properties of the scaled idiosyncratic shocks 

Ku Sk BJ 

r(t) 2.708 -- 0.582 189.7 
[0.000] [0.000] [0.000] 

s(t, 12) 1.331 0.505 61.00 
[0.000] [0.000] [0.000] 

s(t, 36) 0.736 0.087 12.49 
[0.0006] [0.419] [0.002] 

s(t, 60) 0.875 0.217 20.81 
[0.000] [0.043] [0.000] 

respect to the short-rate residual, whereas the 12- and 36-month term spreads 
have positive factor loadings with respect to the idiosyncratic shock of the 
60-month term spread. 

Panel B provides several specification tests. Define the ith idiosyncratic shock 
of the VAR scaled by its conditional volatility as z (t, i). If the model is correctly 
specified, z(t, i) and z(t, i )2_  1 should be serially uncorrelated. Generalized 
method of moments (Hansen, 1982) tests of these hypotheses using four correla- 
tions are reported in the first and second columns. Bekaert and Harvey (1997) 
describe these tests and discuss their small-sample properties in more detail. 
Given their results, there does not appear to be any remaining serial correlation 
in z (t, i)2 __ 1, for all i and z(t, 1) and z(t, 4) but there is some weak evidence of 
remaining serial correlation in z(t, 2) and z(t, 3). The results are not sensitive to 
the presence or absence of an Andrews (1991) serial correlation correction for 
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the weighting matrix. We also test whether the idiosyncratic shocks are actually 
uncorrelated as the model implies. The first test shows that the short-rate shock 
is uncorrelated with the three other idiosyncratic shocks. The second test shows 
that the idiosyncratic shocks for the 12- and 36-month term spreads are 
uncorrelated with the idiosyncratic shock for the 60-month term spread equa- 
tion. This is the main dimension along which a one-factor model fails. In 
summary, the diagnostic tests do not reveal strong evidence against our model. 

Panel C reports some distributional properties for the scaled idiosyncratic 
shocks, that is e(t,i), the ith idiosyncratic shock, divided by its conditional 
standard deviation, the square root of the ith element on the diagonal of H(t). 
Compared to the original residuals (see panel B in Table 4), the distributions of 
these shocks seem much closer to a normal distribution. Nevertheless, substan- 
tial and statistically significant nonnormalities remain, confirming the need for 
quasi-maximum likelihood estimation. 

5.3. Monte Carlo analys& 

To generate observations on short rates and long rates, we use a bootstrap 
approach. Panel C from Table 5 shows that the idiosyncratic shocks from the 
VAR-GARCH model, scaled by their conditional volatilities, are not normally 
distributed. Hence, we draw from these scaled shocks with replacement, and we 
use the VAR-GARCH model of Tables 4 and 5 to construct series of short rates 
and long rates. Eq. (26) is then employed to construct long rates that satisfy the 
expectations hypothesis. Finally, we perform the statistical tests in Table 1 for 
5000 independent replications. 

The distributions of the specification test statistics under this alternative 
data-generating process are summarized in Table 6. As before, we report the 
mean, the standard deviation, and the left-tail behavior of the small-sample 
distributions of slope coefficients. 

As with the AR(1) model for the short interest rate, the slope coefficients 
implied by our more realistic data-generating process have substantial upward 
bias. For example, the mean of the estimated slope coefficients in Eq. (2) is 2.259 
for the 60-month horizon, as compared to the population value of unity. 

Unlike the distributions reported in Table 3, both the bias and the dispersion 
in the slope coefficient estimators increase with maturity in Table 6. The 
increased dispersion of the slope coefficients has a dramatic effect on the left-tail 
critical values of the distributions for Eq. (2). Consider the 60-month horizon 
and Eq. (2) with approximation error. The 1% critical value in panel B of Table 
3 is 0.777, whereas the comparable value in Table 6 is -1.429. 

In general, the AR(1) model overstates both the bias and the dispersion for the 
shorter maturities relative to the more realistic VAR-GARCH model, but the 
AR(1) model understates the dispersion for the longer maturities. At all maturi- 
ties, the results with the VAR-GARCH model have a small-sample standard 
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Table 6 
Monte  Carlo distributions of the slope coefficients, and VAR-based statistics using the VAR- 
G A R C H  model as the data-generating process 

The Monte  Carlo evidence is based on 5000 replications. The data-generating process is a four- 
variable VAR-GARCH model based on the parameters reported in Tables 4 and 5. The sample 
period is May 1952 to December 1995. A second-order VAR is estimated for y(t) = Jr(t), s(t, 12), 
s(t, 36), s(t, 60)] where r(t) is the short rate at time t and s(t, n) represents the n-month  term spread at 
time t. The VAR parameters, reported in Table 4, are bias-adjusted and the corresponding residuals 
are used in a multivariate G A R C H  estimation. The innovation vector of the VAR follows a factor 
structure with the short rate and the 60-month term spread as the factors: 

e(t) = Fe(t), 

I 1 0 0 O ]  

1 0 f24 
F = | f : :  0 1 f;4J" 

Li,, o o  

The vector e(t) represents the idiosyncratic innovations, with E[e(t)e(t)'ll(t - 1)] = H(t) and H(t) 
a diagonal matrix. The conditional variance~covariance matrix of the innovations e(t) is f2(t) and 
equals FH(t)F'. Each diagonal element in H(t) follows: 

h(t , i )=Ti r ( , , / ~ - l ) + c q e ( t - l , i )  z + f l , h ( t - l , i )  i =  1,2,3,4. 

The parameters for the G A R C H  model are reported in Table 5. 

To generate Monte Carlo series on y(t), we bootstrap from the idiosyncratic shocks, scaled by their 
conditional volatilities, and use the VAR-GARCH model to generate a sample of 524 observations 
on y(t). We then use the bias-adjusted VAR parameter  matrix to create term spreads that  satisfy the 
expectations hypothesis. 

The columns labeled Mean, a, 1%, 5%, and 10% are the sample mean,  the s tandard deviation, 
and the respective quantiles of the empirical distributions. The panels correspond to five different 
tests. Eq. (2) reports the slope coefficients from regressions of the change in the yield on an n-period 
bond on [1/(n - 1)] times the term spread between the n-period yield and the short  rate. In panel B, 
the same regression is run but  the (n - 1)-period yield at time t + 1 is approximated by the n-period 
yield at time t + 1. Eq. (3) reports the slope coefficients from regressions of the weighted average of 
changes in future short rates on the term spread. Panels D and F report statistics based on 
a first-order bivariate VAR in the change in the short rate and the n-period term spread. The two 
statistics are the correlation between the theoretical spread that satisfies the expectations hypothesis 
and the actual spread and the ratio of the s tandard deviation of the theoretical spread to the 
s tandard deviation of the actual spread. Panels E and G report the same statistics for a fourth-order 
bivariate VAR. 

n Mean a 1% 5% 10% 

Panel A: Eq.(2) 

12 1.318 1.094 - 1.032 - 0 . 2 5 8  0.111 
36 1.868 1.816 - 1 . 6 1 4  - 0 . 6 9 0  - 0 . 1 9 3  
60 2.259 2.231 - 1.883 - 0 . 8 1 4  - 0 . 2 4 1  
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Table 6. (continued) 

n Mean cr 1% 5% 10% 

Panel B: Eq.(2)(with approximation error) 

12 1.647 1.082 -0.541 0.131 0.483 
36 2.257 1.785 -1.197 -0.239 0.253 
60 2.635 2.198 - 1.429 -0.364 0.199 

Panel C: Eq.(3) 

12 1.134 0.363 0.280 0.621 0.754 
36 1.313 0.437 0.271 0.613 0.781 
60 1.432 0.456 0.258 0.670 0.849 

Panel D: VAR Statistics(Order = 1) Correlation Coefficient 

12 0.988 0.089 0.897 0.971 0.984 
36 0.992 0.103 0.974 0.993 0.996 
60 0.994 0.095 0.986 0.996 0.998 

Panel E: VAR Statistics (Order = 4) Correlation Coefficient 

12 0.940 0.112 0.421 0.807 0.883 
36 0.972 0.102 0.629 0.928 0.960 
60 0.981 0.098 0.775 0.956 0.977 

Panel F: VAR Statistics(Order = 1) Standard Deviation Ratio 

12 1.091 0.232 0.577 0.818 0.880 
36 1.112 0.226 0.484 0.790 0.879 
60 1.119 0.215 0.491 0.792 0.887 

Panel G: VAR Statistics(Order = 4) Standard Deviation Ratio 

12 1.189 0.337 0.590 0.751 0.840 
36 1.213 0.336 0.406 0.645 0.791 
60 1.215 0.315 0.383 0.649 0.806 

d e v i a t i o n  of  the  s lope  coeff ic ient  e s t i m a t o r  for Eq.  (2) t ha t  is a p p r o x i m a t e l y  

e q u a l  to its s m a l l - s a m p l e  mean .  As a resul t ,  nega t i ve  e s t ima te s  can  o c c u r  

re la t ive ly  f requen t ly ,  in spi te  o f  the  subs t an t i a l  pos i t ive  bias. In  pa r t i cu l a r ,  

n e g a t i v e  e s t ima te s  of  this  coeff ic ient  for the  36- a n d  6 0 - m o n t h  ma tu r i t i e s  o c c u r  

m o r e  t h a n  10% of  the  t ime. T h e  M o n t e  C a r l o  analys is  con f i rms  tha t  the  

a p p r o x i m a t i o n  n ~ n - 1 in Eq.  (2) e x a c e r b a t e s  the  bias in the  s lope  coeff ic ient  

e s t ima to r .  
T h e  s lope  coeff ic ient  e s t ima tes  o f  Eq.  (3) a re  less b iased  t h a n  t hose  of  Eq.  (2), 

a n d  they  also d i sp l ay  less d i spers ion .  T h e  m e a n s  a n d  the  s t a n d a r d  d e v i a t i o n s  o f  
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the es t imates  f rom the V A R - G A R C H  mode l  for the 12- and  36-month  hor izons  
are  less than  those of  the AR(1) model ,  and  the cri t ical  values of the VAR-  
G A R C H  mode l  are lower  than  those of the AR(1) model .  

I t  is a p p a r e n t  tha t  the smal l - sample  d i s t r ibu t ions  f rom the M o n t e  Ca r lo  
exper iments  differ subs tan t ia l ly  from the a sympto t i c  d is t r ibut ions .  In  par t icu lar ,  
the d i s t r ibu t ions  of  the s lope coefficients are  posi t ively  b iased and  asymmetr ic .  
Figs. 1 and  2 c o m p a r e  the empir ica l  d i s t r ibu t ions  f rom our  M o n t e  Ca r lo  
s imula t ions  of  the V A R - G A R C H  mode l  to the respect ive a sympto t i c  d is t r ibu-  
t ions of  the s lope coefficients co r r e spond ing  to Eq. (2) wi thout  a p p r o x i m a t i o n  
e r ror  and  Eq. (3) for the 60-month  hor izon.  The  a sympto t i c  d i s t r ibu t ions  are  
n o r m a l l y  d i s t r ibu ted  with means  of uni ty  and  s t anda rd  er rors  f rom Newey  and  
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0.005 

-4  -2  0 2 4 6 8 10 
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Fig. 1. Monte Carlo distribution vs. asymptotic distribution of the first Campbell-Shiller (1991) 
specification statistic, Eq. (2). The solid line displays the Monte Carlo density function (scaled 
histogram) for the OLS estimate of ~1, the slope coefficient in Eq. (2), when the maturity equals 60 
months, the sample size equals 524 months, and the data are generated by the VAR-GARCH 
process given in Tables 4 and 5. The Monte Carlo evidence is based on 5000 replications. The dotted 
line displays the density implied by the asymptotic approximation ,v/T [ill -- 1] ~ normal (0, T~r~). 
The asymptotic standard error cr~ was set equal to 2.08198, the average Newey-West standard 
error over the 5000 Monte Carlo replications. In computing ~r,, a single Newey-West lag was 
used. 
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Fig. 2. Monte Carlo distribution vs. asymptotic distribution of the second Campbell-Shiller (1991) 
specification statistic, Eq. (3). The solid line displays the Monte Carlo density function (scaled 
histogram) for the OLS estimate of 61, the slope coefficient in Eq. (3), when the maturity equals 60 
months, the sample size equals 524 months, and the data are generated by the VAR-GARCH 
process given in Tables 4 and 5. The Monte Carlo evidence is based on 5000 replications. The dotted 
line displays the density implied by the asymptotic approximation ~//T [31 - 1] ~ normal (0, Tcr~z). 
The asymptotic standard error cr~ was set equal to 0.322965, the average Newey-West standard error 
over the 5000 Monte Carlo replications. In computing aa, 60 Newey-West lags were used (one more 
than the minimum number of lags needed to account for the overlap in constructing the dependent 
variable in (3) from monthly data). 

Wes t  (1987). Th e  s t a n d a r d  er rors  are  the  s ample  m e a n s  of the  N e w e y - W e s t  
e s t ima to r s  f rom 5000 M o n t e  Ca r l o  exper iments .  The  bias  a n d  skewness  of  the  
d i s t r i b u t i o n s  are qu i te  a p p a ren t .  

T o  p rov id e  some  perspec t ive  o n  h o w  large a sample  is needed  to o v e r c o m e  the 
s m a l l - s a m p l e  biases,  Figs. 3 a n d  4 c o n t a i n  the  empi r i ca l  d i s t r i b u t i o n s  of the 
s ame  coefficients as Figs.  1 a n d  2 b u t  for three  s ample  sizes: 524, 2000, a n d  
20,000 obse rva t ions .  T h e  biases  are still a p p a r e n t  even  wi th  2000 m o n t h l y  
o b s e r v a t i o n s  (166.67 years). Even  wi th  20,000 o b s e r v a t i o n s  (1667 years),  the 
d i spe r s ion  in  the d i s t r i b u t i o n  is subs tan t i a l .  
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Fig. 3. Monte Carlo distributions of first Campbell-Shiller (1991) specification statistic, Eq. (2), 
as sample size increases. This figure displays three Monte Carlo density functions (scaled histo- 
grams) for the OLS estimate of ~1, the slope coefficient in Eq. (2), when the maturity equals 60 
months and the data are generated by the VAR-GARCH process given in Tables 4 and 5. The solid 
line displays the density function with 524 monthly observations. (This plot is identical to the 
solid line in Fig. 1.) The dashed line is the corresponding density with 2000 observations, and the 
dotted line is the density with 20,000 observations. This Monte Carlo evidence is based on 5000 
replications. 

The two VAR statistics (panels D - G  of Table 6) have somewhat different 
small-sample properties. We report VAR statistics based on both first-order and 
fourth-order VARs because the results in Table 3 are based on a first-order 
specification and the results in Table 1 are from a fourth-order specification. 
Recall that the correlation statistic is virtually unbiased under the AR(1) speci- 
fication, with a very tight distribution. Under the more realistic data-generating 
process, this statistic displays a small but nontrivial bias, with somewhat more 
dispersion. The statistics based on the fourth-order specification are slightly 
more biased and dispersed than those based on the first-order specification. 
Evidently, the lack of bias and dispersion reported in Table 3 is due in part 
to the singularity in the vector process comprising the long and short rates. 
The standard deviation ratio for the shorter maturities is less biased and 
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Fig. 4. Monte Carlo distributions of second Campbell-Shiller (1991) specification statistic, Eq. (3), 
as sample size increases. This figure displays three Monte Carlo density functions (scaled histo- 
grams) for the OLS estimate of 5l, the slope coefficient in Eq. (3), when the maturity equals 60 
months and the data are generated by the VAR-GARCH process given in Tables 4 and 5. The solid 
line displays the density function with 524 monthly observations. (This plot is identical to the solid 
line in Fig. 2.) The dashed line is the corresponding density with 2000 observations, and the dotted 
line is the density with 20,000 observations. This Monte Carlo evidence is based on 5000 replica- 
tions. 

d ispersed  than  in the AR(1) case. However ,  the smal l - sample  d i s t r ibu t ion  of this 
s tat is t ic  for the 60-month  hor izon  is c o m p a r a b l e  to that  impl ied  by  the AR(1) 

model .  

5.4. Inference using the small-sample distributions 

Cons ide r  how inferences a b o u t  the expec ta t ions  hypothes is  using the small-  
sample  d i s t r ibu t ions  differ from the inferences d r a w n  using the a sympto t i c  
theory.  To be concrete,  we focus the discuss ion on the 60-month  hor izon,  but  the 
results for the o ther  two hor izons  are very similar.  Based on a sympto t i c  
d i s t r ibu t ion  theory,  the results in Tab le  1 would  indicate  a mode ra t e ly  s t rong 



G. Bekaert et al./Journal of  Financial Economics 44 (1997) 309-348 337 

rejection of the expectations hypothesis with the specification in Eq. (2) 
(21 = -2.320,  s.e. = 1.479, one-sided p-value = 1.24%). In contrast, the evid- 
ence against the expectations hypothesis is somewhat stronger with our small- 
sample distribution. In particular, we find that only 19 of our 5000 estimated 
slope coefficients are more negative than the sample value (a small-sample 
p-value of 0.004). The reason for this stronger rejection is the extreme positive 
bias in the small-sample distribution. The specification corresponding to Eq. (3) 
did not provide evidence as strong against the null hypothesis with asymptotic 
inference as did Eq. (2) (61 = 0.569, s.e. = 0.324, one-sided p-value = 9.17%). In 
contrast, we find that 96.6% of the 5000 point estimates are higher than 0.569. 
Again, the small-sample distribution indicates somewhat more evidence against 
the null hypothesis than the asymptotic distribution. The ratio of the standard 
deviations of the theoretical and actual spreads is slightly more than two 
asymptotic standard errors less than one (0.407, s.e. = 0.272, one-sided p- 
value = 1.46%). Our small-sample distribution implies a similar inference since 
slightly more than 1% of our simulations had values below 0.407. Finally, the 
correlation of the theoretical and actual spreads is less than one asymptotic 
standard error below one (0.960, s.e. = 0.080, one-sided p-value = 30.85%), 
providing little evidence against the expectations hypothesis. In contrast, our 
small-sample distribution assigns a one-sided p-value of 5% to this point 
estimate. 

In summary, when our Monte Carlo distributions are used to evaluate the 
specification tests of the expectations hypothesis, the inference is uniformly less 
favorable to the null than with the asymptotic distribution. In particular, all four 
tests reject the hypothesis at (or near) the 5% marginal significance level. We 
conclude that the results of these four tests appear less paradoxical when viewed 
from the perspective of the small-sample distributions. They make a consistent 
case against the expectations hypothesis. The only remaining issue is why some 
statistics reject more strongly than others. We suspect that this simply reflects 
differences in the power of the tests. 

6. The effect of  additive noise on the small-sample distributions 

On the basis of the results in the preceding section, we conclude that the 
expectations hypothesis cannot be saved by appealing to problems with asymp- 
totic distribution theory. The issue at hand, then, is to provide a satisfactory 
explanation of these rejections. It is beyond the scope of this paper to attempt 
a comprehensive survey of possible reasons for the theory's poor  performance 
with US data. However, we do want to address one possible explanation put 
forth by Campbell and Shiller (1991) and Hardouvelis (1994). 

Suppose the true yield on an n-month zero-coupon bond, denoted 
r*(t, n), satisfies the expectations hypothesis, but observed yields r(t, n) are 



338 G. Bekaert et aL /Journal of Financial Economics 44 (1997) 309 348 

contaminated by serially uncorrelated noise ~ (t, n) that is also uncorrelated with 
true short rates and long rates at all leads and lags: 

r (t, n) = r* (t, n) + ff (t, n). (27) 

The OLS estimators of the slope coefficients cq and 61 in Eqs. (2) and (3), 
respectively, will not converge to unity. Rather, 

plim (el) = 1 -- b , ,  (28) 

bn 
plim (61) = 1 - - - ,  

n 

where 

nor. 2 -- (n + 1) o-n, 1 + 0-2 
b. = 2 o.12 2o', X, + or, + -- ,1 

(29) 

(30) 

and X, = var [r* (t, n) - r* (t, 1)] (the variance of the true n-month term spread), 
2 ~r , -var (~( t ,n ) ) ,  c rZ -va r ( ( ( t ,  1)), and 0-,,1-= cov(~ (t, n), ~ (t, 1)). If the 

2 and cr 2, then both covariance terms 0-,,1 are small relative to the variances a, 
plim(el) and plim(61) will be below unity. Furthermore, plim(cq) will tend to fall 
as n increases, while plim(61) will tend to rise as n increases. The plim(e0 does 

2 not unambiguously decrease with n, because 2,, or,, and a,,1 also change as 
n increases. Noise with sufficient variability could induce patterns like those 
displayed in Table 1, where both :q and 61 are below unity, but :q moves 
further away from unity as n increases while 81 appears to approach unity from 
below. 

We conduct two exercises to see whether noise effects could be a plausible 
explanation for the patterns displayed in Table 1. In our first exercise, we 
interpret ~ (t, n) as pure measurement error, which we calibrate using alternative 
ways of estimating zero-coupon bond yields. In our second exercise, we simply 
assume that long yields depart from the expectations hypothesis due to 
serially uncorrelated disturbances. For  example, these disturbances could 
be due to exogenous demand shocks of the sort described in the noise-trader 
literature, transient departures from rationality, or time-varying risk-premiums. 
We ask how big these disturbances must be to explain the patterns found in the 
data. 

Consider first the measurement-error interpretation of ~ (t, n). One possible 
source of measurement error is the bid-ask spread in bond markets. However, 
the bid-ask spreads are quite small for US Treasury coupon bonds, typically 
three-to-five basis points and rarely exceeding ten basis points. A potential 
source of larger measurement error is the way in which the zero-coupon yields 
are constructed. The data we use are constructed by using a cubic spline to 
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approximate the discount function e x p ( -  n r  (t, n)). At each date t the parameters 
of the cubic spline (as a function of n) are chosen such that the approximate 
discount function minimizes the pricing errors, in the least-squares sense. For  
additional details see McCulloch (1975) and McCulloch and Kwon (1993). The 
data for r (t, n) are constructed by evaluating the yield curve implied by the fitted 
spline for date t at maturity n. This procedure potentially introduces approxima- 
tion error into the yield data. 

To explore the size of this measurement error, we compare bond yield data 
constructed using the cubic-spline procedure to bond yield data constructed 
using an alternative procedure developed by Fama and Bliss (1987). At each 
date, the Fama-Bliss procedure starts with observed Treasury bill yields for the 
shortest maturities, and then constructs r (t, n) for longer and longer maturities 
by selecting particular longer maturity bonds to add to the data being fitted. 
This procedure results in a piece-wise linear yield curve that exactly prices 
a subset of the bonds. Both sets of zero-coupon yield data were provided by 
Robert Bliss, and both are constructed from the same monthly bond price 
observations from 1970 to 1995. In Table 7, panel A, we display the standard 
deviations of the discrepancies between these two approximations for seven 
maturities. Panel B of Table 7 displays the correlation matrix of these discrepan- 
cies. Note that the discrepancies are rather minor for the long yields (standard 
deviations between six and nine basis points). However, the standard deviation 
of the discrepancies between the two approximation methods for the one-month 
yield is over 20 basis points. 

We regard the covariance matrix of these approximation discrepancies, 
given in Table 7, as an upper bound on plausible measurement error in our 
term structure data. The covariance matrix in Table 7 may overstate the 
variability of measurement error for two reasons. First, it implicitly attributes 
all discrepancies between the two series to measurement error in the 
McCulloch data. In reality, both procedures are approximations to the true 
term structure. Second, the covariance matrix given in Table 7 uses data only 
for 1970-1995, thus excluding the less volatile years between 1952 and 1969. 
On the other hand, we ignore other sources of measurement error such as 
bid-ask spreads. To see if measurement errors of this magnitude can help 
explain the empirical results in Table 1, we simulate 5000 replications of 
the VAR-GARCH process described in Section 5 and construct long yields 
according to the expectations hypothesis, as described above. To these yields 
we then add independently and identically distributed (i.i.d.) Gaussian noise 
with a covariance matrix as in Table 7. We then compute each of the test 
statistics and derive the properties of the small-sample distributions, as we did 
for Table 6. 

The results of this exercise are displayed in Table 8. As suggested by Eq. (28), 
the most dramatic effect is to shift the small-sample distribution of ~1 to the left. 
For  example, the mean of this coefficient with a 60-month maturity is reduced 



340 G. Bekaert et al./Journal of Financial Economics 44 (1997) 309-348 

Table 7 
Statistical properties of term structure approximation discrepancy 

This table examines the size of measurement error in bond yields by comparing bond yield data 
constructed using the cubic-spline procedure of McCulloch (1975) with bond yield data constructed 
using the procedure of Fama and Bliss (1987). Robert Bliss generously provided us with two sets of 
monthly zero-coupon yield data constructed from the same bond price observations from 1970 to 
1995. Panel A reports the standard deviations of the discrepancies between these two approxima- 
tions for seven maturities. Panel B displays the correlation matrix of these discrepancies. 

Panel A: standard deviations 

Maturity (in months) cr (in percentage points) 

1 0.205 
11 0.075 
12 0.088 
35 0.062 
36 0.063 
59 0.089 
60 0.090 

Panel B: correlation matfix 

Maturity 1 11 12 35 36 59 
(in months) 

1l 0.0063 
12 -0 .0364 -0 .118  
35 -0 .0740 - 0.191 0.019 
36 0.0138 - 0.126 - 0.048 0.787 
59 - 0.0157 - 0.211 0.276 0.049 
60 - 0.0412 - 0.206 0.216 0.044 

- 0.019 
- 0.004 0.931 

from 2.259 to 1.187. The cutoff for the 1% p-value is reduced from -1 .883 to 
-2.571.  The shifts in the small-sample distributions where the approximation 

n m n - 1 is used (displayed in panel B of Table 8) are of comparable magnitude. 
While these changes in the distributions of ~1 move in the right direction, they 
are not sufficient to explain the results in Table 1. According to the distribution 
summarized in panel B of Table 8, the expectations hypothesis with this degree 
of measurement error is still rejected at a (one-sided) marginal significance level 
of 1% for the 36- and 60-month maturities, and at a 5% significance level for the 
12-month maturity. Finally, as predicted by Eq. (29), the effect of measurement 
error on the distribution of 61 is much smaller than for ~1, attenuating as n gets 
larger. The VAR-based statistics, reported in panels D and E, are virtually 
unaffected by the introduction of measurement error. We only present results for 
the fourth-order specification because the distributions of the statistics were 
quite similar and the results in Table 1 are based on that order. 
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Table 8 
Monte  Carlo distribution of the slope coefficients, and VAR-based statistics using the VAR- 
G A R C H  model with measurement  error as the data-generating process 

The Monte  Carlo evidence is based on 5000 replications. The data-generating process is the 
four-variable VAR-GARCH model with parameters from Tables 4 and 5. It is identical to the 
process described in Table 6 except for the addition of measurement  error. That  is, we add to the 
yields generated as in Table 6 independently and identically distributed Gaussian noise with 
a covariance matrix as in Table 7. 

The horizon is n months.  The columns labeled Mean, a, 1%, 5%, and 10% are the sample 
mean, the s tandard deviation, and the respective quantiles of the empirical distributions. The 
panels correspond to five different tests. Eq. (2) reports the slope coefficients from regressions 
of the change in the yield on an n-period bond on [1/(n - 1)] times the term spread between the 
n-period yield and the short  rate. In panel B, the same regression is run but  the (n - l)-period 
yield at time t + 1 is approximated by the n-period yield at time t + 1. Eq. (3) reports the 
slope coefficients from regressions of the weighted average of changes in future short rates on 
the term spread. Panels D and E report statistics based on a fourth-order bivariate VAR in the 
change in the short rate and the n-period term spread. The two statistics are the correlation 
between the theoretical spread that satisfies the expectations hypothesis and the actual spread and 
the ratio of the s tandard deviation of the theoretical spread to the s tandard deviation of the actual 
spread. 

n Mean a 1% 5% 10% 

Panel A: Eq.(2) 

12 0.528 0.946 - 1.347 - 0 . 7 5 9  - 0 . 5 0 6  
36 1.328 1.673 - 1.869 - 1.009 - 0 . 5 2 1  
60 1.187 2.068 - 2 . 5 7 1  - 1.584 - 1 . 0 6 9  

Panel B: Eq.(2)(with  approximation error) 

12 0.770 0.949 - 1 . 0 0 0  - 0 . 4 8 9  - 0 . 2 3 9  
36 1.676 1.646 - 1 . 4 2 2  - 0 . 5 8 8  - 0 . 1 2 0  
60 1.533 2.044 - 2 . 2 0 0  - 1 . 1 6 7  - 0 . 7 0 0  

Panel C:eq . (3)  

12 1.042 0.296 0.366 0.642 0.750 
36 1.265 0.396 0.316 0.640 0.787 
60 1.376 0.418 0.293 0.679 0.842 

Panel D: VAR statistics(order = 4) correlation coefficient 

12 0.948 0.096 0.562 0.843 0.903 
36 0.974 0.090 0.732 0.940 0.965 
60 0.982 0.088 0.824 0.966 0.977 

Panel E: VAR statistics(order = 4 ) s tandard  deviation ratio 

12 1.086 0.283 0.589 0.742 0.809 
36 1.172 0.303 0.454 0.674 0.802 
60 1.170 0.287 0.408 0.669 0.807 
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In our second exercise, we simply set crl = a,, 1 = 0, and we add i.i.d. Gaussian 
noise with standard deviation o'n to the long rates (n > 1) as in Eq. (27). It is now 
straightforward to see that the bias in 61 is bounded above by one, whereas the 
bias in ~1 is larger than one if(n - 1)az > Z .  Since, empirically, 2;  is decreasing 
in n, this condition is unambiguously more easily satisfied for large values of n. 
As with the first exercise, we conduct 5000 Monte Carlo experiments of length 
524. For  simplicity, we use the same value of a, for all maturities, setting a,  equal 
to 25, 37.5, and 50 basis points. When ~, -- 37.5 basis points, none of the 
four test statistics reject the model at the 5% marginal significance level, 
according to a two-sided test. 7 Reducing the noise level makes it difficult to 
accommodate the estimated values of 61 and the standard-deviation ratio 
statistic. Increasing the noise level substantially above 37.5 basis points makes it 
easier to accommodate the estimated values of 61 and the two VAR-based 
statistics. However, this additional noise shifts the distribution of ~1 too far into 
the negative region. 

We conclude from this second exercise that departures from the expectations 
hypothesis can be explained by noise in long rates with a standard deviation in 
the vicinity of 35 to 40 basis points. While we believe that this is more noise than 
could plausibly be ascribed to measurement error, we do not regard noise of this 
magnitude as an insurmountable challenge to economic modeling. In particular, 
time-varying risk premiums can exhibit the required variability. Since such 
premiums are likely to be persistent and correlated across maturities, our 
experiments should not be used to evaluate the effects of realistic time- 
varying risk premiums on the empirical evidence from the Campbell-Shiller 
regressions. 

7. Conclusions 

We explore the small-sample properties of four commonly used tests of the 
expectations hypothesis of the term structure of interest rates. We document 
that, even with what seems like a relatively large sample size of 524 monthly 
observations, the asymptotic distributions of most of these statistics are not to 
be trusted. Perhaps the most surprising result of the paper is the extreme 
positive bias in the slope coefficients of traditional single-equation regression 
tests. The problems arise because these statistics essentially estimate transforma- 
tions of serial correlation coefficients. There are well-known downward biases 
in OLS estimates of autocorrelation coefficients for very persistent data and 
the negative transformation of the regression specification tests creates a 
positive bias in the slope coefficients. An exception to this pattern is the 

7Detailed tabulation of the results of these exercises are available upon request. 
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Campbell-Shiller (1991) VAR-based correlation statistic, which, somewhat sur- 
prisingly, displays little bias and has a tight distribution around its probability 
limit. 

When we evaluate the expectations hypothesis relative to the small-sample 
distributions of these statistics under the null hypothesis, derived either from an 
AR(1) or from a more realistic VAR-GARCH data-generating process, we find 
that the evidence against the expectations hypothesis is strengthened and 
appears to be less paradoxical than if either the asymptotic distributions or the 
Campbell and Shiller small-sample distributions are employed. We also docu- 
ment that measurement error in bond yields, calibrated from the differences in 
ways of generating zero-coupon yields from coupon bond data, is insufficient to 
save the expectations hypothesis. 

As with other asset-pricing anomalies, there are essentially three alternative 
explanations of the data. First, we have ignored rational time-varying risk 
premiums. Second, we have not attempted to model behavioral characteristics 
that would cause investors to misprice bonds. Third, we have not attempted to 
correct small-sample problems due to regime shifts and the possibility that there 
are inconsistencies between the frequency distributions of what agents thought 
at a point in time and what actually materialized. Bekaert, Hodrick, and 
Marshall (1995) explore this alternative application. 

The main message of the paper is that it is imperative that researchers use 
well-designed Monte Carlo experiments with bias-adjusted parameters to assess 
the significance of their test statistics. As computation costs have fallen, our 
ability to look beyond asymptotic distribution theory has improved. Unfortu- 
nately, what we see often does not look like what we derived theoretically, even 
in samples of over 43 years of monthly data. 

Appendix 

Proof of Proposition 1. Under the AR(1) data-generating process of Eq. (5), the 
regressor in Eq. (2) can be written as 

1 Jr(t, n) --  r ( t ) ]  1 [-(1 -- p") ] 
( .  - 1~ (n - 1) L ~ i  - - 7 )  1 r ( t ) ,  (A.1) 

and the dependent variable in Eq. (2) can be written as 

1 F(1-,") ] 
r ( t  + 1, n - -  1)  - -  r( t ,  n)  - (n  1~ L~i--~3 1 r(t)  

(1 - p"- 1) 
+ v(t + 1). (A.2) 

( n  - I ) ( 1  - p )  
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By the algebra of OLS, Eqs. (A.1) and (A.2) imply 

-- n(1 - p"- ' )  ~Cov~_(v(t + 1), r(t)) l (A.3) 
~, = 1 + n(i~T~- - 6 ~ p ,  ) [ varT (r (t)) 3 '  

where covr and varT denote sample second moments. The conclusion of 
Proposition 1 follows from (A.3), along with the observation that, under the 
assumed data-generating process (5), 

= ~cov~ (v(t + 1), r(t)) l 
E ( h ) -  p L v a r T ~  ] '  (A.4) 

Proof  of  Proposition 2. If constant-maturity bonds are used to construct the 
dependent variable in Eq. (2), the dependent variable can be written as 

1 (1 - p") 
r(t + 1, n) - r(t, n) = -  (pn _ 1) r(t) + - -  v(t + 1). (A.5) 

n n(1 - p) 

The regressor is given in Eq. (A.1). The algebra of OLS implies Eqs. (8) and (9) in 
the text. 

Proof  o f  Proposition 3. From the AR(1) data-generating process, the regressor in 
Eq. (3) can be written as ~/(p, n)r (t), where t/(p, n) - ( l / n ) (1  -p" ) (1  - p )  - 1. 
Note that the dependent variable in Eq. (3) is the weighted average of future 
short rates minus the current short rate: 

1 -  [r(t + i ) -  r(t + i - 1 ) ]  =-l  [r(t) + r(t + 1 ) +  ... 
i = 1  n 

+ r (t -4- n -- 1)] -- r(t). (A.6) 

The slope coefficient in Eq. (3) can therefore be written as 

1 , - 1  T - ,+I  [r(t +j )r ( t ) ]  1 

~ r (t) ~ '7(p, . )  ml(p,n) j=o ,=1 

1 n--1 

- 1 4 nq (p, n) ~ 0i (A.7) 
j = l  

because each of the bivariate OLS slope coefficient terms in Eq. (A.6) can be 
written as the true j th  autocorrelation plus a bias term: 

r - . +  ~ r(t + j ) r  (t) _ / + Oj 
S r(t)~ t = l  

(A.8) 
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Eq. (10) follows from combining terms in pJ to get q(p, n) and rewriting the 
coefficient multiplying the sum of the bias terms. 

Proo f  o f  Proposition 4. We write the theoretical spread as 

s' (t, n) = x ,  A t ( t )  + y , s ( t ,  n) (A.9) 

with the x, and y, coefficients evaluated according to Eq. (4) in the text 
using the estimated value of A from the VAR. The sample variance of 
s'(t, n) will involve the sample variances of Ar(t) and s(t,  n) as well as their 
covariance: 

varr(Ar( t ) )  ~ 2(1 - p - Q)varr(r(t)), (A.IO) 

varT(s (t, n)) ~ q(p, n)Zvarr(r(t)), (A.11) 

covr(s (t, n), Ar (t)) ~ rl(p, n)(1 - p -- Q) varr(r(t)), (A.12) 

where the approximation involves varr (rt-1) ~ varr (rt). Eqs. (A. 10) and (A.12) 
employ the definition of Q in Eq. (17) in the text. Then, the sample variance of 
the theoretical spread is 

varr(s '( t ,  n)) = {x 2 2(1 -- p -- Q) + yZtl(p, n) 2 

+ 2x ,  y ,  q(p, n)(1 - p - Q)} varr(r(t)) .  (A.13) 

The ratio of the sample standard deviation of the theoretical spread to the 
sample standard deviation of the actual spread and the sample correlation of 
the theoretical spread and the actual spread can be formed from Eqs. (A.12) 
and (A.13). These statistics are functions of x,, y,, and Q. We evaluate the 
expected value of these functions by taking the expected value of a first-order 
Taylor's series expansion of the functions around the plims of x,, y,, and Q, 
which are zero, one, and zero, respectively. The result is given in Proposition 4. 
Finally, the biases in the coefficients x, and y, as a function of the biases 
in the A parameters are found using the results of Graham (1981, Chapter 4, 
Section 4.6, pp. 67-68). 

Proof  o f  Proposition 5. First, partition the VAR coefficient matrix A as 

A - - F  all  a12]. (A.14) 
ka21 a22A 
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The estimated coefficients are given by 

I T 

Lai2J rl(p, H)t~=l Ar(t)r(t) 

rl(p, n) ~ Ar(t)r(t) 
t=l  

T 
r/(p, n) 2 ~ r(t) 2 

t=l  

--1 

X ~r(0/(t + 1) 
t=1 

X T 
Z tl(P, n)r(t)y'(t + 1) 

i"=1 

(A.15) 

where yl (t + 1) = Ar(t + 1), y2 (t + 1) = r/(p, n)r(t + 1), and q(p, n) is given 
above in Proposition 3. The determinant of the matrix to be inverted, D, 
provides the denominator of the VAR coefficients. In deriving the results, we 
used the following assumption: 

T T 
~' r(t) 2 = ~] r ( t -  I) 2. (A.16) 

t=l  /=1 

The following results are also useful: 

Y~r=l Ar(t)z - 2(1 - Q - p)  (A .17)  

2~=~ r(t) ~ 

y f  Ar(t)r(t) 
t=l  -- 1 - (Q + p) (A.18) 
2 f i r ( t ) 2  

Eqs. (A.10)-(A.12)imply that 

D 
kLt)J~r't'2"2 - rl(p' n)2 [1 -- (Q + p)2]. (A.19) 

With V defined as in Eq. (18) in the text, using Eq. (5) as the data-generating 
process to evaluate yi(t), and using Eqs. (A.14)-(A.19), Eq. (19) in the text follows 
from dividing the numerator and denominator of the expression in (A.15) by 
[~t r r (t)232. The biases in the VAR parameters in Proposition 4 are found by 
taking the expected values of a second-order Taylor's series expansions of Eq. 
(19) around the unconditional mean values of Q and V. 
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