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We examine the predictive power of the dividend yields for forecasting excess returns,

cash flows, and interest rates. Dividend yields predict excess returns only at short

horizons together with the short rate and do not have any long-horizon predictive

power. At short horizons, the short rate strongly negatively predicts returns. These

results are robust in international data and are not due to lack of power. A present

value model that matches the data shows that discount rate and short rate movements

play a large role in explaining the variation in dividend yields. Finally, we find that

earnings yields significantly predict future cash flows. (JEL C12, C51, C52, E49,

F30, G12)

In a rational no-bubble model, the price-dividend ratio is the expected

value of future cash flows discounted with time-varying discount rates.

Because price-dividend ratios, or dividend yields, vary over time, dividend

yield variability can be attributed to the variation of expected cash flow

growth, expected future risk-free rates, or risk premia. The ‘‘conventional

wisdom’’ in the literature (see, among others, Campbell, 1991; Cochrane,

1992) is that aggregate dividend yields strongly predict excess returns, and
the predictability is stronger at longer horizons.1 Since dividend yields

only weakly predict dividend growth, conventional wisdom attributes

most of the variation of dividend yields to changing forecasts of expected

returns. We critically and comprehensively re-examine this conventional

wisdom regarding return predictability on the aggregate market.
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Our main findings can be summarized as follows. First, the statistical

inference at long horizons critically depends on the choice of standard

errors. With the standard Hansen–Hodrick (1980) or Newey–West (1987)

standard errors, there is some evidence for long horizon predictability,

but it disappears when we correct for heteroskedasticity and remove the

moving average structure in the error terms induced by summing returns

over long horizons (Richardson and Smith 1991, Hodrick 1992,

Boudoukh and Richardson, 1993).
Second, we find that the most robust predictive variable for future

excess returns is the short rate, but it is significant only at short horizons.2

Whereas, the dividend yield does not univariately predict excess returns,

the predictive ability of the dividend yield is considerably enhanced, at

short horizons, in a bivariate regression with the short rate. To mitigate

data snooping concerns (Lo and MacKinlay 1990, Bossaerts and Hillion

1999, Ferson, Sarkissian, and Simin 2003, Goyal and Welch 2004), we

confirm and strengthen this evidence using three other countries: the
United Kingdom, France, and Germany.

Third, the dividend yield’s predictive power to forecast future dividend

growth is not robust across sample periods or countries. We find that high

dividend yields are associated with high future interest rates. While the

statistical evidence for interest rate predictability is weak, the same posi-

tive relationship is implied by an economic model, and we observe the

same patterns across countries.

To help interpret our findings and to deepen our understanding of the
data, we provide additional economic analysis. First, we build a nonlinear

present value model with stochastic discount rates, short rates, and divi-

dend growth, that matches our evidence on excess return predictability.

As is true in the data, the model implies that the dividend yield only

weakly predicts future cash flows but is positively related to future move-

ments in interest rates. While excess discount rates still dominate the

variation in price-dividend ratios, accounting for 61%, of the variation

short rate movements account for up to 22% of the variation. In compar-
ison, dividend growth accounts for around 7% of the variance of price-

dividend ratios. The rest of the variation is accounted for by covariance

terms.

Because many studies, particularly in the portfolio choice literature, use

univariate dividend yield regressions to compute expected returns

(Campbell and Viceira, 1999), we use the nonlinear present value model

to examine the fit of regression-based expected returns with true expected

returns. Consistent with the data, we find that a univariate dividend yield

2 Authors examining the predictability of excess stock returns by the nominal interest rate include Fama
and Schwert (1977), Campbell (1987), Breen, Glosten, and Jagannathan (1989), Shiller and Beltratti
(1992), and Lee (1992).
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regression provides a rather poor proxy to true expected returns. How-

ever, using both the short rate and dividend yield considerably improves

the fit, especially at short horizons.

Second, using the present value model, we show that long-horizon

statistical inference with the standard Hansen–Hodrick (1980) or

Newey–West (1987) standard errors is treacherous. We find that both

Hansen–Hodrick and Newey–West standard errors lead to severe over-

rejections of the null hypothesis of no predictability at long horizons but
that standard errors developed by Hodrick (1992) retain the correct size in

small samples. The power of Hodrick t-statistics exceeds 0.60 for a 5%

test for our longest sample. Moreover, when we pool data across differ-

ent countries, the power for our shortest sample increases to 74%. Hence,

lack of power is unlikely to explain our results.3

Finally, we focus on expanding the information set to obtain a poten-

tially better estimate of true value-relevant cash flows in the future.

Dividends may be potentially poor instruments because dividends are
often manipulated or smoothed. Bansal and Lundblad (2002) and Bansal

and Yaron (2004) argue that dividend growth itself follows an intricate

ARMA process. Consequently, it is conceivable that more than one

factor drives the dynamics of cash flows. One obvious way to increase

the information set is to use earnings. Lamont (1998) argues that the

earnings yield has independent forecasting power for excess stock returns

in addition to the dividend yield. When we examine the predictive power

of the earnings yield for both returns and cash flows, we find only weak
evidence for Lamont’s excess return predictability results. However, we

detect significant predictability of future cash flows by earnings yields.

This article is organized as follows. Section 1 describes the data. Section 2

contains the main predictability results for returns, while Section 3 discusses

cash flow and interest rate predictability by the dividend yield. Section 4

develops a present value model under the null and various alternative

models to interpret the empirical results. In Section 5, we conduct a size

and power analysis of Hodrick (1992) standard errors. Section 6 investi-
gates the predictive power of the earnings yield for excess returns and cash

flows. Section 7 concludes and briefly discusses a number of contempora-

neous papers on stock return predictability. It appears that the literature is

converging to a new consensus, substantially different from the old view.

3 Given the excellent performance of Hodrick (1992) standard errors, we do not rely on the alternative
inference techniques that use unit root, or local-to-unity, data generating processes (see, among others,
Richardson and Stock 1989, Richardson and Smith 1991, Elliot and Stock 1994, Lewellen 2004, Torous,
Valkanov, and Yan 2004, Campbell and Yogo 2006, Polk, Thompson, and Vuolteenaho 2006, Jansson
and Moreira 2006). One major advantage of Hodrick standard errors is that the set up can handle
multiple regressors, whereas the inference with unit root type processes relies almost exclusively on
univariate regressors. The tests for multivariate predictive regressions using local-to-unity data generating
processes developed by Polk et al. (2006) involve computationally intensive bootstrapping procedures.
This test also has very poor size properties under the nonlinear present value we present in Section 4.
These results are available upon request.
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1. Data

We work with two data sets, a long data set for the United States, United

Kingdom and Germany and a shorter data set for a sample of four

countries (United States, United Kingdom, France, and Germany). In
the data, dividend and earnings yields are constructed using dividends

and earnings summed up over the past year. Monthly or quarterly fre-

quency dividends and earnings are impossible to use because they are

dominated by seasonal components.

We construct dividend growth and earnings growth from these ratios,

producing rates of annual dividend or earnings growth over the course of

a month or a quarter. To illustrate this construction, suppose we take the

frequency of our data to be quarterly. We denote log dividend growth at a
quarterly frequency as gd,4

t , with the superscript 4 to denote that it is

constructed using dividends summed up over the past year (four quar-

ters). We compute gd,4
t from dividend yields D4

t =Pt, where the dividends

are summed over the past year, using the relation

gd,4
t ¼ log

D4
t =Pt

D4
t�1=Pt�1

� Pt

Pt�1

� �
, ð1Þ

where D4
t ¼ Dt þDt�1 þDt�2 þDt�3 represents dividends summed over

the past year and Pt=Pt�1 is the price return over the past quarter.

In our data, the long sample is at a quarterly frequency and the short

sample is at a monthly frequency. In the case of the monthly frequency,
we append dividend yields, earnings yields, dividend growth and earnings

growth with a superscript of 12 to indicate that dividends and earnings

have been summed over the past 12 months. We also denote log dividend

yields by lower case letters. Hence dy4
t ¼ logðD4

t =PtÞ, in the case of

quarterly data and dy12
t ¼ logðD12

t =PtÞ in the case of monthly data. We

also use similar definitions for log earnings yields: ey4
t and ey12

t .

1.1 Long sample data
Our US data consists of price return (capital gain only), total return

(capital gain plus dividend), and dividend and earnings yields on the

Standard & Poor’s Composite Index from June 1935 to December 2001.

This data is obtained from the Security Price Index Record, published by

Standard & Poor’s Statistical Service. Lamont (1998) uses the same data

set over a shorter period. The long-sample UK data comprises price

returns and total returns on the Financial Times (FT) Actuaries Index,

and we construct implied dividend yields from these series. For our
German data, we take price returns, total returns, and dividend yields

on the composite DAX (CDAX) index from the Deutsche Borsche. The

long-sample UK and Ge-rman data span June 1953 to December 2001
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and were purchased from Global Financial Data. All the long sample

data for the United States, United Kingdom, and Germany are at the

quarterly frequency, and we consequently use three-month T-bills as

quarterly short rates.

Panel A of Table 1 lists summary statistics. US earnings growth is

almost as variable as returns, whereas the volatility of dividend growth

is less than half the return volatility. The variability of UK and German

dividend growth rates is of the same order of magnitude as that of
returns. The instruments (short rates, dividend and earnings yields) are

all highly persistent. Because the persistence of these instruments plays a

crucial role in the finite sample performance of predictability test statis-

tics, we report test statistics under the null of a unit root and a stationary

process in Panel A. Investigating both null hypotheses is important

because unit root tests have very low power to reject the null of a

stationary, but persistent, process.

In the United Kingdom and Germany, dividend yields are unambigu-
ously stationary, as we reject the null of a unit root and fail to reject the

null of stationarity at the 5% level. For the US dividend yield, the

evidence for non-stationarity is weak as we fail to reject either hypothesis.

This is surprising because the trend toward low dividend yields in the

1990s has received much attention. Figure 1 plots dividend yields for the

Table 1
Sample moments, unit root, and stationarity tests

Excess
return

Short
rate

Dividend
yield

Earnings
yield

Dividend
growth

Earnings
growth

Panel A: Long-sample data

US S&P Data, June 1935–December 2001
Mean 0.0749 0.0409 0.0403 0.0768 0.0532 0.0548
Stdev 0.1684 0.0317 0.0150 0.0297 0.0658 0.1572
Auto 0.1173 0.9548 0.9504 0.9517 0.4071 0.3832

Test statistics
H0: unit root �14.50** �2.194 �1.187 �1.183 �10.83** �10.55**
H0: stationary 0.073 0.635* 0.372 0.336 0.035 0.026

UK FT Data, June 1953–December 2001
Mean 0.0563 0.0751 0.0478 0.0670
Stdev 0.1938 0.0331 0.0131 0.1866
Auto 0.0907 0.9400 0.8290 �0.0486

Test statistics
H0: unit root �12.66** �2.559 �4.125** �14.64**
H0: stationary 0.037 0.637* 0.199 0.068

Germany DAX Data, June 1953–December 2001
Mean 0.0577 0.0467 0.0287 0.0788
Stdev 0.1921 0.0198 0.0090 0.2086
Auto 0.0851 0.9376 0.9087 0.1136

Test statistics
H0: unit root �12.89** �3.036* �3.336* �12.34**
H0: stationary 0.091 0.313 0.328 0.156
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United States, United Kingdom, and Germany. For the United

Kingdom, the dividend yield also declined during the late 1990s, but the

United Kingdom experienced similar low level dividend yields during the
late 1960s and early 1970s. For Germany, there is absolutely no trend in

the dividend yield. If a time trend in dividend yields is a concern for

Table 1
(continued)

Excess
return

Short
rate

Dividend
yield

Earnings
yield

Dividend
growth

Earnings
growth

Correlations of excess returns, June 1953–December 2001

United States United Kingdom
United Kingdom 0.6281
Germany 0.5118 0.4598

Panel B: MSCI data

February 1975–December 2001

United States
Mean 0.0576 0.0745 0.0353 0.0744 0.0529 0.0501
Stdev 0.1513 0.0341 0.0143 0.0305 0.0589 0.0883
Auto �0.0044 0.9675 0.9892 0.9867 �0.3187 0.1490

United Kingdom
Mean 0.0604 0.0989 0.0456 0.0874 0.0812 0.0651
Stdev 0.1824 0.0355 0.0123 0.0346 0.0707 0.0973
Auto �0.0184 0.9615 0.9701 0.9758 �0.0524 0.2346

France
Mean 0.0542 0.0906 0.0415 0.0675 0.0782 0.0690
Stdev 0.2079 0.0476 0.0188 0.0397 0.0849 0.5868
Auto 0.0745 0.8741 0.9849 0.9627 �0.0068 �0.0765

Germany
Mean 0.0498 0.0563 0.0359 0.0688 0.0643 0.0564
Stdev 0.1925 0.0241 0.0125 0.0287 0.0876 0.2217
Auto 0.0665 0.9764 0.9860 0.9836 0.0936 0.1781

Correlations of excess returns
United States United Kingdom France

United Kingdom 0.5960
France 0.5237 0.5184
Germany 0.4951 0.4742 0.6178

Panel A reports summary statistics of long-sample data for the United States, United Kingdom, and
Germany, all at a quarterly frequency. Panel B reports statistics for monthly frequency Morgan Stanley
Capital International MSCI data. Excess returns and short rates are continuously compounded. Sample
means and standard deviations (Stdev) for excess returns, dividend, and earnings growth have been

annualized by multiplying by 4 (12) and
ffiffiffiffi
4
p
ð
ffiffiffiffiffi
12
p
Þ, respectively, for the case of quarterly (monthly)

frequency data. Short rates for the long-sample (MSCI) data are three-month T-bill returns (one month
EURO rates). Dividend and earnings yields, and the corresponding dividend and earnings growth are
computed using dividends or earnings summed up over the past year. In Panel A, the unit root test is the
Phillips and Perron (1988) test for the estimated regression xt ¼ �þ �xt�1 þ ut under the null
xt ¼ xt�1 þ ut. The critical values corresponding to p-values of 0.01, 0.025, 0.05, and 0.10 are �3:46,
�3:14, �2:88, and �2:57, respectively. The test for stationarity is the Kwiatkowski et al. (1992) test. The
critical values corresponding to p-values of 0.01, 0.025, 0.05, and 0.10 are 0.739, 0.574, 0.463, 0.347,
respectively.
*p<0.05.
**p<0.01.
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interpreting the evidence on excess return predictability using the divi-

dend yield, international data are clearly helpful. Present value models

which impose transversality also imply that dividend yields must be

stationary.

Interest rates are also highly persistent variables. While German inter-

est rates appear to be stationary, there is some evidence of borderline non-

stationary behavior for both US and UK interest rates. Most economic
models also imply that interest rates are stationary (Clarida, Galı́, and

Gertler, 1999). Our present value model incorporates realistic persistence

in short rates, but because of the high persistence of the short rate, we

check the robustness of interest rate predictability by using a detrended

short rate.

1.2 Short sample MSCI data

The data for the United States, United Kingdom, France, and Germany
consist of monthly frequency price indices (capital appreciation only),

total return indices (including income), and valuation ratios from Morgan

Stanley Capital International (MSCI) in local currency, from February

1940 1950 1960 1970 1980 1990 2000
0

0.02

0.04

0.06

0.08

0.1

0.12
US     
UK     
Germany

Figure 1
Dividend yields over the long sample
We plot dividend yields from June 1935 to December 2001 for the United States and from March 1953 to
December 2001 for the United Kingdom and Germany.
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1975 to December 2001. We use the one-month EURO rate from Data-

stream as the short rate.

Panel B of Table 1 shows that the United States has the least variable

stock returns with the least variable cash flow growth rates. The extreme

variability of French earnings growth rates is primarily due to a few

outliers between May 1983 and May 1984, when there are very large

movements in price-earnings ratios. Without these outliers, the French

earnings growth variability drops to 33%. The variability of short rates,
dividend, and earnings yields is similar across countries. The equity pre-

mium for the United States, France, Germany, and the United Kingdom

roughly lies between 4 and 6% during this sample period. Dividend yields

and short rates are again very persistent over the post-1975 sample. We

also report excess return correlations showing that correlations range

between 0.47 and 0.60. The correlations for the United States, United

Kingdom, and Germany are similar to the correlations over the post-1953

period reported in Panel A.

2. The Predictability of Equity Returns

2.1 Predictability regressions

Denote the gross return on equity by Ytþ1 ¼ ðPtþ1 þDtþ1Þ=Pt and the

continuously compounded return by ytþ1 ¼ logðYtþ1Þ. The main regres-

sion we consider is

~ytþk ¼ �k þ ��kzt þ "tþk,k, ð2Þ

where ~ytþk ¼ ð�=kÞ½ðytþ1 � rtÞ þ :::þ ðytþk � rtþk�1Þ� is the annualized
k-period excess return for the aggregate stock market, rt is the risk-free

rate from t to tþ 1, and ytþ1 � rt is the excess one period return from

time t to tþ 1. A period is either a month ð� ¼ 12Þ or a quarter ð� ¼ 4Þ.
All returns are continuously compounded. The error term "tþk,k follows a

MAðk � 1Þ process under the null of no predictability ð�k ¼ 0Þ because

of overlapping observations. We use log dividend yields and annualized

continuously compounder risk-free rates as instruments in zt.

We estimate the regression (2) by OLS and compute standard errors of
the parameters � ¼ ð� ��kÞ

� following Hodrick (1992). Using generalized

method of moments, (GMM) � has an asymptotic distribution
ffiffiffiffi
T
p
ð�̂� �Þ

a�Nð0,�Þ where � ¼ Z�1
0 S0Z�1

0 , Z0 ¼ Eðxtx
�
tÞ, and xt ¼ ð1 z�tÞ

�. Hodrick

exploits covariance stationarity to remove the overlapping nature of the

error terms in the standard error computation. Instead of summing "tþk,k

into the future to obtain an estimate of S0, Hodrick sums xtx
�
t�j into the

past and estimates S0 by
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Ŝ0 ¼
1

T

XT

t¼k

wktwk�
t, ð3Þ

where

wkt ¼ "tþ1,1

Xk�1

i¼0

xt�i

 !
:

We show in section 5 that the performance of Hodrick (1992) standard

errors is far superior to the Newey–West (1987) standard errors or the

robust GMM generalization of Hansen and Hodrick (1980) standard

errors (see Appendix A) typically run in the literature. Hence, our pre-

dictability evidence exclusively focuses on Hodrick t-statistics. Mindful of

Richardson’s (1993) critique of focusing predictability tests on only one
particular horizon k, we also compute joint tests across horizons. For the

quarterly (monthly) frequency data, we test for predictability jointly

across horizons of 1, 4, and 20 quarters (1, 12, and 60 months). Appendix

B details the construction of joint tests across horizons accommodating

Hodrick standard errors. Finally, when considering predictability in

multiple countries, we estimate pooled coefficients across countries and

provide joint tests of the null of no predictability. Pooled estimations

mitigate the data-mining problem plaguing US data and, under the null of
no predictability, enhance efficiency because the correlations of returns

across countries are not very high (Table 1). Appendix C details the

econometrics underlying the pooled estimations.

2.2 Return predictability in the United States

We report results for several sample periods, in addition to the full sample

1935–2001. Interest rate data are hard to interpret before the 1951 Treasury
Accord, as the Federal Reserve pegged interest rates during the 1930s and

the 1940s. Hence, we examine the post-Accord period, starting in 1952.

Second, the majority of studies establishing strong evidence of predictabil-

ity use data before or up to the early 1990s. Studies by Lettau and

Ludvigson (2001) and Goyal and Welch (2003) point out that predictability

by the dividend yield is not robust to the addition of the 1990s decade.

Hence, we separately consider the effect of adding the 1990s to the sample.

We start by focusing on a univariate regression with the dividend yield
as the regressor. Figure 2 shows the slope coefficients for three different

sample periods, using the quarterly US S&P data. The left-hand column

reports the dividend yield coefficients, whereas the right-hand column

reports t-statistics computed using Newey–West (1987), robust

Hansen–Hodrick (1980), and Hodrick (1992) standard errors. For the
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Newey–West errors, we use k þ 1 lags. The coefficient pattern is similar

across the three periods, but the coefficients are twice as large for the

period omitting the 1990s from the sample. For the other two periods

(1935–2001 and 1952–2001), the one-period coefficient is about 0.110,

1935-2001 Dividend Yield Coefficient 1935-2001 T-statistic
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1952-2001 Dividend Yield Coefficient 1952-2001 T-statistic
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1935-1990 Dividend Yield Coefficient 1935-1990 T-statistic
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Figure 2
Dividend yield coefficients and t-statistics from US regressions
The left (right) column shows the dividend yield coefficients �k (t-statistics) in the regression
~ytþk ¼ �þ �kdy4

t þ "tþk,k , where ~ytþk is the cumulated and annualized k-quarter ahead excess return
and dy4

t is the log dividend yield. T-statistics are computed using Robust Hansen-Hodrick (1980),
Hodrick (1992) or Newey-West (1987) standard errors. The quarterly data is from Standard and Poors.
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rises until the one-year horizon, and then decreases, before increasing

again near 20 quarters.

Over 1935–2001, the Hodrick t-statistic is above 2 only for horizons 2–

4 quarters. However, there is no evidence of short-run predictability (at

the one-quarter horizon) or long-horizon predictability. We draw a very

different picture of predictability if we use Newey–West or robust

Hansen–Hodrick t-statistics, which are almost uniformly higher than

Hodrick t-statistics. Using Newey–West standard errors, the evidence in
favor of predictability would extend to eight quarters for the full sample.

Over the 1952–2001 sample, there is no evidence of predictability,

whereas for the 1935–1990 period, the evidence for predictability is very

strong, whatever the horizon, with all three t-statistics being above 2.4.

Table 2 summarizes the excess return predictability results for horizons

of one month (quarter), one year, and five years. We only report

t-statistics using Hodrick standard errors. In addition to the sample

periods shown in Figure 2, we also show the 1952–1990 period, which is
close to the 1947–1994 sample period in Lamont (1998). When we omit

the 1990s, we confirm the standard results found by Campbell and Shiller

(1988a,b) and others: the dividend yield is a significant predictor of excess

Table 2
Predictability of US excess returns

Univariate
regression Bivariate regression

k-mths dy12 r dy12 �2 test

Panel A: quarterly S&P data

1935–2001 1 0.1028 �1.0888 0.0857 0.070
(1.824) (�1.608) (1.530)

4 0.1128 �0.5596 0.1032 0.104
(2.030)* (�0.827) (1.865)

20 0.1028 �0.3187 0.0952 0.323
(1.364) (�0.598) (1.255)

1952–2001 1 0.0979 �2.1623 0.1362 0.003**
(1.541) (�2.912)** (2.152)*

4 0.1060 �1.4433 0.1313 0.041*
(1.546) (�1.930) (1.921)

20 0.0594 �0.4829 0.0774 0.714
(0.477) (�0.745) (0.600)

1935–1990 1 0.2203 �1.0380 0.1917 0.027*
(2.416)* (�1.543) (2.126)*

4 0.2383 �0.4865 0.2254 0.008**
(3.097)** (�0.714) (3.006)**

20 0.1787 �0.3229 0.1719 0.017*
(2.819)** (�0.569) (2.832)**

1952–1990 1 0.2962 �2.7329 0.4125 0.002**
(2.783)** (�3.504)** (3.672)**

4 0.3070 �1.9840 0.3935 0.000**
(3.000)** (�2.508)* (3.700)**

20 0.1689 �0.7120 0.2057 0.052
(1.916) (�1.087) (2.387)*
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returns at all horizons. However, when we use all the data, we only find

5% significance at the one-year horizon for the longest sample. A test for

predictability by the dividend yield jointly across horizons rejects with a

p-value of 0.014 for the 1935–1990 period, but fails to reject with a

p-value of 0.587 over the whole sample, even though the shorter horizon

t-statistics all exceed 1.5 in absolute value. While it is tempting to blame

the bull market of the 1990s for the results, our data extend until the end
of 2001 and hence incorporate a part of the bear market that followed.

For the 1975–2001 sample, reported in Panel B, the dividend yield also

fails to predict excess returns.

Table 2 also reports bivariate regression results with the short rate as an

additional regressor. For the post-Treasury Accord 1952–2001 sample, a

1% increase in the annualized short rate decreases the equity premium by

about 2.16%. The effect is significant at the 1% level. A joint test on the

interest rate coefficients across horizons rejects strongly for both the
1952–2001 period ðp-value ¼ 0:004Þ and the 1952–1990 period

ðp-value ¼ 0:000Þ. The predictive power of the short rate dissipates

quickly for longer horizons but remains borderline significant at the 5%

level at the one-year horizon.4 If expected excess returns are related only

to short rates and short rates follow a univariate autoregressive process,

the persistence of the interest rate (0.955 in Table 1) implies that the

coefficient on the short rate should tend to zero slowly for long horizons.

In fact, the decay rate should be 1=k � ð1� �kÞ=ð1� �Þ for horizon k. The

Table 2
(continued)

Univariate
regression Bivariate regression

k-mths dy12 r dy12 �2 test

Panel B: monthly MSCI data

1975–2001 1 0.0274 �2.4358 0.1364 0.057
(0.405) (�2.388)* (1.626)

12 0.0106 �1.2470 0.0669 0.395
(0.141) (�1.361) (0.744)

60 �0.0884 0.3451 �0.1207 0.857
(�0.475) (0.238) (�0.397)

We estimate regressions of the form ~ytþk ¼ �k þ z�t� þ �tþk,k where ~ytþk is the cumulated and annualized
k-period ahead excess return, with instruments zt being log dividend yields or risk-free rates and log
dividend yields together. T-statistics in parentheses are computed using Hodrick (1992) standard errors.
For Panel A (B), horizons k are quarterly (monthly). The �2 test column reports a p-value for a test that
both the risk-free rate and log dividend yield coefficients are jointly equal to zero.
*p<0.05.
**p<0.01.

4 The results do not change when a detrended short rate is used instead of the level of the short rate or when
we use a dummy variable over the period from October 1979 to October 1982 to account for the monetary
targeting period.
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decay rate in data is clearly more rapid, indicating that either expected

excess returns or risk-free rates, or both, are multifactor processes.

In the bivariate regression, the dividend yield coefficient is only signifi-

cant at the 5% level for the one-quarter horizon. Joint tests reject at the 1%

(5%) level for the one-quarter (four-quarter) horizon but fail to reject at

long horizons. When we omit the 1990s, the predictive power of the short

rate becomes even stronger. A joint predictability test still fails to reject the

null of no predictability at long horizons, but the p-value is borderline
significant (0.052). Over the 1975–2001 sample, the coefficient on the short

rate remains remarkably robust and is significant at the 5% level. While the

coefficient on the dividend yield is no longer significantly different from

zero, it is similar in magnitude to the full sample coefficient and a joint test

is borderline significant ðp-value ¼ 0:057Þ. The Richardson (1993) joint

predictability test over all horizons and both predictors rejects at the 1%

level in the samples excluding the 1990s and the full sample, rejects at the

5% level for 1952–2001, and rejects at the 10% level for 1975–2001.
Looking at the 1951–2001 and 1975–2001 samples, the evidence for the

bivariate regression at short horizons is remarkably consistent. Moreover,

the coefficient on the dividend yield is larger in the bivariate regression

than in the univariate regression. This suggests that the univariate regres-

sion suffers from an omitted variable bias that lowers the marginal impact

of dividend yields on expected excess returns. Engstrom (2003), Menzly,

Santos, and Veronesi (2004), and Lettau and Ludvigson (2005) also note

that a univariate dividend yield regression may understate the dividend
yield’s ability to forecast returns.

2.3 Predictability of excess returns in four countries

The weak predictive power of the univariate dividend yield in the full

sample may simply be a small sample phenomenon due to the very special

nature of the last decade for the US stock market. Alternatively, the

conventional wisdom of strong long-horizon excess return predictability

by dividend yields before 1990 may be a statistical fluke. International
evidence can help us to sort out these two interpretations of the data and

check the robustness of predictability patterns observed in US data.

Figure 3 displays the univariate dividend yield coefficients and their

t-statistics using Hodrick standard errors in the 1975–2001 sample. First,

none of the patterns in other countries resembles the US pattern. For

France and Germany, and to a lesser degree for the United Kingdom, the

coefficients first increase with horizon, then decrease, and finally increase

again. This is roughly the pattern we see in US data for the longer
samples. However, for France and Germany, the coefficients are small

at short horizons and are negative for many horizons. They are also

never statistically significant. The UK coefficient is larger and remains

positive across horizons: it is also significantly different from zero at the
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very shortest horizons. These results are opposite to the results in a recent

study by Campbell (2003), who reports strong long-horizon predictability

for France, Germany, and the United Kingdom over similar sample
periods. We find that Campbell’s conclusions derive from the use of

Newey–West (1987) standard errors, and the predictability disappears

when Hodrick (1992) standard errors are employed.

For the United Kingdom and Germany, we also investigate the longer

1953–2001 sample in Panel A of Table 3. The first column reports the

univariate dividend yield coefficients. We only find significance at the

one-year horizon for the UK, but the coefficients are all positive and

more than twice as large as the US coefficients.5 Germany’s dividend yield

5 For the United Kingdom, we also looked at a sample spanning 1935–2001, where we find a significant
univariate dividend yield coefficient at the five-year horizon but not at the one-quarter horizon.
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Figure 3
Dividend yield coefficients and t-statistics in four countries
The left (right) column shows the dividend yield coefficients �k (t-statistics) in the regression
~ytþk ¼ �þ �kdy12

t þ "tþk,k , where ~ytþk is the cumulated and annualized k-month ahead excess return
and dy12

t is the log dividend yield. T-statistics are computed using Hodrick (1992) standard errors. The
monthly data is from MSCI and the sample period is from 1975 to 2001.
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coefficients are the same order of magnitude than those of the United

States, but are all insignificant.

Figure 4 displays the coefficient patterns for the annualized short rate
and its associated t-statistics in the bivariate regression for the 1975–2001

sample. Strikingly, this coefficient pattern is very robust across countries.

For all countries, the one-month coefficient is negative, below �3 for

Table 3
Excess return regressions across countries

Univariate
regression Bivariate regression

k-qtrs dy4 only J-test r dy4 �2 Test J-test

Panel A: quarterly long-sample data

United Kingdom, 1953–2001 1 0.2280 �1.2148 0.2596 0.069
(1.449) (�1.500) (1.675)

4 0.2600 �0.7138 0.2777 0.041*
(2.075)* (�0.896) (2.273)*

20 0.1290 0.1075 0.1264 0.326
(1.403) (0.182) (1.338)

Germany, 1953–2001 1 0.0740 �3.4079 0.1083 0.030*
(0.827) (�2.545)* (1.204)

4 0.1235 �2.1027 0.1443 0.094
(1.366) (�1.679) (1.610)

20 0.0415 0.4758 0.0372 0.814
(0.397) (0.489) (0.360)

Pooled United States,
United Kingdom,

1 0.1230
(1.964)*

0.496 �1.958
(�2.927)**

0.1600
(2.626)**

0.001** 0.133

Germany, 1953–2001 4 0.1523 0.344 �1.2561 0.1754 0.008** 0.307
(2.268)* (�1.909) (2.709)**

20 0.0657 0.495 0.0157 0.0653 0.637 0.658
(0.763) (0.0319) (0.818)

Univariate
regression Bivariate regression

k-mths dy12 only J-test r dy12 chi �2 test J-test

Panel B: monthly MSCI data

Pooled United States,
United Kingdom, Germany,

1 0.0560
(0.866)

0.096 �1.8161
(�2.718)**

0.1640
(2.222)*

0.031* 0.016*

France, 1975–2001 12 0.0386 0.327 �1.1392 0.1060 0.229 0.113
(0.533) (�2.045)* (1.337)

60 0.0169
(0.130)

0.663 0.1799
(0.405)

0.0035
(0.033)

0.699 0.887

We estimate regressions of the form ~ytþk ¼ �k þ z�t� þ "tþk,k where ~ytþk is the cumulated and annualized
k-period ahead excess return, with instruments zt being log dividend yields or risk-free rates and log
dividend yields together. T-statistics in parentheses are computed using Hodrick (1992) standard errors.
Panel A estimates the regression pooling data across the United States, United Kingdom, and Germany
on data from 1953–2001. The estimates listed in the United Kingdom and Germany panels allow each
country to have its own predictive coefficients and intercepts, but we compute Seemingly Unrelated
Regression (SUR) standard errors following the method outlined in the Appendix. The coefficients listed
in the pooled panel are produced by constraining the predictive coefficients to be the same across
countries. In Panel B, monthly frequency MSCI data is used from 1975–2001. The column labeled ‘‘�2

test’’ reports a p-value for a test that both the risk-free rate and log dividend yield coefficients are jointly
equal to zero. The ‘‘J-test’’ columns report p-values for a �2 test of the overidentifying restrictions.
*p<0.05.
**p<0.01.
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Germany and around �1:5 for France. The coefficient monotonically

increases with the horizon, leveling off around 0.35 for the United States,
0.13 for France, 1.41 for Germany, and �0:74 for the United Kingdom.

The t-statistics are larger in absolute magnitude for short horizons. In

particular, at the one-month horizon, the short rate coefficients are

statistically different from zero for the United States and Germany and

the t-statistics are near 1.5 (in absolute value) for the United Kingdom

and France.

Panel A of Table 3 reports the bivariate coefficients for the long sample

for the United Kingdom and Germany. Both countries have negative
coefficients on the short rate. For Germany, the short rate coefficient is

highly significant, while the UK t-statistic is only �1:5. For both coun-

tries, the short rate coefficients increase with horizon and turn positive at
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Figure 4
Short rate coefficients from bivariate regressions in four countries
The left (right) column shows the risk-free rate coefficients �k (t-statistics) from the bivariate regression
~ytþk ¼ �þ zt�k þ "tþk,k , where ~ytþk is the cumulated and annualized k-month ahead excess return and
zt ¼ ðrt dy12

t Þ contains the annualized risk-free rate and the log dividend yield. We report only the short
rate coefficient. T-statistics are computed using Hodrick (1992) standard errors. The monthly data is
from MSCI and the sample period is from 1975 to 2001.
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the five-year horizon. Similar to the United States, the dividend yield

coefficients are larger in the bivariate regressions than in the univariate

regression. However, the dividend yield coefficient is still only signifi-

cantly different from zero at the 5% level in the United Kingdom at the

one-year horizon.

To obtain more clear-cut conclusions, Table 3 reports pooled predict-

ability coefficients and tests. We pool across the United States, United

Kingdom, and Germany for the long sample in Panel A, and pool across
all four countries in Panel B. The univariate dividend yield regression

delivers mixed evidence across the two samples. For the long sample, the

dividend yield coefficients are larger than 0.10 at the one-quarter and one-

year horizons and statistically significant at the 5% level. The joint pre-

dictability tests for the shorter sample reveal a pattern of small dividend

yield coefficients that decrease with horizon and are never significantly

different from zero. We also report a J-test of the overidentifying restric-

tions for the joint estimation (see Appendix C). This test fails to reject for
all horizons in both the long and short samples, which suggests that

pooling is appropriate.

What is most striking about the bivariate regression results across the

long and short samples is the consistency of the results. At the one-period

forecasting horizon, the short rate coefficient is �1:96 in the long sample

and �1:82 in the short sample, both significant at the 1% level. The

bivariate regression also produces a dividend yield coefficient around

0.16 that is significant at the 1% (5%) level in the long (short) sample.
Not surprisingly, the joint test rejects at the 5% level. However, for the

short sample, the test of the overidentifying restrictions rejects at the 5%

level, suggesting that pooling may not be appropriate for this horizon.

For longer horizons, this test does not reject, and the evidence for

predictability weakens. Nevertheless, for the long sample, we still reject

the null of no predictability at the 1% level for the one-year horizon.

We conclude that whereas the dividend yield is a poor predictor of

future returns in univariate regressions, there is strong evidence of pre-
dictability at short horizons using both dividend yields and short rates as

instruments. The short rate is the stronger predictor and predicts excess

returns with a coefficient that is negative in all four countries that we

consider.

3. Do Dividend Yields Predict Cash flows or Interest Rates?

Our predictability results overturn some conventional, well-accepted

results regarding the predictive power of dividend yields for stock returns.

The dividend yield is nonetheless a natural predictor for stock returns.

Define the discount rate 	t as the log conditional expected total return,

lnðEt½Ytþ1�Þ:
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expð	tÞ ¼ Et½ðPtþ1 þDtþ1Þ=Pt� � Et½Ytþ1�: ð4Þ

Denoting gd
tþ1 as log dividend growth, gd

tþ1 ¼ logðDtþ1=DtÞ, we can rear-

range (4) and iterate forward to obtain the present value relation:

Pt

Dt

¼ Et

X1
i¼1

exp �
Xi�1

j¼0

	tþj þ
Xi

j¼1

gd
tþj

 !" #
, ð5Þ

assuming a transversality condition holds. Note that Equation (5) is

different from the Campbell and Shiller (1988a,b) log linear approxima-

tion for the log price-dividend ratio pt � dt ¼ logðPt=DtÞ:

pt � dt � cþ Et

X1
j¼1

� j�1ðytþj � gd
tþjÞ

" #
, ð6Þ

where c and � are linearization constants. Equation (5) is an exact

expression and involves true expected returns. In contrast, the approx-

imation in Equation (6) involves actual total log returns yt.

Since the price-dividend ratio varies through time, so must some com-

ponent on the RHS of Equation (5). As the discount rate is the sum of the

risk-free rate and a risk premium, time-varying price-dividend ratios or

dividend yields consequently imply that either risk-free rates, risk pre-
miums, or cash flows must be predictable by the dividend yield. Although

we find predictable components in excess returns, the dividend yield

appears to be a strong predictive instrument at short horizons only

when augmented with the short rate. Of course, the nonlinearity in

Equation (5) may make it difficult for linear predictive regressions to

capture these predictable components. In this section, we examine

whether the dividend yield predicts cash flow growth rates or future

interest rates.6

3.1 Dividend growth predictability

Panel A of Table 4 investigates US dividend growth over two samples,

1935–2001 and 1952–2001. Over the longer sample, we find no evidence of

dividend growth predictability. For the shorter sample, high dividend

yields predict future high dividend growth at the one- and four-quarter

6 Goyal and Welch (2003) show that in a Campbell and Shiller (1988a,b) log-linear framework, the
predictive coefficient on the log dividend yield in a regression of the one-period total return on a constant
and the log dividend yield can be decomposed into an autocorrelation coefficient of the dividend yield
and a coefficient reflecting the predictive power of dividend yields for future cash-flows. In Section 4, we
attribute the time variation of the dividend yield into its three possible components—risk-free rates,
excess returns, and cash flows—using a nonlinear present value model.
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horizons. The magnitude of the coefficients is preserved in the bivariate

regression, but the coefficient is no longer significantly different from zero

at the one-quarter horizon and borderline significant at the one-year

horizon. However, the short rate coefficient is positive and strongly

significant at the one-quarter horizon. The coefficient becomes smaller

and insignificant at longer horizons. The joint tests (across the two

Table 4
Predictability of dividend growth

Univariate
regression Bivariate regression

k-qtrs dy4 only r dy4 �2 test

Panel A: US S&P data

1935–2001 1 �0.0036 0.0586 �0.0027 0.974
(�0.175) (0.227) (�0.147)

4 �0.0126 �0.0389 �0.0133 0.738
(�0.504) (�0.157) (�0.588)

20 �0.0100 0.0384 �0.0091 0.886
(�0.489) (0.299) (�0.483)

1952–2001 1 0.0251 0.3541 0.0188 0.000**
(2.476)* (2.191)* (1.599)

4 0.0259 0.1791 0.0228 0.005**
(2.503)* (1.131) (1.903)

20 0.0165 0.0863 0.0132 0.325
(0.927) (0.808) (0.649)

Panel B: pooled across the United States, United Kingdom, and Germany

1953–2001 1 �0.1545 0.6991 �0.1677 0.000**
(�15.54)** (4.296)** (�14.16)**

4 �0.1552 0.4897 �0.1642 0.000**
(�14.64)** (3.005)** (�13.19)**

20 �0.0489 0.2678 �0.0555 0.030*
(�2.544)* (2.276) (�2.452)*

Univariate
regression Bivariate regression

k-mths dy12 only r dy12 �2 test

Panel C: pooled across United States, United Kingdom, Germany, and France

1975–2001 1 �0.0179 0.3248 �0.0371 0.616
(�0.757) (1.194) (�1.286)

12 �0.0116 �0.3348 0.0082 0.377
(�0.440) (�1.511) (0.281)

60 �0.0077 �0.0702 �0.0025 0.266
(�0.138) (�0.359) (�0.059)

We estimate regressions of cumulated and annualized k-period ahead dividend growth, on log dividend
yields alone or risk-free rates and log dividend yields together. Panels B and C pool data jointly across
countries, constraining the predictive coefficients to be the same across countries. The �2 test column
reports a p-value for a test that both the risk-free rate and log dividend yield coefficients are jointly equal
to zero. T-statistics in parentheses are computed using Hodrick (1992) standard errors.
*p<0.05.
**p<0.01.
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coefficients) reject at the 1% level for both the one- and four-quarter

horizons.

Campbell and Shiller (1988a,b) note that the approximate linear relation

(6) implies a link between high dividend yields today and either high future

returns, or low future cash flows, or both. Hence, the positive sign of the

dividend yield coefficient in the short sample is surprising. However, the

Campbell–Shiller intuition is incomplete because it relies on a linear

approximation to the true present value relation (5). Positive dividend
yield coefficients in predictive cash-flow regressions can arise in rational

models. For example, Ang and Liu (2006) show how the nonlinearity of the

present value model can induce a positive dividend yield coefficient.

Menzly, Santos, and Veronesi (2004) show that the dividend yield coeffi-

cient is a function of a variable capturing shocks to aggregate preferences.

Consequently, it changes over time and can take positive values.

In Panels B and C of Table 4, we investigate the relation between

dividend yields and cash-flows for other countries. Panel B pools data
across the United States, United Kingdom, and Germany for the 1953–

2001 sample. Unlike the US post-1952 sample, the dividend yield coeffi-

cients are strongly negative. Because the United Kingdom and German

coefficients are so different from the United States (data not shown), a

pooled result is hard to interpret, and the GMM over-identifying restric-

tions are strongly rejected with a p-value of less than 0.001. Nevertheless,

pooling yields negative, not positive, dividend yield coefficients. The

short rate coefficients are strongly positive and are about twice the
magnitude of the US coefficients (a 1% increase in the short rate approxi-

mately forecasts an annualized 70 basis point increase in expected divi-

dend growth over the next quarter).

Panel C reports coefficients for the MSCI sample. The dividend yield

coefficients are small, mostly negative and never statistically significantly

different from zero. The short rate coefficients are also insignificant,

although they are similar in magnitude to the coefficient found in long-

term US data. There is no general pattern in the individual country
dividend yield coefficients (data not shown): the dividend yield coefficient

in the univariate regression is positive (negative) in the United States and

United Kingdom (France and Germany), with the dividend yield coeffi-

cients retaining the same signs in the bivariate regression in each country.

All in all, we conclude that the evidence for linear cash-flow predictability

by the dividend yield is weak and not robust across countries or sample

periods.7

7 It is conceivable that dividend yields exhibit stronger predictive power for real dividend growth. However,
we find the results for real and nominal growth to be quite similar. In the long US sample, the dividend
yield fails to forecast future ex-post real dividend growth and the coefficients are positive. For the shorter
sample, pooled results across the four countries produce negative coefficients that are actually significant
at short horizons. These results are available upon request. Campbell (2003) also finds analogous results.
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3.2 Interest Rate Predictability

We examine the possibility that the dividend yield predicts risk-free rates

in Table 5, which reports coefficients of a regression of future annualized

cumulated interest rates on log dividend yields. The persistence of the

risk-free rate causes two econometric problems in linear regressions. First,

because the interest rate and dividend yield are both persistent variables,

the regression is potentially subject to spurious regression bias. To

address this issue, we also report results using the detrended dividend
yield, which is the dividend yield relative to a 12-month moving average

(Campbell 1991, Hodrick 1992). Second, the residuals in the predictive

regression are highly autocorrelated, which means that the use of Hodrick

(1992) standard errors is inappropriate. For a one-period horizon, we use

Cochrane–Orcutt standard errors and generalize the use of this procedure

to panel data in the Appendix. We do not report standard errors for

horizons greater than one period, because the residuals contain both

autocorrelation and moving average effects that cannot be accommo-
dated in a simple procedure.

Table 5 reports that the long sample for the United States shows a

positive effect of the dividend yield on future interest rates. The effect is

economically small (a 1% increase in the log dividend yield predicts an

increase in the one-quarter short rate by 1.7 basis points on an annualized

Table 5
Predictability of risk-free rates

k-qtrs dy4 Detrended dy4

Panel A: US Data

1952–2001 1 0.0171 0.0458
(0.202) (0.416)

4 0.0161 0.0429
20 0.0267 0.0413

Panel B: pooled United States, United Kingdom and Germany

1953–2001 1 0.0170 0.0211
(0.923) (0.765)

4 0.0138 0.0170
20 0.0099 0.0074

k-mths dy12 Detrended dy12

Panel C: pooled United States, United Kingdom, Germany, and France

1975–2001 1 0.0594 0.0407
(1.525) (0.201)

12 0.0588 0.0676
60 0.0619 0.0495

We estimate regressions of cumulated and annualized k-period ahead average risk-free rates by log
dividend yields. The detrended log dividend yield refers to the difference between the log dividend yield
and a moving average of log dividend yields over the past year. Panel c pools data across countries. We
compute Cochrane-Orcutt t-statistics (in parentheses) for a one-quarter horizon.
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basis next quarter). Using a detrended dividend yield also leads to the

same positive sign. While both effects are statistically insignificant, we

view the relationship between dividend yields and future interest rates as

economically important because interest rates are a crucial component of

a present value relation. From the present value relation (5), we expect a

positive relation between dividend yields and future discount rates. The

interest rate enters the discount rate in two ways. The discount rate is the

sum of the risk-free rate and the risk premium and enters these two
components with opposite signs. It is the first component that gives rise

to the positive relation.

Although not statistically significant, the positive sign of interest rate

predictability by dividend yields is robust. First, omitting the 1990s does

not change the inference, but actually increases the t-statistics. Second, we

also find a positive sign for Germany and the United Kingdom in the

long sample and for all countries in the short sample. In particular, for

MSCI data, the individual coefficients range from 0.036 in the United
States to 0.085 in France at the one-month horizon.8

4. A Present Value Model for Stock Returns

In this section, we present a present value model to shed light on what
kind of discount rate processes are most consistent with the predictability

evidence.

4.1 The model

We start with the basic present value relation in (5) and parameterize the

dynamics of the discount rates and cash flows. We assume that the

continuously compounded risk-free rate rt and log dividend growth gd
t

follow the VAR:

Xt ¼ 
þ �Xt�1 þ "t, ð7Þ

where Xt ¼ ðrt, gd
t Þ

� and "t � IID Nð0,�Þ. Let the discount rate, 	t, in

Equation (4) follow the process:

	t ¼ �þ ��Xt þ �	t�1 þ ut, ð8Þ

with ut � IID Nð0,
2Þ and "t and ut are independent. We denote the

individual components of � as � ¼ ð�r, �gd Þ�.

8 We also examine the predictive power of the dividend yield for ex-post real interest rates, similar to
Campbell (2003). Although the individual coefficients across countries fail to have a consistent sign,
pooled results produce positive coefficients at all horizons, as in the nominal case. However, the
coefficients are not statistically significant.
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Proposition 4.1. Assuming that Xt ¼ ðrt, gd
t Þ

�
follows Equation (7) and

that the log conditional total expected return 	t follows (8), the price-

dividend ratio Pt=Dt is given by

Pt

Dt

¼
X1
i¼1

expðai þ b�
iXt þ ci	tÞ, ð9Þ

where

aiþ1 ¼ ai þ ci�þ
1

2
c2

i 

2 þ ðe2 þ bi þ ci�Þ�


þ 1

2
ðe2 þ bi þ ci�Þ��ðe2 þ bi þ ci�Þ

b�
iþ1 ¼ ðe2 þ bi þ ci�Þ��

ciþ1 ¼ �ci � 1,

ð10Þ

where e2 ¼ ð0, 1Þ�, ai and ci are scalars, and bi is a 2� 1 vector. The initial

conditions are given by

a1 ¼ e�2
þ
1

2
e�2�e2

b�
1 ¼ e�2�

c1 ¼ �1:

ð11Þ

Proof: See Appendix D.

Proposition 4.1 implies that the dividend yield is a highly nonlinear
function of interest rates, excess returns, and cash flows. Not surprisingly,

if discount rates are persistent, the ci coefficients are negative and higher

discount rates decrease the price-dividend ratio. Analogously, when divi-

dend growth is positively autocorrelated, a positive shock to dividend

growth likely increases the price-dividend ratio, unless it entails an oppo-

site discount rate effect ð�d
g > 0Þ.

The present value model endogenously generates heteroskedasticity.

While previous studies model returns and dividend yields in finite-order
VAR systems (see, among many others, Hodrick 1992, Campbell and

Shiller 1988a,b, Stambaugh 1999), a VAR cannot fully capture the non-

linear dynamics of dividend yields implied by the present value model. We

can also contrast our present value model with Goetzmann and Jorion

(1993, 1995) and Bollerslev and Hodrick (1996), who either ignore the

cointegrating relation between dividends and price levels that

Stock Return Predictability

673



characterizes rational pricing or only develop approximate solutions. In

contrast, we impose cointegration between dividends and prices and our

solution is exact.

Under the special case of constant total returns, that is 	t ¼ �, with

� ¼ � ¼ 
2 ¼ 0, and IID dividend growth ðgd
t ¼ 
d þ 
d"

g
t Þ, Equation (9)

simplifies to a version of the Gordon model:

Pt

Dt

¼
expð
d þ 1

2

2

dÞ
1� expð
d þ 1

2

2

d � �Þ
:

Another important special case of the model is constant expected excess
returns, where 	t ¼ �þ rt, so � ¼ ð1, 0Þ�, and � ¼ 
2 ¼ 0. In this case, the

time variation in total expected returns is all due to the time variation in

interest rates. This is the relevant null model for our excess return

regressions where the expected excess return is constant but the total

expected return varies with the interest rate.

Under the null of constant expected excess returns, the gross total

return Yt ¼ ðPtþ1 þDtþ1Þ=PtÞ less the gross interest rate expðrtÞ is

Et½Ytþ1 � expðrtÞ� ¼ expðrtÞ½expð�Þ � 1�,

so regressing the simple net excess return on the interest rate actually yields a

nonzero coefficient on rt. The scaled expected return, Et½Ytþ1= expðrtÞ� is

constant and equal to �. The predictability regressions typically run in the

literature do not correspond to any of these two concepts, since they use

log returns ~ytþ1 � logðYtþ1Þ � rt. In our economy, regressing log returns

onto state variables does not yield zero coefficients because the log excess

return is heteroskedastic. However, we would expect these coefficients to

be small, relative to the null of time-varying expected excess returns (where
	t takes the full specification in Equation (8)).

Under the alternative of time-varying discount rates in Equation (8),

total expected returns can depend on both fundamentals (short rates and

dividend growth) and exogenous shocks. The case of � ¼ 0 represents

fully exogenous time-varying expected returns. By specifying

	t ¼ �þ ��Xt, Equation (8) also nests the case of state-dependent

expected returns.

4.2 Estimation

The estimation of the present value model is complicated by the fact that

in the data, we observe dividends summed up over the past year, but we

specify a quarterly frequency in the model. We estimate the present value

model with simulated method of moments (SMM) (Duffie and Singleton

1993) on US data from January 1952 to December 2001. We provide full

details of the estimation in Appendix E.
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Panel A of Table 6 reports the VAR parameters. Dividend growth

displays significant positive persistence, and the interest rate has a small

and insignificant effect on dividend growth. The implied unconditional

standard deviation of gd
t from the estimation is 0.0173 per quarter. If we

estimate a VAR on ðrt, gd,4
t Þ, the implied unconditional standard devia-

tion of gd,4
t is 0.0156 per quarter. Hence, summing up dividends over the

past four quarters effectively creates a smoother series of dividend

growth compared to the true, but unobservable, cash-flow process.
Panel B presents the parameter estimates for five different discount rate

processes in Equation (8). The first model we estimate (Null 1) is a simple

constant total expected stock return benchmark model. The second model

(Null 2) is our main null model because it imposes constant expected

Table 6
Calibration of the present value model

� �1=2


 rt gd
t rt gd

t

Panel A: estimates of the VAR for ðrtg
d
t Þ

�

rt 0.0010 0.9263 0.0000 0.0026 0.0000
(0.0005) (0.0396) (0.0006)

gd
t 0.0053 �0.0078 0.5489 0.0036 0.0171

(0.0013) (0.0899) (0.1208) (0.0001) (0.0048)

Null 1 Null 2 Alt 1 Alt 2 Alt 3

Panel B: estimates of the discount rate process

�� 100 2.0168 0.8508 0.0407 0.0476 �0.0988
(0.0358) (0.0349) (0.0123) (0.0034) (0.2525)

� 0.9816 0.9298
(0.0052) (0.0616)

�r 1.0000 �2.0454 0.0007
(0.4038) (0.0011)

�d
g 0.0041 0.0014

(0.5704) (0.0024)

� 100 0.1751 0.5024

(0.0475) (0.1616)
�2 test p-value 0.0000 0.0000 0.0101 0.0000 0.1332

The table reports parameter estimates and standard errors in parentheses of the present value model.
Panel A reports estimates of the VAR of short rates and dividend growth in Equation (7). The short rate
rt equation is an AR(1), with standard errors produced by GMM with four Newey–West (1987) lags. The
parameters for gd

t are estimated using SMM by matching first and second moments of gd,4
t , along with

the moments Eðrtg
d,4
t Þ, Eðgd,4

t�4gd,4
t Þ, and Eðrt�4gd,4

t Þ. Panel B reports parameter estimates for the discount
rate process 	t ¼ �þ ��Xt þ �	t�1 þ ut [see Equation (8)], with � ¼ ð�r, �gd Þ� . The Null Models 1 and 2
impose the restriction 
 ¼ �gd ¼ � ¼ 0, with �r ¼ 0 for Null Model 1 or �r ¼ 1 for Null Model 2. These
represent the null hypotheses of constant expected total returns (Null Model 1) or constant expected
excess returns (Null Model 2). Alternative Model 1 sets �r ¼ �gd ¼ 0, so the discount rate process is
entirely exogenous, whereas Alternative Model 2 imposes � ¼ �gd ¼ 0, so the discount rate process is
entirely endogenous. In Alternative Model 3, all parameters of the discount rate process are nonzero.
The estimation is done by holding the VAR parameters fixed and matching the first and second moments
of excess returns and dividend yields, along with lagged short rates and lagged dividend growth as
instruments. The last row reports the p-value from a �2 overidentification test.
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excess returns by setting �r ¼ 1 and �gd
¼ � ¼ 
 ¼ 0. The first model under

the alternative of time-varying discount rates that we consider (Alternative

1) features completely exogenous discount rates ð� ¼ 0Þ. The estimation

shows that the log discount rate is very persistent ð� ¼ 0:98Þ and its

unconditional variance is about 1% at the quarterly level. Alternative 2

sets � ¼ 0 but allows the discount rate process to depend on the two state

variables. We find a slightly positive but insignificant effect of dividend

growth rates on the discount rate, but a strong and significantly negative
interest rate effect. Alternative 3 combines the two models. The negative

interest rate effect disappears, but the zero coefficient means that excess

returns are negatively related to interest rates. The persistence of the

discount rate process now drops to 0.93. The last line of Panel B reports

the p-value of the �2-test of the overidentifying restrictions for the SMM

estimation. Only Alternative 3 passes this test.

4.3 Economic implications
In this section, we investigate how well the present value models match

the data moments and decompose the variability of the price-dividend

ratio into its components. We also examine how well linear predictive

regressions capture true expected returns implied by the models.

4.3.1 Moments and price-dividend ratio variance decomposition. Table 7

reports a number of implied moments for the various models. Panel A

reports the variance and mean of the dividend yield and excess returns. We

start by examining the null models. Because Null 1 has no time variation in

expected returns, it underestimates the volatility of excess returns and gen-

erates only one-tenth of the dividend yield variability present in the data. The

annualized mean equity premium is only 2.6% instead of 6.12% in the data,

but this is still comfortably within two standard errors of the data moment.
The model also matches the mean dividend yield. The Null 2 model has

similar mean implications, but the variation of excess returns increases

substantially and endogenous dividend yield volatility triples. By definition,

all of the variation in price-dividend ratios should come from either short

rates or cash flows, which we confirm in a variance decomposition of the

price-dividend ratio reported in Panel B.

The variance decompositions represent the computation:

1� varzðP=D4Þ
varðP=D4Þ , ð12Þ

where varðP=D4Þ is the variance of price-dividend ratios implied by the

model, and varzðP=D4Þ is the variance of the price-dividend ratio pro-

duced by the model when the variable z is nonstochastic and set at its
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long-run mean. We take z to be short rates, dividend growth, total
discount rates, and excess discount rates, respectively. For Null 2, the

price-dividend ratio variance accounted for by short rate movements is

87.4%. The total discount rate accounts for 14.2% of the variation of the

price-dividend ratio, but this is all due to time-varying interest rates. By

construction, the excess discount rate does not account for any of the

volatility of the price-dividend ratio. Dividend growth also accounts for

only a small part (5.5%) of total price-dividend ratio volatility.

The alternative models 1–3 match the data much better than the null
models, showing that some variation in (excess) discount rates is essential.

In particular, all three alternative models match the variability of excess

returns and, in addition, Alternatives 1 and 3, both featuring exogenous

discount rate variation, match the variability of dividend yields.

Table 7
Economic implications of the present value model

US data

Null 1 Null 2 Alt 1 Alt 2 Alt 3 Estm SE

Panel A: implied selected moments

Mean excess return 0.0065 0.0066 0.0066 0.0054 0.0068 0.0153 0.0057
Mean dividend yield 0.0335 0.0339 0.0343 0.0348 0.0352 0.0349 0.0008
Volatility excess return 0.0393* 0.0472* 0.0785 0.0824 0.0811 0.0779 0.0061
Volatility dividend yield 0.0010* 0.0031* 0.0120 0.0072* 0.0115 0.0114 0.0011

Panel B: decompositions of the variance of the price-dividend ratio

Percent of short rate �0.0009 0.8745 �0.0003 0.9757 0.2221
Percent of dividend growth 1.0000 0.0545 0.0042 0.0328 0.0689
Percent of total discount rate �0.0009 0.1418 0.9955 0.1593 0.9295
Percent of excess return 0.0008 0.0000 0.0214 0.2911 0.6132

Panel C: correlations between true expected excess returns and forecasts from predictive regressions

k ¼ 1, univariate regression dy4 0.7364 0.7783 0.7859
k ¼ 1, bivariate regression dy4,r 0.9325 0.9785 0.8654

k ¼ 4, univariate regression dy4 0.7521 0.7684 0.7710
k ¼ 4, bivariate regression dy4,r 0.9328 0.9916 0.8297

k ¼ 20, univariate regression dy4 0.8506 0.7539 0.7976
k ¼ 20, bivariate regression dy4,r 0.9177 0.9971 0.8165

The table reports various economic and statistical implications from the present value models. Panel A
reports various moments and summary statistics implied from each model. The quarterly moments
reported are the mean and volatility of excess returns and dividend yields in levels. The data standard
errors of the moments are computed by GMM with four Newey–West (1987) lags. In Panel B, the
variance decompositions report the computation 1� varzðP=D4Þ=varðP=D4Þ, where varðP=D4Þ is the
variance of price-dividend ratios implied by the model, and varzðP=D4Þ is the variance of the price-
dividend ratios where all realizations of z ¼ rt, gt, 	t or the risk premium are set at their unconditional
means. Panel C reports the correlation between fitted values from the excess return predictive regressions
and true conditional expected excess returns Etð~ytþkÞ implied by the model. The population moments
implied by the model are computed using 1,00,000 simulations from the estimates in Table 6. In Panel A,
the standard errors for the sample moments are computed using GMM.
*Indicates that the population moments lie outside a two standard deviation bound around the point
estimate of the sample moment.
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Alternative 3, the best fitting model, also perfectly matches the first-order

autocorrelation of the dividend yield (0.9596 compared to 0.9548 in US

data spanning 1952–2001). The variance decomposition of the various

models are as expected, given how the discount rates are modeled in each

specification: in Alternative 1, most variation comes from the exogenous

discount rate; in Alternative 2, almost all variation comes from the short

rate (which in turn drives variation in the discount rate), and in Alter-

native 3, the exogenous discount rate dominates but interest rates are still
important. Since Alternative 3 fits the data the best, the variance decom-

position is of considerable interest. It suggests that 61% of the price-

dividend ratio variation is driven by risk premiums, 22% by the short

rate and 7% by dividend growth. The remainder is accounted for by

covariance terms.

4.3.2 How well do predictive regressions capture true expected

returns?

In Panel C of Table 7, we examine how well linear forecasting models

can capture true time variation in expected returns in the alternative

models. We compute the correlation of expected log excess returns,

Etð~ytþkÞ, implied by the model with the fitted value on the RHS of the

regression (2).9 There are two striking results in Panel C. First, a uni-
variate dividend regression captures a much smaller proportion of move-

ments in log expected excess returns than a bivariate regression including

both risk-free rates and dividend yields. For example, for Alternative 1

(3), the correlation rises from 74% (75%) in a univariate regression to 93%

(84%) in a bivariate regression at a one-quarter horizon.

Second, long-horizon regressions do not necessarily capture the

dynamics of true expected excess returns better than short-horizon regres-

sions. Cochrane (2001) and others, show that in linear VAR models, long-
horizon regressions more successfully capture predictable components in

expected returns. However, in our nonlinear present value model, long-

horizon regressions may fare worse than short-horizon regressions in

capturing true expected returns. For example, for Alternative 3, the

forecasts from a one-quarter regression with the short rate and dividend

yield have a correlation of 87% with true expected excess returns, whereas

the correlation is 82% at a 20-quarter horizon. In Alternative 2, where

there are no exogenous components in discount rates, the correlation
between the bivariate regression and true expected returns is around

9 In a present value model, the economically relevant quantity for discount rates is the log expected return
	t ¼ logððPtþ1 þDtþ1Þ=PtÞ ¼ logðEtðYtþ1ÞÞ. However, the predictive regressions produce a forecast of
expected log returns EtðlogðYtþ1ÞÞ. The two quantities logðEtðYtþ1ÞÞ and EtðlogðYtþ1ÞÞ are not equiva-
lent because of time-varying Jensen’s inequality terms. For example, the correlation of

P
	tþj � rtþj in

Null Model 2 is zero with any variable, whereas the correlation of expected excess log returns Etð~ytþkÞ is
not. We compute Etð~ytþkÞ following the method described in Appendix E.
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98% for all horizons. However, this alternative has the worst fit with the

data.

4.4 Implications for predictive regressions

We now investigate how well the present value models fit the linear

patterns of predictability that we observe in the data. In Table 8, we

compare regression coefficients implied by the present value models to

their values in data.

4.4.1 Expected excess return regressions. In the Null 1 model, total

expected returns are constant. Hence excess returns are, by construction,

Table 8
Predictive regressions implied by the present value model

US data

Null 1 Null 2 Alt 1 Alt 2 Alt 3 Estm SE

Excess return regressions

k ¼ 1, univariate regression dy4 �0.0416* �0.0404* 0.0886 0.3564* 0.1864 0.0979 0.0635
k ¼ 1, bivariate regression r �1.0500 �0.0824* �0.9310 �2.6369 �1.0737 �2.1623 0.7426

dy4 �0.0049* �0.0214* 0.0878 0.0574 0.2269 0.1362 0.0633

k ¼ 4, univariate regression dy4 �0.0269 �0.0177 0.0870 0.3122* 0.1723 0.1060 0.0686
k ¼ 4, bivariate regression r �0.9419 �0.1191 �0.8541 �2.5694 �0.8562 �1.4433 0.7478

dy4 0.0062 0.0097 0.0862 0.0208 0.2046 0.1313 0.0683

k ¼ 20, univariate regression dy4 �0.0213 0.0086 0.0787 0.1772 0.1232 0.0594 0.1245
k ¼ 20, bivariate regression r �0.4983 0.0050 �0.4170 �1.5665 �0.3456 �0.4829 3.2404

dy4 �0.0040 0.0075 0.0783 �0.0004 0.1363 0.0774 0.6445

Dividend growth regressions

k ¼ 1, univariate regression dy4 0.8543* 0.0918* 0.0045* 0.0199 0.0412 0.0251 0.0101
k ¼ 1, bivariate regression r 0.2611 0.1548 0.2942 0.8837* 0.1154 0.3541 0.1616

dy4 0.8452* 0.0561* 0.0047 0.1201* 0.0369 0.0188 0.0118

k ¼ 4, univariate regression dy4 0.9392* 0.0920* 0.0050 0.0259 0.0212 0.0259 0.0103
k ¼ 4, bivariate regression r 0.1478 �0.1019 0.1846 0.7031* 0.0997 0.1791 0.1584

dy4 0.9340* 0.1155* 0.0052 0.1057* 0.0174 0.0228 0.0120

k ¼ 20, univariate regression dy4 0.2274* 0.0375 �0.0017 �0.0016 0.0059 0.0165 0.0178
k ¼ 20, bivariate regression r 0.0778 �0.0146 0.0861 0.1776 0.0707 0.0863 0.5339

dy4 0.2247* 0.0408 �0.0016 0.0186 0.0032 0.0132 0.1021

Risk-free rate regressions

k ¼ 1, univariate regression dy4 0.0342* 0.2142* �0.0008 �0.1052* 0.0354 0.0171 0.0390
k ¼ 4, univariate regression dy4 0.0334 0.1928 �0.0008 �0.0946 0.0321 0.0161 –
k ¼ 20, univariate regression dy4 0.0230 0.1163 �0.0016 �0.0568 0.0194 0.0267 –

The table reports implied predictive regression coefficients from the present value models. The LHS
variables are cumulated log excess returns, dividend growth, and risk-free rates. The population moments
are computed using 1,00,000 simulations from the estimates in Table 6. The standard errors for the
regressions in US data are computed using Hodrick (1992) standard errors for the excess return and
dividend growth regressions and using a Cochrane-Orcutt procedure for the k ¼ 1 risk-free rate regres-
sion. All horizons k are in quarters.
*Indicates that the coefficients lie outside a two standard deviation bound around the point estimate of
the sample coefficient.
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negatively related to interest rates, which explains the large negative short

rate coefficients in the bivariate regressions. Because dividend yields are

correlated with interest rates, the univariate regression also picks up some

predictability. In the Null 2 model, expected excess returns are constant,

so that the only predictability we should observe comes from nonlinea-

rities. As in the Null 1 model, the coefficients on the dividend yield are

invariably small and of the wrong sign compared to the predictions in

Campbell and Shiller (1988a,b).
The alternative models imply different patterns of predictability. Despite

substantial variation in the exogenous discount rate, Alternative 1 generates

a population slope coefficient of only 0.089 in a dividend yield regression,

which is slightly below what is observed in the data. Because the discount

rate is not linked to the interest rate, an excess return projection on

dividend yields and the interest rate leads to coefficients on interest rates

in the neighborhood of �1 and a dividend yield coefficient of 0.088. Both

coefficients are somewhat lower in absolute magnitude than what is
observed in the data.

Alternative 2 implies a dividend yield predictability regression coeffi-

cient of 0.356. This is very close to the dividend yield coefficient for the

United States if we ignore the 1990s (0.296 in Table 2). Hence, in a world

where discount rates only depend on short rates and dividend growth, the

dividend yield would indeed be a strong predictor of excess returns.

However, because the variation in discount rates is mostly driven by

short rates, the dividend yield coefficient drops to 0.057 in a bivariate
regression and the predictable component is now mostly absorbed by the

short rate. This is inconsistent with the data, where bivariate regressions

yield larger dividend yield coefficients, not smaller ones.

Alternative 3 combines features of both Alternatives 1 and 2 and the

coefficients are nicely in between the two alternatives. This model also

yields a negative omitted variable bias in the univariate dividend yield

regression as is true in the data. Note that, with the exception of the

univariate slope coefficient in the dividend yield regression under Alter-
native 2, all predictability coefficients for all alternative models are within

two standard errors of the observed coefficients in the data.

4.4.2 Dividend growth regressions Table 8 also reports how the different

models fare with respect to the predictability of dividend growth. The main
feature in the data is that both dividend yields and short rates receive

positive coefficients in a bivariate regression. Since practically all of the

variation in dividend yields is due to dividend growth in the Null 1 model,

dividend growth is much too predictable in this model. Dividend growth

predictability in the Null 2 model is also inconsistent with the data.
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In the alternative models, positive dividend yield coefficients in divi-

dend growth regressions occur primarily in two ways. First, the discount

rate can depend positively on dividend growth [�d
g > 0 in Equation (8)].

Positive persistence in dividend growth normally leads to a negative

association between dividend yields and future cash flows, but in this

case, high dividend growth also increases the discount rate and increases

dividend yields. Second, the short rate may enter negatively in the divi-

dend growth Equation (7). This means that low discount rates (which
tend to raise the dividend yield) are directly associated with relatively

higher expected dividend growth rates. Our estimates for Alternative 3

share both these features (Table 6), and the implied moments of this

model are fully consistent with what is observed in the data.

4.4.3 Risk-free rate regressions A rational present value model with

stochastic interest rates also implies that dividend yields predict interest

rates. Under Null 2, the coefficient is 0.214, much larger than what is

observed in the data. Since interest rates do not affect the risk premium in

this model, we observe a very strong positive relation between the current

dividend yield and future interest rates. The smaller coefficient in the data

indicates that the risk premium component is likely to negatively depend

on interest rates. Hence, the current dividend yield should show a nega-
tive relation with the interest rate component of future risk premiums. In

Alternative 1, the total discount rate does not depend on the interest rate,

yielding a coefficient very close to zero. Alternative 2 makes the interest

rate dependence of the discount rate too strong, resulting in a negative

coefficient. In contrast, Alternative 3 most closely (but not perfectly)

matches the coefficient in the data. Hence, we conclude that the present

value model represented by Alternative 3 is remarkably consistent with

the data.

5. Bias, Size and Power

The inference regarding predictability may critically depend on the finite

sample properties of the estimator. In this section, we investigate the finite
sample bias, size, and power of the estimators in the linear predictive

regressions.

5.1 Small sample bias

In a linear return-dividend yield system (Stambaugh 1999, Amihud and

Hurvich 2004, Lewellen 2004), there is an upward bias in the predictive

coefficient on the dividend yield, deriving from the negative correlation

between return and dividend yield innovations and the persistence of
dividend yields. This analysis does not apply in our framework for two

reasons. First, both the return and the dividend yield are nonlinear
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processes in our model. Second, once we consider multivariate regres-

sions, the bias can no longer be signed in all cases, as already noted by

Stambaugh (1999).

Table 9 reports the small sample bias in several regressions based on

data generated from the Null 2 model (constant expected excess returns).

We consider the small sample distributions for samples of length 104, 200,

and 267 quarters, which correspond to the 1975–2001, 1952–2001, and
1935–2001 sample periods, respectively. We start with regressions using

scaled returns, Ytþ1= expðrtÞ, as the dependent variable. In these regres-

sions, the population coefficients are zero as the null imposes constant

expected scaled returns. In small samples, the univariate regression yields

a Stambaugh bias that is negligible for our longest sample (0.0012).

Interestingly, in the bivariate regression, the bias on the dividend yield

coefficient is now negative, but the bias on the short rate coefficient is

positive and rather large, ranging from 0.35 for the smallest sample to
0.14 for the longest sample. In this model, the short rate plays the role of

the dividend yield in the linear systems. It is the prime determinant of the

variation in the price-dividend ratio, it is contemporaneously negatively

correlated with returns, and it is very persistent. Hence, a Stambaugh-like

bias for short rates, but not dividend yields, results.

In the second panel of Table 9, we report the bias results for the

predictive regressions using log excess returns. Note that the population

Table 9
Small sample bias under null model 2

k-qtrs
1975–2001,
T ¼ 104

1952–2001,
T ¼ 200

1935–2001,
T ¼ 267

Population,
T ¼ 1

Scaled returns

Univariate 1 dy4 0.0235 0.0045 0.0012 0.0000

Bivariate 1 r 0.3469 0.1799 0.1435 0.0000
dy4 �0.0339 �0.0286 �0.0264 0.0000

Excess log returns

Univariate 1 dy4 0.0245 0.0065 �0.0027 �0.0404
4 dy4 0.0408 0.0204 0.0105 �0.0177

20 dy4 0.0441 0.0273 0.0185 0.0086

Bivariate 1 r 0.3521 0.1831 0.1388 �0.0824
dy4 �0.0343 �0.0275 �0.0295 �0.0214

4 r 0.2632 0.1345 0.0989 �0.1191
dy4 0.0038 �0.0005 �0.0057 0.0097

20 r 0.1941 0.1003 0.0696 0.0050
dy4 0.0137 0.0105 0.0067 0.0075

The table reports small sample and population parameter coefficient values for regressions of scaled or
cumulated log excess returns onto log dividend yields (univariate regression) or annualized short rates
and log dividend yields (bivariate regression) from the Null 2 Model. Scaled returns are defined as
Ytþ1= expðrtÞ, where Ytþ1 is the gross total equity return. The population moments from the model are
computed using 1,00,000 simulations. The small sample moments are computed using 10,000 simulations
of samples of varying length. All horizons k are in quarters.
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coefficients are not zero because of heteroskedasticity. For the univariate

dividend yield regressions, the population coefficients are slightly nega-

tive at short horizons and positive at the five-year horizon. For our small

sample, they interact with the Stambaugh bias to produce a small upward

bias for our smallest sample but a downward, negligible bias for our

longest sample. For the bivariate regressions, the population biases are

negative for both the short rate and dividend yield coefficients. However,

in small samples, the scaled return biases clearly dominate and we find the
short rate (dividend yield) coefficient to be biased upward (downward).

The small sample biases become significantly smaller at long horizons and

turn slightly positive for the dividend yield coefficient. Clearly, recent

inference techniques that focus on univariate regressions in a linear

framework [Valkanov (2003), Torous, Valkanov, and Yan (2004), Polk,

Thompson, and Vuolteenaho (2006)] are of little use in our setting.

In summary, the small sample biases under the null strengthen our

empirical evidence. That is, the univariate dividend yield predictability
coefficients are slightly overestimated, and the small sample biases for the

bivariate coefficients go the wrong way at short horizons: the estimated

short rate coefficient is negative, but the small sample bias is positive; and

the estimated dividend yield coefficient is positive, but the small sample

bias is negative.

5.2 Size

Table 10 reports empirical sizes for tests of a 5% nominal (asymptotic)
size. In the shortest sample for the one-quarter horizon, the univariate

dividend yield regression displays negligible size distortions, but for the

bivariate regressions, all tests slightly over-reject at asymptotic critical

values. For longer horizons, the performance of the Newey–West and

robust Hansen–Hodrick estimators deteriorates, with the empirical size

exceeding 33% for a 5% test in the univariate dividend regression.10 For

our longer samples, these distortions become smaller but do not disap-

pear. For example, at the five-year horizon, the empirical size of the
dividend yield regression still exceeds 18.5% for both Newey–West and

robust Hansen–Hodrick estimators in the 267 quarter sample.

The Newey–West and robust Hansen–Hodrick standard errors are too

small because they underestimate the serial correlation in the error terms

as the autocorrelation estimates are downwardly biased. The Newey–West

standard error also uses a Bartlett kernel of declining, tent-shaped weights.

Under the null, the kernel is rectangular, so the Newey–West standard

errors underweight the effect of autocorrelations at long lags unless a higher

10 Hodrick standard errors also have relatively few size distortions, especially compared to Newey-West
standard errors, for standard linear VARs, like the Stambaugh (1999) system. Hodrick (1992) also
demonstrates that Hodrick standard errors are correctly sized for multivariate VARs.
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Table 10
Empirical size

Univariate regression Bivariate regression

dy4 r dy4
�2 tests

joint across horizon

Robust Robust Robust
k-qtrs N–W H–H Hodrick N–W H–H Hodrick N–W H–H Hodrick Univariate Bivariate

Sample length=104 quarters (1975–2001)

1 0.053 0.047 0.047 0.076 0.070 0.070 0.065 0.059 0.059 0.051 0.010
4 0.132 0.104 0.044 0.151 0.138 0.062 0.113 0.109 0.050

20 0.338 0.373 0.047 0.335 0.349 0.060 0.232 0.244 0.037

Sample length=200 quarters (1952–2001)

1 0.045 0.042 0.042 0.057 0.054 0.054 0.059 0.054 0.054 0.056 0.012
4 0.112 0.077 0.044 0.109 0.092 0.051 0.095 0.084 0.046

20 0.226 0.230 0.043 0.205 0.231 0.051 0.129 0.156 0.039

Sample length=267 quarters (1935–2001)

1 0.044 0.041 0.041 0.062 0.058 0.058 0.057 0.055 0.055 0.052 0.013
4 0.100 0.069 0.040 0.096 0.079 0.046 0.087 0.075 0.044

20 0.188 0.186 0.039 0.173 0.194 0.048 0.110 0.138 0.038

The table lists empirical size properties corresponding to a nominal size of 5% of Newey–West (1987) (N–W) with k þ 1 lags, Robust Hansen–Hodrick (1980) (Robust H–H) and
Hodrick (1992) t-statistics. We examine a univariate regression of excess returns on dy4 and a bivariate regression of excess returns on r and dy4. We simulate 10,000 samples of
various lengths from the Null 2 Model (constant expected excess returns) and record the percentage of observations greater than the nominal critical values under the null
hypothesis of no predictability. The �2 tests report the proportion of rejections (using a 5% nominal size) for testing predictability jointly across horizons using Hodrick
standard errors. In the case of the bivariate regression, joint predictability of both short rates and log dividend yields is considered across horizons. All horizons k are in
quarters.
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lag length is chosen. While the robust Hansen–Hodrick standard errors

employ the correct rectangular filter, the estimate of the covariance matrix

is not guaranteed to be invertible in small samples. In contrast, Hodrick

uses covariance stationarity to remove the MA structure in the residuals.

Hodrick’s covariance estimator in Equation (3) is invertible and avoids the

biased estimation of autocorrelations at long lags.

For Hodrick standard errors, the worst size distortion occurs at the

one-quarter horizon with a 7% empirical size for a 5% nominal test on the
short rate coefficient. For longer horizons, the Hodrick tests become

slightly conservative, with the worst size distortion occurring for the

dividend yield coefficient in the bivariate regression (a 3.7% empirical

size for a 5% nominal test). The joint tests across horizons show few size

distortions for the univariate regression, but are somewhat too conserva-

tive for the bivariate regression. In summary, the Hodrick standard errors

display very satisfactory small sample properties that are far superior to

those of Newey–West and Hansen–Hodrick standard errors.

5.3 Power

5.3.1 Power in one country. Table 11 summarizes the size-adjusted

power for the Hodrick standard errors under Alternatives 1–3. Alterna-

tive 1 generates about the same predictive coefficient on the dividend yield

as observed in the data but the predictive power of the short rate is

unrealistically weak. Panel A shows that the power of the univariate

dividend yield regression is very small for the shortest sample, only
25.5% (12.1%) at the one-quarter (20-quarter) horizon. For the longer

samples, power rises to around 60% (40%) at the one-quarter (20-quarter)

horizon. The results for the bivariate regressions are quite similar, with

the power for the short rate coefficient slightly weaker than for the

dividend yield. Hence, power is only satisfactory for the long samples,

and even here, we might fail to reject the null of no predictability even

though predictability is truly present.

Alternative 2, reported in Panel B, generates as much short rate pre-
dictability as in the data but slightly overpredicts the univariate predictive

power of the dividend yield. For the 104-quarter length sample at short

horizons, the power of the univariate dividend yield regression is satisfac-

tory (55.2%). The power deteriorates with the horizon reaching 12.6% at

five years. Power increases substantially with the sample size; for our

longest sample, the Hodrick test has a power of over 97% at the one-

quarter horizon. If predictability in the data is as strong as under Alter-

native 2, it is unlikely that we failed to detect univariate predictability.
The power to detect the predictive ability of the short rate in the bivariate

regression is very high for all samples and at all horizons. In the bivariate

regression, there is little power to detect the true relation of future excess

returns with the dividend yield, because the dividend yield coefficient is
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very small in the presence of the short rate as a predictor. Consistent with

this, the univariate joint �2 tests across horizons is very powerful, but the
power of the test in the bivariate regression is minimal.

Panel C reports the power under Alternative 3, which fits the data the

best. The power of the univariate tests is slightly better than the power

under Alternative 2. For the bivariate regression, the predictive coeffi-

cient of the short rate (dividend yield) is underestimated (overestimated)

Table 11
Size-adjusted power for Hodrick standard errors for one country

Univariate
regression

Bivariate
regression

�2 tests
joint across horizon

Sample
length (Qtrs)

Horizon
k-qtrs, dy4 r dy4 Univariate Bivariate

Panel A: power under alternative 1: 	t ¼ 
þ �	t�1 þ ut

104 1 0.255 0.201 0.283 0.325 0.335
4 0.232 0.189 0.268

20 0.121 0.096 0.156

200 1 0.625 0.415 0.650 0.520 0.557
4 0.556 0.410 0.608

20 0.395 0.248 0.436

267 1 0.596 0.344 0.596 0.632 0.691
4 0.548 0.338 0.589

20 0.391 0.161 0.431

Panel B: power under alternative 2: 	t ¼ 
þ ��Xt

104 1 0.552 0.636 0.075 0.559 0.036
4 0.463 0.795 0.041

20 0.126 0.837 0.007

200 1 0.892 0.795 0.091 0.891 0.042
4 0.808 0.942 0.048

20 0.362 0.984 0.004

267 1 0.971 0.853 0.094 0.967 0.048
4 0.940 0.975 0.054

20 0.577 0.998 0.004

Panel C: power under alternative 3: 	t ¼ 
þ �	t�1 þ ��Xt þ ut

104 1 0.566 0.138 0.628 0.587 0.617
4 0.484 0.090 0.562

20 0.159 0.016 0.198

200 1 0.874 0.243 0.902 0.866 0.905
4 0.775 0.181 0.859

20 0.417 0.021 0.483

267 1 0.959 0.292 0.971 0.952 0.976
4 0.923 0.225 0.951

20 0.620 0.024 0.682

The table lists empirical power properties corresponding to a size-adjusted level of 5% of Hodrick (1992)
t-statistics. We examine a univariate regression of excess returns on dy4 and a bivariate regression of
excess returns on r and dy4. We simulate 10,000 samples of various lengths from Alternatives 1–3 (Panels
A–C) and record the percentage of observations greater than the 5% critical values recorded under the
Null 2 Model (constant expected excess returns) using the simulations in Table 10. The �2 tests report the
proportion of rejections (using a 5% nominal size) for testing predictability jointly across horizons of
both short rates and log dividend yields. All horizons k are quarterly.
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relative to the data coefficients under Alternative 3. Consequently, the

power to detect the true predictive relation with the short rate is low

at long horizons (because the predictability through the short rate is

short-lived), whatever the sample size is. Power at a one-quarter

horizon rises from 13.8% for the shortest sample to 29.2% for the

longest sample. Fortunately, the power to detect predictability

through the dividend yield in the bivariate system is quite high:

power is 62.8% (97.1%) for the shortest (longest) sample at a one-
quarter horizon. For a 20-quarter horizon, we need longer samples to

obtain a powerful test (power is only 19.8% for the 1975–2001 sample

but is 68.2% for the 1935–2001 sample). With such high power, it is

unlikely that we would have failed to uncover predictability by the

dividend yield. Overall, the joint tests are quite powerful (at least

58.7% power). We conclude that lack of power is unlikely to drive

our failure to find predictability of excess returns by dividend yields,

particularly for the longer US sample, unless the true predictability in
the data is quite weak to begin with.

5.3.2 Power pooling cross-country data To examine the increase in

power that pooling cross-country data allows, our data generating

process must match the empirical correlations of excess returns across
countries in the data. For the United States, United Kingdom, France,

and Germany, the cross-country correlations for excess returns are all

around 0.50 (Table 1). To account for the cross-sectional correlation, we

modify the present value model in the following fashion. First, we

consider each country to be a separate draw of ðXt, 	tÞ, using Alterna-

tive 3. Second, we specify the process for Xt in each country to be

independent but allow the discount rates for different countries to be

correlated. Specifically, we allow the shocks u i
t in the discount rate (8)

for country i to be correlated with the discount rate shocks u
j
t for

country j. We set this correlation at 0.80, which produces an uncondi-

tional correlation coefficient of 0.535 between the implied excess equity

returns for any two countries.

To compare the increase in power pooling international data, Table 12

reports power under Alternative 3 for a cross-sectional panel of N coun-

tries and compares it to increasing the short US sample by N times.

Pooling data by adding one other country turns out to be only slightly
worse than doubling the sample size of the United States. For four

countries, the pooled test is better than using a sample of 312 quarters,

which is larger than the longest US sample we have. Hence, pooling

information across countries should increase the confidence in our

results more than the US long sample does from a pure statistical

power perspective.
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6. The Predictive Power of the Earnings Yield

Our findings so far suggest that dividend yields have marginal predictive

power for returns within a bivariate regression, with the short rate dom-

inating the dividend yield. Campbell and Shiller (1988a) and Lamont

(1998) claim that the earnings yield has information over and above the

dividend yield in capturing predictable components in returns.

6.1 The earnings yield and excess return predictability
The first column of Panel A, in Table 13 reports a univariate regression

with the earnings yield as the regressor. The results are similar to what we

found for the dividend yield regression in Table 2. This suggests that the

weak univariate relation between returns and yield variables primarily

comes from the price in the denominator of both variables.

To allow comparison with Lamont (1998), we report a bivariate regres-

sion of excess returns on log dividend and log earnings yields. Lamont

Table 12
Power properties for pooling cross-country data

One country Multiple countries

Univariate
regression Bivariate regression

Univariate
regression Bivariate regression

k-qtrs dy4 r dy4 �2 test dy4 r dy4 �2 test

Sample length=104 qtrs

1 0.575 0.096 0.612 0.487
4 0.509 0.058 0.536 0.412

20 0.201 0.018 0.169 0.133

Sample length = 208 qtrs Two countries

1 0.891 0.193 0.913 0.839 0.887 0.143 0.905 0.835
4 0.847 0.115 0.878 0.779 0.827 0.070 0.847 0.747

20 0.503 0.008 0.499 0.350 0.326 0.009 0.327 0.227

Sample length = 312 qtrs Three countries

1 0.980 0.289 0.986 0.967 0.974 0.218 0.978 0.963
4 0.962 0.179 0.977 0.941 0.952 0.111 0.963 0.922

20 0.745 0.010 0.762 0.603 0.556 0.009 0.590 0.446

Sample length = 416 qtrs Four countries

1 0.998 0.387 0.999 0.995 0.995 0.293 0.996 0.991
4 0.993 0.255 0.996 0.989 0.988 0.153 0.991 0.978

20 0.881 0.012 0.898 0.790 0.739 0.013 0.767 0.652

The table lists empirical power properties of Hodrick (1992) t-statistics, comparing a sample of one country of
increasing length versus a cross-sectional panel of countries, each of length 104 quarters. (The number of
observations 104 quarters corresponds to the sample period 1975–2001.) Power is taken corresponding to a
nominal (asymptotic) size of 5% using Alternative 3. We examine a univariate regression of excess returns on
log dividend yields and a bivariate regression of excess returns on short rates and log dividend yields. The �2

test reports a test for the joint predictability of the short rate and log dividend yield for a given horizon. The
population correlation coefficient between the excess returns of any two countries is 0.535.
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Table 13
Predictability of excess returns by earnings yields

Univariate regression Lamont regression Trivariate regression �2 tests

k-qtrs ey4 dy4 ey4 r dy4 ey4 Lamont Trivariate

Panel A: US quarterly S&P Data

1935–2001 1 0.0665 0.1842 �0.1019 �1.0334 0.1000 �0.0168 0.183 0.119
(1.258) (1.330) (�0.741) (�1.296) (0.605) (�0.103)

4 0.1018 0.1119 0.0012 �0.7759 0.0472 0.0654 0.108 0.106
(1.961)* (0.981) (0.011) (�1.084) (0.377) (0.556)

20 0.0719 0.1111 �0.0092 �0.4190 0.0666 0.0291 0.347 0.260
(1.415) (0.946) (�0.128) (�0.682) (0.486) (0.361)

1952–2001 1 0.0646 0.1948 �0.1113 �2.6243 0.0337 0.1272 0.192 0.006**
(0.993) (1.557) (�0.873) (�2.854)** (0.239) (0.815)

4 0.0798 0.1615 �0.0636 �1.8146 0.0479 0.1029 0.277 0.056
(1.218) (1.195) (�0.450) (�2.063)* (0.687) (0.687)

20 0.0223 0.1458 �0.0765 �0.3548 0.1199 �0.0418 0.854 0.872
(0.320) (0.561) (�0.520) (�0.489) (0.432) (�0.249)

1935–1990 1 0.0896 0.3848 �0.1800 �0.6544 0.3051 �0.1125 0.049* 0.050*
(1.304) (1.849) (1.062) (�0.696) (1.112) (�0.499)

4 0.1473 0.2869 �0.0532 �0.4708 0.2300 �0.0046 0.007** 0.018*
(2.309)* (1.872) (�0.411) (�0.031) (1.336) (�0.031)

20 0.1178 0.1916 �0.0139 �0.4239 0.1423 0.0297 0.017* 0.041*
(2.392)* (1.874) (�0.181) (�0.714) (1.597) (0.431)

1952–1990 1 0.1028 0.9349 �0.5240 �2.0892 0.6798 �0.2418 0.000** 0.000**
(1.168) (3.710)** (�2.618)** (�2.096)* (2.338)* (�0.949)

4 0.1287 0.8201 �0.4212 �1.3320 0.6565 �0.2392 0.000** 0.001**
(1.521) (3.234)** (�2.080)* (�1.376) (2.303)* (�0.960)

20 0.0798 0.4167 �0.1999 �0.3068 0.3793 �0.1570 0.010** 0.028*
(1.133) (2.685)** (�1.570) (�0.374) (2.188)* (�0.991)
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Table 13
(continued)

Univariate regression Lamont regression Trivariate regression �2 tests

k-qtrs ey4 dy4 ey4 r dy4 ey4 Lamont Trivariate

Univariate regression Lamont regression Trivariate regression �2 tests

k-mths ey12 dy12 ey12 r dy12 ey12 Lamont Trivariate

Panel B: pooled-country monthly MSCI data

1975–2001 1 0.0251 0.0730 �0.0192 �1.82d23 0.1609 0.0035 0.612 0.000**
(0.498) (0.969) (�0.366) (�2.792)** (2.001)* (0.070)

12 �0.0098 0.0994 �0.0680 �1.0401 0.1493 �0.0548 0.385 0.000**
(�0.195) (1.178) (�1.280) (�1.956) (1.697) (�1.116)

60 �0.0369 0.0877 �0.0710 0.2956 0.0686 �0.0739 0.132 0.321
(�0.746) (0.882) (�1.980)* (0.731) (0.774) (�2.370)*

We estimate regressions of the form ~ytþk ¼ �þ z�t� þ �tþk,k , where ~ytþk is the cumulated and annualized k-period ahead return, with the instruments zt being log earnings yields
(univariate regression), or log dividend yields and log earnings yields (Lamont bivariate regression), or risk-free rates, log dividend yields, and log earnings yields (trivariate
regression). T-statistics in parentheses are computed using Hodrick (1992) standard errors. For Panel A (B), horizons k are quarterly (monthly). Panel B pools coefficients
jointly across the United States, United Kingdom, France, and Germany, constraining the coefficients to be the same across countries. The �2 test columns report a p-value for
a test that all the coefficients in each regression are jointly equal to zero.
*p<0.05.
*p<0.01.
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finds a positive coefficient on the dividend yield and a negative coefficient

on the earnings yield. He argues that the predictive power of the dividend

yield stems from the role of dividends in capturing permanent compo-

nents of prices, whereas the negative coefficient on the earnings yield is

due to earnings being a good measure of business conditions. Table 13

summarizes that the coefficients over the long US sample, while having

the same sign found by Lamont, are insignificant and not one joint test of

the predictive power of dividend and earnings yields is significant at the
10% level. Only when the 1990s are excluded, as in the 1952–1990 sample

similar to Lamont’s paper, do we find significant coefficients for dividend

and earnings yields. When we add the short rate as a predictor in a

trivariate regression of excess returns on risk-free rates, dividend and

earnings yields, the coefficients on dividend and earnings yields remain

insignificantly different from zero, and the sign on the earnings yield is

fragile. For the post-1952 samples, the short rate predictive power

remains robust in the presence of the earnings yield.
Panel B of Table 13 pools all the specifications across the United States,

United Kingdom, France, and Germany. There are no significant coeffi-

cients in the univariate regression. The bivariate specification preserves

the Lamont coefficient pattern with the earnings yield coefficient now

significantly negative at the five-year horizon. However, joint �2 predict-

ability tests fail to reject the null of no predictability. In the trivariate

specification, the short rate and dividend yield coefficients have similar

signs and significance to the results from the bivariate regressions in
Section 2. The earnings yield coefficient is significantly negative only at

the five-year horizon, but a joint test across all predictors at the five-year

horizon fails to reject the null of no predictability. For individual coun-

tries, the Lamont coefficient pattern is neither robust nor significant

(data not shown). In conclusion, there is little evidence that earnings

yields predict excess returns. The earnings yields coefficients are not

robust across different sample periods or countries.

6.2 The earnings yield and cash-flow predictability

In this section, we use both dividend and earnings yields to predict cash flows,

as measured by dividend growth and earnings growth. Panel A of Table 14

reports the results for dividend growth. In the univariate regression, the

earnings yield is a better predictor of dividend growth than the dividend

yield. The coefficients are larger in magnitude than the dividend yield coeffi-

cients, and, except for the coefficient in the 20-quarter regression, significantly

different from zero. The earnings yield coefficients are all positive.
The bivariate dividend yield–earnings yield regression shows an intri-

guing result. The Lamont (1998) pattern of a positive dividend yield

coefficient and a negative earnings yield coefficient is reversed, and highly

significant, for the cash-flow regressions! At short horizons, both
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Table 14
Predictability of cash-flow growth by earnings yields

Univariate
regression Lamont regression Trivariate regression �2 tests

k ey4 dy4 ey4 r dy4 ey4 Lamont Trivariate

Panel A: predictability of dividend growth

US quarterly S&P data

1935–2001 1 0.0594 �0.1897 0.2328 �0.9766 �0.2694 0.3132 0.002** 0.001**
(2.936)** (�2.724)** (3.175)** (�3.527)** (�3.412)** (3.785)**

4 0.0370 �0.1494 0.1713 �0.8333 �0.2188 0.2402 0.031* 0.013**
(2.061)* (�2.021)* (2.377)* (�2.877)** (�2.559)* (2.874)**

20 0.0062 �0.0456 0.0395 �0.1428 �0.0608 0.0526 0.106 0.194
(0.493) (�1.260) (1.985)* (�0.835) (�1.310) (1.821)

Pooled-country monthly MSCI data

1975–2001 1 0.0214 �0.0792 0.0695 0.2059 �0.0891 0.0669 0.002** 0.004**
(1.183) (�2.741)** (3.396)** (0.775) (�2.783)** (3.365)**

12 0.0047 �0.0332 0.0241 �0.3872 �0.0146 0.0290 0.447 0.161
(0.254) (�1.063) (1.216) (�1.769) (�0.440) (1.527)

60 �0.0132 0.0090 �0.0167 �0.0447 0.0118 �0.0163 0.413 0.580
(�0.570) (0.277) (�1.319) (�0.262) (0.308) (�1.355)

Panel B: predictability of earnings growth

US quarterly S&P data

1935–2001 1 �0.0582 0.0970 �0.1468 �0.0355 0.0941 �0.1439 0.391 0.550
(�1.120) (0.681) (�1.079) (�0.049) (0.582) (�0.895)

4 �0.0822 0.1994 �0.2613 �0.1563 0.1864 �0.2484 0.026* 0.057
(�1.791) (1.467) (�2.220)* (�0.223) (1.235) (�1.824)
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20 �0.0674 0.0876 �0.1313 0.1797 0.1066 �0.1478 0.007** 0.004**
(�1.457) (0.659) (�1.901) (0.357) (0.671) (�1.695)

Pooled-country monthly MSCI data

1975–2001 1 �0.2767 0.2723 �0.4419 �0.2867 0.2861 �0.4383 0.000** 0.000**
(�8.381)** (3.566)** (�5.528)** (�0.743) (3.800)** (�5.109)**

12 �0.3373 0.3452 �0.5392 �1.9369 0.4381 �0.5148 0.000** 0.000**
(�9.787)** (4.334)** (�7.153)** (�5.473)** (5.627)** (�6.883)**

60 �0.1534 0.2332 �0.2440 0.0974 0.2269 �0.2449 0.000** 0.000**
(�3.321)** (2.356)* (�5.357)** (0.3403) (2.565)* (�6.053)**

We estimate regressions of the form ~ytþk ¼ �þ z¢
t� þ �tþk,k , where ~ytþk is the cumulated and annualized k-period dividend or earnings growth, with the instruments zt being log

earnings yields (univariate regression), or log dividend yields and log earnings yields (Lamont bivariate regression), or risk-free rates, log dividend yields, and log earnings yields
(trivariate regression). T-statistics in parentheses are computed using Hodrick (1992) standard errors. For the quarterly US S&P data, horizons k are quarterly, whereas for the
monthly MSCI data horizons k are monthly. The pooled-country panels pool coefficients jointly across the United States, United Kingdom, France, and Germany,
constraining the coefficients to be the same across countries. The �2 test columns report a p-value for a test that all the coefficients in each regression are jointly equal to zero.
*p<0.05.
**p<0.01.
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coefficients are different from zero at the 1% level and the joint test also

rejects at the 1% level. The coefficients become smaller, and the statistical

significance weakens, with longer horizons. We still find predictability at

the 5% level for the one-year horizon, but only the earnings yield is

significant (at the 5% level) for the five-year horizon. Adding the risk-

free rate in the trivariate regression does not change this picture very

much, but a high short rate is also a very strong signal of lower future

dividend growth at the one- and four-quarter horizons. One possible
interpretation is that since interest rates are high during recessions and

recessions are persistent (Ang and Bekaert, 2002), high interest rates

predict low future cash flows. The negative dividend yield coefficient

can arise from prices reflecting future positive cash-flow prospects.

We find that the negative dividend yield and positive earnings yield

coefficients for predicting dividend growth are very robust across differ-

ent subsamples, but we do not report these results to conserve space. In

particular, omitting the 1990s, the signs of the coefficients are the same,
but the t-statistics are even larger in magnitude than the those reported

for the full sample. The inverse Lamont pattern is also robust in the

subsamples beginning in 1952.

When we pool data across countries using MSCI data, the cross-

sectional variation in the coefficients makes the cash-flow Lamont pattern

weaker, but it remains significant at the 1% level at the one-month

horizon, in both the bivariate and trivariate regressions. At longer hor-

izons, earnings and dividend yields do not predict future cash flows.
Moreover, the pattern is also repeated in the coefficients for each indivi-

dual country. Internationally, the short rate is not a robust predictor of

future cash flows, perhaps because the cyclicality of interest rates is not

consistent across countries.

In Panel B of Table 14, we repeat the same regressions for earnings

growth. The univariate regression with the earnings yield delivers a nega-

tive coefficient. The sign of this point estimate could be potentially con-

sistent with a standard price effect. However, it is statistically insignificant.
Interestingly, the sign of the dividend and earnings yield coefficients are

reversed for earnings growth, compared to dividend growth: for earnings

growth, we see a positive (negative) coefficient on the dividend (earnings)

yield. The effect is strongest for the earnings yield, which is significant at

the 5% level for the one- and five-year horizons, although borderline in the

latter case. Looking at the joint �2 tests, we conclude that there is some

evidence of cash-flow growth predictability at longer horizons (the p-value

is at most 0.057), primarily driven by the earnings yield. The 1952–2001
sample also preserves these coefficient patterns.

When we pool data across countries, the coefficients increase in mag-

nitude and the statistical significance increases considerably. All the joint

tests now reject at the 1% level, and even the short rate predicts cash-flow
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growth significantly at the one-year horizon. The strong international

results are due to the fact that in each individual country, the dividend

yield (earnings yield) coefficients are positive (negative).

We conclude that high dividend yields signal high future earnings

growth and high earnings yields signal low future earnings growth rates.

It is conceivable that the second effect is a genuine price effect (higher

prices in response to predicted rises in future earnings), but the first effect

is harder to interpret. The puzzling nature of our findings becomes more
apparent when we look at the earnings and dividend growth simulta-

neously. We find the following sign pattern:

Dividend growth Earnings growth Payout ratio
Dividend yield �ve +ve �ve

Earnings yield +ve �ve +ve

We can derive the results in the last column because the change in the

payout ratio equals (logarithmic) dividend growth minus earnings

growth. Hence, our results imply that higher dividend yields (higher

earnings yields) strongly predict lower (higher) payout ratios tomorrow.
Can we explain the reverse patterns for the two cash-flow measures for

dividend and earnings yields used jointly in predictive regressions? We

can rule out a Lamont (1998) story translated to cash flows. According to

Lamont, dividend yields capture price effects, whereas earnings yields

capture the cyclical component in earnings and hence potentially also

risk aversion. Under this scenario, we would expect the dividend yield to

be negatively related to earnings growth (the usual positive cash flow

prospects), but we find a positive effect.
When dividend yields are high today, we predict low dividend growth in

the future because payout ratios strongly decrease. This may be the result of

dividend smoothing, or it may reflect prices anticipating higher growth

opportunities that decrease the payout ratio. The positive relation between

current high dividend yields and future earnings growth implies that these

growth opportunities do not rapidly translate into higher future earnings.

The negative relation between the current earnings yield and future earnings

may be consistent with either a price effect or mean reversion in earnings.
The payout ratio reacts positively to an increase in the earnings yield. In the

mean reversion story, this could be an artifact of dividend smoothing. In the

price story, lower prices today may reflect poor future earnings and poor

future growth opportunities. The poor growth opportunities may increase

the payout ratio, particularly if dividends are sticky.

All in all, we find very strong evidence of dividend growth predictabil-

ity, both in US and international data, by using the dividend and earnings

yield jointly as predictors. We find weaker evidence in US data, but very
strong international evidence, of earnings growth predictability by
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dividend and earnings yields. A challenge for future work is to create a

present value model with sophisticated dynamics for earnings growth,

payout ratios, and dividend growth to match this evidence.

7. Conclusion

The predictable components in equity returns uncovered in empirical

work over the last 30 years have had a dramatic effect on finance

research. Theoretical equilibrium models try to match the predictability

evidence as a stylized fact. The partial equilibrium dynamic asset alloca-

tion literature investigates the impact of the predictability on hedging

demands. Much of the focus has been on the predictive prowess of the

dividend yield, especially at long horizons. In this article, we pose the
question whether this predictability exists. After carefully accounting for

small sample properties of standard tests, our answer is surprising but

important. At long horizons, excess return predictability by the dividend

yield is not statistically significant, not robust across countries, and not

robust across different sample periods. In this sense, the predictability

that has been the focus of most recent finance research is simply not there.

Nevertheless, we do find that stock returns are predictable, calling for a

refocus of the predictability debate in four directions. First, our results
suggest that predictability is mainly a short-horizon, not a long-horizon,

phenomenon. The predictive ability of the dividend yield is best seen in a

bivariate regression with short rates only at short horizons. Second, the

strongest predictability comes from the short rate rather than from the

dividend yield. The result that the short rate predicts equity returns goes

back to at least Fama and Schwert (1977), but somehow recent research

has failed to address what might account for this predictability and has

mostly focused on the dividend yield as an instrument. Third, high
dividend yields predict high future interest rates. Finally, dividend and

earnings yields have good predictive power for future cash-flow growth

rates but not future excess returns. Hence, a potentially important source

of variation in price-earnings and price-dividend ratios is the predictable

component in cash flows. Our results generally imply that univariate

linear models of expected returns are unlikely to satisfactorily capture

all the predictable components in returns.

After our results were first distributed in a working paper article (Ang
and Bekaert, 2001), a number of articles have been written that confirm

them. Campbell and Yogo (2006) develop a new inference methodology

within the linear regression framework of Stambaugh (1999) and find that

the predictive power of the dividend yield is considerably weakened but

that the predictive power of the short rate is robust. Lettau and Ludvigson

(2005) also find that the price-dividend ratio weakly forecasts excess returns

but confirm that future dividend growth, long ignored by the literature, is
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predictable. Engstrom (2003) confirms our findings that univariate dividend

yield regressions have difficulty capturing all the predictable components in

returns, by constructing economies where the dividend yield is a noisy

predictor of both excess returns and cash-flow growth.

We hope that our results will, in the short run, affect the asset alloca-

tion literature, which often has taken the predictive power of the dividend

yield in a univariate regression as a stylized fact, and in the longer run will

stimulate research on theoretical models that might explain the predict-
ability patterns we demonstrate, particularly return predictability by the

short rate at short horizons and the joint predictability of cash flows and

excess returns. Finally, future research should also reconcile the weak

out-of-sample evidence of predictability (Bossaerts and Hillion 1999,

Goyal and Welch 2003, 2004) with the in-sample evidence of predictabil-

ity. While such a reconciliation may require models with structural breaks

or regime shifts (Timmermann and Paye 2006), we note one last interest-

ing result derived from our US sample. Mimicking Goyal and Welch’s
(2004) procedure for out-of-sample forecasting over the post-1964 period,

we find that the bivariate predictive regression with the short rate and

dividend yield produces a lower root mean squared error than the historical

mean for forecasting excess returns at a one-quarter horizon but not at long

horizons. Consequently, for the bivariate predictive regression, the in-

sample and out-of-sample evidence of return predictability is consistent.

Appendix A: Robust Hansen–Hodrick (1980) Standard Errors

Using GMM, the parameters � ¼ ð���kÞ� in Equation (2) have an asymptotic distributionffiffiffiffi
T
p
ð�̂� �Þ a�Nð0,�Þ where � ¼ Z�1

0 S0Z�1
0 , Z0 ¼ Eðxtx�tÞ, and xt ¼ ð1 z�tÞ�. We estimate S0

by

Ŝ0 ¼ Cð0Þ þ
Xk�1

j¼1

½CðjÞ þ CðjÞ� �, ðA1Þ

where

CðjÞ ¼ 1

T

XT
t¼jþ1

ðwtþkw�tþk�jÞ

and wtþk ¼ "tþk,kxt. This estimator of S0 is not guaranteed to be positive semi-definite. If it

is not, we use a Newey–West (1987) estimate of S0 with k lags. Note that for k ¼ 1, the

robust Hansen–Hodrick (1980) and Hodrick (1992) standard errors are identical.

Appendix B: Testing Predictability Across Horizons

To test whether the predictability coefficients are statistically significant across n horizons

k1… kn, we set up the simultaneous equations:
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~ytþk1 ¼ �k1 þ ��k1zt þ utþk1

..

.

~ytþkn ¼ �kn þ ��kn zt þ utþkn :

ðB1Þ

We produce an estimate �̂ of � ¼ ð�k1
��k1

…�kn
��kn
Þ� by performing OLS on each equation.

The moment conditions for the system in Equation (B1) are

Eðhtþ�kÞ � E

htþk1

..

.

htþkn

0
B@

1
CA ¼ E

utþk1
xt

..

.

utþknxt

0
B@

1
CA ¼ Eðutþ�k � xtÞ ¼ 0, ðB2Þ

where xt ¼ ð1 z�tÞ�, a K � 1 vector, and utþ�k ¼ ðutþk1
…utþkn

Þ�.
From standard GMM,

ffiffiffiffi
T
p
ð�̂� �Þ a�Nð0,�Þ, with � ¼ Z�1

0 S0Z�1
0 , Z0 ¼ ðIn � Eðxtx�tÞÞ,

and

S0 ¼ Eðhtþ�kh�tþ�kÞ ¼ E ðutþ�kutþ�kÞ � ðxtx�tÞ
� �

: ðB3Þ

The Hodrick (1992) estimate Ŝb
T of S0 is given by

ŜbT ¼
1

T
W �W , ðB4Þ

where W is a T � Kn matrix, W ¼ ðWk1
…Wkn

Þ, and Wk, T � n, is given by

Wk ¼ ðw�1þk,…w�TþkÞ, and wtþk, K � 1, is

wtþk ¼ etþ1

Xk�1

i¼0

xt�i

 !
, ðB5Þ

since under the null of no predictability the one-step ahead errors etþi ¼ utþ1 are uncorre-

lated and utþk ¼ etþ1 þ…þ etþk. Denoting X ¼ ðx�1,…x�T Þ, T � K, an estimate of Z�1
0 is

given by

Ẑ�1
T ¼

1

T
½In � ðX�XÞ�1�: ðB6Þ

To test the hypothesis C� ¼ 0, we use the Newey (1985) �2 test:

ðC�̂�Þ½C�̂C���1C�̂ � �2
rankðCÞ, ðB7Þ

with �̂ ¼ Ẑ�1
T Ŝb

T Ẑ�1
T .
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Appendix C: Testing Predictability Pooling Cross-Sectional Information

C.1 Generalizing Hodrick (1992) to Cross-sectional regressions
To pool cross-sectional country information, we estimate the system

~yitþk ¼ �i þ ��izit þ uitþk ðC1Þ

for i ¼ 1…N countries, subject to the restriction �i ¼ �� 8i, but impose no restrictions on �i

across countries. We take i ¼ United States, United Kingdom, France, and Germany.

Let the dimension of zt be ðK � 1Þ so that there will be a total of K regressors, including

the constant terms �i for each of N countries. In Equation (C1), we denote the free

parameters � ¼ ð�1…�N
���Þ� and the unrestricted parameters stacked by each equation

� ¼ ð�1��1…�N��NÞ�. We can estimate the system in Equation (C1) subject to the restriction

that C� ¼ 0, where C is a NK � ðN � 1ÞðK � 1Þ matrix of the form:

C ¼

~0 I ~0 � I ~0 : : :
~0 O ~0 I ~0 � I : : :
..
.

~0 O ~0 ~0 � I

0
BBB@

1
CCCA, ðC2Þ

where ~0 is a ðK � 1Þ � 1 vector of zeros, O is a ðK � 1Þ � ðK � 1Þ matrix of zeros, and I is a

ðK � 1Þ rank identity matrix.

Denote

~ytþk ¼ð~y1
tþk…~yNtþkÞ� ðN � 1Þ

xit ¼ð1zi�t Þ ðK � 1Þ
utþk ¼ðu1

tþk…uNtþkÞ� ðN � 1Þ

Xt ¼

x1
t 0

. .
.

0 xNt

0
BB@

1
CCA ðNK �NÞ:

ðC3Þ

Then, the system can be written as

~ytþk ¼ X�t� þ utþk, ðC4Þ

subject to C� ¼ 0. Let Y ¼ ð~y �1þk…~y �TþkÞ�, X ¼ ðX �1…XT Þ�, and U ¼ ðu �1þk…u �TþkÞ�. Then,

the compact system can be written as

Y ¼ X� þ U, subject to C� ¼ 0: ðC5Þ

A consistent estimate �̂ of � is given by
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�̂ ¼ �ols � ðX�XÞ�1C�½CðX�XÞ�1C� ��1C�ols, ðC6Þ

with �ols ¼ ðX �XÞ�1
X �Y . This gives us a consistent estimate �̂ of �.

The moment conditions of the system in Equation (C4) are

EðhtþkÞ ¼ EðXtutþkÞ ¼ 0:

By standard GMM, �̂ has distribution

ffiffiffiffi
T
p
ð�̂� �Þ�a Nð0,ðD�0S�1

0 D0Þ�1Þ, ðC7Þ

with

D�0 ¼ E
@htþk
@��

� �

and

S0 ¼ Eðhtþkh�tþkÞ:

The Hodrick (1992) estimate Ŝb
T of S0 is given by

ŜbT ¼
1

T

XT
t¼k

wktwk�t, ðC8Þ

where wktðNK � 1Þ is given by

wkt ¼
Xk�1

i¼0

Xt�i

 !
etþ1:

Under the null hypothesis of no predictability, utþk ¼ etþ1 þ…etþk, where etþ1 are the one-

step ahead serially uncorrelated errors. This is the SUR equivalent of the Hodrick (1992)

estimate for univariate OLS regressions.

An estimate D̂T of D0 is given by

D̂ �T ¼
1

T

XT
t¼0

@htþk
@��

,

where � ¼ ð�1…�N
���Þ and

� @htþk
@��

¼

1 z1�
t 0

1 z2�
t

. .
.

0 1 zN �
t

z1
t z1

t z
1�
t z2

t z2
t z

2�
t : : : zNt zNt z

N �
t

2
666664

3
777775:

The estimate �̂ has the distribution
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ffiffiffiffi
T
p
ð�̂� �Þ�a Nð0,½D̂�T ðŜbT Þ

�1D̂T ��1Þ: ðC9Þ

There are ðN þ K � 1Þ free parameters in � with NK moment conditions. This gives

NK � ðN þ K � 1Þ overidentifying restrictions. The Hansen (1982) �2 J-test of overidenti-

fying restrictions is given by

J ¼ T ð�h�ðŜbT Þ
�1 �hÞ � �2½NK � ðN þK � 1Þ�, ðC10Þ

with

�h ¼ 1

T

XT
t¼0

htþk:

C.2 Generalizing Cochrane-Orcutt to cross-sectional regressions
We start with the one-step ahead predictive regression in Equation (C4) with k ¼ 1, repeated

here for convenience:

~ytþ1 ¼ X�t� þ utþ1, ðC11Þ

subject to C� ¼ 0, where C is given by Equation (C2). We assume that the N � 1 vector or

errors utþ1 follows the process:

utþ1 ¼ �ut þ "tþ1, ðC12Þ

where "t are IID with Eð"t"�tÞ ¼ �. The unconditional covariance matrix of ut is given by:

Eðutu�tÞ ¼ devech½ðI � �� �Þ�1vecð�Þ�:

We write Equation (C11) in terms of uncorrelated residuals:

~ytþ1 � �~ytþ1 ¼ ðXt �Xt�1��Þ�� þ "tþ1,

or as

y*
tþ1 ¼ ðX*

t Þ�� þ "tþ1, ðC13Þ

where y*
tþ1 ¼ ~ytþ1 � �~yt and X *

t ¼ Xt � Xt�1��. To construct y*
tþ1 and X *

t , we use a con-

sistent estimate, �̂, of �. Using the estimate �̂ of � in Equation (C6), we set

�̂ ¼ 1=T
P

vtv�t�1, where vt are the residuals vt ¼ ~ytþ1 � X �t�̂ that are standardized to

have unit variance.

To compute Cochrane-Orcutt standard errors for � ¼ ð�1: : : �N
���Þ in the pooled system

(C11) with matrix-autocorrelated residuals, we use GMM. The set of NK � 1 moment

conditions implied by the regression (C13) are
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Eðhtþ1Þ ¼ EðX*
t "tþ1Þ ¼ 0:

We set the estimate ŜT of S0 ¼ Eðhtþ1h�tþ1Þ to be

ŜT ¼
1

T

XT
t¼1

½X*
t ðy*

tþ1 �X*�
t �̂Þ�:

An estimate, D̂T , of the derivative of the moment conditions with respect to � can be

computed by taking, and summing, appropriate elements of X *
t X *�

t .

Appendix D: Proof of Proposition

The present value relation (5) can be written as

Pt
Dt
¼
X1
i¼1

Mtþi,

where

Mtþi ¼ Et exp �
Xi�1

j¼0

	tþj þ
Xi
j¼1

gdtþj

 !" #
: ðD1Þ

We show that

Mtþi ¼ expðai þ b�iXt þ ci	tÞ,

which then proves relation (9).

The initial conditions are given by

Et½expð�	t þ gdtþ1Þ� ¼ expð�	tÞEt½expðe�2Xtþ1Þ�

¼ exp �	t þ e�2
þ e�2�Xt þ
1

2
e�2�e2

� �
,

ðD2Þ

where e2 ¼ ð0, 1Þ� and equating coefficients yields Equation (11).

To prove the recursive relations (10), we use proof by induction. Suppose that

Mtþi ¼ expðai þ b�iXt þ ci	tÞ. Then, we can write:

Mtþiþ1 ¼ Et exp �
Xi
j¼0

	tþj þ
Xiþ1

j¼1

gdtþj

 !" #

¼ Et½expð�	t þ gdtþ1Þ expðai þ b�iXtþ1 þ ci	tþ1Þ�

¼ exp ai þ ci�þ ðci�� 1Þ	t þ
1

2
c2
i 


2 þ ðe2 þ bi þ ci�Þ�

�

þ ðe2 þ bi þ ci�Þ��Xt þ
1

2
ðe2 þ bi þ ci�Þ��ðe2 þ bi þ ci�Þ

�
:

ðD3Þ

Collecting terms, we can write:
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Mtþiþ1 ¼ expðaiþ1 þ b�iþ1Xt þ ciþ1	tÞ,

where aiþ1, biþ1, and ciþ1 take the form in Equation (10). The sum of exponential affine

functions of the price-dividend ratio means that this model falls under the class of affine

equity pricing models developed by Ang and Liu (2001), Bekaert and Grenadier (2002), and

Bakshi and Chen (2005).

Appendix E: Estimating the Present Value Model

The calibration of the present value model proceeds in two steps. First, we estimate the VAR

parameters ð
, �, �Þ in Equation (7) of Xt ¼ ðrtg
d
t Þ�. This estimation is complicated by the fact

that in the data we observe dividends summed up over the past year, but we specify the

frequency of our model to be quarterly. Since the VAR specifies the dynamics of short rates

and dividend growth, we use only short rate and dividend growth data to estimate the VAR. In

the second step, we hold the VAR parameters fixed and estimate the parameters of the discount

rate 	t in Equation (8). In both stages, we use simulated method of moments (Duffie and

Singleton 1993). To calibrate the model, we use US data from January 1952 to December 2001.

We observe dividend growth summed up over the past 12 months, gd,4
t , but the model

requires quarterly dividend growth gd
t . By simulating gd

t from the VAR, we can construct

gd,4
t using the transformation

gd,4
t ¼ log

Dt þDt�1 þDt�2 þDt�3

Dt�1 þDt�2 þDt�3 þDt�4

� �

¼ gdt�3 þ log
1þ egdt�2 þ eðgdt�2þgdt�1Þ þ eðgdt�2þgdt�1þgdt Þ

1þ egdt�3 þ eðgdt�3þgdt�2Þ þ eðgdt�3þgdt�2þgdt�1Þ

 !
: ðE1Þ

Equation (E1) shows that the relation between quarterly growth rates and growth rates at a

quarterly frequency using dividends summed up over the past year is highly nonlinear. In

particular, the summing of dividends over the past four quarters induces serial correlation up

to three lags, even when gd
t is serially uncorrelated.

To estimate the VAR on Xt, we impose a restricted companion form � where �12 ¼ 0, so

there is no Granger-causality from dividend growth to interest rates. This assumption is

motivated by an analysis of an unconstrained VAR on ðrtg
d,4
t Þ�, where we fail to reject the

null that gd,4
t fails to Granger-cause interest rates. Hence, we first estimate an AR(1) on

quarterly short rates and then holding the parameters for rt fixed, we estimate the remaining

parameters in 
, �, and � by using first and second moments of gd,4
t , in addition to the

moments Eðrtg
d,4
t Þ, Eðgd,4

t�4gd,4
t Þ, and Eðrt�4gd,4

t Þ. Hence, the system is exactly identified. The

cross-moment lag length is set at four because the first three lags are affected by the

autocorrelation induced by the nonlinear filter for annual dividend growth in Equation

(E1). We compute the Newey–West (1987) weighting matrix with four lags using the data, so

we do not need to iterate on the weighting matrix.

In the second stage, we hold the parameters of the VAR fixed at their estimates in Panel

A. The parameters �, �, �, and 
2 are estimated by matching 12 moment conditions: the

first and second moments of excess returns ~yt and dividend yields D4
t =Pt in the data, with

rt�1 and gd,4
t�1 as instruments. Hence, we use the moments

E½qt � zt�1� ¼ 0,

where qt ¼ ½~yt D4
t =Pt ~y2

t ðD4
t =PtÞ2�� and zt�1 ¼ ð1 rt�1 gd,4

t�1Þ�.
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The relation between the closed-form quarterly dividend yields dyt (Proposition 4.1) and

the dividend yields in the data dy4
t (which use dividends summed over the last 4 quarters) is

complex:

D4
t

Pt
¼Dt þDt�1 þDt�2 þDt�3

Pt

¼Dt

Pt
þDt�1

Pt�1

Pt�1

Pt
þDt�2

Pt�2

Pt�2

Pt
þDt�3

Pt�3

Pt�3

Pt
,

ðE2Þ

where the capital gain over n periods Pt=Pt�n can be evaluated using:

Pt
Pt�n

¼ Pt=Dt

Pt�n=Dt�n
exp

Xn�1

i¼0

gdt�i

 !
:

The predictability regressions use excess log returns ~ytþ1 ¼ logðYtþ1Þ � rt, where

Yt ¼ logððPtþ1 þDtþ1Þ=PtÞ. Since we model 	t ¼ logðEtðPtþ1 þDtþ1Þ=PtÞÞ, the expected

log excess return EtðlogðYtþ1Þ � rtÞ 6¼ ðlog EtðYtþ1Þ � rtÞ is not closed form in our model

but is a function of time t state variables because of the Markov structure of the model. The

two quantities EtðlogðYtþ1Þ � rtÞ and ðlog EtðYtþ1Þ � rtÞ are not equal because of the pre-

sence of state-dependent heteroskedasticity, which induces (time-varying) Jensen’s inequal-

ity terms. To compute the conditional expected value of k-period excess returns, we project

excess returns onto a fourth-order polynomial in ðXt,	tÞ, and the fitted value is the model-

implied conditional expected excess return.
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