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1. INTRODUCTION

A mysterious fatal disease strikes a large minority of the population.
The disease is incurable, but an expensive drug can keep victims alive. Con-
gress decides that the drug should be given to those whose lives can be
extended longest, which only a few specialists can predict. The experts work
around the clock searching for a cure; allocating the drug is a new chore they
would rather avoid.

In research on decision making there are two views about such experts. The
views suggest different technologies for modeling experts’ decisions so that
they can do productive research rather than make predictions. One view,
which emerges from behavioral research on decision making, is skeptical
about the experts. Data suggest that a wide range of experts like our hypotheti-
cal specialists are not much better predictors than less expert physicians, or
interns. Furthermore, this view suggests a simple technology for replacing
experts — a simple linear regression model (perhaps using medical judgments
as inputs). The regression does not mimic the thought process of an expert,
but it probably makes more accurate predictions than an expert does.

The second view, stemming from research in cognitive science, suggests that
expertise is a rare skill that develops only after much instruction, practice, and
experience. The cognition of experts is more sophisticated than that of nov-
ices; this sophistication is presumed to produce better predictions. This view
suggests a model that strives to mimic the decision policies of experts — an
“expert (or knowledge-based) system” containing lists of rules experts use in
judging longevity. An expert system tries to match, not exceed, the perfor-
mance of the expert it represents.

In this chapter we describe and integrate these two perspectives. Integra-
tion comes from realizing that thc behavioral and coguitive science ap-
proaches have different goals: Whereas behavioral decision theory empha-
sizes the performance of experts, cognitive science usually emphasizes differ-
ences in experts’ processes (E. Johnson, 1988).

A few caveats are appropriate. Our review is selective; it is meant to empha-
size the differences between expert performance and process. The generic
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decision-making task we describe usually consists of repeated predictions,
based on the same set of observable variables, about a complicated outcome —
graduate school success, financial performance, health — that is rather unpre-
dictable. For the sake of brevity, we shall not discuss other important tasks
such as probability estimation or revision, inference, categorization, or trade-
offs among attributes, costs, and benefits.

The literature we review is indirectly related to the well-known “heuristics
and biases” approach (e.g., Kahneman, Slovic, & Tversky, 1982). Our theme
is that experts know a lot but predict poorly. Perhaps their knowledge is
biased, if it comes from judgment heuristics or they use heuristics in applying
it. We can only speculate about this possibility (as we do later, in a few places)
until further research draws the connection more clearly.

For our purposes, an expert is a person who is experienced at making
predictions in a domain and has some professional or social credentials. The
experts described here are no slouches: They are psychologists, doctors, aca-
demics, accountants, gamblers, and parole officers who are intelligent, well
paid, and often proud. We draw no special distinction between them and
extraordinary experts, or experts acclaimed by peers (cf. Shanteau, 1988). We
suspect that our general conclusions would apply to more elite populations of
experts,! but clearly there have been too few studies of these populations.

The chapter is organized as follows: In section 2 we review what we cur-
rently know about how well experts perform decision tasks, then in section 3
we review recent work on expert decision processes. Section 4 integrates the
views described in sections 2 and 3. Then we examine the implications of this
work for decision research and for the study of expertise in general.

2. PERFORMANCE OF EXPERTS

Most of the research in the behavioral decision-making approach to
expertise has been organized around performance of experts. A natural mea-
sure of expert performance is predictive accuracy; later, we discuss other
aspects. Modern research on expert accuracy emanates from Sarbin (1944),
who drew an analogy between clinical reasoning and statistical (or “actuar-
ial™) judgment. His data, and the influential book by Mechl (1954), estab-
lished that in many clinical prediction tasks experts were less accurate than
simple formulas based on observable variables. As Dawes and Corrigan
(1974, p. 97) wrote, “the statistical analysis was thought to provide a floor to
which the judgment of the experienced clinician could be compared. The floor
turned out to be a ceiling.”

1 While presenting a research seminar discussing the application of linear models, Robyn Dawes
reported Einhorn’s (1972) classic finding that three experts’ judgments of Hodgkin’s disease
severity were uncorrelated with actual severity (measured by how long patients lived). One
seminar participant asked Dawes what would happen if a certain famous physician were studied.
The questioner was sure that Dr. So-and-so makes accurate judgments. Dawes called Einhorn;
the famous doctor turned out to be subject 2.
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2.1. A language for quantitative studies of performance

In many studies, linear regression techniques are used to construct
statistical models of expert judgments (and to improve those judgments) and
distinguish components of judgment accuracy and error.? ‘T'hese techniques
are worth reviewing briefly because they provide a useful language for discuss-
ing accuracy and its components.

A subject’s judgment (denoted Y,) depends on a set of informational cues
(denoted X, .. .,X,). The cues could be measured objectively (college
grades) or subjectively by experts (evaluating letters of recommendation).
The actual environmental outcome (or “criterion”) (denoted Y,) is also as-
sumed to be a function of the same cues.

In the comparisons to be described, several Kinds of regressions are com-
monly used. One such regression, the “actuarial” model, predicts outcomes Y,
based on observable cues X,. The model naturally separates Y, into a predict-
able component Y,, a linear combination3 of cues weighted by regression
coefficients b, ,, and an unpredictable error component Z,. That is,

Y,=2b,,X,+2z,  (actuarial model) (1)
=Y, + z,

Figure 8.1 illustrates these relationships, as well as others that we shall discuss
subsequently.

2.2. Experts versus actuarial models

The initial studies compared expert judgments with those of actuarial
models. That is, the correlation between the expert judgment Y, and the
outcome Y, (often denoted r,, for “achievement”) was compared with the
correlation between the model’s predicted outcome Y, and the actual outcome
Y, (denoted R,) .4 '

Meehl (1954) reviewed about two dozen studies. Cross-validated actuarial
models outpredicted clinical judgment (i.e., R, was greater than r,) in all but
one study. Now there have been about a hundred studies; experts did better in
only a handful of them (mostly medical tasks in which well-developed theory
outpredicted limited statistical experience; see Dawes, Faust, & Meehl,

2 Many regression studies use the general “lens model” proposed by Egon Brunswik (1952) and
extended by Hammond (1955) and others. The lens model shows the interconnection between
two systems: an ecology or environment, and a person making judgments. The notation in the
text is mostly lens-model terminology.

3 Although the functions relating cues to the judgment and the outcome can be of any form, linear
relationships are most often used, because they explain judgments and outcomes surprisingly
well, even when outcomes are known to be nonlinear functions of the cues (Dawes & Corrigan,
1974).

4 The correlation between the actuarial-model prediction and the outcome Y, is the square root of
the regression R?, and is denoted R,. A more practical measure of actuarial-model accuracy is
the “cross-validated” correlation, when regression weights derived on one sample are used to
predict a new sample of Y, values.
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Figure 8.1. A quantitative language for describing decision performance.

1989). The studies have covered many different tasks — university admissions,
recidivism or violence of criminals, clinical pathology, medical diagnosis, fi-
nancial investment, sports, weather forecasting. Thirty years after his book
was published, Meehl (1986, p. 373) suggested that “there is no controversy in
social scicnce that shows such a large body of qualitatively diverse studies
coming out so uniformly in the same direction.”

2.3. Experts versus improper models

Despite their superiority to clinical judgment, actuarial models are
difficult to use because the outcome Y, must be measured, to provide the raw
data for deriving regression weights. It can be costly or time-consuming to
measure outcomes (for recidivism or medical diagnosis), or definitions of
outcomes can be ambiguous (What is “success” for a Ph.D.?). And past
outcomes must be used to fit cross-validated regression weights to predict
current outcomes, which makes models vulnerable to changes in true coeffi-
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cients over time. Therefore, “improper”* models — which derive regression
weights without using Y, — might be more useful and nearly as accurate as
proper actuarial models.

In one improper method, regression weights are derived from the Y, judg-
ments themselves; then cues arc wcighted by the derived weights and
summed. This procedure amounts to separating the overall expert judgment
Y, into two components, a modeled component Y, and a residual component
z,, and using only the modeled component Y, as a prediction.® That is,

Y, =2b. X, + z (2)
= Ys + Z;

If the discarded residual z, is mostly random error, the modeled component Y,
will correlate more highly with the outcome than will the overall judgment,
Y,. (In standard terminology, the correlation between Y, and Y,, denoted 7,,,,
will be higher than r,.)

This method is called “bootstrapping” because it can improve judgments
without any outcome information: It pulls experts up by their bootstraps.
Bowman (1963) first showed that bootstrapping improved judgments in pro-
duction scheduling; similar improvements were found by Goldberg (1970) in
clinical predictions based on MMPI scores’ and by Dawes (1971) in graduate
admissions. A cross-study comparison showed that bootstrapping works very
generally, but usually adds only a small increment to predictive accuracy
(Camerer, 1981a). Table 8.1 shows some of those results. Accuracy can be
usefully dissected with the lens-model equation, an identity relating several
interesting correlations. Einhorn’s (1974) version of the equation states

r,=r,R,+r(l-R)” ?3)

where R?is the bootstrapping model R? (how closely the judge resembles the
linear model), and r, is the correlation between bootstrapping-model residuals
z, and outcomes Y, (the «residual validity”). If the residuals z, represent only
random error in weighing and combining the cues, 7, will be close to zero. In
this case, r,, will certainly be larger than r,, and because R, =< 1, bootstrapping
will improve judgments. But even if 7, is greater than zero (presumably be-
cause residuals contain some information that is correlated with outcomes),
bootstrapping works unless '

s By contrast, actuarial models often are called “optimal linear models,” because by definition no
linear combination of the cues can predict ¥, more accurately.

6 Of course, such an explanation is “paramorphic” (Hoffman, 1960): It describes judgments ina
purely statistical way, as if experts were weighing and combining cues in their heads; the process
they use might be quite different. However, Einhorn, Kleinmuntz, and Kleinmuntz (1979)
argued persuasively that the paramorphic regression approach might capture process indirectly.

7 Because suggested Minnesota Multiphasic Personality Inventory (MMPI) cutoffs were origi-
nally created by statistical analysis, it may seem unsurprising that a statistical model beats a
judge who tries to mimic it. But the model combines scores linearly, whereas judges typically use
various scores in configural nonlinear combinations.
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1-R,\ ¥
=12 )
1+R,

For R, = .6 (a reasonable value; see Table 8.1), residual validity r, must be
about half as large as model accuracy for experts to outperform their own
bootstrapping models. This rarely occurs.

When there are not many judgments, compared with the number of vari-
ables, the regression weights in a bootstrapping model cannot be estimated
reliably. Then one can simply weight the cues equally® and add them up.
Dawes and Corrigan (1974) showed that equal weights worked remarkably
well in several empirical comparisons (the accuracies of some of these are
shown in the column r,,, in Table 8.1). Simulations show that equal weighting
generally works as well as least squares estimation of weights unless there are
twenty times as many observations as predictors (Einhorn & Hogarth, 1975).
As Dawes and Corrigan (1974) put it, “the whole trick is to decide what
variables to look at and then to know how to add” (p. 105).

2.4. Training and experience: experts versus novices

Studies have shown that expert judgments are less accurate than
those of statistical models of varying sophistication. Two other useful compari-
sons are those between experts and novices and between experienced and
inexperienced experts.

Garb (1989) reviewed more than fifty comparisons of judgments by clinical
psychologists and novices. The comparisons suggest that (academic) training
helps but additional experience does not. Trained clinicians and graduate
students were more accurate than novices (typically untrained students, or
secretaries) in using the MMPI to judge personality disorders. Students did
better and better with each year of graduate training. The effect of training
was not large (novices might classify 28% correctly, and experts 40%), but it
existed in many studies. Training, however, generally did not help in interpret-
ing projective tests (drawings, Rorschach inkblots, and sentence-completion
tests); using such tests, clinical psychologists probably are no more accurate
than auto mechanics or insurance salesmen.

Training has some cffects on accuracy, but cxperience has almost none. In
judging personality and neurophysiological disorders, for example, clinicians
do no better than advanced graduate students. Among experts with varying
amounts of experience, the correlations between amount of clinical experience
and accuracy are roughly zero. Libby and Frederick (1989) found that experi-
ence improved the accuracy of auditors’ explanations of audit errors only
slightly (although even inexperienced auditors were better than students).

In medical judgments too, training helps, but experience does not. Gustaf-
8 Of course, variables must be standardized by dividing them by their sample standard deviations.

Otherwise, a variable with a wide range would account for more than its share of the variation in
the equally weighted sum.



Table 8.1. Examples of regression-study results -

Mean accuracy of:

Bootstrapping  Bootstrapping Equal-weight  Actuarial
Model fit, Judge, model, residuals, model, model,s
Study Prediction task R, r, o r, Yo R,
Goldberg (1970) Psychosis vs. neurosis .77 28 31 .07 .34 .45
Dawes (1971) Ph.D. admissions .78 19 25 .01 .48 .38
Einhorn (1972) Disease severity 41 .01 13 .06 n.a. 35
Libby (1976)? Bankruptcy. .79 .50 .53 13 n.a. .67
Wiggens & Kohen (1971)  Grades .85 .33 .50 .01 .60 57

“All are cross-validated R, except Einhorn (1972) and Libby (1976).
PFigures cited are recalculations by Goldberg (1976).
Source: Adapted from Camerer (1981a) and Dawes & Corrigan (1974).
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son (1963) found no difference between residents and surgeons in predicting
the length of hospital stay after surgery. Kundel and LaFollette (1972) re-
ported that novices and first-year medical students were unable to detect
lesions from radiographs of abnormal lungs, but fourth-year students (who
had had some training in radiography) were as good as full-time radiologists.

These tasks usually have a rather low performance ceiling. Graduate train-
ing may provide all the experience one requires to approach the ceiling. But
the myth that additional experience helps is persistent. One of the psychology
professors who recently revised the MMPI said that “anybody who can count
can score it [the MMPI], but it takes expertise to interpret it.” (Philadelphia
Inquirer, 1989). Yet Goldberg’s (1970) data suggest that the only expertise
required is the ability to add scores with a hand calculator or paper and pencil.

If a small amount of training can make a person as accurate as an experi-
enced clinical psychologist or doctor, as the data imply, then lightly trained
paraprofessionals could replace heavily trained experts for many routine kinds
of diagnoses. Citing Shortliffe, Buchanan, and Feigenbaum (1979), Garb
(1989) suggested that “intelligent high school graduates, selected in large part
because of poise and warmth of personality, can provide competent medical
care for a limited rangc of problems when guided by protocols after only 4 to 8
weeks of training.”

It is conceivable that outstanding experts are more accurate than models
and graduate students in some tasks. For instance, in Goldberg’s (1959) study
of organic brain damage diagnoses, a well-known expert (who worked very
slowly) was right 83% of the time, whereas other Ph.D. clinical psychologists
got 65% right. Whether such extraordinary expertise is a reliable phenome-
non or a statistical fluke is a matter for further research.

2.5. Expert calibration

Whereas experts may predict less accurately than models, and only
slightly more accurately than novices, they seem to have better self-insight
about the accuracy of their predictions. Such self-insight is called “calibra-
tion.” Most people are poorly calibrated, offering erroneous reports of the
quality of their predictions, and these reports systematically err in the direc-
tion of overconfidence: When they say a class of events are 80% likely, those
events occur less than 80% of the time (Lichtenstein, Fischhoff, & Phillips,
1977). There is some evidence that experts are less overconfident than nov-
ices. For instance, Levenberg (1975) had subjects look at “kinetic family
drawings” to detect whether the children who drew them were normal. The
results were, typically, a small victory for training: Psychologists and secretar-
ies got 66% and 61% right, respectively (a coinflip would get half right). Of
these cases about which subjects were “positively certain,” the psychologists
and secretaries got 76% and 59% right, respectively. The psychologists were
better calibrated than novices — they used the phrase “positively certain”
more cautiously (and appropriately) — but they were still overconfident.
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Better calibration of experts has also been found in some other studies
(Garb, 1989). Expert calibration is better than novice calibration in bridge
(Keren, in press), but not in blackjack (Wagenaar & Keren, 1985). Doctors’
judgments of pneumonia and skull fracture are badly calibrated (Christensen-
Szalanski & Bushyhead, 1981; DeSmet, Fryback, & Thornbury, 1979).
Weather forecasters are extremely well calibrated (Murphy & Winkler, 1977).
Experiments with novices showed that training improved calibration, reduc-
ing extreme overconfidence in estimating probabilities and numerical quanti-
ties (Lichtenstein et al., 1977)

2.6. Summary: expert pérformance

The depressing conclusion from these studies is that expert judgments
in most clinical and medical domains are no more accurate than those of
lightly trained novices. (We know of no comparable reviews of other domains,
but we suspect that experts are equally unimpressive in most aesthetic, com-
mercial, and physical judgments.) And expert judgments have been worse
than those of the simplest statistical models in virtually all domains that have
been studied. Experts are sometimes less overconfident than novices, but not

always.

3. EXPERT DECISION PROCESSES

The picture of expert performance painted by behavioral decision theo-
rists is unflattering. Why are experts predicting so badly? We know that many
experts have special cognitive and memory skills (Chase & Simon, 1973; Erics-
son & Polson, 1988; Larkin, McDermott, Simon, & Simon, 1980). Do expert
decision-makers have similar strategies and skill? If so, why don’t they perform
better? Three kinds of evidence help answer these questions: process analyses
of expert judgments, indirect analyses using regression models, and laboratory
studies in which subjects become “artificial experts” in a simple domain.

3.1. Direct evidence: process analyses of experts

The rulcs and cues experts use can be discovered by using process
tracing techniques — protocol analysis and monitoring of information acquisi-
tion. Such studies have yielded consistent conclusions across a diverse set of
domains.

Search is contingent. If people think like a regression model, weighting cues
and adding them, then cue search will be simple — the same variables will be
examined, in the same sequence, in every case. Novices behave that way. But
experts have a more active pattern of contingent search: Subsets of variables
are considered in each case, in different sequences. Differences between nov-
ice and expert searches have been found in studies of financial analysts
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(Bouman, 1980; E. Johnson, 1988), auditors (Bedard & Mock, 1989), gradu-
ate admissions (E. Johnson, 1980), neurologists (Kleinmuntz, 1968), and phy-
sicians (Elstein, Shulman, & Sprafka, 1978; P. Johnson, Hassebrock, Duran,
& Moller, 1982).

Experts search less. A common finding in studies of expert cognition is that
information processing is less costly for experts than for novices. For example,
expert waiters (Ericsson & Chase, 1981) and chess players (Chase & Simon,
1973) havc cxccptional memory skills. Their memory allows more efficient
encoding of task-specific information; if they wanted to, experts could search
and sit cheaply through more information. But empirical studies show that
experts use less information than novices, rather than more, in auditing
(Bedard, 1989; Bedard & Mock, 1989), financial analysis (Bouman, 1980; E.
Johnson, 1988), and product choice (Bettman & Park, 1980; Brucks, 1985; E.
Johnson & Russo, 1984).

Experts use more knowledge. Experts often search contingently, for limited
sets of variables, because they know a great deal about their domains
(Bouman, 1980; Elstein et al., 1978; Libby & Frederick, 1989). Experts per-
form a kind of diagnostic reasoning, matching the cues in a specific case to
prototypes in a casual brand of hypothesis testing. Search is contingent be-
cause different sets of cues are required for each hypothesis test. Search is
limited because only a small set of cues are relevant to a particular hypothesis.

3.2. Indirect evidence: dissecting residuals

The linear regression models described in section 2 provide a simplc
way to partition expert judgment into components. The bootstrapped judg-
ment is a linear combination of observed cues; the residual is everything else.
By dissecting the residual statistically, we can learn how the decision process
experts use deviates from the simple linear combination of cues. It deviates in
three ways.

Experts often use configural choice rules. In configural rules, the impact of one
variable depends on the values of other variables. An example is found in
clinical lore on interpretation of the MMPI. Both formal instruction and verbal
protocols of experienced clinicians give rules that note the state of more than
one variable. A nice example is given by an early rule-based system constructed
by Kleinmuntz (1968) using clinicians’ verbal protocols. Many of the rules in
the system reflect such configural reasoning: “Call maladjusted if P, = 70 unless
M,=6,and K = 65.” Because linear regression models weight each cue indepen-
dently, configural rules will not be captured by the linear form, and the effects
of configural judgment will be reflected in the regression residual.

Experts use “broken-leg cues.” Cues that are rare but highly diagnostic often
are called broken-leg cues, from an example cited by Meehl (1954; pp. 24—
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25): A clinician is trying to predict whether or not Professor A will go to the
movies on a given night. A regression model predicts that the professor will
go, but the clinician knows that the professor recently broke his leg. The cue
“broken leg” probably will get no weight in a regression model of past cases,
because broken legs are rare.? But the clinician can confidently predict that
the professor will not go to the movies. The clinician’s recognition of the
broken-leg cue, which is missing from the regression model, will be captured
by the residual. Note that while the frequency of any one broken-leg cue is
rare, in “the mass of cases, there may be many (different) rare kinds of
factors” (Meehl, 1954, p. 25).

Note how the use of configural rules and broken-leg cues is consistent with
the process data described in section 3. To use configural rules, experts must
search for different sets of cues in different sequences. Experts also can use
their knowledge about cue diagnosticity to focus on a limited number of highly
diagnostic broken-leg cues. For example, in E. Johnson’s (1988) study of
financial analysts, cxperts were much more accurate than novices because
they could interpret the impact of news events similar to broken-leg cues.

Experts weight cues inconsistently and make errors in combining them. When
experts do combine cues linearly, any inconsistencies in weighting cues, and
errors in adding them, will be reflected in the regression residual. Thus, if
experts use configural rules and broken-leg cues, their effects will be con-
tained in the residuals of a linear bootstrapping model. The residuals also
contain inconsistencies and error. By comparing residual variance and test—
retest reliability, Camerer (1981b) estimated that only about 40% of the vari-
ance in residuals was error,10 and 60% was systematic use of configural rules
and broken-leg cues. (Those fractions were remarkably consistent across dif-
ferent studies.) The empirical correlation between residuals and outcomes, 7.,
however, averaged only about .05 (Camerer, 1981a) over a wider range of
studies. Experts are using configural rules and broken-leg cues systematically,
but they are not highly correlated with outcomes. Of course, there may be
some domains in which residuals are more valid.!!

3.3. Artificial experts

A final kind of process evidence comes from “artificial experts,” sub-
jects who spend much time in an experimental environment trying to induce
accurate judgmental rules. A lot of this research belongs to the tradition

9 Unless a broken leg has occurred in the sample used to derive regression weights, the cue
“broken leg” will not vary and will get no regression weight.

10 These data correct the presumption in the early bootstrapping literature (e.g., Dawes, 1971;
Goldberg, 1970) that residuals were entirely human error.

11 A recent study with sales forecasters showed a higher r,, around .2 (Blattberg & Hoch, 1990).
Even though their residuals were quite accurate, the best forecasters only did about as wel} as
the linear model. In a choice between models and experts, models will win, but a mechanical
combination of the two is better still: Adding bootstrapping residuals to an actuarial model
increased predictive accuracy by about 10%.
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of multiple-cue probability learning (MCPL) experiments that stretches back
decades, with the pessimistic conclusion that rule induction is difficult, particu-
larly when outcomes have random error. We shall give three more recent
examples that combine process analysis with a rule induction task. ‘

Several studies have used protocol analysis to determine what it is that
artificial experts have learned. Perhaps the most ambitious attempts to study
extended learning in complex environments were Klayman’s studies of cue
discovery (Klayman, 1988; Klayman & Ha, 1985): Subjects looked at a com-
plex computer display consisting of geometric shapes that affected the dis-
tance traveled by ray traces from one point on the display to another. The true
rule for travel distance was determined by a complex linear model consisting
of seven factors that varied in salience in the display. None of Klayman’s
subjects induced the correct rule over 14 half-hour sessions, but their perfor-
mances improved steadily. Some improvement came from discovering correct
cues (subjects correctly identified only 2.83 of 7 cues, on average). Subjects
who systematically experimented, by varying one cue and holding others
fixed, learned faster and better than others. Because the cues varied greatly in
how much they affected distance, it was important to weight them differently,
but more than four-fifths of the rules stated by subjects did not contain any
numerical elements (such as weights) at all. In sum, cue discovery played a
clear role in developing expertise in this task, but learning about the relative
importance of cues did not.

In a study by Meyer (1987), subjects learned which attributes of a hypotheti-

cal metal alloy led to increases in its hardness. As in Klayman’s study, subjects
continued to learn rules over a long period of time. The true rule for hardness
(which was controlled by the experimenter) was linear, but most subjects
induced configural rules. Subjects made only fairly accurate predictions, be-
cause the true linear rule could be mimicked by nonlinear rules. Learning
(better performance) consisted of adding more elaborate and baroque conﬁgu—
ral rules, rather than iriducing the true linear relationships.

In a study by Camerer (1981b), subjects tried to predict simulated wheat—
price changes that depended on two variables and a large interaction between
them (i.e., the true rule was configural). Subjects did learn to use the interac-
tion in thelr judgments, but witli so much error that a linear bootstrapping
model that omitted the interaction was more accurate. Similarly, in E. John-
son’s (1988) financial-analyst study, even though expert analysts used highly
diagnostic news events, their judgments were inferior to those of a simple
linear model. '

3.4. Summary: expert decision processes

Studies of decision processes indicate that expert decision makers are
like experts in other domains: They know more and use their knowledge to
guide search for small subsets of information, which differ with each case.
Residuals from bootstrapping models and learning experiments also show that
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experts use configural rules and cues not captured by linear models (but these
are not always predictive). The process evidence indicates that experts know
more, but what they know does not enable them to outpredict simple statisti-
cal rules. Why not?

4. RECONCILING THE PERFORMANCE AND PROCESS
VIEWS OF EXPERTISE

One explanation for the process—performance paradox is that predic-
tion is only one task that experts must perform; they may do better on other
tasks. Later we shall consider this explanation further. Another explanation is
that experts are quick to develop configural rules that often are inaccurate,
but they keep these rules or switch to equally poor ones. (The same may be
true of broken-leg cues.) This argument raiscs thrce questions, which we
address in turn: Why do experts develop configural rules? Why are configural
rules often inaccurate? Why do inaccurate configural rules persist?

4.1. Why do experts develop configural rules?

Configural rules are easier. Consider two common classes of configural rules,
conjunctive (hire Hope for the faculty if she has glowing letters of recommen-
dation, good grades, and an interesting thesis) and disjunctive (draft Michael
for the basketball team if he can play guard or forward or center extremely
well). Configural rules are easy because they bypass the need to trade off
different cues (Are recommendations better predictors than grades?), avoid-
ing the cumbersome weighting and combination of information. Therefore,
configural rules take much less etfort than optimal rules and can yield nearly
optimal choices (E. Johnson & Payne, 1985).12

Besides avoiding difficult trade-offs, configural rules require only a simple
categorization of cue values. With conjunctive and disjunctive rules, one need
only know whether or not a cue is above a cutoff; attention can be allocated
economically to categorize the values of many cues crudely, rather than catego-
rizing only one or two cues precisely.

Prior theory often suggests configural rules. In his study of wheat prices,
Camerer (1981b) found that subjects could learn of the existence of a large
configural interaction only when cue labels suggested the interaction a priori.
Similarly, cue labels may cause subjects to learn configural rules where they
are inappropriate, as in Meyer’s (1987) study of alloy hardness. These prior
beliefs about cue—outcome correlations often will be influenced by the “repre-
sentativeness” (Tversky & Kahneman, 1982) of cues to outcomes; the repre-
sentativeness heuristic will sometimes cause errors.

12 Confignral rules are especially useful for narrowing a large set of choices to a subset of
candidates for further consideration.
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Besides their cognitive ease and prior suggestion, complex configural rules
are easy to learn because it is easy to weave a causal narrative around a
configural thcory. These coherent narratives cement a dependence between
variables that is easy to express but may overweight these “causal” cues, at the
cost of ignoring others. Linear combinations yield no such coherence. Meehl
(1954) provides the following example from clinicial psychology, describing
the case of a woman who was ambivalent toward her husband. One night the
woman came home from a movie alone. Then:

Entering the bedroom, she was terrified to see, for a fraction of a second, a
large black bird (“a raven, I guess”) perched on her pillow next to her
husband’s head. . .. She recalls “vaguely, some poem we read in high
school.” (p. 39)

Meehl hypothesized that the woman’s vision was a fantasy, based on the poem
“The Raven” by Edgar Allen Poe: “The [woman’s] fantasy is that like Poe’s
Lenore, she will die or at least go away and leave him [the husband] alone.”
Meehl was using a configural rule that gave more weight to the raven vision
because the woman knew the Poe poem. A linear rule, simply weighting the
dummy variables “raven” and “knowledge of Poe,” yields a narrative that is
much clumsier than Meehl’s compelling analysis. Yet such a model might well
pay attention to other factors, such as the woman’s age, education, and so

forth, which might also help explain her ambivalence.

Configural rules can emerge naturally from trying to explain past cases. People
learn by trying to fit increasingly sophisticated general rules to previous cases
(Brehmer, 1980; Meyer, 1987). Complicated configural rules offer plenty of
explanatory flexibility. For example, a 6-variable model permits 15 two-way
interactions, and a 10-variable model allows 45 interactions.!? In sports, for
instance, statistics are so plentiful and refined that it is easy to construct subtle
“configuralities” when global rules fail. Bucky Dent was an average New York
Yankee infielder, except in the World Series, where he played “above his
head,” hitting much better than predicted by his overall average. (The vari-
able “Dent” was not highly predictive of success, but adding the interaction
“Dent” X “Serics” was.)' Because people are reluctant to accept the possibil-
ity of random error (Einhorn, 1986), increasingly complicated configural ex-
planations are born.

Inventing special cases is an important mechanism for learning in more

13 A linear model with k cues has only k degrees of (reedom, but the & variables offer k(k — 1)/2
multiplicative two-variable interactions (and lots of higher-order interactions).

14 We cannot determine whether Dent was truly better in the World Series or just lucky in a
limited number of Series appearances. Yet his success in “big games” obviously influenced the
Yankees’ owner, George Steinbrenner (who has not otherwise distinguished himself as an
expert decision-maker). He named Dent manager of the Yankees shortly after this conference
was held, citing his ability as a player “to come through when it mattered.” Dent was later fired
49 games into the season (18 wins, 31 losses), and the Yankees had the worst record in Major
League baseball at the time.
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deterministic environments, where it can be quite effective. The tendency of
decision-makers to build special-case rules mirrors more adaptive processes of
induction (e.g., Holland, Holyoak, Nisbett, & Thagard, 1986, chapter 3, esp.
pp. 88-89) that can lead to increased accuracy. As Holland and associates
pointed out, however, the validity of these mechanisms rests on the ability to
check each specialization on many cases. In noisy domains like the ones we
are discussing, there are few replications. It was unlikely, for example, that
Dent would appear in many World Series, and even if he did, other “unique”
circumstances (opposing pitching, injuries, etc.) could always yield further
“explanatory” factors.

In sum, configural rules are appealing because they are easy to use, have
plausible causal explanations, and offer many degrees of freedom to fit data.
Despite these advantages, configural rules may have a downfall, as detailed in
the next section.

4.2. Why are configural rules often inaccurate?

One reason configural rules may be inaccurate is that whereas they are
induced under specific and often rare conditions, they may well be applied to a
larger set of cases. Often, people induce such rules from observation, they will
be overgeneralizing from a small sample (expecting the sample to be more
“representative” of a population that it is — Tversky & Kahneman, 1982). This
is illustrated by a verbal protocol recorded by a physician who was chair of a
hospital’s admissions committee for house staff, interns, and residents. Seeing
an applicant from Wayne State who had very high board scores, the doctor
recalled a promising applicant from the same school who had perfect board
scores. Unfortunately, after being admitted, the prior aspirant had done poorly
and left the program. The physician recalled this case and applied it to the new
one: “We have to be quite careful with people from Wayne State with very high
board scores. . . . We have had problems in the past.”

Configural rules may also be wrong because the implicit theories that under-
lie them are wrong. A large literature on “illusory correlation” contains many
examples of variables that are thought to be correlated with outcomes (because
they are similar) but are not. For example, most clinicians and novices think
that people who see male features or androgynous figures in Rorschach ink-
blots are more likely to be homosexual. They are not (Chapman & Chapman,
1967, 1969). A successful portfolio manager we know refused to buy stock in
firms run by overweight CEOs, believing that control of one’s weight and
control of a firm are correlated. Because variables that are only illusorily corre-
lated with outcomes are likely to be used by both novices and experts, the small
novice—expert difference suggests that illusory correlations may be common.

Configural rules are also likely to be unrobust to smali errors, or “brittle.”!?

15 Although the robustncss of lincar modcls is well established, we know of no analogous work on
the unrobustness of configural rules.
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Linear models are extremely robust; they fit nonlinear data remarkably well
(Yntema & Torgerson, 1961). That is why omitting a configural interaction
from a bootstrapping model does not greatly reduce the accuracy of the
model.1¢ In contrast, we suspect that small errors in measurement may have
great impacts on configural rules. For example, the conjunctive rule “require
good grades and test scores” will lead to mistakes if a test score is not a
predictor of success or if the cutoff for “good grades” is wrong; the linear rule
that weights grades and scores and combines them is less vulnerable to either
error.

4.3. Why do inaccurate configural rules persist?

One of the main lessons of decision research is that feedback is crucial
for learning. Inaccurate configural rules may persist because experts who get
slow, infrequent, or unclear feedback will not learn that their rules are wrong.
When feedback must be sought, inaccurate rules may persist because people
tend to search instinctively for evidence that will confirm prior theories
(Klayman & Ha, 1985). Even when feedback is naturally provided, rather
than sought, confirming evidence is more retrievable or “available” than
disconfirming evidence (Tversky & Kahneman, 1973). The disproportionate
search and recall of confirming instances will sustain experts’ faith in inaccu-
rate configural rules. Even when evidence does disconfirm a particular rule,
we suspect that the natural tendencies to construct such rules (catalogued
earlier) will cause experts to refine their rules rather than discard them.

4.4. Nonpredictive functions of expertise

The thinking of experts is rich with subtle distinctions, novel catego-
ries, and complicated configural rules for making predictions. We have given
several reasons why such categories and rules might arise, and persist even if
they are inaccurate. Our arguments provide one possible explanation why
knowledgeable experts, paradoxically, are no better at making predictions
than novices and simple models.

Another explanation is that the knowledge that experts acquire as they
learn may not be useful for making better predictions about important long-
range outcomes, but it may be useful for other purposes. Experts are indis-
pensable for measuring variables (Sawyer, 1966) and discovering new ones
(E. Johnson, 1988).

Furthermore, as experts learn, they may be able to make more kinds of
predictions, even if they are no more accurate; we speculate that they mistake
their increasing fertility for increasing accuracy. Taxi drivers know lots of
alternative routes when they see traffic on the Schuylkill Expressway (cf.

16 Linear models are robust to nonlinearities provided the relationship between each predictor and
outcome has the same direction for any values of the other predictors (although the relationship’s
magnitude will vary). This property is sometimes called “conditional monotonicity.”
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Chase, 1983), and they probably can predict their speeds on those alternative
routes better than a novice can. But can the experts predict whether there will
be heavy traffic on the expressway better than a statistical model can (using
time of day, day of week, and weather, for example)? We doubt it.

There are also many social benefits of expertise that people can provide
better than models can. Models can make occasional large mistakes that
experts, having common sense, would know to avoid (Shanteau, 1988)."
Experts can explain themselves better, and people usually feel that an expert’s
intuitive judgments are fairer than those of a model (cf. Dawes, 1971).

Some of these attitudes toward experts stem from the myth that experts are
accurate predictors, or the hope that an expert will never err.’® Many of these
social benefits should disappear with time, if people learn that models are
better; until then, experts have an advantage. (Large corporations have
learned: They use models in scoring credit risks, adjusting insurance claims,
and other activities where decisions arc routinc and cost savings are large.
Consumers do think that such rules are unfair, but the cost savings overwhelm

their objections.)

5. IMPLICATIONS FOR UNDERSTANDING
EXPERT DECISION MAKING

Our review produces a consistent, if depressing, picture of expert
decision-makers. They are successful at generating hypotheses and inducing
complex decision rules. The result is a more efficient search of the available
information directed by goals and aided by the experts’ superior store of
“ knowledge. Unfortunately, their knowledge and rules have little impact on
" experts’ performance. Sometimes experts are more accurate than novices
(though not always), but they are rarely better than simple statistical models.

An inescapable conclusion of this research is that experts do some things
well and others poorly. Sawyer (1966) found that expert measurement of cues,
 and statistical combination of them, worked better than expert combination
or statistical measurement. Techniques that combine experts’ judgments
about configural and broken-leg cues with actuarial models might improve
performance especially well (Blattberg & Hoch, 1990; E. Johnson, 1988).

Of course, expert performance relative to models depends critically on the

17 This possibility has been stressed by Ken Hammond in discussions of analytical versus intuitive
judgment (e.g., Hammond, Hamm, Grassia, & Pearson, 1987). For example, most of the
unorthodox moves generated by the leading backgammon computer program (which beat a
world champion in 1979) are stupid mistakes an expert would catch; a few are brilliant moves
that might not occur to an expert.

18 A model necessarily errs, by fixing regression coefficients and ignoring many variables. It
“accepts error to make less error” (Einhorn, 1986). An expert, by changing regression coeffi-
cients and selecting variables, conceivably could be right every time. This difference is made
dramatic by a medical example. A statistician developed a simple linear model to make routine
diagnoses. Its features were printed on a card doctors could carry around; the card showed
several cues and how to add them. Doctors wouldn’t use it because they couldn’t defend it in
the inevitable lawsuits that would result after the model would have made a mistake.
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task and the importance of configural and broken-leg cues. There may be
tasks in which experts beat models, but it is hard to think of examples. In
pricing antiques, classic cars, or unusual real estate (e.g., houses over $5
million), there may be many broken-leg cues that give experts an advantage,
but a model including the expert-rated cue “special features” may also do
well. A

Tasks involving pattern recognition, like judging the prospective taste of
gourmet recipes or the beauty of faces or paintings, seem to involve many
configural rules that favor experts. But if one adds expert-rated cues like
“consistency” (in recipes) or “symmetry” (in faces) to linear models, the
experts’ configural edge may disappear.

Another class of highly configural tasks includes those in which variable
weights change across subsamplies or stages. For instance, one should play the
beginning and end of a backgammon or chess game differently. A model that
picks moves by evaluating position features, weighting them with fixed
weights, and combining them linearly will lose to an expert who implicitly
changes weights. But a model that could shift weights during the game could
possibly beat an expert, and one did: Berliner’s (1980) backgammon program
beat the 1979 world champion.

There is an important need to provide clearer boundaries for this dismal
picture of expert judgment. To what extent, we ask ourselves, does the picture
provided by this review apply to the other domains discussed in this volume?
Providing a crisp answer to this question is difficult, because few of these
domains provide explicit comparisons between experts and linear models.
Without such a set of comparisons, identifying domains in which experts will
do well is speculation.

We have already suggested that some domains are inherently richer in
broken-leg and configural cues. The presence of these cues provides the op-
portunity for better performance but does not necessarily guarantee it. In
addition, the presence of feedback and the lack of noise have been suggested
as important variables in determining the performances of both experts and
" expert systems (Carroll, 1987). Finally, Shaunteau (1988) has suggested that
“good” experts are those in whom the underlying body of knowledge is more
developed, providing examples such as soil and livestock judgment.

6. IMPLICATIONS FOR THE STUDY OF EXPERTISE

Expertise should be identified by comparison to some standard of
performance. Random and novice performances make for natural compari-
sons. The linear-model literature suggests that simple statistical models pro-
vide another, demanding comparison. ‘

The results from studies of expert decision making have had surprisingly
little effect on the study of expertise, even in related tasks. For instance,
simple linear models do quite well in medical-judgment tasks such as the
hypothetical task discussed at the beginning of this chapter. Yet most of the
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work in aiding diagnosis has been aimed at developing expert systems that can
mimic human expert performance, not exceed or improve upon it.

Expert systems may predict less accurately than simple models because the
systems are foo much like experts. The main lesson from the regression-model
literature is that large numbers of configural rules, which knowledge engi-
neers take as evidence of expertise, do not necessarily make good predictions;
simple linear combinations of variables (measured by experts) are better in
many tasks.

A somewhat ironic contrast between rule-based systems and linear models
has occurred in recent developments in connectionist models. Whereas these
models generally represent a relatively low level of cognitive activity, there
are some marked similarities to the noncognitive “paramorphic” regression
models we have discussed. In many realizations, a connectionist network is a
set of units with associated weights that specify constraints on how the units
combine the input received. The network generates weights that will maxi-
mize the goodness of fit of the system to the outcomes it observes in training
(Rumelhart, McCleliand, & PDP Research Group, 1986).

In a single-layer system, each unit receives its input directly from the envi-
ronment. Thus, these systems appear almost isomorphic to simple regres-
sions, producing a model that takes environmental cues and combines them,
in a linear fashion, to provide the best fit to the outcomes. Much like regres-
sions, we would expect simple, single-layer networks to make surprisingly
good predictions under uncertainty (Jordan, 1986; Rumelhart et al., 1986).

More complex, multilayer systems allow for the incorporation of patterns of
cues, which resemble the configural cues reported by experts. Like human
experts, we suspect that such hidden units in these more complex systems will
not add much to predictive validity in many of the domains we have discussed.
The parallel between regression models and connectionist networks is pro-
vocative and represents an opportunity for bringing together two quite diver-
gent paradigms. '

Finally, we note that this chapter stands in strong contrast to the chapters
that surround it: Our experts, while sharing many signs of superior expert
processing demonstrated in other domains, do not show superior perfor-
mance. The contrast suggests some closing notes. First, the history of the
study of expert decision making raises concerns about how experts are to be
identified. Being revered as an expert practitioner is not enough. Care should
be given to assessing actual performance. Second, the case study of decision
making may say something about the development of expertise in general and
the degree to which task characteristics promote or prevent the development
of superior performance. Experts fail when their cognitive abilities are badly
matched to environmental demands.

In this chapter we have tried to isolate the characteristics of decision tasks
that (1) generate such poor performance, (2) allow experts to believe that
they are doing well, and (3) allow us to believe in them. We hope that the
contrast between these conditions and those provided by other domains may
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contribute to a broader, more informed view of expertise, accounting for
experts’ failures as well as their successes.
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