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Abstract. In this paper, we study multi-fiber optical networks with wavelength division multiplexing
(WDM). We extend the definition of the well-known Wavelength Assignment Problem (WAP) to the case
of k fibers per link and w wavelengths per fiber, generalization that we will call (k,w)-WAP. We develop
a new model for the (k,w)-WAP based on conflict hypergraphs. Furthermore, we consider two natural op-
timization problems that arise from the (k,w)-WAP: minimizing the number of fibers k given a number of
wavelengths w, on one hand, and minimizing w given k, on the other. We develop and analyze the practical
performance of two methodologies based on hypergraph coloring.
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Introduction

Wavelength division multiplexing (WDM) is one of the most promising optical network
technologies. This technology is capable of transmitting multiple signals through the
same fiber by using different wavelengths for each of them. As the interference among
signals is minimal, WDM permits an efficient use of the high bandwidth offered by
optical fibers. Our work focuses on WDM network design in real-life scenarios, both
from theoretical and practical perspectives. Of course, operators are interested in mini-
mizing the costs incurred in the network configuration. This leads to a design problem
commonly known as the wavelength assignment problem (WAP), which received con-
siderable attention in the literature [Robertson and Seymour, 22; Beauquier et al., 2;
Caragiannis et al., 3; Ramaswami and Sivarajan, 21].
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Assume that an operator possesses a WDM network and clients who request to
route traffic between pairs of nodes. First, the operator establishes paths, called light-
paths in this context, to route each demand’s traffic. After lightpaths are determined
and before the network can start transmitting, the operator has to solve the WAP which
consists in assigning wavelengths to lightpaths. The assignment must be done in such
a way that any two paths that meet in a link are assigned different wavelengths, other-
wise their signals would scramble making decodification impossible. In this paper, we
consider the problem of determining paths already solved and concentrate on the one of
assigning wavelengths. It is not hard to see that under the usual assumption that fibers
have unlimited capacity (i.e., they can transmit an arbitrary number of wavelengths), the
WAP is equivalent to the path coloring problem in standard graphs [Chlamtac et al., 4].
Moreover, these problems are also equivalent to the well-known graph coloring prob-
lem by mapping the n lightpaths to a graph of n vertices, where two vertices are adjacent
if their corresponding lightpaths meet in an arc. This reduction implies that for some
number δ > 0, there cannot exist an nδ-approximation algorithm for the WAP unless
P = NP [Hochbaum, 8]. As a consequence, a large fraction of the work in this field
concentrated on specific topologies like line networks, rings, trees and meshes; and on
specific communication patterns [Kumar, 10; Erlebach et al., 7].

From the telecommunications operator viewpoint, one of the largest costs incurred
while deploying an optical network stems from physically trench-digging to bury the op-
tical fibers. Hence, to protect themselves from demand uncertainties and failures, oper-
ators usually install many fibers. Although frequently fibers are used independently, the
opportunity to exploit this redundancy gives rise to multi-fiber WDM networks (MWNs).
Unfortunately, the existing work on single-fiber networks cannot be extended to MWNs
in a straightforward manner. Indeed, the model used for the WAP on single-fiber net-
works fails to fully capture the benefits of having more fibers per link. In fact, in contrast
to single-fiber networks, the presence of multiple fibers adds an extra degree of freedom
when choosing wavelengths for paths: the same wavelength may be used in each of the
different fibers.

Margara and Simon [16], Li and Simha [13], and Choi et al. [5] studied some theo-
retical properties of the new setting. For instance, they proved that increasing the number
of fibers per link often simplifies the optical routing problem. In particular, although the
WAP is NP-complete on single-fiber undirected stars, it becomes polynomial if a second
fiber is available on each link. Note that using k fibers per link immediately allows a re-
duction of the number of wavelengths by a factor of k. In fact, multiple fibers may reduce
the number of required wavelengths even further: for all k and w, there exist a network
and a set of communication requests such that exactly w wavelengths are necessary to
solve the problem with k fibers per link while one wavelength is enough with k + 1
fibers. More generally, [Margara and Simon 17] proved that for any network N , there
exists a number k(N ) such that any set of paths in N admits a wavelength assignment
with k(N ) fibers per link.

Unfortunately, results of this flavor, which specifically determine the impact of hav-
ing multiple fibers, either hold for very specific networks (e.g., [Margara and Simon, 16;
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Li and Simha, 13]) or are not useful in practice [Margara and Simon, 17]. Nevertheless,
some practical results can be found in the literature too. For example, Baroni et al. [1]
consider path length constrained routing, wavelength assignment, wavelength conver-
sion, and link failure restoration. They present an integer program and heuristics to
minimize the total number of fibers used in the network. In addition, Hyytiä and Vir-
tamo [9] propose the utilization of metaheuristics as simulated annealing and tabu-search
for MWNs design. Both papers show that adding fibers could improve the network ef-
ficiency. Saad and Luo [23] address the dual problem of maximizing the number of
lightpaths that can be established on a given network. They use a Lagrangian decompo-
sition of certain integer programs to obtain tractable heuristics.

Another problem previously considered was that of dynamic traffic in which light-
paths have to be set-up and released dynamically. Kuri et al. [11] addressed dynamic and
deterministic traffic. In this case, set-up and release times of lightpaths are assumed to
be known in advance, which allows a tabu-search metaheuristic to solve the optimization
problem off-line. Zhang and Qiao [25], and Li and Somani [14] study stochastic traffic
using an on-line approach. They show that multi-fiber networks are more efficient than
single-fiber networks with the same capacity per link (the capacity of a multi-fiber link
is the sum of the capacities of each fiber in the link). The use of multi-fiber links leads to
a performance that is equivalent to the one provided by limited wavelength conversion.

Most of the methodologies that we mentioned are based on heuristics and there-
fore it is not possible to compute performance guarantees for the solutions that they
provide. This issue cannot be addressed without introducing a more formal modeling
technique. For that reason, in this paper we propose an approach that mixes theory with
an operational viewpoint. We build a general framework and propose a new hypergraph
for modeling wavelength conflicts that arise in MWNs. To validate these concepts, we
illustrate our approach with experiments on two real-world backbone networks: the Eu-
ropean COST 239 and the Pan-American. Indeed, we solve the corresponding optimiza-
tion problems with both exact integer programming formulations and approximation
algorithms with bounded factor. For the former, we consider commercial LP/IP solvers
while for the latter we implement the two algorithms that we propose. The first of them
is a randomized algorithm whose approximation guarantee depends on the logarithm
of the routing load, defined as the maximum number of paths going through an edge.
The second uses randomized rounding to get a good solution, followed by re-coloring to
make it feasible. Its guarantee is the best-known approximation factor for this problem,
namely the logarithm of the length of the longest path.

The organization of this paper can be summarized as follows. First, in section 1,
we precisely define the (k,w)-WAP in MWNs that we previously described informally.
Furthermore, we develop a model that generalizes the notion of a conflict hypergraph
used for single-fiber networks. This model captures more accurately the lightpath in-
terdependencies in multi-fiber networks. With it, we build a bridge between results in
the literature about hypergraph coloring and the (k,w)-WAP. Then, in section 2, we
analyze the computational complexity of our problem. In fact, we prove that minimiz-
ing the number of wavelengths w is NP-hard, even in the case where the number of



126 FERREIRA ET AL.

fibers k is fixed in advance, answering an open question regarding the complexity of this
problem. In sections 3 and 4, we analyze the theoretical and practical performance of
different algorithms, some of which are exact while others are approximations based on
the hypergraph coloring problem. Finally, we conclude and present further directions of
research in section 5.

1. Problem formulation

In this section, we formally define the (k,w)-WAP, the conflict hypergraph, and some
other related concepts. Let N be an instance of a MWN described by the graph
G = (N,L) and a set of communication paths P on G that join the origins of the
demands with their destinations. Assume further that each link in L contains k fibers
and that there are w wavelengths available. The (k,w)-WAP asks for an assignment of
wavelengths to paths satisfying that no more than k paths using one link are assigned
the same wavelength. Therefore, in the solution each wavelength will be assigned to at
most one of the fibers of a link, as required. To formalize the constraints, we define the
conflict hypergraph of the set of paths P as follows (see figure 1).

Definition 1. The conflict hypergraph H = (V ,E) of the paths P is the hypergraph
given by a vertex v ∈ V for each path p ∈ P, and an hyperedge e ∈ E for every link
� ∈ L. The hyperedges of H contain the vertices corresponding to paths going through
the corresponding link; i.e., link � generates a hyperedge e = {v: � ∈ path represented
by v}.

The four main parameters of the hypergraph H can be expressed in terms of N
and P:

• the number of vertices n := |V | = |P|;
• the number of hyperedges m := |E| = |L|;
• the rank t := max�∈L |{P ∈ P: � ∈ P }|, which is called the load of P;

• the maximum degree � := maxv∈V |{e ∈ E: e 
 v}|. Note that � �
maxp∈P length(p), which is called the diameter of the routing.

Figure 1. A ring network and the corresponding conflict hypergraph.
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Notice that a vertex coloring of the conflict hypergraph induces a feasible wave-
length assignment to the paths if and only if no hyperedge contains more than k vertices
with the same color. This motivates the following definition.

Definition 2. Given a hypergraph H = (V ,E) and a set of colors C = {1, . . . , c}, a
mapping f :V → C is a (k, c)-coloring if no hyperedge contains more than k vertices
with the same color; i.e., for all e ∈ E and all χ ∈ C, |{v ∈ e: f (v) = χ}| � k.

It is easy to see from definitions 1 and 2, that there is a one-to-one correspondence
between the (k, c)-colorings of the conflict hypergraph of P and the feasible wavelength
assignments to these paths. Since we can build the conflict hypergraph H in polyno-
mial time, this implies a polynomial time reduction from the (k,w)-WAP to the (k, c)-
coloring problem. It is not trivial, however, that the converse is also true, since the
hypergraph coloring problem may seem at first to be a more general (and harder) prob-
lem than the WAP. In fact, the two are equivalent and because of that we use the terms
‘color’ and ‘wavelength’ interchangeably.

2. Complexity of wavelength assignment in MWNs

In this section we prove the equivalence between the (k,w)-WAP and the (k, c)-
coloring problem. Furthermore, we prove that the decision version of the (k,w)-WAP is
NP-complete even in the case where k is fixed and present a lower bound on the number
of colors needed in a (k, c)-coloring of a (hyper)clique.

Theorem 1. The (k, c)-coloring problem is polynomially equivalent to the (k,w)-WAP
on MWNs.

Proof. Since we have argued in section 1 that there is a reduction from the (k,w)-WAP
to the (k, c)-coloring problem, the theorem would be proven if we show the converse.
Thus, we need to show that any hypergraph H is the conflict hypergraph of a set of
paths P on a network N , where the cardinalities of P and N are polynomial in the size
of H . For instance, let H = (V ,E) be an arbitrary hypergraph, where V = {v1, . . . , vn}
and E = {e1, . . . , em}. We build a network N and a set of paths P of cardinality n as
follows (refer to figure 2 for an illustration).

• We create a first layer just containing a column of nodes x0
1 , . . . , x

0
n from where paths

will originate.

• For each hyperedge ei ∈ E, we add one layer in N that contains:

– nodes yi and y′
i joined with an edge;

– a column of n nodes xi1, . . . , x
i
n;

– for each vertex vj ∈ ei , we add the edges (xi−1
j , yi) and (y′

i , x
i
j );

– for each vertex vj /∈ ei , we add the edge (xi−1
j , xij ).
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Figure 2. Reduction from a hypergraph H to a network N discussed in theorem 1.

• For each vertex vj ∈ V , we add a path pj from x0
j to xmj through nodes x1

j , . . . , x
n−1
j

and also through nodes yi and y′
i when needed.

From construction, a conflict between two paths pj and pk can occur only on an
edge of the form (yi, y

′
i ) such that both vj and vk belong to ei . Therefore, H is exactly

the conflict hypergraph of P on N . Last, polynomiality follows because |P| = n and
|N | = O(mn). �

The graph coloring decision problem, which asks for an answer to the question
“Can a graph G be colored using c colors or less?” is known to be NP-complete. Noting
that the decision version of the (k, c)-coloring problem for k = 1 is exactly the coloring
problem, we get the following corollary.

Corollary 2. The decision version of the (k,w)-WAP on a MWNs is NP-complete for
an arbitrary k.

Moreover, and not too surprisingly, the problem remains difficult even with a
fixed k. Indeed, the following theorem implies that the decision version of the (k,w)-
WAP on a MWNs is NP-complete for any fixed k.

Theorem 3. The decision version of the (k, c)-coloring problem is NP-complete for any
fixed k.

Proof. To prove the claim we reduce the (k, c)-coloring problem to the graph coloring
problem. Indeed, assume we are given a graph G with n nodes and m edges. We must
prove that it is c-colorable if and only if a certain hypergraph H that will define from G

is (k, c)-colorable. Note that we can assume that c < n because otherwise the graphs can
always be colored. We will defineH in such a way that it has a single (k, c)-coloring (up
to permutations of the colors) and each of the c colors repeated on exactly k + 1 nodes.
We now explain how to construct the mentioned hypergraph H .

First, we construct a hypergraph Q for which we can guarantee that there are
c nodes that span all the colors. Next, we extend Q to H in a way that it is colorable if
and only if G is colorable.
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• Let Kn,t denote a hypergraph with n nodes that contains all possible hyperedges of
rank t . A valid (k, c)-coloring of the clique Kck,k+1 is any coloring that satisfies that
each color χ is assigned to exactly k nodes, where χ = 1, . . . , c .

• Consider the hypergraph Q = Kck,k+1 ∪ {v1, . . . , vc}; fix a valid coloring for the
clique as described before; and color vi with color i, for i = 1, . . . , c. Last, add
to Q all the possible (k + 1)-hyperedges that would not contain k + 1 nodes of the
same color. By construction, it is clear that this coloring is the only possible one (up
to permutations), so every color is used k + 1 times.

• Let H = Q and add to H the node-set of G. Then, for each edge (i, j) of G, we add
c hyperedges as follows: for each color χ include any k − 1 nodes that have color χ
in Q and the nodes corresponding to i and j in H .

For each edge e ∈ G, the set of c hyperedges in H constraints the (k, c)-coloring
problem to assign two different colors to the endpoints of e, which is exactly the con-
straint of the graph coloring problem. Then, if we can (k, c)-color the hypergraph, no
two nodes coming from adjacent vertices of G are assigned the same color. This means
that a coloring of H is valid for G and vice versa.

What remains to be seen is that the transformation is polynomial in the parameters.
The total number of nodes is c(k + 1)+ n which is polynomial in the input. Notice also
that all the hyperedges we used have rank k + 1, therefore a (loose) upper bound for the
number of edges is that of the clique Kc(k+1)+n,k+1 , which amounts to(

c(k + 1)+ n
k + 1

)
�

(
n(k + 2)
k + 1

)
� nk+1(k + 2)k+1

(k + 1)! .

For the first inequality we used the assumption that c < n. As this is certainly polynomial
in n and k is fixed, the claim follows. �

2.1. A lower bound

Extending the notion of cliques in graphs, we can give a lower bound for the number of
colors needed in a (k, c)-coloring, by using (hyper)cliques, as follows.

Lemma 4. A (k, c)-coloring of Kn,t is feasible if and only if

c �




⌈
n

k

⌉
if t > k,

1 otherwise.

Proof. The case in which t � k is straightforward since when the hyperedges have
rank less than k, there is no restriction on the coloring and therefore one color is enough.

For the case in which t > k, suppose that Kn,t can be colored with c colors.
Then, there exists a color χ such that there are �n/c� nodes colored with it. Since the
(k, c)-coloring was feasible and all hyperedges of rank t are present, we must have that
�n/c� � t . Moreover, there is a hyperedge that contains �n/c� vertices colored with χ ,
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from where �n/c� � k. The claim follows because the minimum number that satisfies
the previous condition is �n/k�.

For instance, due to the symmetry of the hypergraph, the only possible (k, c)-
coloring (up to permutation of the colors) is given by assigning colors to vertices uni-
formly. �

The lemma above bounds the number of colors required to color any hypergraph
that contains Kn,t , yielding the following generalization of the fact that the chromatic
number of a graph is larger than the size of its maximum clique (just make t = 2 and
k = 1).

Corollary 5. Let H be a hypergraph containing Kn,t . If H can be (k, c)-colored, with
k < t , then c � �n/k�.

3. Tools for designing MWNs

In this section, we will present two scenarios in the design of multi-fiber networks. The
number of fibers per link and the number of available wavelengths are two concurrent
optimization parameters and we have no informations on how to compare their costs.
Therefore we consider the two mono-criteria optimization problems where one of these
parameters is fixed. The equivalence between solving the WAP for P and computing
(k, c)-colorings of H allows us to concentrate on the latter. Hence we consider the
problems of finding the minimum k (respectively c) such that there is a feasible (k, c)-
coloring of H with c (respectively k) given. We address these two problems in sec-
tions 3.1 and 3.2, respectively.

3.1. Minimizing the number of fibers

We consider first the problem of minimizing the number of fibers when the number of
colors is given. This optimization is related to the situation an operator faces when
setting up a new network or when the operator tries to keep a set of free fibers for
robustness concerns or for renting them to other clients.

Using the hypergraph model, we can formulate the problem as a minimax integer
program [Srinivasan, 24]. For that, we define (0, 1)-integer variables xij , for all i ∈ V
and 1 � j � c, such that xij = 1 if and only if node i is colored with color j and xij = 0
otherwise. The variable k is a common upper bound for the constraints defined by each
hyperedge. The optimal number of fibers can be found by solving IP 1.

Integer program 1.

minimize k (minimize # of fibers)

subject to
∑
c

xic = 1 ∀ node i,
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∑
i∈H
xic � k ∀ color c, ∀ hyperedge H,

xic ∈ {0, 1} ∀ color c, ∀ node i.

Srinivasan [24] showed that a randomized rounding of the optimal solution of the
LP relaxation of IP 1 produces, with positive probability, a solution that is feasible and
approximates the optimal up to a factor of the order of the logarithm of the hypergraph
degree. As said before, the degree of the conflict hypergraph of a set of paths equals to
the diameter of the corresponding routing. This result uses an extension of the Lovász
local lemma given in the same article. Inspired by this existential result, Lu [15] pro-
posed a combinatorial and randomized algorithm which computes a solution within an
approximation ratio not too far from the one given by [Srinivasan, 24]. This algorithm
proceeds by successive recoloring phases. A first phase colors the vertices of the hyper-
graph randomly with a third of the set of colors. It then detects the hyperedges where
there are too many vertices with the same color and colors them once again randomly
with another third of the colors. Lu [15] shows then that with high probability the set
of vertices that are still to badly colored if small enough for an optimal, hence expo-
nential, coloring to be done with the last third of colors. The analysis of the algorithm
shows that the approximation ratio is of the order of the logarithm of the load of the
routing.

Leighton et al. [12] proposed recently an enhancement of this algorithm. Their
idea comes from the remark that Lu’s algorithm behaves as if it was doing a randomized
rounding of a straightforward solution of the LP relaxation of IP 1 but considering the
colors by thirds of the set. This strategy leads to an inefficient use of the available colors
and to solutions that are worse than what promises the theoretical analysis of [Srini-
vasan 24]. Leighton et al. [12] want to build a solution close to the one Srinivasan showed
the existence and start their algorithm with a randomized rounding of the LP relaxation.
In order to be sure to get a good solution, they use recoloring techniques inspired by those
of [Lu, 15]. Using linear programming for the randomized rounding is costly in terms
of computing effort, but provides an efficient guide for constructing solutions within
the theoretical approximation ratio. Furthermore, we shall show in section 4 that the
recoloring phases are not used in practical situations since the randomized rounding
yields solutions that are close to optimality. More generally, the analysis of algorithms
based on randomized rounding are often very pessimistic in practice. This remark is
certainly to be related to the fact that the algorithms of both [Lu, 15] and [Leighton et al.,
12] can be derandomized using the conditional probability with pessimistic estimator
methodology.

3.2. Minimizing the number of wavelengths

Given the number k of fibers on each link of the network, we now would like to mini-
mize the number of wavelength required for the WAP. As an example, this optimization
might model the interest of an operator who wants to upgrade the node equipments of an
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existing network. In terms of hypergraph coloring, this means minimizing the number
of colors c such that a valid (k, c)-coloring of the hypergraph exists. We present an IP
formulation for this problem below. We define a variable xij for each node i and each
color j : xij = 1 if node i is colored with color j , and 0 otherwise. We have seen that
the number of colors is bounded by �n/k� if there are n nodes, this bound being tight
when the graph is an hyperclique. We also define a variable yj for each color j , yj = 1
if there is at least one node with color j . This variables allows for counting the number
of colors really used.

Integer program 2.

minimize
∑
c

yc (minimize # of colors)

subject to
∑
c

xic = 1 ∀ node i,
∑
i∈H
xic � k ∀ color c, ∀ hyperedge H,

xic � yc ∀ color c, ∀ node i,
xic, yc ∈ {0, 1} ∀ color c, ∀ node i.

One could remark that IP 2 is not of high practical interest. Indeed, the program is
big with O(n2) variables and O(n2m) constraints (we could reduce the number of con-
straints to O(nm) if the solver generates cuts automatically). Moreover, the symmetry
of the formulation is critical: Mehrotra and Trick [19] have shown that the branch-and-
bound techniques will waste a lot of time iterating trough similar solutions. The problem
arises because after a variable is constrained by the algorithm, a permutation of the set
of variables may still give a feasible solution of the same cost and this situation is un-
easy to detect because of the yj variables. Nevertheless, this issue can be addressed by
automatic pruning techniques, as described by Margot [18].

4. Implementation and performance evaluation

In order to validate the analysis of the presented algorithms and the relevance of our
model, we have implemented the two integer programs described in section 3, and the
randomized algorithms of Lu [15] and Leighton et al., 12. This allowed us to evaluate the
tradeoff between the performance and the running time of the exact version and the two
approximations. We also report our findings in the experience of solving the problem of
minimizing c. We ran tests on several instances and illustrate our results on two existing
continental backbone networks.

4.1. The instances

The first network we report on is depicted in figure 3. COST 239 network interconnects
11 European capitals using 24 multi-fiber links. The demand matrix, which was provided
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Figure 3. The COST 239 Pan-European network.

Figure 4. The Pan-American network.

to us by France Telecom [20], is made of 176 requests, which cover all possible pairs of
cities. The maximum load of the given routing is 58, which is also a lower bound for the
number of colors in the single-fiber case.

The second network, depicted in figure 4, is a Pan-American backbone which in-
terconnects 78 cities with 102 links. The demand matrix was generated with the well-
known gravitational model, where the weights of the cities represent their importance
and are proportional to the distance to 5 main population areas in the USA. Finally, the
demand between every two cities is proportional to the product of the two weights while
keeping the outgoing number of requests from every city equal to the weight. Using
different weights, we generated instances that were used for the benchmarks. We took
reliability issues into account, and computed the routing strategy through a minimum
cost disjoint paths problem for each origin-destination pair. For each origin and desti-
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nation, the demand was randomly distributed among the disjoint paths with the shortest
total distance. We report on a relatively big instance with 2022 requests with load 520.

4.2. Results

The tests we ran have validated the theoretical analysis of the algorithms and some in-
tuition on their practical behavior. Concerning the solving of IP 1 for minimizing the
number of fibers, the solver, CPLEX v7.5 found feasible solutions reasonably fast when
restricted to small instances: on the European COST 239 network or the Pan-American
backbone with few available wavelengths the solver did not have difficulties in proving
optimality. It was expected, though, that when the instances grew bigger, the running
time was going to degrade because the underlying problem is NP-hard. Even if this
does not seem to be an issue for instances of reasonable size generated from real-world
networks, it is certain that an optimal optimization of networks with more than few tens
of available wavelengths is out of reach. Therefore approximate methodology are re-
quired when addressing networks deploying D-WDM technology with several hundreds
of wavelengths.

Our tests gave also some precisions on the behavior of the approximation algo-
rithms. The algorithm of Lu [15] often produces solution within an approximation ra-
tion close to the one expected from its theoretical analysis. Moreover, the strategy of
dividing the set of wavelengths in 3 packs used one after the other has practical con-
sequences on the behavior of the algorithm. The experience shows that the algorithm
behaves far better when the number of wavelength is a multiple of 3 and the number of
fibers computed by the algorithm decreases stepwise when the number of wavelengths
increases. Therefore, the practical approximation ratio varies within a wide range. The
algorithm of Leighton et al. [12] is far more efficient and we have seen that the recol-
oring procedures are never used in practice. Indeed, the randomized rounding always
gives solutions that are very close to the optimal.

Figure 5 shows optimal and approximate computations for COST 239. It shows
the required number of fibers, as a function of the number of colors available. As said

Figure 5. Experiments on COST 239.
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Figure 6. Experiments on the Pan-American network: time and results.

above, the small size of this network allows IP 1 to be solved to optimality even with
a large number of colors. This allows for a precise comparison of the algorithms. The
results furthest from optimality are those of Lu’s algorithm, the stepwise dependence
of the number of fibers to the number of wavelength clearly appears. The algorithm of
Leighton et al. [12] produces solutions which are optimal up to an additive factor of 5.
On the other hand, because of the small size of the network, both approximate algorithms
finish almost immediately. Therefore, running times are not plotted for COST 239 and
the running times are compared on the Pan-American network.

The big size of the instances on the Pan-American network highlights the asymp-
totic behaviors of the algorithms. Hence the running times of the different method-
ologies, depicted on the left-hand side of figure 6, clearly indicates that solving IP 1 is
exponential on the number of wavelengths and is not achievable after a certain threshold,
25 wavelengths on our computers (PIV 1 GHz, 512 Mo RAM). Moreover, this impos-
sibility is also due to the explosion of the memory space required by the branch-and-
bound. The exponential growth of both the time and the memory shows that more mod-
ern computers will not solve much bigger instances and the optimization of networks
with several hundreds of wavelengths has to be done approximately. The randomized
rounding based algorithm of Leighton et al. [12] takes polynomial time and space which
may yield difficulties with networks of high capacity, but no real impossibility. What
is more surprising is that the running time of the algorithm of Lu [15] is almost con-
stant and even slowly decreasing with the number of wavelengths. An explanation is
that increasing the number of wavelengths does not increase the combinatorial complex-
ity of this algorithm. On the contrary, the number of nodes that enter the last coloring
phase may decrease with the number of wavelengths. As expected though, smaller run-
ning times are paid with the quality of approximation: the approximate number of fibers
given by Lu’s algorithm is around 3 times the optimal, while the algorithm of Leighton
et al. [12] stays close to the optimum up to an additive factor of 4. Thus, the tradeoff
between the quality of the approximation and the running time is obvious. We could use
randomized rounding to optimize a static network during an offline process where the
running time is not the main issue. Lu’s algorithm could be useful when time is an issue,
in online optimization process reacting to traffic modifications, for instance.
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It is important to notice that in these instances, and often with real-world networks,
the number of colors equals to its lower bound, that is, the load of the network divided
by the number of fibers. It is known that pathological examples exist, but they do not
usually appear in real instances.

The biggest dependency of the running time of IP 2, which optimizes the number
of colors, is on the number of variables representing the colors. Initially, we used as
many colors as the number of requests, because that is an upper bound. Obviously,
this did not scale well when the size of the instances increased to real-world problems.
Instead, we performed a binary search for the upper bound of the colors. We relied on
the observation that when the bound is too small, the IP solver returns quickly that no
feasible solution exists. On the other hand, when the upper bound is not tight, it takes
too long to solve the first node of the branch-and-bound tree because there are too many
variables. With this strategy we got IPs of the correct size that could be handled by the
solver. As expected though, due to the symmetry in the formulation (the labeling of the
colors can be permuted without altering the solution), the enumeration of the nodes of
the branch-and-bound tree could not be always completed. In any case, we had a proof
of optimality: we found that when using one less color, the LP relaxation of the problem
was already not feasible. Therefore, showing a feasible solution with that many colors
was enough. Indeed, it would be interesting to characterize the integrality gap of that
problem.

5. Conclusion

In this paper, we have proposed a framework to model the WAP in MWNs, reducing it
to a coloring problem on hypergraphs. Practically, the coloring problem appeared to be
tractable when there are few colors, since its straightforward IP formulation gives opti-
mal solutions reasonably fast. Unfortunately, this is not the case for real-world instances
and the number of available wavelengths will dramatically increase with future D-WDM

and UD-WDM networks.
Furthermore, the heuristics that we implemented illustrate the tradeoff between

the quality of approximation and their running time. When an exact solution cannot be
computed in reasonable time and space, randomized rounding can be used to produce
very good solutions. When quicker solutions are required, one would rather follow
approaches based on Lu’s algorithm, which runs in quasi-constant time at the cost of
a multiplicative factor of 3 on the optimal solution.

It is also interesting to note that these hypergraph coloring algorithms may be use-
ful in the context of radio ad-hoc network optimization. Indeed, the hypergraph structure
appears naturally when addressing capacity constrained radio coverage optimization.
Further work is still required in this direction.

Another interesting research direction is to study the design of MWNs in the case
where the routing is not fixed in advance. In such a case the lightpaths are not given, and
one needs to design both the routing and the wavelength assignment at once. We believe
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that, as soon as k is large enough, this problem can be practically solved to optimality
[Coudert and Rivano, 6].
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