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Abstract

An Expected Utility maximizer can be risk neutral over a set of non-

degenerate multivariate distributions even though her NM (von Neumann

Morgenstern) index is not linear. We provide necessary and su¢ cient condi-

tions for an individual with a concave NM utility to exhibit risk neutral behav-

ior and characterize the regions of the choice space over which risk neutrality

is exhibited. The least concave decomposition of the NM index introduced

by Debreu [3] plays an important role in our analysis as do the notions of min-

imum concavity points and minimum concavity directions. For the special

case where one choice variable is certain, the analysis of risk neutrality requires

modi�cation of the Debreu decomposition. The existence of risk neutrality

regions is shown to have important implications for the classic consumption-

savings and representative agent equilibrium asset pricing models.
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1 Introduction

Standard textbook treatments of the economics of risk typically show that an Ex-

pected Utility maximizer will be risk neutral in the univariate case if and only if her

NM (von Neumann and Morgenstern [23]) index is linear (e.g., Mas-Colell, Whin-

ston and Green [16], p. 186). However for bivariate lotteries or distributions, the

assumption that the NM utility takes the following linear form

U(c1; c2) = �c1 + �c2 + ; (1)

where c1 and c2 denote units of two di¤erent commodities, is only su¢ cient and

not necessary for risk neutrality.1 An individual with a concave NM index not

taking the form (1) can be risk neutral toward subsets of multivariate lotteries. We

refer to these subsets as risk neutrality regions of the full choice space of lotteries or

distributions.2

In this paper, individuals are assumed to possess Expected Utility preferences.

We derive necessary and su¢ cient conditions for when a consumer with an NM index

not taking the linear form (1) is risk neutral toward a subset of lotteries and char-

acterize the regions of the choice space in which risk neutrality is exhibited. Since

the results for the bivariate case naturally generalize to multivariate distributions,

we focus on just the simpler bivariate case.3 We also consider the important special

case where one attribute is certain and the second is random.

The existence of risk neutrality regions can have important implications for pop-

ular application problems where the NM index is concave and does not take the form

(1). First, suppose a consumer faces the classic two period consumption-savings,

capital risk problem with a single risky asset. In response to a pure increase in the

risk of the asset�s return (i.e., a mean preserving spread), optimal savings can remain

unchanged which is consistent with risk neutral behavior. Second assume a two pe-

riod representative agent exchange economy in which there exists one risky and one

risk free asset. Then for a particular endowment of period one consumption, the

equilibrium risk premium can go to zero which is consistent with the representative

agent being risk neutral.
1Whereas the discussion of risk neutrality is commonplace for the case of univariate distrib-

utions, the multivariate case is much less thoroughly investigated. One interesting exception is

Safra and Segal [21], who consider multivariate risk neutrality for non-Expected Utility preferences.
2In a number of papers that have sought to extend the notion of risk aversion to multivariate

Expected Utility preferences, the authors have tended to de�ne risk attitudes in terms of utility

indices. Reference to risk neutrality arises as the extreme of an individual being both risk averse

and risk prone. See, for instance, Duncan [4], Karni [11], Kihlstrom and Mirman [12] and Hellwig

[8].
3In the online Appendix L, we consider a speci�c example which illustrates how several of the

key concepts investigated in this paper extend to more than two choice variables.
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A key element in our analysis is Debreu�s [3] classic decomposition of a concave,

multicommodity NM index into a least concave utility representing certainty prefer-

ences over commodity vectors and a univariate concave transformation re�ecting risk

preferences. Debreu�s focus was on proving the existence of a least concave utility

given that a concave NM utility is known to exist. However in order to distinguish

the speci�c set of lotteries toward which the consumer is risk neutral, one must go

beyond existence and actually derive from a given concave U the speci�c form of the

least concave utility. One must also identify the set of minimum concavity points

and minimum concavity directions (characterizing where and in which directions

the Hessian of the least concave utility vanishes). The very popular homothetic

and quasihomothetic NM utilities4 permit particularly clear characterizations of the

subset of risk neutral lotteries. This follows from the very special properties of the

minimum concavity points and minimum concavity directions of these utilities (see

Kannai and Selden [10]). However we emphasize that risk neutrality regions also

occur for non-homothetic and non-quasihomothetic preferences.

To extend our analysis of risk neutrality to the case where one of the commodities

is certain, it is necessary to modify Debreu�s decomposition result. For a given NM

index, the set of minimum concavity points, minimum concavity directions and

least concave utilities can di¤er when one commodity is certain versus when no

commodity is certain. As a result, the risk neutrality regions will typically change.

As we discuss in Section 5, the fact that the least concave utilities can diverge when

one of the commodities become certain seems to have been missed in the literature.

Not recognizing this point can result in decompositions of a given NM index into

certainty preferences and risk preferences which are erroneous and ultimately lead

to incorrect behavioral predictions such as how an individual will react to increasing

risk.

The rest of the paper is organized as follows. In the next section, we give two

motivating examples. The �rst illustrates the existence of risk neutrality regions

in a standard lottery choice setting. The second demonstrates that risk neutrality

regions can have interesting implications for optimal savings behavior. Section 3

reviews the de�nitions of risk neutrality toward univariate and bivariate probability

distributions. In Section 4, we �rst discuss the notions of least concave utility,

minimum concavity points and minimum concavity directions and then use them

to characterize the subsets of distributions where an individual will be risk neutral.

Section 5 considers the special case where one preference attribute is certain. Section

4The terms homothetic and quasihomothetic are de�ned as customary (see Deaton and Muell-

bauer [2], pp. 143�145). It should be noted that in the Expected Utility setting, if the NM index

is a member of the HARA (hyperbolic absolute risk aversion) family of utilities, then preferences

are homothetic or quasihomothetic.
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6 provides two additional economic applications. Selected proofs are provided in

the Appendix of this paper and the remaining proofs and supplemental materials

are available in an online Appendix.

2 Motivating Examples

Before formally de�ning risk neutrality, we consider two motivating examples which

illustrate that an individual or an economy can exhibit risk neutral behavior even

though the assumed bivariate NM index does not take the linear form of eqn. (1).5

The following example shows that an individual can be risk neutral toward some

(but not all) lotteries if her NM index does not take the linear form (1).

Example 1 Assume the individual�s NM index is given by

U (c1; c2) = 600c1 + 600c2 � (c2 � c1)2 � (c2 � c1)4 ; (2)

where (c1; c2) 2 (0; 5)2. It can be veri�ed that this utility function is strictly increas-
ing and concave, implying that the indi¤erence curves are well behaved (convex) in

(0; 5)2. Consider the lottery L1 =
�
(1; 1:5) ; 1

2
; (2; 2:5) ; 1

2

�
, where (1; 1:5) and (2; 2:5)

are the vector payo¤s and 1
2
is the probability of each payo¤. L2 = ((1:5; 2) ; 1) is a

degenerate lottery with its payo¤ equal to the means of the payo¤s of L1. Following

Safra and Segal [21], an individual is said to be risk neutral toward the risky lottery

L1 if she is indi¤erent between it and the special degenerate lottery L2 (see De�nition

2 below). Lotteries L1 and L2 are plotted in Figures 1 and lie on the common ray

c2 = c1 + 0:5:

Using the NM index (2), computation of the Expected Utility for L1 and L2 yields

EU(L1) =
1

2
(600 + 900� 0:25� 0:0625)+1

2
(1200 + 1500� 0:25� 0:0625) = 2099:6875

and

EU(L2) = 900 + 1200� 0:25� 0:0625 = 2099:6875:

Since EU(L1) = EU(L2), the individual is risk neutral toward L1. We next show

that although the individual is risk neutral toward L1, she is not risk neutral toward

all lotteries since the NM index (2) does not take the linear form (1). Consider

5As noted in footnote 10, the case where the NM index is linear over a portion of its domain

and the payo¤s corresponding to a distribution or lottery are de�ned on this subdomain will not

be distinguished from the case where the index is linear over its entire domain.
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Figure 1: Risk Neutral Lottery

lotteries L3 =
�
(1; 1:5) ; 1

2
; (2; 3:5) ; 1

2

�
and L4 = ((1:5; 2:5) ; 1), where L4 is the degen-

erate lottery with payo¤ corresponding to the means of the payo¤s of L3. Lotteries

L3 and L4 also lie along a common ray in c1 � c2 payo¤ space which is de�ned by

c2 = 2c1 � 0:5:

However in this case since

EU(L3) =
1

2
(600 + 900� 0:25� 0:0625)+1

2
(1200 + 2100� 2:25� 5:0625) = 2396:1875

and

EU(L4) = 900 + 1500� 1� 1 = 2398;

the individual is not risk neutral but rather is risk averse toward L3 since her Expected

Utility is lower for L3 than for L4.

The next example is based on the classic two period consumption-savings, capital

risk problem. Certain �rst period and random second period consumption are

denoted, respectively, by c1 and ec2. In period one, the consumer is endowed with

income I and chooses how much to consume c1 and save I � c1. Saving takes

place via a risky asset paying a risky (gross) rate of return eR. Random period two

consumption is given by ec2 = eR (I � c1) : (3)

The consumer chooses optimal period one consumption so as to maximize the Ex-

pected Utility EU (c1;ec2), where the NM index U does not take linear form (1).
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The following demonstrates that the resulting optimal savings behavior need not

change in response to a MPS (mean preserving spread) in the return eR.6
Example 2 Assume the consumer�s NM index U is given by

U (c1; c2) = 5:5c1 + 5c2 � (c1 � 0:5)2
�
c22 + 4

�
; (4)

where (c1; c2) 2 (0; 1)2. Although optimal consumption and savings behavior can

be obtained by maximizing the Expected Utility corresponding to the NM index (4)

subject to the constraint (3), one can more clearly see the impact of a MPS in eR
on optimal savings behavior by considering a dual formulation. The �rst step is to

eliminate the risk associated with the random return by using the certainty equivalent

period two consumption bc2 de�ned by7
U (c1;bc2) = EU (c1;ec2) : (5)

Substituting (3) and (4) into (5) yields

5:5c1+5bc2�(c1 � 0:5)2 �bc22 + 4� = 5:5c1+5 (I � c1)E eR�(c1 � 0:5)2 �(I � c1)2E eR2 + 4� :
(6)

Solving (6) for the certainty equivalent as a function of c1, the consumer can be

viewed as solving the certainty problem

max
c1;bc2 U(c1;bc2) S:T: bc2 = bc2(c1):

The solution to this problem is illustrated in Figure 2(a), where I = 1 and the risky

return eR pays o¤ 1:3 and 0:9 with equal probability. The concave curve corresponds
to the certainty equivalent constraint bc2(c1). It is straightforward to show that the

consumption-savings optimum, corresponding to the tangency of this constraint and

the certainty indi¤erence curve in the c1 � bc2 plane, is given by c1 = 0:5 which

does not depend on the value of I and E eR2. Thus, optimal consumption and

savings are independent of a MPS in eR. To demonstrate this, consider a MPS

of the equiprobable risky investment�s return where the payo¤s go from (1:3; 0:9) to

(2:1; 0:1) resulting in the same mean E eR = 1:1 but a larger variance. This results
in the new, lower certainty equivalent constraint in Figure 2(b), where corresponding

to each value of period one consumption except for c1 = 0:5, bc2 declines. Since the
tangency point is unchanged, optimal consumption and savings are una¤ected by the

MPS and the consumer exhibits risk neutrality despite the fact that her NM index

does not take the linear form (1).8

6As is standard for any cumulative distribution functions F and G, G is a mean preserving

spread of F if and only if ey = ex + e�, where ex and ey are respectively the random variables corre-

sponding to F and G, and E [e�j ex] = 0.
7This process has been used more generally in Selden [22].
8As is clear from the form of the NM index (4), the consumer will be risk neutral toward all

c2-lotteries when her �rst period consumption satis�es c1 = 0:5.
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Figure 2: Optimal Period One Consumption with a MPS in ~R

3 Classic De�nitions of Risk Neutrality

In this section, we review the de�nitions of risk neutrality for both univariate and

bivariate risks. Let c1 2 C1 and c2 2 C2 denote the quantities of two commodities,
where unless stated otherwise C1 = C2 = (0;1). De�ne C = C1 � C2. Let Fi
(i = 1; 2) denote the set of c.d.f.s (cumulative distribution functions) de�ned on Ci
and Fi be an element in Fi. J denotes the set of joint cumulative distribution

functions de�ned on C1 � C2 and J is an element in J . The c.d.f. J (c1; c2)

corresponds to the random variable (ec1;ec2) which maps states of nature into speci�c
consumption vectors (c1; c2). As is standard, to simplify subsequent discussions

lotteries and c.d.f.s will be used interchangeably. It will be understood that when

referring to a bivariate lottery L as being an element in J , we are referring to the
uniquely determined c.d.f. J de�ned by the payo¤s and probabilities of the lottery L

(see Machina [15]). Similarly, the degenerate lotteries �ci 2 Fi (i = 1; 2) and �c 2 J
with certain payo¤s ci 2 Ci and c = (c1; c2) 2 C, respectively, will be referred to as
one point c.d.f.s. The set of degenerate lotteries �ci is denoted as F�

i .

Throughout this section and the next, preferences over the choice space J are

denoted by �J and are assumed to be representable according to the Expected

Utility principle where U : C1 � C2 ! R is a twice continuously di¤erentiable,

strictly increasing and (weakly) concave NM index such that, for all J1; J2 2 J ,
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J1 �J J2 i¤ Z
C1

Z
C2

U (c1; c2) dJ1(c1; c2) �
Z
C1

Z
C2

U (c1; c2) dJ2(c1; c2):

First we de�ne risk neutrality in the single attribute case. Assume preferences

are de�ned over the space of univariate distributions F2 and are denoted by �F2.9

FollowingMas-Colell, Whinston and Green [16], p. 185, one can de�ne risk neutrality

toward a given nondegenerate lottery as follows.

De�nition 1 An individual is risk neutral toward a given nondegenerate lottery
F2 (c2) 2 F2 if and only if the degenerate lottery �c2 that pays o¤ c2 =

R
c2F2(c2)

with certainty satis�es �c2 sF2 F2.

If the single attribute preferences admit an Expected Utility representation, it

is well-known that the NM index must be linear for an individual to be risk neutral

toward all nondegenerate lotteries F2 (c2) 2 F2 in the sense of De�nition 1.10

In order to de�ne risk neutrality in the case where lotteries pay o¤ vectors c =

(c1; c2) 2 C, we adopt the following natural extension of De�nition 1.11

De�nition 2 (Safra and Segal [21]) An individual is risk neutral toward a given
nondegenerate lottery J (c1; c2) 2 J if and only if the degenerate lottery �(c1;c2) that

pays o¤ (c1; c2) with certainty satis�es �(c1;c2) sJ J , where

c1 =

Z
c1dF1(c1) and c2 =

Z
c2dF2(c2);

F1 (x) =

Z x

0

Z
C2

dJ (c1; c2)

and

F2 (x) =

Z x

0

Z
C1

dJ (c1; c2) :

9We have chosen to use the notation c2 and F2 for the univariate case, since it can be directly

applied to the special bivariate case considered in Section 5 where the �rst commodity is certain

and the second is risky.
10It should be noted that if we do not require an individual to be risk neutral toward all lotteries,

then risk neutral behavior can occur if the NM index is linear over an interval of its domain. Since

risk neutral behavior for this case is very similar to the case where the NM index is linear over its

entire domain, we will simply include it as a special case of the linear form. A similar assumption

will be made for the analogous multivariate case.
11In the following de�nition and elsewhere when a lottery J (c1; c2) 2 J is referred to as being

nondegenerate, this will be understood to exclude lotteries of the form �(c1;c2) but not lotteries

associated with the pairs (�c1 ; F2 (c2)) or (F1 (c1) ; �c2).
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Remark 1 It should be noted that when de�ning risk neutrality along the lines of
De�nition 2 above, Safra and Segal [21] (i) assume the individual is risk neutral

toward all lotteries J (c1; c2) 2 J and (ii) do not assume the preferences are Expected

Utility representable. But they prove that risk neutrality together with the Axiom of

Degenerate Independence (ADI), i.e., 8J 2 J , c; c0 2 C1 � C2 and � 2 [0; 1]

c �C c0 , �J + (1� �) �c �J �J + (1� �) �c0 ;

implies the Strong Independence Axiom and hence the preferences are Expected Util-

ity representable. Since the individual is assumed to be risk neutral to all lotteries,

the NM index will take the linear form (1). Grant, Kajii and Polak [7] introduce

Bifurcation Risk Neutrality (BRN), where preferences �J over bivariate lotteries are
said to exhibit BRN if and only if 8J 2 J , c; c0 2 C1 � C2 and �; � 2 [0; 1]

�J + (1� �) ��c+(1��)c0 �J �J + (1� �) (��c + (1� �) �c0) :

Grant, Kajii and Polak argue that BRN is stronger than the Safra and Segal risk

neutrality de�nition and hence also implies the Strong Independence Axiom together

with ADI. Therefore BRN is also consistent with our De�nition 2 and assumption

that preferences are Expected Utility representable although it di¤ers in de�ning risk

neutrality as holding for all lotteries rather than for just a subset of nondegenerate

lotteries. Richard [18] proposes another de�nition for multivariate risk neutrality,

where a consumer�s Expected Utility preferences are said to be risk neutral if and

only if her NM index U (c1; c2) satis�es

@2U (c1; c2)

@c1@c2
= 0:

This de�nition is based on the correlation between the random variables ec1 and ec2,
which is totally di¤erent from the notion of risk neutrality discussed in this paper.

If the De�nition 2 characterization of risk neutrality holds for all nondegenerate

lotteries J (c1; c2) 2 J , then we obtain the following natural analogue of the restric-
tion on the NM index for the univariate case (the proof is provided in the online

Appendix F).12

Corollary 1 An individual is risk neutral toward all nondegenerate lotteries J 2 J
in the sense of De�nition 2 if and only if her NM index takes the linear form in eqn.

(1).

12Corollary 1 can be viewed as a special case of Theorem 7 in Safra and Segal [21]. However, it

should be emphasized that Safra and Segal [21] only consider the case where the consumer is risk

neutral toward all distributions.
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The notion of a risk neutrality region follows naturally from De�nition 2.

De�nition 3 A risk neutrality region is a set of nondegenerate distributions bJ� J
where each J 2 bJ satis�es J sJ �(c1;c2) and �(c1;c2) is de�ned as in De�nition 2.13

As illustrated by Example 1, an Expected Utility maximizer can exhibit risk

neutral behavior toward a subset of distributions even if her NM index does not

take the linear form (1). As a result, Corollary 1 is too strong in that it gives

conditions when an individual is or is not risk neutral toward all J 2 J . In the

next section we consider when, as in Example 1, an individual with an NM index U

can exhibit risk neutral behavior toward a subset of distributions in J .

4 Risk Neutrality Regions

4.1 Minimum Concavity Points, Minimum Concavity Di-
rections and Least Concave Utility

To understand why the consumer in Example 1 (i) is risk neutral toward lottery L1
even though the NM index does not take the linear form (1) and (ii) is not risk neutral

toward L3, it will prove useful to review de Finetti�s [5] notion of least concave utility

(also see Debreu [3]). Having assumed the existence of Expected Utility preferences

where the NM index U is twice continuously di¤erentiable, strictly increasing and

concave, we can introduce the following de�nition.

De�nition 4 Let U denote the set of all increasing monotone transforms of the

twice continuously di¤erentiable, concave, strictly increasing real-valued function U .

Then u 2 U is said to be least concave if and only if all other concave members of
U are concave transforms of u, where u will always be assumed to be de�ned up to
a positive a¢ ne transform.

Then we have the following existence result.

Proposition 1 (Debreu [3]) Assume that preferences over J are representable by

an Expected Utility function where the concave NM index U 2 U . Then there exists
a least concave representation u de�ned on C such that

U = f � u; (7)

where f is concave.

13Since risk neutrality toward degenerate lotteries is automatically satis�ed, in the rest of paper

when discussing the risk neutrality region bJ , we will exclude the degenerate lotteries.
10



Figure 3: Minimum Concavity Directions

Given a concave NM index U , the process of �nding its least concave utility u can

be broken into two steps. First, at each point c, identify the one or more directions

of �maximum�convexity (or "minimum" concavity) as represented by the arrows

in Figure 3. Following Fenchel [6], this search process corresponds to �nding the set

of directions (�1; �2) as functions of (c1; c2) (if they exist) that yield the following

in�mum14

a(c) = inf
f�:U1(c)�1+U2(c)�2 6=0g

� U11(c)�
2
1 + 2U12(c)�1�2 + U22(c)�

2
2

(U1(c)�1 + U2(c)�2)
2 ; (8)

where c = (c1; c2) and the partial derivatives Ui(c1; c2) = @U(c1; c2)=@ci and

Uij(c1; c2) = @2U(c1; c2)=@ci@cj (i; j = 1; 2). The vector (�1; �2) where the in�-

mum is attained (if it exists) will be referred to as a minimum concavity direction

(MCD). For the special cases, where the MCD corresponds to the slope of vertical

or horizontal rays through (c1; c2), we follow the standard convention of referring to

the directions as (0; 1) and (1; 0), respectively.15

Having found the directions, the second step is to pick an indi¤erence curve

U = t and then search along this curve for the speci�c point(s) c = (c1; c2) where

14As additional clari�cation, de�ning

q (c1; c2; �1; �2) = �
U11(c)�

2
1 + 2U12(c)�1�2 + U22(c)�

2
2

(U1(c)�1 + U2(c)�2)
2 ;

the process of selecting directions in eqn. (8) generates the functions �1(c1; c2) and �2(c1; c2).

Substituting these functions back into q yields a(c):
15Since in the two dimensional case, the MCD can be characterized equivalently by a vector or

a slope, we use these two terms interchangeably.
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concavity is minimized according to

G(t) = inf
fc:U(c)=tg

a(c) > �1: (9)

Such a point will be referred to as a minimum concavity point (MCP). The least

concave utility u can be derived from the following integration of G(t)16

u = F (U) =

Z U

exp

�Z t

G(s)ds

�
dt: (10)

This formula de�nes u as a function of U (for each constant U). If U itself is a

function of c, then the repeated integral (10) yields a composite function u(c) =

u(U(c)). Given that U is assumed to be twice continuously di¤erentiable, if we

further assume that the Gaussian curvature of the indi¤erence curves is positive

and the indi¤erence curves are compact on their compacti�ed domain, then a(c) and

G(t) are continuous (see Kannai [9] for a detailed discussion). (See the discussion of

compactifying the set C prior to De�nition 5 below.) It follows that u is also twice

continuously di¤erentiable. One can interpret eqn. (10) as using the transform F to

adjust the concavity of U at the point(s) determined by (9) in the (�1; �2) direction

obtained from (8) to the linear level, resulting in the least concave utility u. It

should be noted that for a general U , although a(c) is minimized at the MCP in the

corresponding MCD, it may not reach zero. However if one uses the least concave

utility, then at each MCP, denoted c� = (c�1; c
�
2), a(c

�) becomes zero, i.e.,h
�1(c

�
1; c

�
2) �2(c

�
1; c

�
2)
i
Hu(c�1;c�2)

"
�1(c

�
1; c

�
2)

�2(c
�
1; c

�
2)

#
= 0: (11)

Since (�1; �2) cannot be a zero vector and the Hessian matrix is negative semide�nite,

eqn. (11) implies that detHu = 0. For a strictly concave utility U , the Hessian

matrix is negative de�nite and hence detHU can be zero only at limit (boundary)

points. Therefore given a candidate concave utility u, if detHu = 0 at some interior

points, then u is least concave (for further discussion, see Kannai and Selden [10],

footnote 8).

The MCD at the MCP (c�1; c
�
2) based on the least concave utility u is given in

the following proposition.17

Proposition 2 At the MCP (c�1; c
�
2), if the Hessian matrix based on u is not the

zero matrix and satis�es

u1u22 � u2u12j(c�1;c�2) 6= 0 or u2u11 � u1u12j(c�1;c�2) 6= 0;

16It should be noted that throughout this paper, all such double integrations give rise to constants

which can be ignored given that the resulting representations are de�ned only up to positive a¢ ne

transformations.
17Unless indicated otherwise, proofs are provided in the Appendix to this article.
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then the MCD is proportional (or parallel) to the vector18

(u1u22 � u2u12; u2u11 � u1u12)j(c�1;c�2) :

If the Hessian matrix based on u is the zero matrix, then every direction is a MCD.

We next discuss the connection between the set of MCPs and the MCDs. It

will be convenient to compactify the commodity space. In fact given that a MCP

may not be in the commodity space C, it is advantageous for certain forms of U to

compactify C so as to include its boundary points (which may be in�nite). Then one

can de�ne minimum concavity at a boundary point c by the asymptotic vanishing

of the ratio of the Hessian and the Bordered Hessian determinants as points in C

approach c. This compacti�ed domain is referred to as the extended domain C.

The notion of extending the domain to include limit points is commonplace. See, for

instance, Rockafellar ([19], pp. 24-25). We may now state the following de�nitions.

De�nition 5 C� is the set of all MCPs in the extended domain C associated with

u.

De�nition 6 C[ac1+ bc2+ d] = f(c1; c2) 2 C j ac1+ bc2+ d = 0g. S[ac1+ bc2+ d]
is a connected subset of C[ac1 + bc2 + d].

Remark 2 Since C[ac1+bc2+d] represents a ray in C, its connected subset S[ac1+
bc2 + d] can be understood as a line segment (or ray). The reason to introduce the

line segment is that for some utility functions, the set of MCPs may consist of a

part or several parts of a ray but not the whole ray.19 This is illustrated explicitly

in the example considered in the online Appendix J.

Assume that S[ac1 + bc2 + d] � C�, implying that each point along the line

segment is a MCP. Then as shown in Figure 4(a), the slope of this MCP line

segment is given by �a
b
. If for each MCP

(c�1; c
�
2) 2 S[ac1 + bc2 + d];

18For example, assuming the Cobb-Douglas utility, we have u =
p
c1c2. Since the set of MCPs

is the whole space, it can be veri�ed that

�2 (c
�
1; c

�
2)

�1 (c
�
1; c

�
2)
=
u2u11 � u1u12
u1u22 � u2u12

����
(c�1 ;c�2)

=
c�2
c�1
:

19Given that consumption is not allowed to be negative, the set C[ac1 + bc2 + d] corresponds

to a ray or line segment rather than a line since one end of the ray is always in the non-negative

orthant.
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(a) (b)

Figure 4: Slope of the MCP line segment and MCD

the MCD always equals �a
b
, i.e.,

�2(c
�
1; c

�
2)

�1(c
�
1; c

�
2)
= �a

b
;

then the slope of the MCP line segment and the MCD are the same. This is shown

in Figure 4(b).

In Example 1, it can be veri�ed that the assumed NM index (2) is a¢ nely

equivalent to the least concave utility u and the set of MCPs is the whole space

(0; 5)2.20 It should be emphasized that Kannai and Selden ([10], Proposition 4)

have proved that if the utility function is (ordinally) additively separable (i.e., there

exists a utility function U representing the preference such that U(c) =
Pn

i=1 Ui(ci)),

then the set of MCPs is the whole space if and only if preferences are homothetic

or quasihomothetic. Example 1 demonstrates that if U is not additively separable,

which is the case for the utility (2), then the set of MCPs can still be the whole space

even though preferences are neither homothetic nor quasihomothetic. For this U in

Example 1 at any MCP (c�1; c
�
2), the MCD is given by (�1 (c

�
1; c

�
2) ; �2 (c

�
1; c

�
2)) = (1; 1).

Therefore for any line segment parallel to the 45� degree ray, the MCD is the same as

the slope of the ray. Thus an individual with the NM index (2) was seen to be risk

neutral toward lottery L1 which has its payo¤s on a line segment parallel to the 45�

ray. For other lotteries such as L3 with payo¤s lying on line segments not parallel

to the 45� degree ray, the individual does not exhibit risk neutrality. Clearly for

this utility there exist risk neutrality regions, and the least concave utility, the set

20It should be noted that utilities being a¢ nely equivalent will be understood to be short-hand

for the utilities being equivalent up to a positive a¢ ne transformation.
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of MCPs and the MCDs play important roles in determining risk neutral behavior.

4.2 Generalized Conditions for Risk Neutrality

We next (i) provide necessary and su¢ cient conditions for when an individual will

exhibit risk neutral behavior and (ii) characterize the subset of lotteries or equiva-

lently distributions bJ � J toward which the individual is risk neutral.

Proposition 3 Assume that the NM index U = f �u where f is a strictly increasing
and concave transformation, u is the least concave utility as derived from eqn. (10)

and U does not take the linear form (1). The consumer will be risk neutral toward

a given nondegenerate lottery J 2 J if and only if

(i) f is a positive a¢ ne transformation;

(ii) 9a; b; d 2 R, such that the payo¤s of J are in the set S[ac1 + bc2 + d], where
S[ac1 + bc2 + d] � C� and

(iii) 8(c1; c2) 2 S[ac1 + bc2 + d], (�1(c1; c2); �2(c1; c2)) _ (b;�a).

Remark 3 If the Hessian matrix becomes the zero matrix at all of the MCPs, then
for every vector (�1; �2), one always haveh

�1 �2

i
Hu(c�1;c�2)

"
�1
�2

#
= 0;

implying that every direction is a MCD and hence condition (iii) in Proposition 3

automatically holds.

Remark 4 In Proposition 3, an individual will be risk neutral toward a given non-
degenerate lottery J only if the payo¤s of the lottery are collinear in the MCD. Thus,

the only set of distributions that can satisfy Proposition 3 and comprise bJ are those

with perfectly correlated payo¤s.

It should be emphasized that Proposition 3 gives necessary and su¢ cient condi-

tions for when an individual can simultaneously exhibit multivariate risk neutrality

and possess an NM index not taking the linear form (1). Moreover, the risk neutral

region bJ of the choice space is comprised only of lotteries with collinear payo¤s lying
on one or more rays C[ac1 + bc2 + d] or line segments S[ac1 + bc2 + d]. We want to

emphasize that an NM utility taking the least concave form is not su¢ cient for the

existence of risk neutrality regions. The restrictions on the set of MCPs and the

MCDs play a crucial role. First although the set of MCPs can be a ray, its slope can
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diverge from the MCD. This is illustrated by least concave utility corresponding to

the NM index

U(c1; c2) = 2
p
c1 � c�12 ;

where (c1; c2) 2 (0; 3] � (0;1). Second, a least concave utility need not become

linear at the set of MCPs. Third, the set of MCPs can correspond to a curve as is

the case for the following least concave utility

u (c1; c2) = 8
�
c2 � c21

�
�
�
c2 � c21

�4
+ 24c1 + 10c2;

where (c1; c2) 2 (0; 1)2. In each of these cases, the set bJ is empty. (See the online

Appendix H for additional discussion.)

Remark 5 In Kihlstrom and Mirman [13] and Kihlstrom [14], the authors use De-
breu�s [3] decomposition U = f �u to analyze multiperiod savings behavior and asset
pricing. They consider the special case of homothetic preferences. Kihlstrom [14],

p. 638, argues that "in the Kihlstrom-Mirman approach, u is the risk neutral repre-

sentation of preferences". However it should be emphasized that in the multivariate

case, the least concave utility u for general preferences results in risk neutral behavior

only for the special subset of lotteries characterized in Proposition 3.

We next illustrate the application of Proposition 3 assuming an individual�s NM

index takes the classic CES (constant elasticity of substitution) form. As is well-

known, the corresponding least concave utility is given by

u(c1; c2) = (c
��
1 + c��2 )

�1=� (� 6= 0 and � > �1) ; (12)

where C = (0;1)2. Since CES preferences are homothetic, every point in C is a

MCP.21 To �nd the MCD, it is straightforward to show that

(1; k)THu(c1;kc1)(1; k) = 0 8c1 2 C1; k > 0:

It follows that each MCP lies on a ray through the origin. Corresponding to the

MCP (c1; kc1), both the MCD and the slope of the ray through this point are equal

to k. Hence following Proposition 3, each ray through the origin corresponds to a

risk neutral ray. See Figure 5.22

Given the ability of CES preferences to meet the requirements for the existence of

risk neutrality regions, it is natural to wonder if homotheticity is perhaps a necessary

21See Kannai and Selden [10], Proposition 3.
22It should be noted that although the risk neutral rays in Figure 5 look like expansion paths

corresponding to di¤erent price ratios, any geometric similarity is purely coincidental. This is

con�rmed by Example 1, where we continue to have risk neutral line segments but since preferences

are not homothetic or quasihomothetic, the expansion paths are not linear.
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Figure 5: CES Risk Neutral Rays

condition. However, this is not the case since the NM index (2) in Example 1 is

clearly neither homothetic nor quasihomothetic.23

4.3 Summary: Special Cases

Eight classes of utility functions are considered in Table 1. The �rst column gives

the number of the utility class, the second column gives the form of the utility and

the third column gives parametric restrictions that can result in di¤erent entries

in other columns. Columns 4-6, respectively, provide the corresponding MCD,

least concave utility and MCPs. Columns 7 and 8 will be discussed in the next

section. All eight classes are ordinally additively separable. The special cases of

CES utilities, classes 2-4, are homothetic. Class 1 and the negative exponential class

5 are quasihomothetic.24 Classes 6-8 are neither homothetic nor quasihomothetic.

The class 8 utility function was introduced by Wold and Jureen [25] to illustrate

Gi¤en good behavior.

23Although the CES and Example 1 utilities, (12) and (2) respectively, are characterized by

multiple risk neutral rays and line segments, this need not always be the case. Consider the

following utility

u (c1; c2) = 10c1 + 20c2 � (c2 � c1)2
�
c22 + 4

�
;

where (c1; c2) 2 (0; 1)2. It can be veri�ed that u is strictly increasing, concave and satis�es

u11u22 � u212 = (c1 � c2)
2 �
4� 3c22

�
� 0;

where the equal sign holds if and only if c1 = c2. Thus, the set of minimum concavity points

corresponds to the single line segment c2 = c1 (0 < c1 < 1). Since this utility function becomes

linear along this line segment, it results in risk neutral behavior.
24Pollak [17] observes that the negative exponential utility is homothetic to the translated origin

(�1;�1).

17



U
R
es
tr
ic
ti
on

(�
1
(c
� 1;
c� 2
)
;�
2
(c
� 1;
c� 2
))

u
(c
� 1;
c� 2
)

u
x
�

1
(a
+
bc
1
)�

�

�
�

+
(d
+
ec
2
)�

�

�
�

C
1
=
(0
;1
);
C
2
=
(0
;1
)

�
>
0

�
<
0

 a b
+
c� 1
;

d e
+
c� 2

!
 (a

+
bc
1
)�
�
+

(d
+
ec
2
)�
�

! �1 �
C
1
�
C
2

 (a
+
bc
1
)�
�
+

(d
+
ec
2
)�
�

! �1 �
 

(a
+
bc
1
)�
�
+

(d
+
ec
2
)�
�
�
a
�
�

! �1 �
1 0

2
�
c�

�
1 �
�
c�

�
2 �

C
1
=
(0
;1
);
C
2
=
(0
;1
)

�
>
0

�
<
0

(c
� 1;
c� 2
)

� c�� 1
+
c�
�

2

� �1=�
C
1
�
C
2

� c�� 1
+
c�
�

2

� �1=�
1 0

3
�
c�

�
1 �
�
c�

�
2 �

C
1
=
[a
;b
];
C
2
=
(0
;1
)

�
>
0

�
<
0

(c
� 1;
c� 2
)

� c�� 1
+
c�
�

2

� �1=�
C
1
�
C
2

� c�� 1
+
c�
�

2
�
b�
�
� �1=�

� c�� 1
+
c�
�

2
�
a
�
�
� �1=�

b a

4
ca 1
cb 2

C
1
=
(0
;1
);
C
2
=
(0
;1
)

(c
� 1;
c� 2
)

c
a
a
+
b

1
c

b
a
+
b

2
C
1
�
C
2

c
a b 1
c 2

(0
;1
)

5
�
e�

�
1
c
1

�
1
�
e�

�
2
c
2

�
2

C
1
=
(0
;1
);
C
2
=
(0
;1
)

(�
2
;�

1
)

�
ln
� e��

1
c
1

�
1
+

e�
�
2
c
2

�
2

�
C
1
�
C
2

�
ln
� e��

1
c
1

�
1
+

e�
�
2
c
2

�
2

�
1

6
�
c�

�
1

1 �
1
�

c�
�
2

2 �
2

C
1
=
(0
;1
);
C
2
=
(0
;1
)

� 1
>
� 2
>
0

� 2
>
� 1
>
0

0
>
� 1
>
� 2

0
>
� 2
>
� 1

� c� 1 � 1+
1
;

c� 2
�
2
+
1

�
� � 2 � 1c

�
�
1

1
+
c�
�
2

2

� �1=�
1

� � 2 � 1c
�
�
1

1
+
c�
�
2

2

� �1=�
2

� � 2 � 1c
�
�
1

1
+
c�
�
2

2

� �1=�
2

� � 2 � 1c
�
�
1

1
+
c�
�
2

2

� �1=�
1

c� 2
=
1

c� 1
=
1

c� 1
=
0

c� 2
=
0

� � 2 � 1c
�
�
1

1
+
c�
�
2

2

� �1=�
2

� � 2 � 1c
�
�
1

1
+
c�
�
2

2

� �1=�
2

� � 2 � 1c
�
�
1

1
+
c�
�
2

2

� �1=�
2

� � 2 � 1c
�
�
1

1
+
c�
�
2

2

� �1=�
2

1 1 0 0

7
�
c�

�
1

1 �
1
�

c�
�
2

2 �
2

C
1
=
[a
;b
];
C
2
=
(0
;1
)

� 1
>
0
>
� 2

� 2
>
0
>
� 1

� c� 1 � 1+
1
;

c� 2
�
2
+
1

�
 �

2

�
1

� c�� 1 1
�
a
�
�
1
�

+
c�
�
2

2
+

�
2
+
1

�
1
+
1
a
�
�
1

!�1 � 2
 �

2

�
1

� c�� 1 1
�
b�
�
1
�

+
c�
�
2

2
+

�
2
+
1

�
1
+
1
b�
�
1

!�1 � 2
c� 1
=
a

c� 1
=
b

 � 2 � 1
� c�� 1 1

�
a
�
�
1
�

+
c�
�
2

2

!�1 � 2
 � 2 � 1

� c�� 1 1
�
b�
�
1
�

+
c�
�
2

2

!�1 � 2
a b

8
U
=

(c
1
�
1
)

(c
2
�
2
)2

C
1
=
(1
;1
);
C
2
=
(0
;2
)

(c
� 1
�
1;
c� 2
�
2)

�
(c
2
�
2
)2

(c
1
�
1
)

C
1
�
C
2

c 2
�
2

p
c 1
�
1

(1
;1
)

T
ab
le
1:
L
ea
st
co
nc
av
e
ut
ili
ty
,
M
C
P
s
an
d
M
C
D
fo
r
cl
as
si
c
fo
rm
s
of
U

*
�;
� 1
;�
2
>
�
1;
a
;b
;d
;e
>
0
an
d
�
1
;�

2
>
0
fo
r
al
l
th
e
ex
am
pl
es
on
th
e
ta
bl
e.

18



5 The Certain � Risky Special Case

So far, we have focused on the case where both choice variables are risky. How-

ever in a number of important applications, such as the classic consumption-savings,

consumption-portfolio and multiperiod asset pricing problems, it is common to as-

sume that consumption in the �rst period is certain and risky in subsequent periods.

For this certain � risky case, the necessary and su¢ cient conditions for risk neu-

trality require modi�cation.

Moreover except in special cases, the least concave utility derived in the prior

section does not extend to the certain � risky setting. This fact does not seem to

have been recognized in the literature (see, for example, the analysis in Kihlstrom

and Mirman [13] and Kihlstrom [14]). Failure to make this distinction can result in

an improper characterization of risk neutrality regions in the certain � risky choice
space.

5.1 De�nition of Risk Neutrality

In seeking to extend the necessary and su¢ cient conditions for risk neutrality sum-

marized in Proposition 3 to the certain � risky setting, one essential di¤erence is

that the certainty of c1 forces the MCD to be (�1; �2) = (0; 1) in C1 � C2 and re-
quires that the least concave utility be linear in this direction. This results in a

generally di¤erent least concave utility from the bivariate risk case. Consistent

with this restriction on the MCD, in this section we will denote the certain � risky
choice space as C1�F2 and assume that the preferences �C1�F2 are representable by
an Expected Utility function

R
C2
U (c1; c2) dF2(c2), where the NM index U is twice

continuously di¤erentiable, strictly increasing and (weakly) concave in c2. This con-

cavity assumption di¤ers from of the bivariate risky case in Sections 3 and 4 where

U was assumed to be (weakly) concave in both c1 and c2. (The signi�cance of this

di¤erence is illustrated by the case of Cobb-Douglas utility discussed in Subsection

6.1 below.) It will prove convenient to introduce the following de�nition of risk

neutrality for the certain � risky case.25

De�nition 7 For a given pair (c1; F2(c2)) 2 C1�F2, an individual is said to be risk
neutral toward the nondegenerate lottery F2 (c2) if and only if (c1; F2(c2)) �C1�F2
25Given our assumption that preferences in the bivariate risky setting, �J , are representable

by an Expected Utility function, it follows that preferences in the certain � risky setting will also
be representable by an Expected Utility function if the latter preferences agree with the former

when restricted to C1 � F2. In this case, clearly De�nition 7 is a special case of De�nition 2.

However as noted by Rossman and Selden [20], p. 75, there may be good reasons for not making

this embedding argument, such as the consumer simply not possessing preferences outside the

economically meaningful world of C1 �F2.
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(c1; �c2), where �c2 denotes the degenerate distribution paying o¤ c2 =
R
c2dF2 (c2)

with certainty.

It is clear that for all pairs (c1; F2(c2)) 2 C1�F2, an investor will be risk neutral
toward each of the corresponding nondegenerate lotteries F2(c2) in the sense of

De�nition 7 if and only if her NM index U (c1; c2) takes the following form which is

linear in c2 but not necessarily linear in c1

U (c1; c2) = h (c1) c2 + g (c1) ; (13)

where h (c1) > 0 and g (c1) are strictly increasing functions. The fact that the NM

index U in (13) can be nonlinear in c1, implies that it di¤ers from the restriction

(1) associated with risk neutrality in the bivariate risky case. However if U takes

the form (1), then it also satis�es (13) as can be seen by de�ning � = h(c1) and

�c1 +  = g(c1).

5.2 Minimum Concavity Points, Minimum Concavity Di-
rection and Least Concave Utility

A key element in the derivation of the least concave utility u is the determination of

the minimum concavity direction (�1; �2). However given the change in the choice

space from J to C1 � F2, the MCD can no longer be any direction as in Figure

6(a). Rather, the MCD can only be the direction (�1; �2) = (0; 1) as indicated in

Figure 6(b) since movement between points not on vertical rays is precluded by the

�rst variable being certain. The least concave utility u, derived from eqn. (10),

despite satisfying detHu = 0 at minimum concavity points, will in general fail to (i)

be �linear�in the required direction (�1; �2) = (0; 1) and (ii) satisfy u22 = 0. Hence

one cannot use u as the basis for de�ning risk neutrality regions in C1 �F2.
We next derive the least concave utility which is appropriate for the choice space

C1 � F2. Substitution of the required direction (�1; �2) = (0; 1) into eqn. (8) and

following the same process as was used to derive u yields

a(c) = � U22(c)

(U2(c))2
;

G(t) = inf
fc:U(c)=tg

a(c) > �1

and

u = F (U) =

Z U

exp

�Z t

G(s)ds

�
dt; (14)

where the �bars�over a, G, F and u indicate that the functions correspond to the

certain � risky choice space. Given that U is assumed to be twice continuously
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(a) (b)

Figure 6: MCD Comparison

di¤erentiable, it is clear that a(c) and G(t) are continuous. It follows that u is also

twice continuously di¤erentiable. It should be noted that u may not be concave,

although it satis�es u22 � 0.
The following de�nes a minimum concavity point for u.

De�nition 8 Along any given indi¤erence curve U = t, a MCP (c�1; c
�
2) for u is

de�ned by26

u22(c
�
1; c

�
2) = 0:

(See the online Appendix I for a more complete analysis of u.)

We next characterize the relationship between u and u.

Proposition 4 The utility functions u and u are equivalent up to a positive a¢ ne
transformation if and only if u is concave.

It should be noted that if the NM index U is not concave, then u may not exist.

But u can still exist.27 This is illustrated in the following example.

26There can be one or many c1-values associated with MCPs in the (0; 1) direction. Consider

the Cobb-Douglas case referenced as class 4 in Table 1. For the least concave utility u(c1; c2)

every point in C1�C2 is a MCP and the utility is linear in the (0; 1) direction for any vertical ray.
For the other members of the CES class of utility functions (classes 1-3 in Table 1), u22 = 0 only

at a single c1-value.
27When each choice variable is risky, Debreu�s [3] su¢ cient condition for the existence of u is

the concavity of U . Analogously in the certain � risky case, U22 � 0 is su¢ cient for the existence
of u.
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Example 3 Assume the NM index takes the form

U(c1; c2) =
c2

2� c1
;

where c1 2 (0; 2) and c2 2 C2. Clearly U is not concave. A simple computation

shows that the right hand side of eqn. (8) blows up if �1
�2
= c1�2

c2
and u fails to exist.

(A non-computational argument on this point due to Aumann [1] is reproduced in

Kannai [9].) On the other hand, there exists a u which is equivalent up to a positive

a¢ ne transform to U since

a(c)j(�1;�2)=(0;1) = �
U22
U22

= 0 <1:

When u and u fail to be a¢ nely equivalent, one obtains the following decompo-

sition of a given NM index U , which di¤ers from the decomposition in eqn. (7),

U = f � u;

where f is the modi�ed Debreu representation of an individual�s risk preferences.

To connect the set of MCPs to risk neutrality in the certain � risky setting, we
next introduce the following de�nitions analogous to De�nitions 5 and 6.

De�nition 9 C
�
is the set of all the minimum concavity points in the extended

domain C associated with u.

Re�ecting the requirement that the MCD must correspond to (�1; �2) = (0; 1),

the de�nitions of a ray and line segments in De�nition 6 are next modi�ed to ensure

that c1 = d.

De�nition 10 C[c1 � d] = f(c1; c2) 2 C j c1 � d = 0g. S[c1 � d] is a connected
subset of C[c1 � d].

We next give necessary and su¢ cient conditions for risk neutrality regions in

C1 � F2, where the NM index U can take forms other than just the linear utility

(13) which ensures risk neutrality toward all lotteries F2(c2) 2 F2 in the choice
space.

Proposition 5 Assume that U = f � u where f is a strictly increasing and con-
cave transformation, u is the least concave form as derived from eqn. (14). For

a given pair (c1; F2(c2)) 2 C1 � F2, the consumer will be risk neutral toward the
nondegenerate lottery F2 (c2) if and only if

(i) f is a positive a¢ ne transformation and
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(ii) 9 d 2 R+, such that the lottery payo¤s are in the set S[c1�d], where S[c1�d] �
C
�
.

In the certain � risky setting, if the conditions in Proposition 5 are satis�ed,

then an individual will be risk neutral toward any lottery with the payo¤s along the

vertical line segment (or ray) S [c1 � d].28

Table 1 permits a direct comparison between the cases where both c1 and c2 are

risky and only c2 is risky for the eight classes of utilities discussed earlier. For u the

MCDs (�1 (c
�
1; c

�
2) ; �2 (c

�
1; c

�
2)) are given in column 4, whereas for u it is understood

that (�1 (c
�
1; c

�
2) ; �2 (c

�
1; c

�
2)) = (0; 1) holds for each of the 8 classes. Column 7 gives

u and column 8 provides the special c1 values, denoted x�, which characterizes the

vertical ray containing the MCPs where u22 = 0. From inspecting the table, it

will be noted that in a number of cases, u and u are not a¢ nely equivalent. For

instance the class 1 utility, corresponding to the HARA (hyperbolic absolute risk

aversion) family, provides an interesting example of how the least concave utilities

can diverge.

It can be seen from the last column in Table 1 that for each of the eight classes

of utility, x� either lies at a boundary of C1 or corresponds to any point in C1.

However in general, this is not the case as can be seen by considering the NM index

(4) used in Examples 2 and 4. It can be veri�ed that this U is concave. Noticing

that

U22(c1; c2) = �2 (c1 � 0:5)2 � 0;

where the equal sign is reached at c1 = 0:5, it follows that U and u are a¢ nely

equivalent. The set of MCPs corresponds to (and only to) the vertical line segment

de�ned by c1 = 0:5 (c2 2 (0; 1)) and the consumer is risk neutral toward all lotteries
along this line segment.29 This explains why in the examples, when c1 = 0:5 the

28It should be noted that a least concave u may exist, but condition (ii) in Proposition 5 may

be violated and no risk neutrality region will exist. Consider Examples H.2 and H.3 in the online

Appendix H, where that u and u are a¢ nely equivalent. For u corresponding to eqn. (H.3) in

Example H.2, the set of MCPs lies along a set of interior horizontal rays. An individual with this

utility is not risk neutral toward any points along a vertical ray as required by the MCD equalling

(0; 1). For u corresponding to eqn. (H.8) in Example H.3, the set of MCPs corresponds to an

interior curve c2 = c21 and not along a vertical ray.
29There also exist NM indices such that the set of MCPs corresponds to a set of discrete vertical

line segments. Suppose the NM index is a¢ nely equivalent to

u (c1; c2) = �1c1 + �1c2 �
 

nY
i=1

(c1 � i)
!2 �

�2c
2
2 + �2c2 + 2

�
;

where �1; �1; �2; �2; 2 are appropriately chosen to ensure that u is strictly increasing. Then

u22 = 0 for each i 2 (1; :::; n). However, in general, u will be neither concave nor a¢ nely

equivalent to u.
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consumer exhibits an indi¤erence to a mean preserving spread in risk and why at

an aggregate economy endowment of c1 the equilibrium risk premium equals 0.

It should be noted that for each of the utilities considered in Table 1, u is linear

in c2 along one or all vertical rays where every point on each ray is a MCP. In each

case, an individual will be risk neutral toward all lotteries with payo¤s on these

vertical rays. However, this is not true in general as illustrated by the discussion

in footnote 28 and online Appendix J. Corresponding to two di¤erent c1-values,

one portion of the MCPs lies along a line segment and a second portion lies along a

ray. In terms of condition (ii) in Proposition 5, there are two di¤erent vertical sets

S[c1 � d0] and S[c1 � d00] corresponding to the two portions of C
�
. As a result the

choice space is comprised of two discrete risk neutrality regions.

6 Applications

In this section, we investigate the implications of our risk neutrality analysis for the

classic consumption-savings problem and a representative agent equilibrium asset

pricing model, which assumes the two period certain � risky setting. In the online
Appendix K, a single period consumption-bequest optimization model is considered

where both variables are risky. We show that Proposition 3 can be directly employed

in this setting to characterize when the equilibrium expected return on a risky asset

equals the risk free rate.

6.1 Income Risk: Confounding u and u

As referenced in Remark 5, the Debreu decomposition U = f �u has been employed
in consumption-savings applications. Unfortunately this decomposition has been

used in cases where the �rst period is a certain and the choice space corresponds

to C1 � F2. To illustrate the type of incorrect conclusions that can be reached by
not using the appropriate u introduced in the prior section, assume the consumer�s

preferences are represented by the familiar Cobb-Douglas form referred to as class

4 in Table 1

U (c1; c2) = c
a
1c
b
2 (a; b > 0) :

From columns 5 and 7, respectively, in the table, the least concave utilities are given

by30

u (c1; c2) = c
a
a+b

1 c
b

a+b

2 and u (c1; c2) = c
a
b
1 c2:

30Kihlstrom [14], p. 637, discusses the application of Cobb-Douglas utility in a two period

consumption-savings problem, where the �rst period is certain. However, he incorrectly uses u

instead of u to characterize risk neutral behavior.
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Assume two time periods, where certain �rst period and random second period

consumption are denoted, respectively, by c1 and ec2. The consumer is endowed

with certain period one income I1 and random period two income eI2. Let s1 denote
period one savings. The consumer maximizes EU(c1;ec2) subject to

c1 = I1 � s1 and ec2 = eI2 + s1:
The optimization problem can be expressed as

max
s1

EU
�
I1 � s1; eI2 + s1� : (15)

We next consider the e¤ect of a mean preserving spread (see footnote 6) of eI2 on
optimal s1 where the NM index takes the Cobb-Douglas form.

Result 1 Consider the consumption-savings problem (15). If U = f � u, where f
is a positive a¢ ne transformation and

u (c1; c2) = c
a
1c
b
2 (a; b > 0 and a+ b = 1) ;

then the optimal saving s�1 strictly increases with a MPS of eI2. If U = f � u, where
f is a positive a¢ ne transformation and

u (c1; c2) = c
a
b
1 c2 (a; b > 0 and a+ b = 1) ;

then the optimal saving s�1 is unchanged with a MPS of eI2.
From Result 1, it can be seen that s�1 is unchanged with a mean preserving

spread of eI2, or the consumer is risk neutral, if the NM index is a¢ nely equivalent

to u. However when period one consumption is certain, erroneously using u as the

least concave utility leads to the incorrect conclusion that the consumer changes her

savings behavior in response to increased period two income risk. The reason for

this can be seen from observing that

u = ub:

Thus, incorrectly using u results in the consumer being risk averse since u is more

concave than u. It should be also noted that the widely used log additive two

period NM index U can as well be viewed as a concave transformation of u, i.e.,

lnu. Therefore, the consumer with the log NM index is also risk averse. This is

consistent with the well known result that if utility takes the additively separable

form U(c1; c2) = U1(c1) + U2(c2) and the third derivative of the component utility

U2(c2) is positive, then savings strictly increase with a MPS of second period income.
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6.2 Two Period Consumption-Portfolio Equilibrium

Consider a two period representative agent exchange equilibrium based on a consumption-

portfolio optimization. In period one, the agent chooses c1 as well as asset holdings

in a risky asset and risk free asset. Let n and nf denote the number of units of

the risky asset and risk free asset, respectively. The period two payo¤s on the risky

and risk free assets are given respectively by e� and �f > 0. Random period two

consumption is given by ec2 = e�n+ �fnf :
The agent maximizes EU (c1;ec2) subject to the budget constraint

c1 + pn+ pfnf � c1 + pn+ pfnf ; (16)

where p and pf are the prices of the risky and risk free assets and c1, n and nf are

respectively the endowments of period one consumption, the risky asset and the risk

free asset. The following demonstrates that the equilibrium risk premium can be

zero for a speci�c endowment of period one consumption and is positive for other

values of c1 even though the NM index does not take the linear form (13).

Example 4 Assume a representative agent pure exchange economy, where the rep-
resentative agent�s NM index is given by eqn. (4) as in Example 2. Maximizing (4)

subject to the budget constraint (16), it follows from the �rst order conditions that

equilibrium asset prices are given by

p =
E
h
5e� � 2 (c1 � 0:5)2 e� �e�n+ �fnf�i

5:5� 2 (c1 � 0:5)E
��e�n+ �fnf�2 + 4� (17)

and

pf =
E
h
5�f � 2 (c1 � 0:5)

2 �f

�e�n+ �fnf�i
5:5� 2 (c1 � 0:5)E

��e�n+ �fnf�2 + 4� : (18)

As is standard, de�ne the equilibrium risk premium by

E eR�Rf = Ee�
p
�
�f
pf
:

Substituting from (17) and (18), yields

E eR�Rf =

Ee� �5:5� 2 (c1 � 0:5)E ��e�n+ �fnf�2 + 4��
E
h
5e� � 2 (c1 � 0:5)2 e� �e�n+ �fnf�i

�
5:5� 2 (c1 � 0:5)E

��e�n+ �fnf�2 + 4�
E
h
5� 2 (c1 � 0:5)2

�e�n+ �fnf�i : (19)
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Figure 7: Risk Premium versus Period One Consumption Endowment

Assuming the following parameters

�1 = 3; �2 = 0:2; �f = 1; �1 = 0:6; n = 0:5 and nf = 0;

where � i is the payo¤ of e� with the probability �i (i = 1; 2), we plot in Figure 7
the risk premium E eR � Rf for di¤erent values of the endowment c1. It will be

noted that the risk premium is strictly positive for all values of c1 6= 0:5, implying
the representative agent and the economy are risk averse. The fact that the risk

premium equals 0 at c1 = 0:5, can be con�rmed easily by substituting c1 = 0:5 into

eqn. (19), which yields

E eR�Rf = 5:5Ee�
5Ee� � 5:5

5
= 0:

Thus for this particular endowment, the economy is risk neutral even though the

representative agent�s NM index (4) does not take the linear form (13). This is

because the representative agent�s utility (4) assumed here is a least concave utility

u as discussed in Subsection 5.2. As a result, it follows from Proposition 5 that the

risk neutrality region S[c1 � d] corresponds to the vertical c1 = 0:5.31

31It will be observed that when c1 = 0:5, no matter what values n and nf take, we always have

E eR�Rf = 0. The reason is that when c1 = 0:5, the utility function (4) becomes U = 2:75+ 5c2,
which is linear. Therefore, the indi¤erence curves corresponding to

EU = 2:75 + 5
�
Ee�n+ �fnf�

are parallel lines in n � nf space with slope equal to �Ee�=�f . Therefore the representative

agent�s indi¤erence curves will coincide with the budget line with the same slope, implying that
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7 Conclusion

In this paper, we extend the univariate characterization of risk neutrality to the

multivariate case for Expected Utility preferences where for the latter the NM index

is assumed not to be linear in each of its arguments. Building on Debreu�s [3]

decomposition of the NM index into a risk preference function and a least concave

utility and utilizing the notions of minimum concavity points and minimum concav-

ity directions, we characterize risk neutral behavior for the case where each of the

choice variables is risky and for the case where one variable is certain. As appli-

cations we show that, even though the bivariate NM index of an Expected Utility

maximizer is not linear in both arguments, (i) an individual consumer�s optimal sav-

ings behavior can be una¤ected by a mean preserving spread in income risk and (ii)

a representative agent two period equilibrium risk premium can be zero for certain

speci�c consumption endowments.

In this paper we focus only on the Expected Utility case. However since con-

siderable laboratory evidence suggests that the observed behavior of individuals can

be inconsistent with the Expected Utility axioms, an area of potentially interest-

ing future research would seem to be to consider the extension of our analysis to

non-Expected Utility models such as Cumulative Prospect Theory, Rank Dependent

Utility and Ambiguity preferences (see, for example, Wakker [24] for an excellent

summary of these models).

Appendix

A Proof of Proposition 2

Denoting32

� =
�2
�1
;

for the least concave form u, we have

a(c) = inf
f�:u1(c)�1+u2(c)�2 6=0g

� u11(c) + 2u12(c)� + u22(c)�
2

(u1(c) + u2(c)�)
2 :

If at c� = (c�1; c
�
2) the Hessian matrix based on u is the zero matrix, then for any �,

the following must always hold

u11(c
�) + 2u12(c

�)� + u22(c
�)�2 = 0;

if p=pf = Ee�=�f , there are in�nite number of optimal asset allocations. If p=pf 6= Ee�=�f , there
is no interior optimum. Thus in equilibrium when c1 = 0:5, p=pf = Ee�=�f holds for any (n; nf )
values implying that E eR�Rf = 0.
32As noted below prior to Remark 6, this discussion is valid even if �1 = 0.
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implying that a(c�) reaches an in�mum and hence every direction is a MCD. Oth-

erwise, taking the derivative of

u11(c
�) + 2u12(c

�)� + u22(c
�)�2

(u1(c�) + u2(c�)�)
2

with respect to � and setting it to be zero yields

(2u12 + 2u22�) (u1 + u2�)
2 � 2 (u1 + u2�)u2

�
u11 + 2u12� + u22�

2
�

(u1 + u2�)
4

=
(2u12 + 2u22�) (u1 + u2�)� 2u2

�
u11 + 2u12� + u22�

2
�

(u1 + u2�)
3

=
2 (u1u12 � u2u11) + 2� (u1u22 � u2u12)

(u1 + u2�)
3 = 0;

implying that

� (c�1; c
�
2) =

�2 (c
�
1; c

�
2)

�1 (c
�
1; c

�
2)
=
u2u11 � u1u12
u1u22 � u2u12

����
(c�1;c�2)

:

When u1u22 � u2u12j(c�1;c�2) 6= 0, the MCD is proportional (or parallel) to the vector

(u1u22 � u2u12; u2u11 � u1u12)j(c�1;c�2) :

When u1u22 � u2u12j(c�1;c�2) = 0 (corresponding to �1 = 0) and u2u11 � u1u12j(c�1;c�2) 6=
0, it is clear that the MCD continues to be proportional (or parallel) to the vector

(u1u22 � u2u12; u2u11 � u1u12)j(c�1;c�2) :

Remark 6 If one uses the coordinate system where c1 corresponds to the direction

tangent to the indi¤erence curve and c2 corresponds to the direction normal to the

indi¤erence curve (the price direction), then the MCD can be obtained from

�2 (c
�
1; c

�
2)

�1 (c
�
1; c

�
2)
= �u12

u11
;

where u11 measures the strict concavity of u. (See Kannai [9], p. 301.)

B Proof of Proposition 3

To prove this proposition, we �rst state and prove the following lemma which can be

used to directly verify whether u becomes linear on S[ac1+ bc2+d] without deriving

the MCPs and MCDs.

Lemma 1 Assume that the NM index U = f � u where f is a strictly increasing
and concave transformation, u is the least concave utility derived from eqn. (10) and
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U does not take the linear form de�ned in (1). The consumer will be risk neutral

toward a given nondegenerate lottery J 2 J if and only if the lottery�s payo¤s lie

on S[ac1+ bc2+ d], f is a positive a¢ ne transformation and u becomes linear along

this line segment.

First prove su¢ ciency. Suppose the lottery�s payo¤s lie on the line segment

S[ac1+bc2+d]. Without loss of generality, assume that b 6= 0. Since f is a positive
a¢ ne transformation and the consumer�s NM index becomes linear along this line

segment, we can conclude that

u (c1; c2) = u

�
c1;�

d+ ac1
b

�
= �c1 + �:

For any S-state lottery with the payo¤s along the line segment S[ac1 + bc2 + d]

SX
s=1

�su (c1s; c2s) = �
SX
s=1

�sc1s + � = u

 
SX
s=1

�sc1s;
SX
s=1

�sc2s

!
;

implying that the consumer is risk neutral. Next prove necessity. Without loss

of generality, consider a lottery with two states.33 Assume the lottery pays (c1; c2)

with probability � and (c01; c
0
2) with probability 1 � �, where c1 6= c01. Denote the

line segment going through (c1; c2) and (c01; c
0
2) as ac1 + bc2 + d = 0. Since c1 6= c01,

it follows that b 6= 0. Then

U (c1; c2) = U

�
c1;�

d+ ac1
b

�
and U (c01; c

0
2) = U

�
c01;�

d+ ac01
b

�
:

Therefore, along the line segment ac1 + bc2 + d = 0, U (c1; c2) can be viewed as a

function of c1. It can be veri�ed that

@2U(c1; c2 (c1))

@c21
= U11 + 2U12

@c2
@c1

+ U22

�
@c2
@c1

�2
+ U2

@2c2
@c21

:

On the line segment ac1 + bc2 + d = 0, @
2c2
@c21

= 0 and @c2
@c1
= �a

b
and hence

@2U(c1; c2 (c1))

@c21
= U11 �

2a

b
U12 +

a2

b2
U22 =

h
1 �a

b

i
HU

"
1

�a
b

#
;

where HU is the Hessian Matrix. Since U is concave, HU is negative semide�nite,

implying that @
2U(c1;c2(c1))

@c21
� 0. Therefore along the line segment ac1 + bc2 + d = 0,

33For the lotteries with more than two states, one can use the argument in this proof to consider

the comparison between the payo¤s in any two arbitrary states and their mean. Then one can

treat their mean as a new state and apply the argument in the proof again to this new state and

another state. An example illustrating this process is given in the online Appendix G.
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U(c1; c2 (c1)) is a concave function in c1. It follows from Jensen�s inequality that

�U(c1; c2) + (1� �)U(c01; c02)

= �U

�
c1;�

d+ ac1
b

�
+ (1� �)U

�
c01;�

d+ ac01
b

�
� U

�
�c1 + (1� �) c01;�

d+ a (�c1 + (1� �) c01)
b

�
= U (�c1 + (1� �) c01; �c2 + (1� �) c02) ;

where the equal sign holds if and only if c1 = c01 or U(c1; c2 (c1)) is linear in c1.

Since it is assumed that c1 6= c01, the consumer will be risk neutral only if her

NM index becomes linear on the line segment ac1 + bc2 + d = 0. If f is not an

a¢ ne transformation, then U is strictly concave. Therefore HU is negative de�nite,

implying that @2U(c1;c2(c1))

@c21
< 0 always holds and hence the consumer�s NM index

cannot be linear in c1, which contradicts the conclusion above. Therefore, we require

that f is an a¢ ne transformation and u becomes linear along ac1 + bc2 + d = 0.

This completes the proof.

Next we prove Proposition 3. Following Lemma 1, we only need to show that

the consumer�s NM index will become linear along the line segment S[ac1+ bc2+ d]

if and only if all points on this line segment are MCPs and the MCD is the same

as the slope of this line segment. The consumer�s NM index U = u (we ignore the

a¢ ne transformation for simplicity) is linear along the line segment S[ac1+ bc2+ d]

if and only if 8 (c1; c2) 2 S[ac1 + bc2 + d],
@2u(c1; c2 (c1))

@c21
= 0:

This implies that

u11 + 2u12
@c2
@c1

+ u22

�
@c2
@c1

�2
+ u2

@2c2
@c21

= 0:

Noticing that @
2c2
@c21

= 0 and @c2
@c1
= �a

b
, we can obtain

u11 �
2a

b
u12 +

a2

b2
u22 = 0;

or equivalently h
1 �a

b

i
Hu

"
1

�a
b

#
= 0:

Following the derivation of the set of MCPs, this implies that (c1; c2) is a minimum

concavity point, or equivalently S[ac1 + bc2 + d] � C� and
�2(c1; c2)

�1(c1; c2)
= �a

b

is a MCD.
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C Proof of Proposition 4

First prove necessity. If u(c) = au(c) + b for some a > 0, then clearly u is concave.

Next prove su¢ ciency. If u is concave, then u 2 U , and there exists a strictly
monotone real-valued concave function g de�ned on the range of u such that u =

g(u). If g00(t) < 0 with t = u(c1; c2), then straightforward computation shows that
u22
u22
� g00(t)

g0(t)2 , so that
u22
u22
cannot vanish (or tend to zero) along the indi¤erence curve

u(c1; c2) = t. Therefore u and u are equivalent up to a positive a¢ ne transformation.

D Proof of Proposition 5

For the certain � risky setting, since c1 is �xed, the lottery�s payo¤s must stay on

the vertical line segment S[c1�d]. Since U (d; c2) is concave in c2, following Jensen�s
inequality, the consumer will become risk neutral toward a nondegenerate lottery

with payo¤s along the vertical line segment S[c1� d] if and only if U (d; c2) is linear
in c2, which is equivalent to the condition that f is a positive a¢ ne transformation

and S[c1 � d] � C
�
.

E Proof of Result 1

First we prove that using u, s�1 increases with a MPS of eI2. Ignoring the a¢ ne

transformation, we can assume U = u. Then the optimization problem is given by

max
s1

E

�
(I1 � s1)a

�eI2 + s1�b� ;
where a+ b = 1. It follows from the �rst order condition that

�a (I1 � s1)a�1E
��eI2 + s1�b�+ b (I1 � s1)aE ��eI2 + s1�b�1� = 0;

or equivalently,

E

��eI2 + s1�b�1�
E

��eI2 + s1�b� =
a

b (I1 � s1)
: (20)

Since 0 < b < 1,
�eI2 + s1�b�1 is a convex and decreasing function of eI2 and�eI2 + s1�b is a concave and increasing function of eI2. Therefore, assuming that

eI2(t) = eI2 + t�eI2 � EeI2� ;
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we have

A =
@

@t
E

��eI2(t) + s1�b�1� > 0
and

B =
@

@t
E

��eI2(t) + s1�b� < 0:
Since

�eI2(t) + s1�b�1 is a decreasing function of s1 and �eI2(t) + s1�b is an increasing
function of s1,

C =
@

@s1
E

��eI2(t) + s1�b�1� < 0
and

D =
@

@s1
E

��eI2(t) + s1�b� > 0:
Taking the natural logarithm on both sides of equation (20), yields

lnE

��eI2(t) + s1�b�1�� lnE ��eI2(t) + s1�b� = ln a
b
� ln (I1 � s1) : (21)

Then implicitly di¤erentiating (21) with respect to t, one obtains

@
@t
E

��eI2(t) + s1�b�1�+ ds1
dt

@
@s1
E

��eI2(t) + s1�b�1�
E

��eI2(t) + s1�b�1�

�
@
@t
E

��eI2(t) + s1�b�+ ds1
dt

@
@s1
E

��eI2(t) + s1�b�
E

��eI2(t) + s1�b�
=

1

I1 � s1
ds1
dt
;

which is equivalent to

A

E

��eI2(t) + s1�b�1� �
B

E

��eI2(t) + s1�b�

=
ds1
dt

2664� C

E

��eI2(t) + s1�b�1� +
D

E

��eI2(t) + s1�b� +
1

I1 � s1

3775 :
Since A > 0; B < 0; C < 0 and D > 0,

ds1
dt
> 0:
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Next we show that using u, s�1 is una¤ected by a MPS of eI2. When U = f � u,
ignoring the positive a¢ ne transformation, the optimization problem is

max
s1

E
h
(I1 � s1)

a
b

�eI2(t) + s1�i :
It follows from the �rst order condition that

�a
b
(I1 � s1)

a
b
�1
�
EeI2 + s1�+ (I1 � s1)ab = 0;

or equivalently,

(I1 � s1)
a
b =

a

b
(I1 � s1)

a
b
�1
�
EeI2 + s1� : (22)

Taking the natural logarithm on both sides of equation (22), yields

a

b
ln (I1 � s1) = ln

a

b
+
�a
b
� 1
�
ln (I1 � s1) + ln

�
EeI2 + s1� : (23)

Implicitly di¤erentiating (23) with respect to t, one obtains

� a

b (I1 � s1)
ds1
dt
= � a� b

b (I1 � s1)
ds1
dt
+

1

EeI2 + s1 ds1dt ;
implying that

ds1
dt
= 0:
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