Assessing Attribute Significance in Conjoint Analysis: Nonp
Kohli, Rajeev
JMR, Journal of Marketing Research; May 1988; 25, 2; ABI/INFORM Global

pg. 123
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Statistical testing of attribute significance is not possible in conjoint studies that
use nonmetric algorithms to analyze respondent ranks of multiattribute product pro-
files. Procedures that test attribute significance at an aggregate (e.g., segment)
level but maintain individual differences in preferences can be used (1) to confirm
differences among benefits sought by hypothesized segments of respondents, (2) to
eliminate insignificant attributes, reducing the time and cost of conjoint choice sim-
vlations, and (3) to design subsequent conjoint studies for the same product class.
The author presents two tests of attribute significance in conjoint analysis. One is
appropriate when consumer preferences for attribute levels can be ordered a priori
and the other can be used when such ordering is not permissible. Each test permits
different levels of an attribute to appear in different numbers of product profiles.
The proposed tests assess attribute significance across multiple respondents with
idiosyncratic preferences. Because they use rank order data, the testing procedures
are not limited to a specific scaling algorithm. A Monté Carlo simulation indicates
that eliminating insignificant attributes does not affect share-of-choices predictions
for new product concepts if the number of insignificant attributes is not very large.
Otherwise, the usual tradeoff between parsimony and predictive accuracy is
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necessary.

Several developments have occurred in conjoint anal-
ysis since its introduction to marketing in the early 1970s
(Green and Rao 1971; Johnson 1974). Among other ap-
proaches, choice-set experiments (Louviere and Wood-
worth 1983) and choice-set explosion of rank order data
(Chapman and Staelin 1982) have been proposed. Un-

*Rajeev Kohli is Assistant Professor of Marketing, The Joseph M.
Katz Graduate School of Business, University of Pittsburgh.

The initial idea for the article developed during discussions with
Jerry Wind at The University of Pennsylvania. The author expresses
his appreciation to Heung Soo Park, University of Pittsburgh, for
computer programming assistance. Thanks are also expressed to Rajiv
Grover, C. W. Park, and the JMR reviewers for helpful comments
on previous versions, and to Paul E. Green for providing the data for
the Monté Carlo simulation. The research was supported by a Faculty
Research Grant from the Joseph M. Katz Graduate School of Busi-
ness, University of Pittsburgh.

123

like traditional conjoint analysis, these methods employ
the multinomial logit model to estimate utility function
parameters at the group level and therefore permit sta-
tistical testing of attribute significance. Statistical testing
of parameter estimates is also possible in Functional
Measurement (Anderson 1981, 1982; Lynch 1985), which
uses profile ratings as an interval-scaled dependent vari-
able in OLS regression. A related development in the
context of von Neumann-Morgenstern utility theory is
described by Eliashberg and Hauser (1985). They pro-
pose an error theory that permits statistical testing of risk
parameters in idiosyncratic, multiattribute utility func-
tions for constant proportional risk aversion and constant
absolute risk aversion.

Statistical testing methods have not been developed
for the traditional nonmetric approaches to conjoint anal-
ysis, perhaps for two reasons. First, nonmetric scaling
algorithms such as LINMAP (Shocker and Srinivasan
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1977), MONANOVA (Kruskal 1965), and PREFMAP
(Carroll 1972) employ goodness-of-fit measures not re-
lated to an error theory. As a result, they provide no
theoretical basis for testing attribute significance. OLS
regression also is used to estimate utility function pa-
rameters with preference rank serving as the dependent
variable. The parameter estimates obtained from this
analysis are known to be robust to violations of the as-
sumption of an interval-scaled dependent measure (Car-
mone, Green, and Jain 1978; Wittink and Cattin 1981).
However, studies that estimate parameters in this way
do not go so far as to test the significance of the attri-
butes used, because it is not known whether the normal-
theory-based tests are robust when ordinal responses are
used to parameterize a regression model.

Second, because the major application of conjoint
analysis is in product design settings, it is useful to as-
sess attribute significance at a segment level rather than
separately for each individual. However, it is not desir-
able to base the testing on “average” segment prefer-
ences, which ignore the information on preference het-
erogeneity within a segment. The difficulty of developing
testing procedures that retain idiosyncrasies in prefer-
ences, yet test for attribute significance across con-
sumers, has been the second major impediment in the
development of significance testing methods for conjoint
analysis.

Identifying which attributes in a conjoint study are sig-
nificant and which are insignificant is important for at
least three reasons. First, a nonmetric scaling of con-
sumer preferences often is followed by a clustering of
respondents in terms of part-worths similarities. Unlike
Functional Measurement and choice-set experiments,
statistical methods are not available for testing whether
two segments differ in terms of the benefits they seek
from a product. A statistical procedure identifying the
significant attributes for each segment can be useful for
validating hypothesized differences in the benefits sought
by consumer segments: two segments seek different ben-
efits if they have different, possibly overlapping, sets of
significant attributes. Of course, identifying the same set
of significant attributes need not necessarily imply that
two hypothesized benefit segments are not distinct, be-
cause preferences for the levels of a significant attribute
(c.g., the sizes of cars) also can differ across segments.

Second, insignificant attributes can be eliminated from
simulations of new product performance if they have an
insignificant effect on measures used in conjoint simu-
lators (e.g., share of choices). Alternatively, a user may
want to base the simulation not merely on prediction,
but also on an understanding of which attributes signif-
icantly affect preferences. In this case, an insignificant
attribute can be eliminated even if it has a significant
effect on the predictive accuracy of a simulation model.
Either way, reducing the number of attributes used can
reduce the time and cost of the simulation—an important
practical benefit when the simulation is performed to
identify an “optimal” product concept (e.g., using the
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QUALIN program of the POSSE method developed by
Green et al. 1981). In contrast to conjoint choice ex-
periments that derive a single, closed-form model to
summarize an aggregate choice response surface for a
set of product concepts (Louviere and Woodworth 1983,
p. 360—1), explicit simulation methods are computation-
ally demanding for problems of large size (Kohli and
Krishnamurti 1987). For example, a simulation of all
possible product concepts for a problem involving 200
respondents and eight attributes, each at five levels, takes
approximately one hour on an FPS computer (which runs
approximately 10 times faster than a DEC-10 computer
and approximately twice as fast as a VAX-8600 com-
puter). If two attributes are eliminated, the simulation
time is reduced to approximately two minutes on an FPS
computer. This computational benefit is enhanced if the
simulation is repeated to validate predictions of product-
concept performance (e.g., by perturbing individual util-
ity functions or by comparing the performance of prod-
uct concepts for randomly selected subsets of respon-
dents) and to study the effect of competitive actions and
reactions when a new product is introduced.’

Finally, knowledge of the significant attributes for a
relevant population can guide data collection in subse-
quent conjoint studies for the same product class if the
results are generalizable over time. Because insignificant
attributes can be eliminated, one can include previously
ignored but possibly important attributes. Alternatively,
more reliable data can be collected by describing product
profiles in terms of only the significant attributes, re-
ducing the possibility of information overload on re-
spondents (Green and Srinivasan 1978). The reliability
of individual evaluations can be improved further if
eliminating insignificant attributes permits the use of an
experimental design with fewer treatments, so that each
respondent also evaluates fewer product profiles.

Two procedures for testing attribute significance in
conjoint analysis are presented here. Because they use
only the preference ranks, the testing procedures are not
allied with, and hence not limited to, a specific scaling
algorithm. Both tests employ ordinal preferences of mul-
tiple respondents with heterogeneous preferences. No
constraints are placed on the number of times an attribute
level appears in product profiles. This feature is an im-
portant consideration in the present instance, because in
collecting conjoint data one often uses experimental plans
in which different levels of an attribute appear in dif-
ferent numbers of product profiles. It is also worth not-
ing that though the proposed testing procedures are de-
veloped in the context of conjoint analysis, they can be
used more generally to assess factor significance in any
multifactor experiment in which n (=1) observations are

'Computational time is not a significant issue if the simulation is
restricted to a few product profiles preselected by the user, or if a
heuristic is employed to identify near-optimal product profiles (e.g.,
Kohli and Krishnamurti 1987).
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obtained for each treatment condition and the response
variable is measured on at least an ordinal scale.

The proposed procedures are applicable when a part-
worths function is used to model individual preferences
and when data are collected according to the full-profile
approach (Green and Srinivasan 1978). Briefly, the part-
worths model is applicable when each attribute is de-
scribed at a finite number of levels. The full-profile
method of data collection employs these attributes as
factors in an experimental design. Treatments of the de-
sign describe multiattribute product profiles, which re-
spondents rank in preference order.

The tests differ in terms of whether or not preferences
for an attribute’s levels can be ordered a priori for all
respondents. For example, a preference ordering can be
specified a priori for the attribute “cholesterol content,”
because higher cholesterol content is not expected to be
preferred to lower cholesterol content by any respon-
dent. The more frequently a respondent’s preferences vi-
olate the ordering condition, the less likely it becomes
that the attribute is significant. Thus when a preference
ordering of attribute levels is feasible, a test of attribute
significance should consider how frequently respon-
dents’ preferences violate the ordering condition.”

Such a priori ordering is not permissible if the levels
of an attribute are only nominally comparable (e.g., al-
ternative package designs). It is also not permissible if
the underlying attribute is continuous and the sampled
levels belong to a range in which an individual’s utility
function can be increasing, decreasing, or U-shaped/in-
verted U-shaped (e.g., levels of “sweetness” of a des-
sert). The significance of these attributes must be as-
sessed via procedures that do not require information on
individuals’ attribute-level preference orderings.

The following section first describes the test when a
priori ordering of attribute levels is not permissible and
then the test when such ordering is permitted. The first
test is related closely to Kruskal and Wallis’ (1952) test
for identical distribution functions. The second test is
related closely to Friedman’s (1937) test for random
blocks. However, neither test is related directly to any
measures of product performance used in conjoint choice
simulators. A Monté Carlo simulation therefore is per-
formed to test the effect of eliminating insignificant at-
tributes on share of choices, a frequently used measure
of product performance in conjoint choice simulators
(Cattin and Wittink 1982).

PROCEDURES FOR TESTING ATTRIBUTE
SIGNIFICANCE

Testing Attribute Significance Without Constraining
Preferences for Attribute Levels

We begin by specifying notation. Let I denote the
number of respondents in a segment. Let n denote the
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number of product profiles evaluated by each respon-
dent. Consider an attribute with m levels, level j ap-
pearing in n; product profiles. Let x;, k = 1, 2, ..., n,
denote the n; product profiles in which level j of the at-
tribute appears. For example, consider an attribute with
two levels (m = 2). Let each level (j = 1, 2) appear in
four product profiles (n, = n, = 4; n = 8). Then x,,,
X1, X33, X14 denote the four product profiles in which
level 1 appears and x,,, x;,, X23, X,4 denote the four prod-
uct profiles in which level 2 appears.

Let “1” denote the rank of an individual’s most-pre-
ferred product profile and let “n” denote the rank of an
individual’s least-preferred product profile. Let r,(x;) de-
note the rank individual i associates with product profile
x;. Let r; denote the sum of individual i’s ranks for the
n; product profiles in which level j appears; that is,

(1) rij = 2 ri(xjk)~
k=1

Assume that respondent i’s preferences do not differ
across the m attribute levels. Then a random association
should occur between the attribute’s levels and the rank
ordering of the product profiles. Thus, under a random-
association hypothesis, each product profile is assigned
any one of the n ranks with probability 1/n. The asso-
ciated expected rank of product profile x; is

)) E{rixpt = >, >, (1/myrx)
j=1 k=1

1/n) 2 E ri(x i)
j=1

k=1

Because individual i assigns a unique rank to each prod-
uct profile, the sum of ranks across product profiles is

nj

(3) > rx = +2+ . +n)

j=1 k=1

=nn+1)+ 2.

Substituting equation 3 into the right side of equation 2
yields

4 E{ri(x;d} =(n+ 1) = 2.
The variance of r;(x;) is

(5) varfr; (xjk)} = E{ri(xjk)}z - [E{ri(xjk)}]2

Efr; (xjk)}2 -{n+1)+ 2}2

[Z E <1/n){r.-(x,-k)}2] —{n+ 1"+ 4)

j=1 k=1

I

={n+ DQ2n+1)+6}—{(n+ 1"+ 4}

=(n+DHn—-1) + 12

*Using an a priori ordering of the levels in estimating individual

utility functions is described by Srinivasan, Jain, and Malhotra (1983). where:
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(6) E 2 A/mirxf = (1 /m(1° + 22 + ...+ n?)
j=1 k=1

=(m+1D)2n+1)+6

The covariance of the ranks associated with two distinct
product profiles x; and xj, is

D covire, rx} = Efr(og) —
{r i(x}k) -

Substituting E{r,(x;)} = (n +
into equation 7 yields

non (n+1)
®)  covirix;), r{xi} = 2 E {t - }

=1 s=1 2
t#s

{ _(n+l)}{ 1 }
s 2 nn-1)

where 1/n(n — 1) is the joint probability that product
profiles x; and xj, are as51gned ranks r;(x;) and ri(x;),
respectively The summation in equation 8 extends over
all t and s from 1 to n, except that ¢ does not equal s
because profiles x; and xj, cannot have the same rank.
Rewrite equation 8 by addmg and subtracting the terms
fort = st

\ ~ (n+1)
) COV{’:‘(X;'J:), ri(x}k)} = [ { }

=1 s=1

Fes)
e o)

SRITRh)
[5b-2s

1
(n—1

E(ri(x %) );
E(r;(x;)}.

1) + 2 from equation 4

2
" n+1)
. - 1 .
Z {t > } {1/n}
To simplify equation 9, note that
n n n + 1)
a > {z } 2 2
=1
_n(n+l)_n(n+1)_
2 2

Therefore the first term in equation 9 equals zero. Also,
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n 2
+ 1
Z{r—(" . )} (1/n)

=1

is the expression for the variance of r,-(xjk), which from
equation 5 equals (n + 1)(n — 1) + 12. Hence expres-
sion 10 simplifies to

(11) covir,(x;), ri(xj} = 0 —
(n—1)

An+ Dn—1) + 12}
=—(n+1) +12.
Under the null hypothesis, r; is the sum of n; ranks se-
lected at random and without replacement from the ranks
1 to n. The associated mean of r; is

nj

(12) E(ry)) = E{}_‘, r,-(x,-o} = > E{nx).
k=1

k=1
Substituting for E{r,(x;)} in equation 12 from equation
4 yields

=d (+1)+2=nn+1)+2

k=1

(13)  E(ry

The variance of r; is

(14)  var(r;) = , var {ri(x,.,‘)} +

k=1

Z COV{"i(xjk), ri(x_;'k)}
X jky x]:‘

xjﬁéx]-k

where the summation over the covariance term extends
over all distinct pairs of product profiles x;. The various
terms in equation 14 are given by equations 5 and 11.
The variance term appears n; times and the covariance
term appears nn; — 1) times in equation 14. Hence

(15) var(r;;) = {nj(n + 1)(n — 1) + 12}
+ [n;(n; — 1}
{—-(n+1)+12)
=ny(n + )(n — n)) + 12.

Now r; is the sum of n; random variables. Hence the
Wald-Wolfowitz theorern (Noether 1967) implies that
as n; increases, the distribution of r; asymptotically ap-
proaches the normal distribution (the properties of the
proposed test statistic for small »; are discussed subse-
quently). Thus when there is no association between the
attribute levels and individual i’s rank ordering of prod-
uct profiles, the standardized r; have an asymptotic nor-
mal distribution with zero mean and unit variance; that
is, the statistic

*The Wald-Wolfowitz theorem states that the distribution of the sum
of n independent, identically distributed random ranks asymptotically
approaches the normal distribution. It is the nonparametric equivalent
of the central limit theorem. For a proof, see Fraser (1957).
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(16) {ri; = E(rip} + Vvar(r;))

asymptotically approaches the standard normal distri-
bution with increasing n,. The square of a random vari-
able with a standard normal distribution has a chi square
distribution with 1 d.f. (Searle 1971, p. 47). Conse-
quently, the square of statistic 16,

{ry — Ep)F + var(ry),

has an asymptotic chi square distribution with 1 d.f. Also,
the sum of m independent chi square random variables,
each with 1 d.f., is chi square distributed with m degrees
of freedom (Rao 1973, p. 166). Therefore if the c; (j
= 1, 2, ...,m) were independent statistics, the sum of
the ¢;

7 Cij =

(18) = ¢y
j=1

would have an asymptotic chi square distribution with m
degrees of freedom. However, the c;’s are not indepen-
dent because the sum of the r;’s is constant (= n(n +
1) + 2). Kruskal (1952) has shown that if the ¢; are
multiplied by (n — n)) + n, the resulting statistic

(19) ¢ = 2{(n_”j)+”}cij
=1

L2 i{ (1/2) nyn + DY =
ri: — ; - .
n(n + 1) 55 Y A i

has a limiting chi square distribution with (m — 1) de-
grees of freedom. The limiting chi square distribution is
approached as all n, — = simultaneously. Expression 19
is the Kruskal and Wallis (1952) statistic for testing the
identity of m population distribution functions.

The preceding results are valid for large values of n
and n;. However, these values are typically small in con-
joint analysis. It is therefore important to examine how
well the chi square distribution approximates the exact
distribution of ¢; when n and n; are small. At least four
studies have examined the small-sample properties of
expression 19 using Monté Carlo simulation. Kruskal and
Wallis (1952) found that for small values of n; and a
levels less than .10, the chi square approximation fur-
nishes a conservative test, the true significance level of
c; being smaller than the level of significance indicated
by the chi square approximation. McSweeney and Pen-
field (1969) analyzed data from normal and uniform dis-
tributions. They employed three factor levels (attribute
levels) and 5, 6, 8, 10, and 12 observations (product
profiles) per level in a Monté Carlo simulation. The
Kruskal-Wallis test was conservative in terms of type 1
error. Also, the goodness of fit of the chi square distri-
bution was not impaired by using small sizes or by sam-
pling from a uniform distribution rather than a normal
distribution. Feir-Walsh and Toothaker (1974) studied
the behavior of the Kruskal-Wallis statistic using data
from a normal distribution and two exponential distri-
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butions for n = 28. The Kruskal-Wallis test gave a good
approximation to the type 1 error for the normal data. It
was conservative (i.e., indicated a higher o value) for
data from both exponential distributions. Gabriel and
Lachenbruch (1969) also found the chi square approxi-
mation to be good for small values of n and n;. The re-
sults of these studies therefore suggest that the chi square
approximation of c¢; should be appropriate for conjoint
analysis.

Observe that ¢; is computed with only the preference
data for individual i. Hence c; can be used to test attri-
bute significance at the individual level. If all attributes
are insignificant for an individual, one can conclude that
the preference ranking of product profiles is random and
exclude the individual from subsequent analysis.

Because preference data are collected from multiple
respondents in conjoint analysis, it is also useful to as-
sess the significance of an attribute across respondents.
To this end, a test based on the statistic

I
(20) c=> ¢
i=1

where I is the number of respondents, is proposed. Be-
cause c is the sum of I asymptotically chi square random
variables, its distribution is also asymptotically chi square
(Rao 1973, p. 166). Further, because each ¢; has (m —
1) degrees of freedom, ¢ has I(m — 1) degrees of free-
dom.

Note that different individual preferences result in dif-
ferent values of r;, and hence the c;. However, ¢; is based
on the square of the difference between the observed and
expected sum of ranks. Therefore summing the c¢; in
equation 20 does not cause individually significant at-
tributes to appear insignificant as a result of the aggre-
gation of heterogeneous preferences. In other words,
idiosyncratic preferences are not “averaged out” in the
test. Rather, preferences are aggregated in such a way
that an attribute’s significance depends on the extent to
which each respondent’s preference ranking deviates from
a random ranking of the product profiles. Consequently,
the test based on equation 20 permits segment-level test-
ing of attribute significance without assuming that pref-
erences for all respondents in a segment are identical.

Power of test. The most common index for compar-
ing nonparametric tests with parametric tests is asymp-
totic relative efficiency (ARE). This index compares the
power of one test with the power of the other by using
mathematical computations based on extremely large
sample sizes and extremely small location differences.
In fact, sample size is permitted to approach infinity while
at the same time location differences approach zero.

The Kruskal-Wallis test in comparison with the para-
metric (ANOVA) F-test has an ARE of .95 for the nor-
mal distribution and a lower bound ARE of .864 (Noether
1967, p. 89). Thus, asymptotically, the test based on
equation 19 is 95% as powerful as the F-test when the
“true” part worths are from a normal distribution and it
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can never be less than 86% as powerful when the “true”
part worths are from non-normal distributions.

Because ARE is computed for unrealistically large
sample sizes with miniscule differences in measures of
location, it is important to know the small-sample per-
formance of the Kruskal-Wallis test. To our knowledge,
only Feir-Walsh and Toothaker (1974) have investigated
the empirical small-sample power of the test. Using Monté
Carlo simulation, they compared the power of the Krus-
kal-Wallis test with the power of the parametric F-test
for different sample sizes. The data used were generated
from a normal distribution and from two exponential dis-
tributions. For small sample sizes and data from the nor-
mal distribution, the power of the Kruskal-Wallis test
was at most 5% less than the power of the F-test. For
the two exponential distributions, the power of the Krus-
kal-Wallis test was always higher than the power of the
F-test. These limited results suggest that in comparison
with the ANOVA F-test, the proposed test should have
adequate power for applications to conjoint analysis.

Testing Attribute Significance by Constraining
Preferences for Attribute Levels

The preceding test uses no information about a pos-
sible a priori ordering of individual preferences for an
attribute’s levels. If available, such information should
be incorporated in a test of attribute significance. A pro-
cedure appropriate in this instance is described next. It
is based on an extension of Friedman’s (1937) rank test
for random blocks.

As before, let ri(x;) denote individual i’s ranking of
product profile x;. Let r; denote the sum of the ranks
individual i associates with the »; product profiles in which
level j appears. Let

Q1) r= o

i=1

where I is again the number of individuals across whom
the significance of the attribute is being assessed. The
proposed test is based on r; because all individuals have
the same a priori preference ordering and can differ only
in the degree to which they prefer one attribute level to
another. In an experimental design context, respondents
are like “blocks” across whom the significance of an at-
tribute is tested.

Under the hypothesis of no association between the
attribute levels and the rank order preferences, the r; (x;)
are randomly selected integers between 1 and n = 27,
n;. Therefore

1
(22) E()= E{E r,.,} = IE(r;) = In(n+ 1) + 2

i=1
and

I
23) var(r)) = >, var(r;))

i=1

=Inn+ n—n;)+12
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where E(r;) = ni(n + 1) + 2 and var(ry) = n(n + 1)(n
— n;) +~ 12 are derived in expressions 13 and 15, re-
spectively.

Now 7; is the sum of In; random variables. Hence the
Wald-Wolfowitz theorem (see footnote 3) implies that r;
has an asymptotic normal distribution with mean and
variance given by equations 22 and 23, respectively. The
asymptotic normal distribution is attained for increasing
In;. In commercial conjoint studies, /n; is large because
of the large sample sizes employed. It follows that the
standardized r; has an asymptotic normal distribution with
zero mean and unit variance; that is, the statistic

24) hj={r; — E(r)} + Vvar(r;)

has an asymptotic standard normal distribution. If the r;,
and hence h;, were independent observations from a
standard normal distribution, hf would have a chi square
distribution with 1 d.f. (Searle 1971, p. 47). Further,

@5) Bo=> K
j=1

would be the sum of m independent chi square random
variables and therefore would also have a chi square dis-
tribution with m degrees of freedom (Rao 1973, p. 166).
However, the r; are not independent because their sum
is constant (= In(n + 1) + 2). Wilks (in Friedman’s
1937 paper) has shown that the statistic

26) h=Y Hm-1)+m
j=1

12(m — 1)

= ————— = (1 . 2
Imn— 1) JE:], lri — (1/2) Inj(n + 1)}
+ni(n — ny]l

is corrected for this dependence and that it is asymptot-
ically chi square distributed with m — 1 degrees of free-
dom. If n; = 1forall j = 1, 2,...,m, the preceding test
is identical with Friedman’s test for random blocks. If
n=n-+mforallj=1,2,...,m(e., each attribute
appears in an equal number of product profiles), the test
reduces to a generalization of Friedman’s test proposed
by Conover (1980, p. 307).

Power of test. Noether (1967, p. 90) discusses the
asymptotic relative efficiency (ARE) of the Friedman test
in comparison with that of the parametric (ANOVA) F-
test. The ARE for the Friedman test depends on m, the
number of levels of the attribute. It equals (.955) m/(m
+ 1) if the “true” part worths are from a normal distri-
bution, m/(m + 1) if the “true” part worths are from a
uniform distribution, and 3m/2(m + 1) if the “true” part
worths are from a double exponential distribution. The
ARE of the Friedman test cannot fall below (.864)m/(m
+ 1). The empirical power of the Friedman test has not,
to our knowledge, been studied. However, the number
of individuals (/), and hence the value of In;, is large in
conjoint analysis. Therefore, in the present context, the
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ARE results are more relevant than small-sample power
of the Friedman test.

AN EXAMPLE

The preceding tests are illustrated by a small hypo-
thetical example involving two attributes, each at two
levels (i.e., m = 2 for both attributes). Four product pro-
files are specified by combining each level of each at-
tribute. Table 1 displays the rank order preferences of
each of two respondents (I = 2) over the four product
profiles.

Assume that no a priori preference ordering is spec-
ified for the levels of attribute 1. We should expect at-
tribute 1 to be significant, because both individuals al-
ways prefer the two product profiles in which one level
appears (i.e., level 2 for individual 1, level 1 for indi-
vidual 2) to the two product profiles in which the other
level appears. Now assume that an a priori ordering of
the levels is specified for attribute 1. Attribute 1 should
not be significant because individual 1’s preference ranks
are as strongly in agreement with the a priori ordering
as individual 2’s preference ranks are in disagreement
with the a priori ordering.

For attribute 2, the sum of the ranks is the same (=
5) for each level and for both individuals. This fact sug-
gests that attribute 2 should be insignificant either at the
individual level or across individuals, regardless of the
a priori ordering of the attribute levels.

Testing Significance With No A Priori Preference

Ordering

The significance of attribute 1 is tested for each re-
spondent separately, then across respondents. The values
of r; (i.e., the sum of the ranks for product profiles in
which level j of attribute 1 appears) are

(27) m=1+2=3
(28) rp,=4+3=7

for individual 1 and

29) m=4+3=7
(30) rp=1+2=3
Table 1

DATA FOR HYPOTHETICAL EXAMPLE ILLUSTRATING
THE PROPOSED TESTING PROCEDURES

Attribute
1 2 Profile Ranking
Profile Level Level Individual 1 Individual 2
1 1 1 1 4
2 1 2 2 3
3 2 1 4 1
4 2 2 3 2
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for individual 2. Computing c; from equation 19 yields

2
2 {rlj - (1/2)’1/ (n + 1)}2 = n;

G = n(n + 1) 5
-2 - amoer -2
4(5)
+{7 = (/@G + 2]
=2.40
and
12 o
(32) ¢ = D ; {rs; — (1/2n,n + DY + n,

-2 {7 = (1/2Q)OG)F + 2
T :

+{3 - (1/2QG)) + 2
=2.40.
It follows that
33) c=rc +¢;=9.60.

Both ¢, and c, are chi square distributed with (m — 1)
=2 — 1) = 1df. Also, ¢ = ¢, + ¢, is chi square
distributed with 2 d.f. Hence, attribute 1 is insignificant
at the individual level and is marginally significant (p <
.10) across individuals.

The significance of attribute 2 is assessed similarly.
The r; (i.e., the sum of the ranks for product profiles in
which level j of attribute 2 appears) are

(34) ru=1+4=5
(35) r.=2+3=5
for individual 1 and

(36) rpy=4+1=5
37 rp=3+2=5

for individual 2. Computing ¢, from equation 19 for each
respondent yields

2

12
G8) o= l);{ru —(1/Dnn+ DY = n
12
= S5 - a/DQ6N =2
465) ({5 — (1/2))(5)}
+1{5 — (1/2QG)}F = 21
=0
and
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E {r21

39 = 1/2)n; (n + D = n;

n(n + 1) ;=

=—[{5-1/DR)G) +2
4(5)[{ 1/2)2)5)}

+{5 - (1/2Q)G)} + 2]

=0.

It follows that
(40) c=c+¢=0.

Thus, for each respondent, the chi square statistic has a
zero value. These values indicate that attribute 2 is in-
significant for each respondent and also across respon-
dents.

Testing Significance With A Priori Preference
Ordering

Now assume that level 1 is expected a priori to be
preferred to level 2 for both attributes. Respondent 1°s
preferences suggest as strong a disagreement with this
ordering as respondent 2’s preferences suggest an agree-
ment. Hence attribute 1 should be expected to be insig-
nificant across the respondents. The Friedman test is ap-
plied to these data to determine whether this is in fact
the case. First, compute the values of

2
1) rp= Zl ry

for levels j = 1, 2 of attribute 1. Expressions 27 and 29
yield

(42) n=ry+r=3+7=10.

Similarly, expressions 28 and 30 yield

43) r=rp+rp=7+3=10

Substituting these values of r, and r, and setting [ = 2,

m=2,n=4,n = n, = 2 in expression 26 for the test
statistic A yields
122-1) 2
44
R IV TP ;
l{r; — A/2D@)G)F + 2(4 - 2)]
=0.

Hence attribute 1 is insignificant.
For attribute 2, expressions 34 and 36 yield

45) rn=ry+r;=5+5=10.
Similarly, expressions 35 and 37 yield
(46) rn=rp+rnp=5+5=10.

Substituting these values of r; and r, and setting / = 2,
m=2,n=4,n = n, =2 in expression 14 for the test
statistic & yields
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“47) h=

[r; — (1/22X2)(5)F + 2(4 — 2)]
=0
so that attribute 2 is also insignificant.

ASSESSING THE EFFECT OF DELETING
INSIGNIFICANT ATTRIBUTES ON SHARE-OF-
CHOICES PREDICTIONS

A major use of conjoint analysis is in predicting the
share of choices of new product concepts. However, the
proposed testing procedures are not directly related to
this, or any other, measure of product performance. A
Monté Carlo simulation therefore was conducted to ex-
amine the effect of deleting insignificant attributes on
share of choices. The study began with the selection of
a set of part worths for eight attributes, each at four lev-
els. The idiosyncratic part worths were obtained from an
actual conjoint study involving 187 respondents.

Individual preference rankings for 32 product profiles
were simulated from the part worths data. The rankings
were used to test the significance of the attributes. A
main effects plan (Addelman 1962) was utilized to gen-
erate the 32 product profiles. Attributes were associated
randomly with the factors of the experimental plan.

Five segments were indicated by a K-means clustering
(Hartigan 1975) of the individual part worths. The num-
ber of respondents in segments 1 through 5 was 36, 37,
29, 47, and 38, respectively. The preceding tests were
used to test the significance of the attributes for each
segment. A preference ordering of attribute levels, based
on a priori expectations, was specified for attributes 1,
4, 6, and 7, but not for attributes 2, 3, 5, and 8. The
sets of significant attributes identified by each testing
procedure are reported in Table 2. Only attributes 1, 2,
and 5 are significant for all segments. The number of

Table 2
SEGMENT-LEVEL ANALYSIS OF ATTRIBUTE SIGNIFICANCE
BY PROPOSED TESTING PROCEDURES®

Significant® Insignificant®
Segment attributes attributes
1 1,2,4,5,6,8 3,7
2 1,2,4,5 3,6,7,8
3 1,2,5,6,7,8 3,4
4 1,2,3,4,5,7, 8 6
5 1,2,3,4,5,6,7, 8

>

*In all segments, an a priori preference ordering of attribute levels
is specified for testing the significance of attributes 1, 4, 6, and 7.
An a priori preference ordering of attribute levels is not permissible,
and is therefore not specified, for testing the significance of attributes
2,3,5, and 8.

°p < .05.

‘p > .10.
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significant attributes ranges from four (segment 2) to eight
(segment 5).

The effect of eliminating insignificant attributes on share
of choices is examined for segments 1 through 4 but not
for segment 5, which has no insignificant attributes. Sta-
tus quo product profiles were specified randomly for the
respondents in segments 1 through 4. The segment share
of choices was simulated for 31 randomly selected prod-
uct profiles under three conditions: (1) using all eight
attributes, (2) eliminating each attribute one at a time,
and (3) simultaneously deleting all attributes identified
to be insignificant by the proposed testing procedures.
Both the original part worths and those obtained from
an OLS rescaling of input ranks were employed in the
share-of-choices simulation.

Observe that the share of choices estimates the prob-
ability of a randomly selected individual selecting a
product profile over status quo. Consequently, its vari-
ance depends on the actual probability value. To stabi-
lize variance, an arcsin transformation of the share of
choices was performed (Rao 1973, p. 427). “Product
profiles” and “attributes deleted” were used as factors
in an ANOVA in which the transformed share of choices
was the dependent measure.

The main effect of “attributes deleted” was significant

13

for each segment. Tukey’s multiple range tests therefore
were used to examine which attribute’s deletion leads to
a significant change in share-of-choices predictions. Ta-
ble 3 is a summary of results for segments 1 through 4.
Across segments and testing procedures, using estimated
part worths instead of “true” part worths does not change
the sets of attributes that have statistically significant
(insignificant) effects on share of choices. Consequently,
the following conclusions are valid regardless of whether
“true” or estimated part worths are employed to perform
share-of-choices simulations.

1. Eliminating an attribute identified to be insignificant by
the tests has an insignificant effect on share of choices.

2. Attributes that have a significant effect on share of choices
are always identified to be significant by the tests.

3. In many cases, eliminating attributes identified to be sig-
nificant by the tests has an insignificant effect on share
of choices.

4. In two of the three segments with more than one insig-
nificant attribute (i.e., segments 1, 2, and 3), simulta-
neously eliminating all insignificant attributes has an in-
significant effect on share of choices; however, eliminating
all four attributes identified as insignificant for segment
2 has a statistically significant effect on share of choices.

Table 3
EFFECT OF DELETING SIGNIFICANT AND INSIGNIFICANT ATTRIBUTES ON SHARE OF CHOICES FOR 31 RANDOMLY
SELECTED PRODUCT PROFILES: TUKEY’S PAIRWISE COMPARISON TESTS USING “TRUE” AND ESTIMATED PART WORTHS?

Segment | Segment 2 Segment 3 Segment 4
Antributes part worths part worths part worths part worths
Row deleted True Est. True Est. True Est. True Est.
1 1 8.77 9.1 4.49 4.29 5.58 7.96 1.66 3.52
(<.01) (<.0D (<.05) (<.06) (<.01) (<.01) (ns) (ns)
2 2 —11.85 -9.17 -9.80 —8.23 —11.59 -9.92 1.51 .45
(<.0D (<.0D) (<.01) (<.01) (<.01 (<.01) (ns) (ns)
3 3 —.37 -1.20 1.03 Al —1.10 —2.08 1.14 1.93
(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)
4 4 .64 .33 —.52 -1.21 1.23 1.99 -5.90 -5.99
(ns) (ns) (ns) (ns) (ns) (ns) (<.01) (<.0D)
5 5 .83 1.53 9.67 8.15 3.14 4.75 2.14 2.41
(ns) (ns) (<.01) (<.01) (ns) (<.05) (ns) (ns)
6 6 —.31 -1.13 .66 —.032 3.77 —4.85 —2.60 —3.22
(ns) (ns) (ns) (ns) (ns) (<.05) (ns) (ns)
7 7 —.33 —1.41 —2.00 —-1.78 —1.90 —1.96 .18 .24
(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)
8 8 2.56 4.54 —.56 =2.15 .32 .92 1.72 1.23
(ns) (<.05) (ns) (ns) (ns) (ns) (ns) (ns)
9 All insignificant —1.20 —2.58 5.64 5.35 .59 11
attributes (ns) (ns) (<.0D) (<.01) (ns) (ns)

“Cell entries denote values of Tukey’s studentized g-statistic

g = (S, — So) = (VMSE/31)

where:

S; = arcsin-transformed share of choices when one or more attributes corresponding to row j are deleted and

S, = arcsin-transformed share of choices when no attribute is deleted.

Values in parentheses denote the joint significance level (p-value) for the multiple comparisons using Tukey’s studentized-range values. Underlined
values correspond to attributes identified to be insignificant by the proposed testing procedures.
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The first three findings suggest that the proposed test-
ing procedures are conservative in identifying attributes
that have an insignificant effect on share-of-choices pre-
dictions. The reason is that attributes having an insig-
nificant effect on share of choices sometimes are iden-
tified to be significant by the proposed tests, though
attributes with a significant effect on share of choices
are always identified to be significant by the proposed
tests. ’

The fourth conclusion is a result often encountered in
linear models: factors may be individually insignificant,
but the variance explained by a collection of insignifi-
cant factors can be significant. However, note that in the
simulation only the simultaneous elimination of four in-
significant attributes of a total of eight attributes affected
share of choices. Even then the change was smaller than
when two significant attributes (2 and 5) were excluded
singly. This result suggests that when multiple attributes
are found insignificant by the proposed testing proce-
dures, a user must make a tradeoff between parsimony
(in the sense of identifying the attributes that have a sig-
nificant effect on segment preferences) and predictive
accuracy (in a share-of-choices sense) in selecting attri-
butes for a simulation model.

CONCLUSION AND FUTURE RESEARCH

The preceding Monté Carlo simulation results are par-
ticularly useful given the importance of prediction in
conjoint analysis (Green and Srinivasan 1978). The pro-
posed tests can be used to confirm differences among
benefit segments, to improve the computational effi-
ciency of conjoint choice simulators, and to design sub-
sequent conjoint studies in the same product class.

The proposed procedures also can be used to test for
significant differences among preferences for subsets of
attribute levels. Product profiles in which the reduced set
of attribute levels appear are identified first. The relative
rankings of these product profiles are used to compute
the relevant test statistic. However, such testing should
be restricted to comparisons among levels of attributes
already identified to be significant. Even then the attri-
bute-level subsets investigated should be restricted to a
small number, because repeated tests increase the overall
probability of type 1 error.

The tests developed here are applicable to main effects
plans. They also assume that rank order data are col-
lected according to the full-profile approach. For the two-
factor-at-a-time method of data collection (Johnson 1974),
for models permitting estimates of interaction effects, and
for hybrid conjoint models combining ratings and rank-
ings data (Green 1984; Green and Goldberg 1981; Green,
Goldberg, and Montemayor 1981), alternative testing
procedures are needed and should be pursued in future
research.

Methods for constructing confidence intervals for part
worths and for assessing the goodness of fit of nonmetric
scaling algorithms also should be developed in future re-
search. For example, nonparametric methods could be
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developed to estimate confidence intervals for part worths.
The bootstrap and jackknife resampling procedures (Ef-
ron and Gong 1983; Green, Carmone, and Vankudre
1983) may be relevant to this line of research. Assume
that a respondent has provided preference rankings for
n product profiles. The jackknife can be used to specify
n subsets, each consisting of (n — 1) product profiles
that are used to estimate part worths. For each part worth,
an empirical distribution of the subset estimates can be
constructed and used as a basis for obtaining a confi-
dence interval.

Nonparametric methods also can be utilized to test the
significance of the goodness of fit of a nonmetric scaling
procedure. An example of this approach is provided by
Mullet and Karson (1986). Using randomly generated
preference data, they develop preference distributions for
the LINMAP index of fit (Shocker and Srinivasan 1977)
for several different main effects plans. Similar devel-
opments should be useful for MONANOVA (Kruskal
1965) and PREFMAP (Carroll 1972), the two other non-
metric scaling methods often used in conjoint analysis.
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