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Changing Climate Is Affecting Agriculture in the U.S.

Climate Solutions

o LT The changing climate presents real threats to U.S. agricultural production, forest resources, and rural

economies. These threats have significant implications not just for farmers, ranchers, and forest
Data landowners, but for all Americans. Land managers across the country are already feeling the pressures of a
changing climate and its effects on weather. As these risks continue and amplify, producers will be faced

Disaster with the challenges of adapting.



HadCRUT4 Temperature anomaly (°C)

The climate is changing ... and burning
fossil fuels is the main reason why
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Climate variability and change,
agriculture and water

Impact of changing precipitation and temperature on
crop production

Challenges to urban water supply

Globalization of local crop production anomalies by
international trade

Knock-on effects of climate-induced crop production
faillures on migration/social stability



Many major cities are
struggling to provide a
reliable water supply,
even without climate
change, and create
unrest when augmenting

supply

‘@ PRI > @

Science, Tech & Environment
Mexico City residents brace for water cuts that will leave
them dry for days

A PRI's TheWorld

January 29, 2016 - 10:45 AM EST

By Monica Campbell

A mother and son fill a container with water collected from a public tap in Tecacalanco, on the outskirts of
Mexico City. With a population of more than 21 million, Mexico City and its suburbs place huge demands on
the area's water supply.

Credit: REUTERS/Henry Romero



In 2015, drought plus mismanagement, disrupted
water supply to residents of the largest city in the
western hemisphere, causing economic losses and

damaging public health
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Worries grow as serious 00-C
drought hits Sao Paulo, Brazil

Marguerite Ward | @forwardist
Wednesday, 1Jul 2015 | 9:00 AM ET

I ocnBC

The financial hub of one of the world's biggest economies is
experiencing a water crisis so bad that experts say it could affect MOST POPULAR
investors globally.

The Jaguari Jacarei river dam, part of the Cantareira System of dams, is shown in Joanopolis,
Brazil.

Sao Paulo, Brazil, is in the grips of the city's worst drought in the last
half-century. The city's main water supply—called the Cantareira system
—is running on emergency reserves. Normally at this time of year, the
city’s main supply would hold more than 155 billion gallons of water.
But that water is all gone, and the government has been forced to tap
into emergency reserves. (Tweet This)

"S&do Paulo’s current drought emergency is both unprecedented and



CMIP5 multimodel mean 2070-2100 minus 1975-2004

Model-projected
change In
hydroclimate

Drying on all
measures in:

e SW US, Mexico,
Central America/
Caribbean

 Med/N. Africa/
MidEast

o Southern Africa

 Chile

Scheff, Seager, Liu, Coats (2017)
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Midwestern US, JJA, 76 models
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Model projected growing
season hydroclimate and

temperature

Europe

JJA mean P-E and T, mean and
25th, 75th %ile spread across model runs

Change in JJA P-E, mean, median,
spread
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Europe, JJA, 76 models
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Eastern China, JJA, 76 models
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Southeastern South America, DJF, 76 models
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In all major grain production regions:
Increasingly (brutally) hot growing seasons
Hot extremes Increase by even more than the

mean

Drying in Midwest, serious drying in Europe



Many middle income and poor countries are
highly dependent on grain imports (often of a single grain),
creating vulnerability to remote crop production
disruptions
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Bellemare (2015) found a statistically
significant relation between grain
prices and food-related social unrest

Wheat Price Levels and Social Unrest 1990-2011.
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In the years preceding the uprising, Syria experienced the
worst multiyear drought in the modern era and, according to
tree ring records, in the last 900 years.

Tree ring and instrumental Palmer Drought Severity Index
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DROUGHT, CROP FAILURE AND MIGRATION PLAYED A ROLE IN THE
EVENTS THAT LED UP TO THE BEGINNING OF THE SYRIAN REVOLT IN 2008
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Emerging problems

Climate change will exert increasing stress in major grain
producing regions synchronously

Natural climate variability (e.g. El Nifio-Southern Oscillation)
leads to good/bad harvests in different regions at the same
time

How will variability+change evolve in coming decades”
How will the odds for bad harvests in multiple grain baskets at

once change”? Reasonable to assume it will rise, causing
increased volatility of global food supply



Some variations in crop production at the seasonal to

interanual timescale are potentially predictable, allowing
anticipation/planning/enhanced food security

El Nifno and La Nifa life cycles create coherent
cycles of pan-Pacific grain production anomalies
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Conclusions

Climate and environmental change are already stressing agriculture and water
supply

Rising heat, changing precipitation, will increase challenge of providing
adequate water, with negative conseguences for health and the economy

Growing season temperatures in all main grain production regions will rise
dangerously high in coming decades, undermining crop production

Historically, lost production is globalized into rising food prices causing social
unrest, while local crop failures can lead to migration and/or conflict

Multiple knock-on effects on global economy

Scientific advance can improve prediction and anticipation of
weather/climate shocks to ag and food supply, enabling planning
and disaster aversion





