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Pricing greenhouse gas emissions involves making trade-offs between 
consumption today and unknown damages in the (distant) future. This setup calls 
for an optimal control model to determine the carbon dioxide (CO2) price. It also 
relies on society’s willingness to substitute consumption across time and across 
uncertain states of nature, the forte of Epstein-Zin preference specifications. 

We develop the EZ-Climate model, a simple discrete-time optimization model 
in which uncertainty about the effect of CO2 emissions on global temperature and 
on eventual damages is gradually resolved over time. We embed a number of 
features including potential tail risk, exogenous and endogenous technological 
change, and backstop technologies. 

The EZ-Climate model suggests a high optimal carbon price today that is 
expected to decline over time as uncertainty about the damages is resolved. It also 
points to the importance of backstop technologies and to very large deadweight 
costs of delay. We decompose the optimal carbon price into two components: 
expected discounted damages and the risk premium. 
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1. Introduction 

Each ton of carbon dioxide (CO2) and other greenhouse gasses (GHGs) released into the 
atmosphere leads to global warming, ocean acidification, and other ecological 
degradation—all of which impacts societal well-being. The relationship between these 
damages and GHG emissions is uncertain. The problem will not solve itself without 
government intervention, as property rights to the atmosphere are poorly defined (Coase, 
1960). However, following Pigou (1920), optimal usage of the atmosphere’s capacity to 
absorb GHGs can be obtained, in both theory and practice, when individuals are charged 
the full social cost of each ton they emit into the atmosphere, or conversely the benefits 
that accrue to society with the reduction of GHG emissions by one ton. The cost of putting 
an additional ton of CO2 into the atmosphere at any given time 𝑡𝑡, assuming an optimal 
emissions reductions pathway in the future, is commonly known as the optimal CO2 
price.1 This paper builds on a long literature in addressing the determination of that price 
path. 
 
With some notable exceptions, however, that literature largely operates in a deterministic 
framework. The most famous entrant by far, Nordhaus’s (2017a, 2013, 1992) dynamic 
integrated climate-economy (DICE) model is not, in fact, an optimal control model. 
Neither are its many derivates. Cai et al’s (2016, 2015, 2013) and Golosov et al.’s (2014) 
models are. We follow their lead, and advice by Lemoine and Rudik (2017a), among 
others, by moving beyond DICE toward an optimal control model in creating the “EZ-
Climate” model. 
 
We approach climate change as a standard asset pricing problem. CO2 in the atmosphere 
is an ‘asset’—albeit one with negative payoffs. The modern approach to asset pricing 
recognizes that the optimal CO2 price is determined by appropriate discounting of the 
marginal benefits of reducing emissions by one ton at all future times and across all states 
of nature (Duffie, 2010; Hansen and Richard, 1987). In practice this can be done by 
discounting those future benefits by a stochastic discount factor appropriate to each 
possible outcome. 
 
Our choice of the preference specification we use to calculate this stochastic discount 
factor is dictated by evidence from asset markets. The valuation assigned to different 

                                                   
1 The assumption of an optimal emissions reductions pathway beginning at 𝑡𝑡 = 0 is an important 
assumption in this and similar modeling exercises (Nordhaus, 2017a, 2013, 1992; Nordhaus and Sztorc, 
2013). It is distinct from efforts that calculate the ‘Social Cost of Carbon’ (SCC), which typically assume no 
such path. Instead, the SCC focuses on pricing the marginal ton of emissions given the current trajectory 
(U.S. Government Interagency Working Group on Social Cost of Carbon, 2015). For a recent overview and 
assessment, see: National Academies of Sciences (2017) and Diaz and Moore (2017). Also note that, 
throughout this paper, we calculate the optimal price of a ton of CO2 as opposed to the price of a ton of 
carbon (C). Given the molecular weights of carbon and oxygen, $100 per ton of CO2 is equal to about $27 
per ton of C (= (12 44⁄ ) $100). Lastly, while we discuss GHGs more broadly, the calibration itself is, in fact, 
mostly applicable for long-lived climate forcers, primarily CO2. Short-lived climate forcers necessitate their 
own damage function calibration, have their own marginal abatement cost curves, and will, thus, have 
different optimal pricing pathways (e.g., Marten and Newbold, 2012; Shindell et al., 2017). 
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traded assets suggests that society is willing to pay only a small premium to substitute 
consumption across time, but a large premium to substitute across different states of 
nature. For example, between 1871 and 2012, a portfolio of U.S. bonds earned an average 
annual real return of 1.6 percent, and a diversified portfolio in U.S. stocks earned an 
average annual real return of 6.4 percent. 
 
Conversely, society is willing to pay handsomely for the right pattern of cash flows across 
states: these numbers imply that a portfolio which was short US equities, providing 
insurance against bad economic outcomes, earned an annual return of negative 4.8% per 
year over this long period. Society presumably discounts equity payoffs at a far higher 
discount rate because equities earn large returns in good economic times (when marginal 
utility is low) but often perform poorly precisely when economic growth is low (and 
marginal utility is high).2 
 
The high historical equity premium, combined with the low historical volatility of 
consumption growth, suggests that society is unwilling to substitute consumption across 
states of nature at some future point in time. In contrast, the low risk-free rate in 
combination with the high average consumption growth rate over the past 150 years 
suggests that agents are far more willing to substitute consumption across time. These 
two empirical regularities are inconsistent with a log-normal utility and constant-relative 
risk aversion (CRRA) preference specification.3 
 
These irregularities feature prominently in the equity premium, risk-free rate, and equity 
volatility puzzles (e.g., Bansal and Yaron, 2004; Mehra and Prescott, 1985; Weil, 1989). 
There are broadly speaking two responses to these puzzles. One focuses on tail risks and 
uncertainty, the other on the preference structure itself. Rietz (1988), for example, focuses 
on extreme events as the driver of the puzzle. For further explorations following this line 
of thought, see, e.g., Barro (2009, 2006), Barro and Jin (2011), Martin (2008, 2012a), 
and Weitzman (2007a). 
 
The other approach looks to a richer set of preferences in form of Epstein-Zin utility 
functions (Epstein and Zin, 1991, 1989; Kreps and Porteus, 1978; Weil, 1990) used 
throughout the asset pricing literature. Some, such as Barro and Ursua (2008) and Martin 
(2012b), use both Epstein-Zin preferences and extreme events. We here follow that lead, 
calibrating an Epstein-Zin utility function while also allowing for potentially large climate 
risks. 
 
The climate-economic literature has increasingly recognized the importance of exploring 
a richer set of preferences in calibrating climate risk. Lemoine and Rudik (2017a) survey 
the early “recursive integrated assessment” literature. An important contribution by Ha-
Duong and Treich (2004) explores the importance of Epstein-Zin preferences in general. 
Ackerman, Stanton, and Bueno (2013) extend the well-known DICE model to incorporate 
Epstein-Zin preferences and find a significant increase in the optimal CO2 price as a 
                                                   
2 Based on data collected by Shiller (2000) and since continuously updated: 
econ.yale.edu/~shiller/data.htm 
3 Note that CRRA preferences are invariably known as constant-elasticity of substitution (CES) preferences 
or also as power utility, a special case of which is when utility is a natural-log function of consumption. 

http://www.econ.yale.edu/%7Eshiller/data.htm


– 4 – 

result. Other important contributions include work by Christian Traeger, Derek Lemoine 
and co-authors4 as well as Cai, Lenton, and Lontzek (2016) and Belaia, Funke, and 
Glanemann (2017). One broad—perhaps somewhat unfair—conclusion from that work is 
that the added modeling sophistication and computational power needed compared to, 
for example, the standard DICE model, may not be justified. Both Crost and Traeger 
(2014) and Cai et al. (2016) find a small role for climate risk in the final optimal CO2 price 
figure, which Crost and Traeger (2014) hypothesize might be due to a failure to properly 
account for climatic disasters. Belaia et al. (2017) focus on the effect of incorporating the 
Atlantic Thermohaline Circulation (THC) tipping point. They, too find that risk aversion 
is of less importance compared with other factors: “the assumption of higher risk aversion 
neither changes the near-term policy in a qualitatively meaningful way nor does it affect 
the THC dynamics to any great extent” (Belaia et al., 2017). Models exist in both finance 
and climate economics in which the potential for future catastrophic events, though 
deemed highly unlikely and unseen to date, would lead to significant impacts on current 
valuations.5 
 
DICE itself incorporates the costs of climatic disasters (Nordhaus, 2016, 2013). In 
particular, ever since the 1999 version of DICE, “catastrophic” damages have accounted 
for around two-thirds of total economic damages forecast by the model (Kopp et al., 
2016). Nordhaus and Boyer (2000) incorporate risk based on an expert survey, asking 
scientists and economists to assess the probability of a “Great Depression”-size 25% loss 
of global income due to global average temperatures increasing by 3°C and 6°C 
(Nordhaus, 1994).6 That said, DICE, and integrated assessment models like it are simply 
not equipped to reflect the costs of distant tipping points like the THC. The tipping point 
occurs too far in the future to matter to today’s policy decisions, in part because of 
discounting, in part because of lack of inertia built into the model (Belaia et al., 2017).7 
 
One important lesson to take from prior attempts to build on DICE or introduce 
alternative models, also echoed by the National Academy of Sciences (2017), is the 
importance of ‘keeping it simple’.8 DICE has long set the standard for climate-economy 
modeling because of its simplicity. The core of the model has fewer than 20 equations 

                                                   
4 See e.g. Crost and Traeger (2014), Jensen and Traeger (2014), Lemoine and Traeger (2014), Lemoine and 
Traeger (2016), Lemoine (2015), and especially Traeger (2015). 
5 For the former, see references in footnote 3. For the latter, see, e.g., Barro (2015), Weitzman (2009, 
2007b), and Wagner and Weitzman (2015). 
6 See Kopp et al. (2016) for a discussion and critique of this methodology. See e.g. Brock and Hansen (2017), 
Burke et al. (2016), Convery and Wagner (2015), Kaufman (2012), Pindyck (2013), Stern (2013), and 
Wagner and Weitzman (2015) for extensive discussions and critiques of prior treatments of risk and 
uncertainty in climate-economic models in general and U.S. SCC calculations in particular. See Weitzman 
(2015) for a direct response to Nordhaus’s (2013) book-length entry into this debate, and, in turn, 
Nordhaus’s (2015) review of Wagner and Weitzman (2015). Golosov et al. (2014), among others, pursues 
another extension of standard climate-economy models, employing a dynamic stochastic general-
equilibrium (DSGE) model, while still relying on a CRRA utility function. 
7 See Nordhaus (1991) for an early discussion of the effects of inertia in climate economics, Lemoine and 
Rudik (2017b) for a theoretical exploration, and especially Mastrandrea and Schneider (2001) for a 
comprehensive discussion of the implications. 
8 National Academy of Sciences (2017) emphasizes the importance of modularity of the modeling effort to 
ensure natural points of entry for multi-disciplinary collaborations providing crucial inputs into the core 
model. 
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(Nordhaus and Sztorc, 2013). Implementations of Epstein-Zin utility functions typically 
do not lend themselves to this level of simplicity, ease of use, and transparency. It also 
means DICE needs to cut corners. In fact, Nordhaus and Sztorc (2013) cite Epstein and 
Zin (1991, 1989), but only while warning not to confuse a CRRA utility as representing 
risk aversion explicitly. The implementation of DICE reverts to the CRRA utility function. 
 
In keeping with this missive for simplicity, we introduce an optimal control problem 
employing a discrete-time binomial tree model. This approach will be familiar to financial 
economists, who employ such trees in many financial-economic modeling applications 
(see Cox, Ross and Rubinstein (1979) for an early example). We build on a related 
approach in Summers and Zeckhauser (2008), who employ a simple three-period 
model—sans Epstein-Zin preferences—to isolate some key features of clearing up 
uncertainty over time. 
 
While striving for simplicity in itself is an important goal, Figure I shows the implications 
of employing Epstein-Zin preferences: CRRA and Epstein-Zin preferences result in wildly 
divergent optimal CO2 price pathways for different levels of risk calibration, holding 
everything else constant.9 
 
Standard CRRA specifications embed the assumption that agents’ willingness to 
substitute consumption across states of nature is the same as their willingness to 
substitute consumption over time. Thus, an increase in the coefficient of risk aversion (or, 
conversely, a decreased elasticity of substitution across states), is necessarily linked to a 
decreased elasticity of intertemporal substitution (EIS). Given the fact that consumption 
grows at a rate of about 1.5% per year, an unwillingness to substitute across time leads to 
a (counterfactually) high risk-free discount rate. Since consumption damages occur far 
into the future, a CRRA utility function with a high level of risk-aversion (and a reasonable 
rate of time preference) implies a high discount rate for these damages, and a low optimal 
CO2 price—tending toward zero. 
 
In contrast, Epstein-Zin utility allows for separation of the coefficient of risk-aversion and 
the EIS, consistent with the equity-premium/risk-free rate puzzle. With an Epstein-Zin 
specification, holding the EIS fixed at 0.9 and increasing the degree of risk aversion, the 
optimal CO2 price increases, while the real interest rate remains at around 3.11%/year.10 
                                                   
9 See part II for our EZ-Climate model setup and calibration. Our original calibration (Daniel et al., 2016), 
was anchored around the U.S. SCC of $40 for a ton of CO2 released in 2015, in 2015 US$, the central value 
calculated by the U.S. Government Interagency Working Group on Social Cost of Carbon (2015). While 
further revising the paper, we introduced radiative forcing as a stock variable and added carbon cycle 
feedbacks explicitly (see section II.C). That step alone increased the 2015 number from $40 to over $100 in 
our base case. Even without any tail risks, the 2015 optimal CO2 price never dips below $60, well above the 
U.S. SCC figure. Note also that our optimal CO2 price is distinct from the U.S. SCC (see footnote 1). 
10 The exact interest rate in our Epstein-Zin calibration is almost independent of the risk aversion (RA) 
coefficient. Bansal and Yaron (2004) are able to match the equity premium with a far lower coefficient of 
risk-aversion, owing to the presence of shocks to the long-term growth rate of consumption in their model, 
which are correlated with equity returns. Similarly, in the EZ-Climate model presented here, a link between 
higher climate fragility and lower consumption growth rates would lead to a higher optimal CO2 price with 
a lower coefficient of risk-aversion. In general, climate damages hitting growth rates rather than levels of 
GDP can have a significant effect on the optimal CO2 price (Bansal and Ochoa, 2011; Dell et al., 2012; Diaz 
and Moore, 2017; Heal and Park, 2016; Moore and Diaz, 2015; Wagner and Weitzman, 2015). 
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As the level of risk aversion is raised from a very low level to a level consistent with the 
historically observed equity-risk premium, the optimal CO2 price increases by around 
50% (Figure I).11 

 
Figure I—Using Epstein-Zin utility functions results in increasing optimal 2015 CO2 prices, 
in 2015 US$, with increasing risk aversion, translated into the implied equity risk premium 
using Weil’s (1989) conversion, while holding implied market interest rates stable at 3.11% 
 
We first introduce the EZ-Climate model and its calibration (Section 2) before presenting 
results, risk decomposition, and sensitivity analyses (Section 3), and discussing future 
research and extensions (Section 4). We conclude with an analogy (Section 5), grounded 
in the result presented by Figure I. Climate policy treated as an asset pricing problem is, 
after all, fundamentally about risk mitigation. 

2. The Model 

Our representative agent solves the optimization problem of trading off the (known) costs 
of climate mitigation against the uncertain future benefits associated with mitigation. She 
maximizes lifetime expected utility at each time and for each state of nature by choosing 
the optimal mitigation at time 𝑡𝑡, 𝑥𝑥𝑡𝑡∗(𝜃𝜃𝑡𝑡), dependent on the current estimate of the Earth’s 
fragility, 𝜃𝜃𝑡𝑡, and on the future evolution of 𝜃𝜃𝑡𝑡. Fragility 𝜃𝜃𝑡𝑡 evolves stochastically as 
described in section 2.3. 
                                                   
11 Figure VIII in section III shows the optimal CO2 price over time for our base case calibration of an EIS of 
0.9 and 𝑅𝑅𝑅𝑅𝑅𝑅 = 7. 
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Mitigating emissions is costly to any individual, but the resulting future benefits are 
dispersed across society. Hence, assuming no government action to price carbon, 
atomistic agents do zero mitigation. We calculate the optimal price on carbon emissions, 
as the price which would induce atomistic agents to reduce emissions to the level that 
would be chosen by the representative agent at each time and in each state.  
 
As GHGs build up in the atmosphere, temperatures rise. As a result, a fraction of the 
baseline consumption is lost to damages. The damages as a function of mitigation are not 
known ex-ante. They are, in turn, a function of 𝜃𝜃𝑡𝑡. Each period of the model, agents learn 
more about the level of fragility, but they only know the actual fragility in the final two 
periods of the model. 
 
These assumptions simplify reality in two important ways: As 𝜃𝜃𝑡𝑡 is the only unknown in 
EZ-Climate model, we do not allow for interactions of shocks to fragility with those to 
other state variables (e.g., productivity). The second simplification is the assumption of 
full knowledge of 𝜃𝜃 in period 𝑇𝑇 − 1 (in the year 2300 in our base case). Important aspects 
of climate science are deeply and persistently uncertain, and science may not learn the 
true 𝜃𝜃 at a time scale relevant to policy (Wagner and Zeckhauser, 2017; Zeckhauser, 
2006). We compromise by having the complete resolution of uncertainty delayed until 
2300, when we might be able to expect to know the all-important climate sensitivity 
parameter, what happens to global average temperatures, in equilibrium, as 
concentrations of GHGs double from pre-industrial levels.12 
 
The setting for the EZ-Climate model is a discrete time, endowment economy with a single 
representative agent. In each period 𝑡𝑡𝑡𝑡{0,1,2, … ,𝑇𝑇}, the representative agent is endowed 
with a certain amount of the consumption good, 𝑐𝑐𝑡̅𝑡. However, she is not able to consume 
the full endowed consumption for two reasons: climate change and climate policy. 
 
In periods 𝑡𝑡𝑡𝑡{1,2, … ,𝑇𝑇}, some of the endowed consumption may be lost due to climate 
change damages. In periods 𝑡𝑡𝑡𝑡{0,1,2, … ,𝑇𝑇 − 1}, the agent may elect to spend some of the 
endowed consumption to reduce her impact on the climate. The resulting consumption 
𝑐𝑐𝑡𝑡, after damages 𝐷𝐷𝑡𝑡 and mitigation costs 𝜅𝜅𝑡𝑡 are taken into account, is given by: 
 
(1) 𝑐𝑐0 = 𝑐𝑐0̅ ∙ �1 − 𝜅𝜅0(𝑥𝑥0)�, 
(2) 𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡̅𝑡 ∙ �1 − 𝜅𝜅𝑡𝑡(𝑥𝑥𝑡𝑡)� ∙ �1 − 𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ,𝜃𝜃𝑡𝑡)�, for 𝑡𝑡𝑡𝑡{1,2, … ,𝑇𝑇 − 1}, and 
(3) 𝑐𝑐𝑇𝑇 = 𝑐𝑐𝑇̅𝑇 ∙ (1 − 𝐷𝐷𝑇𝑇(𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇 ,𝜃𝜃𝑇𝑇)). 
 
In equations (2) and (3), the climate damage function 𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ,𝜃𝜃𝑡𝑡) captures the fraction 
of endowed consumption that is lost due to damages from climate change. If 

                                                   
12 The ‘likely’ range for climate sensitivity has been 1.5–4.5°C ever since Charney et al. (1979)—with one 
short exception. In its Fourth Assessment Report, IPCC (2007) narrowed the range to 2–4.5°C, only to be 
expanded back to the prior range in the Fifth Assessment Report (IPCC, 2013). The “equilibrium” climate 
sensitivity range is the so-called “fast” equilibrium, as distinct from Earth system sensitivity. The latter 
includes broader changes, which could, in turn, result in still larger changes. Previdi et al. (2013) present a 
range of 6–8°C for a doubling of atmospheric CO2 concentrations. (See section II.C.ii.) 
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𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶,𝜃𝜃𝑡𝑡) = 0, the agent would receive the full consumption endowment. However, 
damages from climate change can push 𝐷𝐷𝑡𝑡 above zero. 𝐷𝐷𝑡𝑡, in turn, depends on two 
variables: 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 , which we define as the cumulative radiative forcing up to time t, which 
determines global average temperature, and 𝜃𝜃𝑡𝑡, the Earth’s fragility which, as discussed 
earlier, characterizes the uncertain relation between GHG concentrations and 
consumption damages.  
 
Cumulative radiative forcing, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, in turn, depends on the level of mitigation in each 
period 𝑥𝑥𝑠𝑠from 𝑠𝑠 = 0 to 𝑡𝑡. An 𝑥𝑥𝑠𝑠 = 1 would mean that, in period 𝑠𝑠, GHG emissions are 
reduced to zero. Mitigation of 𝑥𝑥𝑠𝑠 = 0 is “business as usual,” meaning that individuals and 
business do not face any taxes or other restrictions on GHG emissions. Mitigation is 
further discussed in Section 2.3.3.  
 
Mitigation reduces the stock of GHGs in the atmosphere and leads to lower climate 
damages, and, hence, to higher future consumption. But mitigating GHG emissions is 
costly. Mitigating a fraction 𝑥𝑥𝑡𝑡 of emissions costs a fraction 𝜅𝜅𝑡𝑡(𝑥𝑥𝑡𝑡) of the endowed 
consumption. We describe the details of the cost function, and our calibration, in Section 
2.2. 
 
Cumulative mitigation between periods 0 and t is given by: 
 

(4) Xt = ∑ 𝑔𝑔𝑠𝑠∙𝑡𝑡
𝑠𝑠=0 𝑥𝑥𝑠𝑠
∑ 𝑔𝑔𝑠𝑠𝑡𝑡
𝑠𝑠=0

, 

 
where 𝑔𝑔𝑠𝑠 is the flow of GHG emissions into the atmosphere in period 𝑠𝑠, for each period 
up to t, absent any mitigation.13 Cumulative mitigation, Xt, enters the determination of 
the rate of technological change, discussed in Section 2.2.2. 
 
Rather than restricting mitigation 𝑥𝑥𝑡𝑡 to be below 1, in our baseline analysis we allow for 
the use of a backstop technology to pull CO2 directly out of the atmosphere, potentially 
leading to 𝑥𝑥𝑡𝑡 > 1. Backstop technologies are typically labeled carbon dioxide removal 
(CDR) or direct carbon removal (DCR). See the discussion in sections 2.2.1 on backstop 
technologies and 2.3.4 on the resulting possibility of having concentrations fall below 280 
ppm. 
 
To make the solution tractable, the EZ-Climate model employs a binominal tree for the 
resolution of uncertainty about climate damage, discussed in detail in Section 2.4. The 
baseline analysis uses a 7-period tree, beginning in 2015. An initial mitigation decision is 
made in 2015, and subsequent mitigation decisions are made after information is revealed 
about climate fragility and the resulting damages in years 2030, 2060, 2100, 2200, and 
2300. The final period, in which consumption simply grows at a constant rate, begins in 
2400 and lasts forever. At each node of the tree, more information about the consumption 
damage function is revealed (as reflected in the fragility parameter 𝜃𝜃𝑡𝑡), but uncertainty is 

                                                   
13 The cumulative GHG emissions that must be absorbed into the atmosphere or oceans is 𝐺𝐺𝑡𝑡(1 − 𝑋𝑋𝑡𝑡), where 
𝐺𝐺𝑡𝑡 = ∑ 𝑔𝑔𝑠𝑠𝑡𝑡

𝑠𝑠=0  denotes the cumulative emissions under the BAU scenario. 
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not fully resolved until the beginning of the next-to-last period in 2300.14 The agent’s 
utility in each state is calculated based on interpolated consumption flows at five-year 
sub-periods. We solve for mitigation levels over time that maximize expected utility, 
looking forward, at the start of each period (except the final period), and in each fragility 
state 𝜃𝜃𝑡𝑡. The resulting optimal CO2 price in each period and state is the price that 
implements this level of mitigation. 
 
In the next section, we describe the agent’s preferences, and provide some additional 
motivation for the preferences specification we employ. In Sections 2.2 and 2.3, we lay 
out the cost and damage functions, respectively, and describe their calibration. In keeping 
with the National Academy of Science’s (2017) call for modularity in climate-economy 
modeling efforts, these calibrations are largely independent of each other and could easily 
be swapped for different, better calibrations. Section 2.4 describes EZ-Climate’s tree 
structure in more detail. It, too, can be readily adjusted, in keeping with the modularity 
of EZ-Climate. Section 3 presents the results based on our calibrations. Section 5 
concludes. 

2.1. Preferences 

As noted in the introduction, the CRRA specification typically used in climate-economy 
models like DICE embeds the assumption that agents’ willingness to substitute 
consumption across states of nature is the same as their willingness to substitute 
consumption over time. This is inconsistent with the observed low risk-free rate and high 
equity premium (Mehra and Prescott, 1985; Weil, 1989). To resolve this puzzle, financial 
economists have begun to employ the preference specification suggested by Epstein and 
Zin (1991, 1989) and Weil (1990) that allows for different rates of substitution across time 
and states.15 This is the specification underlying EZ-Climate. 

                                                   
14 Possibly unique among climate-economy models, our setup of allowing for negative emissions creates the 
possibility of optimal GHG concentrations going below 280 ppm—if, in the final stage of our tree structure 
fragility, 𝜃𝜃𝑡𝑡, turns out to be worse than expected. We, thus, include another damage component with 
increasing damage function for GHG concentrations below a certain level in EZ-Climate, also perhaps 
unique among climate-economy models. See Section II.C for a more detailed description of climate 
damages. 
15 See Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008) for more detailed discussions. Bansal 
and Ochoa (2011, 2009) and Bansal, Ochoa and Kiku (2016) use this preference specification in 
combination with a framework in which temperature shocks affect future consumption growth. For 
example, Ackerman, Stanton, and Bueno (2013), Crost and Traeger (2014), and, most recently, Cai, Lenton, 
and Lontzek (2016) use this utility function in DICE. Making no further adjustments, doing so poses oft-
significant computational challenges. Ha-Duong and Treich (2004) appear to have been the first to 
encounter those challenges. They explore the importance of Epstein-Zin preferences in calibrating climate 
risk in general and conclude, somewhat too cautiously, that setting 𝜌𝜌 = 𝛼𝛼 “may misinterpret the sensitivity 
of the climate policy to risk-aversion.” Importantly, Ha-Duong and Treich (2004) explore a more general 
implementation of Epstein-Zin preferences, turning 𝑐𝑐𝑡𝑡 also into a function equal to the certainty-equivalent 
of future lifetime income. Their equivalent of our equation (5) could have been written more generally as 

𝑈𝑈𝑡𝑡 = �(1 − 𝛽𝛽)[𝜇𝜇𝑡𝑡(c�t)]𝜌𝜌 +  𝛽𝛽�𝜇𝜇𝑡𝑡�𝑈𝑈�𝑡𝑡+1��
𝜌𝜌�
1 𝜌𝜌⁄

, with the definition of 𝜇𝜇𝑡𝑡(c�t+1) mirroring our equation (6), for the 
current period 𝑡𝑡: μt(c�t) =  (𝐸𝐸𝑡𝑡[c�𝑡𝑡𝛼𝛼])1 𝛼𝛼⁄ . The difference is subtle but potentially important. Ha-Duong and 
Treich’s (2004) extension allows for consumption to be uncertain within each period. Our and others’ 
implementation of Epstein-Zin preferences in form of (5) and (6) implies full knowledge of each period’s 
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In an Epstein-Zin utility framework, the agent maximizes at each time 𝑡𝑡: 
 

(5) 𝑈𝑈𝑡𝑡 = �(1 − 𝛽𝛽)c𝑡𝑡
𝜌𝜌 +  𝛽𝛽�𝜇𝜇𝑡𝑡�𝑈𝑈�𝑡𝑡+1��

𝜌𝜌�
1 𝜌𝜌⁄

, 
 
where 𝜇𝜇𝑡𝑡�𝑈𝑈�𝑡𝑡+1� is the certainty-equivalent of future lifetime utility, based on the agent’s 
information at time 𝑡𝑡, and is given by: 
 
(6) μt�U�t+1� =  (𝐸𝐸𝑡𝑡[𝑈𝑈𝑡𝑡+1𝛼𝛼 ])1 𝛼𝛼⁄ . 
 
In this specification, (1 − 𝛽𝛽) 𝛽𝛽⁄  is the pure rate of time preference, commonly denoted by 
𝛿𝛿. The parameter 𝜌𝜌 measures the agent’s willingness to substitute consumption across 
time. The higher is 𝜌𝜌, the more willing the agent is to substitute consumption across time. 
The elasticity of intertemporal substitution is given by 𝜎𝜎 = 1 (1 − 𝜌𝜌)⁄ . 
 
Finally, 𝛼𝛼 captures the agent’s willingness to substitute consumption across (uncertain) 
future consumption streams. The higher is 𝛼𝛼, the more willing the agent is to substitute 
consumption across states of nature at a given point in time. The coefficient of relative 
risk aversion at a given point in time is 𝛾𝛾 = (1 − 𝛼𝛼). This added flexibility allows for 
calibration across states of nature and time. With 𝜌𝜌 = 𝛼𝛼, equations (5) and (6) are 
equivalent to the standard CRRA utility specification. 
 
Plugging (6) into (5) results in EZ-Climate’s utility specification:  
 

(7) 𝑈𝑈0 =  �(1 − 𝛽𝛽)𝑐𝑐0
𝜌𝜌 + 𝛽𝛽�𝐸𝐸0�𝑈𝑈�1𝛼𝛼��

𝜌𝜌 𝛼𝛼⁄ �
1 𝜌𝜌⁄

 

(8) 𝑈𝑈𝑡𝑡 =  �(1 − 𝛽𝛽)𝑐𝑐𝑡𝑡
𝜌𝜌 + 𝛽𝛽(𝐸𝐸𝑡𝑡[U𝑡𝑡+1

𝛼𝛼 ])𝜌𝜌 𝛼𝛼⁄ �1 𝜌𝜌⁄
, for 𝑡𝑡𝑡𝑡{1,2, … ,𝑇𝑇 − 1}. 

 
with 𝑐𝑐0 and 𝑐𝑐𝑡𝑡, respectively, given by equations (1) and (2). 
 
In the final period, which, in our base case, is the period starting in 2400, the agent 
receives the utility from all consumption from time 𝑇𝑇 forward. Given our assumption that 
all uncertainty has been resolved at this point, consumption grows at a constant rate 𝑟𝑟 
from 𝑇𝑇 through infinity: 
 
(9) 𝑐𝑐𝑡𝑡 =  𝑐𝑐𝑇𝑇(1 + 𝑟𝑟)𝑡𝑡−𝑇𝑇 for 𝑡𝑡 ≥ 𝑇𝑇. 
 
The resulting final-period utility is: 
 

(10) 𝑈𝑈𝑇𝑇 =  � 1−𝛽𝛽
1−𝛽𝛽(1+𝑟𝑟)𝜌𝜌

�
1 𝜌𝜌⁄

𝑐𝑐𝑇𝑇, 

 
with 𝑐𝑐𝑇𝑇 given by equation (3). 
                                                   
consumption at the time of the mitigation decision. This is a reasonable assumption for short time intervals. 
As those intervals become larger, within-period uncertainty might become more important. 
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2.2. Mitigation Cost 

Calibrating the economic cost side of EZ-Climate requires specifying a relationship 
between the marginal cost of emissions reductions or per-ton tax rate, 𝜏𝜏, the resulting 
flow of emissions in gigatonnes of CO2-equivalent emissions per year (Gt CO2e), 𝑔𝑔(𝜏𝜏), 
and the fraction of emissions reduced, 𝑥𝑥(𝜏𝜏). 
 
Many modeling efforts have attempted to estimate the marginal abatement costs, often 
as part of integrated assessment models and based on a number of assumption.16 Perhaps 
the most influential, independent effort comes from McKinsey & Company in an attempt 
to estimate a bottom-up marginal abatement cost curve (MACC). McKinsey’s MACCs are, 
to a large extent, based on bottom-up ‘engineering’ estimates. That makes them an easy 
target for critique by economists, which often focuses on the large abatement 
opportunities with ‘negative’ costs—positive net present value. McKinsey’s report on 
energy efficiency in the United States identifies energy efficiency savings opportunities 
with positive net present value commensurate with emissions reductions of over 1 Gt 
CO2e per year (McKinsey, 2009a). Lots of effort has gone into assessing (Gerarden et al., 
2015) and helping to bridge (Gillingham and Palmer, 2014) that potential energy 
efficiency gap, without conclusive evidence (Allcott and Greenstone, 2012). These 
critiques notwithstanding, McKinsey’s effort stands as a unique, bottom-up, data-driven 
attempt at estimating abatement costs. We calibrate 𝜏𝜏, 𝑔𝑔(𝜏𝜏), and 𝑥𝑥(𝜏𝜏) in EZ-Climate based 
on McKinsey’s global MACC effort (McKinsey, 2009b), with one crucial modification: We 
assume no mitigation (𝑥𝑥(𝜏𝜏) = 0) at 𝜏𝜏 ≤ 0; i.e. no net-negative or zero-cost mitigation. 
Table I shows the resulting calibration.17 
 
Table I—Marginal abatement cost curve for 2030, based on McKinsey (2009b), modified to 

have x(τ)=0 for τ≤0. 
GHG taxation rate 

𝝉𝝉 
GHG emissions flow 

𝒈𝒈(𝝉𝝉) 
Fractional GHG 

reduction 
𝒙𝒙(𝝉𝝉) 

€0/ton 70 Gt CO2e/year 0 
€60/ton 32 Gt CO2e/year 0.543 

€100/ton 23 Gt CO2e/year 0.671 
 
Fitting McKinsey’s modified point estimates (in $US using an average 2005 exchange rate 
of 1.206 $ per €) from Table I to a power function for 𝑥𝑥(𝜏𝜏) yields: 
 
(11) 𝑥𝑥(𝜏𝜏) = 0.0923 ∙ 𝜏𝜏0.414. 
 
The corresponding inverse function, solving for the appropriate tax rate to achieve 𝑥𝑥 is: 
 
                                                   
16 See Stanford’s Energy Modeling Forum as one such major effort, working with a number of different 
models: https://emf.stanford.edu. See Huntington (2011) as an overview of Stanford EMF’s work focused 
on the ‘energy efficiency gap’. 
17 We have emissions stabilize at 57% above current levels. In our ‘unmitigated’ baseline scenario, following 
the IEA’s New Policies Scenario (which does, in fact, have what we would describe as modest mitigation), 
GHG concentrations reach approximately 1,000 ppm by 2200. 

https://emf.stanford.edu/
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(12) 𝜏𝜏(𝑥𝑥) = 314.32 ∙ 𝑥𝑥2.413. 
 
Equation (12) shows the marginal cost of abatement. Ultimately, we are interested in the 
total cost to society, 𝜅𝜅(𝜏𝜏), for each particular tax 𝜏𝜏. We calculate 𝜅𝜅(𝜏𝜏) using the envelope 
theorem. Intuitively, GHG emissions are an input to the production process that 
generates consumption goods. Assuming the agent chooses the level of GHG emissions 
𝑔𝑔(𝜏𝜏) so as to maximize consumption 𝑐𝑐 given 𝜏𝜏, the marginal cost of increasing the tax rate 
must be the quantity of emissions at that tax rate, that is: 
 
(13) 𝑑𝑑𝑑𝑑(𝜏𝜏)

𝑑𝑑𝑑𝑑
= −𝑔𝑔(𝜏𝜏), 

 
Thus, to calculate the consumption associated with a particular tax rate of 𝜏𝜏, we integrate 
(13), resulting in: 
 
(14) 𝑐𝑐(𝜏𝜏) = 𝑐𝑐̅ − ∫ 𝑔𝑔(𝑠𝑠)𝜏𝜏

0 𝑑𝑑𝑑𝑑, 
 
where 𝑐𝑐̅ is the endowed level of consumption (assuming zero climate damages). However, 
this equation is correct only if the GHG tax is purely dissipative—that is, if the government 
were to collect the tax and then waste 100% of the proceeds. In our analysis, we make the 
opposite assumption: the proceeds of the tax (𝑔𝑔(𝜏𝜏)  ·  𝜏𝜏) are refunded lump-sum.18 That 
makes the decrease in consumption equal to the distortionary effect of the tax (in dollars): 
 
(15) 𝐾𝐾(𝜏𝜏) = ∫ 𝑔𝑔(𝑠𝑠)𝜏𝜏

0 𝑑𝑑𝑑𝑑 −  𝑔𝑔(𝜏𝜏) ∙ 𝜏𝜏. 
 
Writing 𝑔𝑔(𝜏𝜏) = 𝑔𝑔0�1 − 𝑥𝑥(𝜏𝜏)�, where 𝑔𝑔0 is the baseline level of GHG emissions, we can 
rewrite (15) as: 
 

𝐾𝐾(𝜏𝜏) = 𝑔𝑔0 � �1 − 𝑥𝑥(𝑠𝑠)�𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑔𝑔0�1 − 𝑥𝑥(𝜏𝜏)�
𝜏𝜏

0
 

= 𝑔𝑔0 �𝜏𝜏 − � 𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑
𝜏𝜏

0
� − 𝜏𝜏𝑔𝑔0 + 𝜏𝜏𝑔𝑔0𝑥𝑥(𝜏𝜏) 

(16) = 𝑔𝑔0�𝜏𝜏𝜏𝜏(𝜏𝜏) − ∫ 𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑𝜏𝜏
0 � 

 
Substituting (11) into (16) and simplifying gives the total cost 𝛫𝛫 as a function of the tax 
rate 𝜏𝜏: 
 

𝛫𝛫(𝜏𝜏) = 𝑔𝑔0[0.09230 ∙ 𝜏𝜏1.414 − 0.06526 ∙ 𝜏𝜏1.414] 
(17) = 𝑔𝑔0 ∙ 0.02704 ∙ 𝜏𝜏1.414, 
 
Substituting (12) into (17) gives 𝛫𝛫 as a function of fractional-mitigation 𝑥𝑥: 
 
                                                   
18 Note that were the proceeds from the (Pigouvian) GHG tax used to reduce other distortionary taxes, the 
effective cost of the carbon tax would be still lower than what we calculate here, and thus would justify a 
higher optimal 𝜏𝜏. For a summary of this “double-dividend” argument, see Goulder (1995). 
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(18) 𝛫𝛫(𝑥𝑥) = 𝑔𝑔092.08 ∙ 𝑥𝑥3.413, 
 
where total cost 𝛫𝛫(𝑥𝑥) is expressed in dollars. Finally, we divide by current (2015) 
aggregate consumption to determine the cost as a fraction of baseline consumption: 
 
(19) 𝜅𝜅(𝑥𝑥) = �𝑔𝑔0∙92.08

𝐶𝐶0
� ∙ 𝑥𝑥3.413, 

 
where 𝑔𝑔0 = 52 Gt CO2e represents the current level of global annual emissions, and 𝑐𝑐0 = 
$31 trillion/year is current (2015) global consumption in 2015 dollars. Equation (19) 
expresses the societal cost of a given level of mitigation as a percentage of consumption. 
We assume that, absent technological change, the function 𝜅𝜅(𝑥𝑥) is time invariant. See 
2.2.2 for our discussion of technological change. First, we explore the impact of backstop 
technologies. 

2.2.1. Backstop Technology 

The McKinsey estimates on which our total cost function, 𝜅𝜅(𝑥𝑥), are based reflect the cost 
of traditional abatement technologies. In addition, carbon dioxide removal (CDR) can 
pull CO2, and potentially GHGs, directly from the atmosphere (National Research 
Council, 2015a). We label these backstop technologies. 
 
We assume our backstop technology is available at a marginal cost of 𝜏𝜏∗ for the first ton 
of carbon that is removed from the atmosphere and that unlimited amounts of CO2 can 
be removed as the marginal cost approaches 𝜏̃𝜏 ≥ 𝜏𝜏∗. In fitting the marginal cost curve to 
𝜏𝜏∗ and 𝜏̃𝜏 we build a marginal cost function for the backstop technology of the form: 
 

(20) 𝐵𝐵(𝑥𝑥) = 𝜏̃𝜏 − �𝑘𝑘 𝑥𝑥� �
1
𝑏𝑏� . 

 
The upper bound of the cost function is, thus, 𝜏̃𝜏. We calibrate (20), such that: 
 

(21) 𝐵𝐵(𝑥𝑥0) = 𝜏̃𝜏 − �𝑘𝑘 𝑥𝑥0� �
1
𝑏𝑏� = 𝜏𝜏∗, 

 
which allows us to express: 
 
(22) 𝑘𝑘 = 𝑥𝑥0(𝜏̃𝜏 − 𝜏𝜏∗)𝑏𝑏, 
 
where 𝑥𝑥0 is the point at which the backstop technology begins to be used. We also impose 
a smooth-pasting condition at 𝑥𝑥0; i.e. the derivative of the marginal cost curve is 
continuous at 𝑥𝑥0. This allows us to solve for parameter 𝑏𝑏: 
 
(23) 𝑏𝑏 = 𝜏𝜏�−𝜏𝜏∗

(3.413−1)𝜏𝜏∗
. 
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Our base case assumes 𝜏𝜏∗ = $2,000 and 𝜏̃𝜏 = $2,500 in 2015 dollars. Under the most 
aggressive backstop scenario presented in the results section, we assume 𝜏𝜏∗ = $300 and 
𝜏̃𝜏 = $350 in 2015 dollars. These aggressive values imply that the backstop technology 
kicks in at mitigation levels above around 100%, whereas our base case all but assures 
that backstop technologies do not get used for a considerable period of time. The $350 is 
on the low end of possible assumptions, and the extent to which there can be a true 
backstop technology remains uncertain (Socolow et al., 2011). The need for one is clear, 
and much work remains to be done to demonstrate possible technologies and refine price 
estimates (Keith, 2000; National Research Council, 2015a).19 Figure II shows the 
marginal cost, 𝜏𝜏(𝑥𝑥), with both base-case and aggressive backstop technology 
assumptions. 

 
Figure II—Marginal cost of abatement, 𝝉𝝉(𝒙𝒙), in 2015 (in 2015 $/ton) under base-case (𝝉𝝉∗ =
$𝟐𝟐,𝟎𝟎𝟎𝟎𝟎𝟎, 𝝉𝝉� = $𝟐𝟐,𝟓𝟓𝟓𝟓𝟓𝟓) and aggressive backstop technology (𝝉𝝉∗ = $𝟑𝟑𝟑𝟑𝟑𝟑, 𝝉𝝉� = $𝟑𝟑𝟑𝟑𝟑𝟑) assumptions 

2.2.2. Technological Change 

These cost curves are calibrated to 𝑡𝑡 = 0. In subsequent periods, we allow the marginal 
cost curve to decrease at a rate determined by a set of technological change parameters: a 
constant component, 𝜑𝜑0, and a component linked to mitigation efforts to date, 𝜑𝜑1𝑋𝑋𝑡𝑡, 
where 𝑋𝑋𝑡𝑡 is the average mitigation up to time 𝑡𝑡, defined by equation (4). Thus, at time 𝑡𝑡, 
the total cost curve is given by: 
                                                   
19 Note that CDR as a backstop technology is entirely distinct from solar geoengineering, also known as 
‘albedo modification’ or ‘solar radiation management’ (National Research Council, 2015b). The one 
commonality is that both ‘carbon geoengineering’, CDR, and the potential availability of solar 
geoengineering likely reduce the optimal CO2 price. EZ-Climate models the former, not the latter. 
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(24) 𝜅𝜅𝑡𝑡(𝑥𝑥) = 𝜅𝜅(𝑥𝑥)[1 − 𝜑𝜑0 − 𝜑𝜑1𝑋𝑋𝑡𝑡]𝑡𝑡. 
 
This functional form allows for easy calibration. For example, if 𝜑𝜑0 = 0.005 and 𝜑𝜑1 = 0.01, 
and with average mitigation of 50%, marginal costs decrease as a percentage of 
consumption at a rate of 1% per year. 

2.3. Damage Function Specification 

We next specify the climate damage function 𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ,𝜃𝜃𝑡𝑡).20 Damages are a function of 
temperature changes, which, in turn, are a function of cumulative solar radiative forcing 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, which, in our setting, are determined by the mitigation path up to that point in time. 
We then compare 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 to three baseline emissions paths, 𝑔𝑔𝑡𝑡 for which we have created 
associated damage simulations. The one way, then, to affect the level of damages is to 
change mitigation across time, 𝑥𝑥𝑡𝑡. The specification of damages has two components: a 
non-catastrophic component and an additional catastrophic component triggered by 
crossing a particular threshold. The hazard rate associated with hitting that threshold 
increases with temperature. If the threshold is crossed at any time, additional damages 
decrease consumption in all future periods. 
 
We calculate the overall damage function 𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 , 𝜃𝜃𝑡𝑡) for the baseline emissions paths, 
𝑔𝑔𝑡𝑡, using Monte-Carlo simulation. As we describe in detail below, we run a set of 
simulations for each of three constant mitigation levels 𝑋𝑋𝑡𝑡, which determine cumulative 
radiative forcing at each point in time. In each run of the simulation, we draw a set of 
random variables: [1] global average temperature change; [2] the parameter 
characterizing non-catastrophic damages as a function of temperature; [3] an indicator 
variable that determines whether or not the atmosphere hits a tipping point at any 
particular time and state, and [4] the tipping point damage parameter. The state variable 
𝜃𝜃𝑡𝑡 indexes the distribution resulting from these sets of simulations, and interpolation 
across the three mitigation levels gives us a continuous function 𝐷𝐷𝑡𝑡 across cumulative 
radiative forcing levels 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡. 

2.3.1. Temperature as a Function of GHG Levels 

The distribution of temperature outcomes as a function of mitigation strategies is 
calibrated to three carbon scenarios, indexed by a maximum level of CO2 in the 
atmosphere. For the subsequent base case calibration, we follow Weitzman (2009) and 
Wagner and Weitzman (2015) in calibrating a log-normal distribution for equilibrium 
climate sensitivity—the eventual temperature rise as atmospheric concentrations of CO2 

                                                   
20 Our damage function calibration follows the basic logic of Pindyck (2012), with one crucial exception: 
Pindyck (2012) assumes gamma distributions for temperature levels given greenhouse gas concentrations, 
and for economic damages given temperature levels. We explore other functional forms for both. See 
sections II.C.i and II.C.ii. 
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double.21 Specifically, Wagner and Weitzman (2015) calibrate a log-normal function 
assuming a 78% probability of climate sensitivity in the 1.5-4.5°C “likely” range.22 
Moreover, the Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment 
Report (IPCC, 2013) judges climate sensitivity above 6°C to be “very unlikely,” giving it a 
0-10% probability. We again follow Wagner and Weitzman (2015) in assigning it a 
roughly 5% chance. 
 
Wagner and Weitzman (2015) then use this calibration to translate the International 
Energy Agency’s (IEA) projections for concentrations of CO2-equivalent tons into final 
temperature outcomes. Under the assumptions of the its “new policies scenario,” IEA 
(2013) projects that atmospheric concentrations will reach 700 ppm CO2e by 2100. That 
concentration would result in a projected, eventual median temperature increase of 3.6°C. 
Wagner and Weitzman (2015) present eventual median temperature outcomes for 
concentrations of between 400 and 800 ppm. We take their calibration and extrapolate 
to 1000 ppm, which we assume to be the zero-mitigation scenario, marking an upper 
bound of sorts. We similarly assume that 100% mitigation over time leads to a maximum 
GHG level of 400 ppm. Other fixed levels of mitigation are assumed to lead to damages 
associated with GHG levels linearly interpolated between those levels. Thus, mitigation 
of 50% through any point in time leads to the interpolated damages at that time along a 
path associated with a maximum GHG level of 700 ppm. 
 
Table II gives the probability of different levels of Δ𝑇𝑇100—the temperature change over the 
next 100 years—for given maximum levels of GHGs in atmosphere. The 450 ppm, 650 
ppm, and 1000 ppm maximum levels of CO2 equivalents in the atmosphere reflect, 
respectively, a strict, a modest, and an ineffective mitigation scenario. 
 

Table II—Probability of 𝚫𝚫𝑻𝑻𝟏𝟏𝟏𝟏𝟏𝟏 > 𝑻𝑻 
 

Maximum GHG Level (ppm of CO2) 
T 450 650 1000 
2°C 0.40 0.85 0.99 
3°C 0.13 0.54 0.86 
4°C 0.04 0.30 0.66 
5°C 0.02 0.15 0.46 
6°C 0.00 0.07 0.30 

 
We then use assumptions akin to Pindyck (2012) to fit a displaced gamma distribution 
around final GHG concentrations, while setting levels of GHG 100 years in the future 
equal to equilibrium levels. Table III gives the parameters for these distributions, and the 
probabilities from the fitted displaced gamma distributions, which line up well with the 

                                                   
21 This log-normal calibration results in similar CO2 price estimates as a distribution calibrated by Roe and 
Baker (2007). It results in higher CO2 price estimates compared with Pindyck’s (2012) gamma distribution 
calibration. 
22 The IPCC says that range is “likely,” which it defines as having at least a 66% probability. The IPCC’s “very 
likely” designation implies at least a 90% probability. We follow Wagner and Weitzman (2015) in splitting 
the difference to arrive at 78%. 
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numbers in Table II, especially for scenarios closer to 450 and 650 ppm than the 1,000 
ppm zero-mitigation case. 
 

Table III—Fitted values of 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝚫𝚫𝑻𝑻𝟏𝟏𝟏𝟏𝟏𝟏 > 𝑻𝑻) for three specified gamma distributions 
 

Maximum GHG Level (ppm of CO2) 
T 450 650 1,000 
2°C 0.40 0.87 0.99 
3°C 0.14 0.57 0.91 
4°C 0.04 0.29 0.70 
5°C 0.01 0.12 0.44 
6°C 0.00 0.05 0.24 
Gamma distribution parameters 
𝜶𝜶 2.810 4.630 6.100 
𝜷𝜷 0.600 0.630 0.670 
Displacement -0.25 -0.5 -0.9 

 
To obtain the temperature distribution at other times, we again follow Pindyck (2012), 
and specify that the time path for the temperature change at time 𝑡𝑡 (in years) is given by: 
 

(25) Δ𝑇𝑇(𝑡𝑡) = 2 Δ𝑇𝑇100  �1 − 0.5
𝑡𝑡

100�. 

 
Figure III—Calibrated time path for temperature increases given assumed temperature 
increases within a century 
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Figure III plots temperature paths for different levels of Δ𝑇𝑇100. As time increases, the 
temperature change asymptotes to double the value of Δ𝑇𝑇100. Even though these 
calibrations are, by now, ‘established’ in the climate-economic literature, both the 
distribution of Δ𝑇𝑇100 and the functional form for the path in equation (25) clearly merit 
further scientific scrutiny. Both are likely on the conservative side of actual projections. 

2.3.2. Damages as a Function of Temperature 

The next step is to translate average global surface warming into global mean economic 
losses via the damage function 𝐷𝐷𝑡𝑡. There are two components to 𝐷𝐷𝑡𝑡: a non-catastrophic 
and a catastrophic one. The functional form of each component is known to the agent. 
However, as with the GHG-Δ𝑇𝑇100 relationship discussed in the prior section, the 
functional form for each damage function component contains a parameter that 
characterizes the uncertainty in our present understanding of this relationship. In EZ-
Climate the agent knows the form of the distribution of this parameter at the initial date, 
and in each period she learns more about the distribution of the parameter. However, the 
final realization of the parameter is not known until the next-to-last period. 
 
The non-catastrophic component of our damages follows Pindyck (2012), who fits a 
functional form to data from the IPCC’s Fourth Assessment Report (IPCC, 2007), and 
obtains a loss function of the form: 
 
(26) L(Δ𝑇𝑇(𝑡𝑡)) = 𝑒𝑒−13.97∙𝛾𝛾∙Δ𝑇𝑇(𝑡𝑡)2, 
 
where 𝛾𝛾 is drawn from a displaced gamma distribution with parameters 𝑟𝑟 = 4.5, 𝜆𝜆 =
21341, and 𝜃𝜃 = −0.0000746. 
 
Based on non-catastrophic damages, consumption at any time 𝑡𝑡 is reduced as follows: 
 
(27) CD𝑡𝑡 = 𝑐𝑐𝑡̅𝑡 ∙ L(Δ𝑇𝑇(𝑡𝑡)). 
 
A major concern with this damage function is that it effectively rules out catastrophic 
risks, even at high temperature changes. Take an 8°C temperature change, well outside 
the range typically assumed to be ‘safe’. If per capita consumption is assumed to grow in 
real terms by 2% annually, then such damage applied to consumption 50 years hence 
would reduce the average consumption from 2.7 times today’s value to 2.2 times, a 
significant reduction, but hardly a catastrophe of significant concern today. Even the 1% 
point in the outcome distribution conditional on an 8°C average temperature change is 
assumed here to be a reduction in consumption of only 32% which implies the 
representative agent is still 1.8 times wealthier than today. We hence augment Pindyck’s 
(2012) damage function with the possibility of catastrophic events after reaching a 
particular temperature threshold, which itself creates at least the potential for a much 
larger impact on consumption, once thus calibrated. 
 



– 19 – 

While the possibility of climate tipping elements is receiving considerable attention in the 
scientific community, there is no single right specification (Kopp et al., 2016). There is, 
however, seeming convergence around global average warming of 6°C representing 
something akin to an upper bound for what could conceivably be quantified. The figure is 
a recurring theme in the literature, from the EU’s High-End cLimate Impacts and 
eXtremes (HELIX) research project, which ends at 6°C, to Mark Lynas’s popular book Six 
Degrees, which does the same (Lynas, 2008).23 Its sixth chapter, “Six Degrees,” begins 
with a vivid reference to Dante Alighieri’s Sixth Circle of Hell. We take 6°C as our base 
level calibration for a parameter we label “𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,” above which we can expect to have hit 
a climatic ‘tipping point’ of sorts. 
 
Specifically, we use Prob(TP) to denote the probability of hitting a ‘Tipping Point’ over a 
given interval of length “period” as a function of the global temperature change as of that 
time (Δ𝑇𝑇(𝑡𝑡)), and of the parameter 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 
 

(28) Prob(TP) = 1 − �1 − � Δ𝑇𝑇(𝑡𝑡)
max[Δ𝑇𝑇(𝑡𝑡),𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]�

2
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
30

. 

 
Figure IV plots Prob(TP) as a function of Δ𝑇𝑇(𝑡𝑡) for a 30-year period and a set of values of 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. As 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 increases, the probability of reaching a climatic tipping point decreases 
for a given Δ𝑇𝑇(𝑡𝑡). 

 
Figure IV—Probability of reaching a climatic tipping point as a function of 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 

                                                   
23 See Wagner and Weitzman (2015) for more context on the 6°C threshold. See helixclimate.eu for more 
on the EU’s HELIX project. 
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In each period and for each state, there is a probability Prob(TP) that a tipping point will 
be hit, given Δ𝑇𝑇(𝑡𝑡) and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Conditional on hitting a tipping point at time 𝑡𝑡∗, the level 
of consumption for each period 𝑡𝑡 ≥ 𝑡𝑡∗ is then at a level of: 
 
(29) CDTP𝑡𝑡 = CD𝑡𝑡 ∙ e−𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑡̅𝑡 ∙ L(Δ𝑇𝑇(𝑡𝑡)) ∙ e−𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for 𝑡𝑡 ≥ 𝑡𝑡∗, 
 
where 𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a random variable drawn from a gamma distribution with 
parameters 𝛼𝛼 = 1 and 𝛽𝛽 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Figure V shows the cumulative distribution for 
tipping point damage (i.e., (1 − e−𝑇𝑇𝑇𝑇_𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)) for values of 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ranging from 6 
to 30. Our admittedly ad hoc base case calibration uses 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 18. 

 
Figure V—Probability of damages greater than a particular percentage of output, given 
different levels of 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

2.3.3. Damage Function Uncertainty 

The mapping from mitigation policy to damages over time, 𝐷𝐷𝑡𝑡, goes via cumulative 
radiative forcing, which determines the excess energy created by GHGs in the 
atmosphere. The damage distribution associated with a given level of radiative forcing is 
interpolated, or extrapolated, relative to the radiative forcing of damage distributions 
estimated from the three baseline scenarios. The first is based on the IEA’s (2013) 
reference New Policies Scenario and leads to eventual atmospheric CO2 levels of around 
1,000 ppm. The second assumes constant mitigation leading to eventual levels of 650 
ppm, equivalent to reducing emissions by almost 60% relative to the 1000 ppm scenario. 
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The third scenario assumes a constant mitigation of over 90%, leading to eventual CO2 
concentrations of 450 ppm. 
 
For each of the three maximum GHG concentration levels—450, 650, and 1,000 ppm—
we run a set of 6,000,000 random scenarios to generate a distribution of D𝑡𝑡 for each 
period. We order the scenarios based on D𝑇𝑇, the damage to consumption in the final 
period. We then choose states of nature with specified probabilities to represent different 
percentiles of this distribution. For example, if the first state of nature is the worst 1% of 
outcomes, then we assume the damage coefficient at time 𝑡𝑡 for the given level of 
mitigation is the average damage at time 𝑡𝑡 for the worst 1% of values for D𝑡𝑡. 
 
More generally, if the 𝑘𝑘𝑡𝑡ℎ state of nature represents the simulation outcomes in the range 
[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘 − 1),𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘)], then the damage coefficient for the 𝑘𝑘𝑡𝑡ℎ state of nature is the 
average damage in that range of scenarios in which the distribution for D𝑡𝑡 lies within those 
percentiles. 
 
The simulations are used to calculate damages in each period for any particular state of 
nature, 𝜃𝜃𝑡𝑡, and any chosen time path for mitigation actions. We do this by first calculating 
the radiative forcing associated with each simulation at the end of each period, and then 
interpolating the damage smoothly between the three different simulations with respect 
to their levels of radiative forcing. Functional forms for both GHG levels and climate 
forcing as a function of GHG emissions are fitted to the Representative Concentration 
Pathway (RCP) scenarios adopted by the IPCC for its Fifth Assessment Report (IPCC, 
2013). In the IPCC report emissions, GHG concentrations, and radiative forcing are given 
for each of three RCP scenarios. The radiative forcing is assumed to be given by a log-
function fitted to these RCP scenarios.24 The carbon absorption itself is similarly fit to the 
RCP scenarios, and is assumed to be proportional to the difference between the GHG level 
in the atmosphere and the cumulative carbon absorption up to that point in time, raised 
to a power.25 
 
Our task now is to calculate an interpolated damage function using our three simulations 
where we have damage coefficients (for a given state and period) to find a smooth function 
that gives damages for any particular level of radiative forcing up to each point in time. 
To do so, we assume a linear interpolation of damages between the 650 and 1,000 ppm 
scenarios, and a quadratic interpolation between 450 and 650 ppm. In addition, we 
impose a smooth pasting condition at 650 ppm, having the level and derivative of the 
interpolation below 650 ppm match the level and slope of the line above. 
 
Below 450 ppm, we assume climate damages exponentially decay toward zero. 
Mathematically, we let 𝑆𝑆 = 𝑑𝑑 ∙ 𝑝𝑝 ⁄ (𝑙𝑙 ∙ ln(0.5)), where 𝑑𝑑 is the derivative of the quadratic 
damage interpolation function at 450 ppm, 𝑝𝑝 = 0.91667 is the average mitigation in the 

                                                   
24 Radiative forcing in a ten-year interval is given by: 5.351 ∙ [𝑙𝑙𝑙𝑙𝑙𝑙(GHG) − 𝑙𝑙𝑙𝑙𝑙𝑙(278.063)], where GHG is the 
average level of atmospheric CO2. We estimated the constants from the three IPCC RCP scenarios. 
25 The carbon absorption in a ten-year interval is given by: 0.94835 ∙ |GHG− (285.6268 + 0.88414 ∙
∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)|0.741547, where the sum is over absorption in previous periods. We again estimated the 
constants from the three IPCC RCP scenarios. 
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450 ppm simulation, and the level of damages is 𝑙𝑙. Radiative forcing at any point below 
450 ppm then is 𝑥𝑥 percent below that of the 450 ppm simulation, with 𝑥𝑥 = 𝑅𝑅−𝑟𝑟

𝑅𝑅
, where 𝑅𝑅 

is the radiative forcing in the 450 ppm simulation and 𝑟𝑟 is the radiative forcing given the 
mitigation policy. Letting 𝜎𝜎 = 60, the extension of the damage function for 𝑥𝑥 > 0 is 
defined as: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥) = 𝑙𝑙 ∙. 5(𝑥𝑥∙𝑆𝑆)𝑒𝑒−[(𝑥𝑥∙𝑝𝑝)2/𝜎𝜎], which has the desired properties. 
 
Figure VI shows the simulated distribution of the resulting damage functions in our base 
case, using 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 = 6 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 18, and assuming constant mitigation. 
 

 
Figure VI—Interpolated final period damage functions 
 
The climate sensitivity—summarized by state of nature 𝜃𝜃𝑡𝑡—is not known prior to the final 
period (𝑡𝑡 = 𝑇𝑇). Rather, what the representative agent knows is the distribution of possible 
final states, 𝜃𝜃𝑇𝑇. We specify that the damage in period 𝑡𝑡, given a cumulative radiative 
forcing, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, up to time 𝑡𝑡, is the probability weighted average of the interpolated damage 
function over all final states of nature reachable from that node. Specifically, the damage 
function at time 𝑡𝑡, for the node indexed by 𝜃𝜃𝑡𝑡 is assumed to be: 
 
(30) D𝑡𝑡�𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝜃𝜃𝑡𝑡� = ∑ Pr (𝜃𝜃𝑇𝑇 𝜃𝜃𝑇𝑇|𝜃𝜃𝑡𝑡) ∙ D𝑡𝑡�𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝜃𝜃𝑇𝑇�, 
 
where the sum is taken over all states that are possible from the node indexed by 𝜃𝜃𝑡𝑡 (i.e., 
for which Pr(𝜃𝜃𝑇𝑇|𝜃𝜃𝑡𝑡) > 0). 



– 23 – 

2.3.4. Damages for Concentrations Below Pre-Industrial Levels 

Introducing carbon dioxide removal (CDR) backstop technologies, combined with 
stochastic fragility 𝜃𝜃𝑡𝑡 creates a unique possibility: that, in some states of the world, GHG 
concentrations may fall below pre-industrial levels of 280 ppm. There is nothing magical 
about 280 ppm—in an absolute sense, it may not be the ‘optimal’ climate to begin with—
but it does serve as the baseline for damage calculations based on global warming above 
pre-industrial levels. It is clear that going (well) below 280 ppm would lead to climate 
damages, much like going (well) above 280 ppm does. We introduce a simple penalty 
function of the form: 
 
(31) f(𝑥𝑥) = �1 + 𝑒𝑒𝑘𝑘 (𝑥𝑥−𝑚𝑚)�

−1
, 

 
where 𝑚𝑚 is the level of GHG concentrations where calibrated at half the total penalty, and 
𝑘𝑘 is a simple scalar. For our base case calibration, we use 𝑚𝑚 = 200 and 𝑘𝑘 = 0.05. The 
benefit of a low 𝑘𝑘 and, thus, a smooth penalty function is largely computational. More 
importantly, the calibration ensures that the penalty (31) at 280 ppm is close to zero. In 
our optimization, we also restrict climate damages and mitigation, 𝑥𝑥𝑡𝑡∗, to be nonnegative. 

2.4. Tree structure 

Figure VII illustrates the tree structure employed in EZ-Climate’s baseline analysis. 
Beginning with the first node, in 2015, the agent is assumed to know the structure of the 
decision tree, the state probabilities, and the damage function in each future state of the 
world. Period zero runs from 2015 through 2030. In 2030, the agent learns whether the 
world is in state up (‘u’) or state down (‘d’). There is a 50% probability of each of the two 
states. Similarly, at the end of period one (in year 2060) she learns whether the world is 
in state ‘uu’, ‘ud’, or ‘dd’, etc. Notice that at the end of period four, all uncertainty is 
resolved, in that the agent will learn which of the six final states the world she is in, and 
what the true damage function is. Following this point, in period five, she has one final 
period in which she can make a mitigation decision. In period six, which in our base case 
runs from 2400 on to infinity, the agent can no longer mitigate. Consumption continues 
to grow deterministically from this point forward at a rate 𝑟𝑟. Consumption, thus, is given 
by 𝑐𝑐𝑡𝑡 =  𝑐𝑐𝑇𝑇(1 + 𝑟𝑟)𝑡𝑡−𝑇𝑇 after 𝑡𝑡 = 2400, and period six utility is given by equation (10). 
 
In the baseline model, where a move up or down in each period is equally likely, the 
probabilities of the final states are given by a binomial distribution, the simplest possible 
probability representation. 
 
Another feature evident in Figure VII is particularly important, given our use of the 
Epstein-Zin preference specification: the recombining tree structure. This implies two 
features: For one, the damage function in each state (after period zero) is independent of 
the way in which information was revealed at the end of each period. For example, the 
damage function in state ‘uud’ (the blue path in Figure VII) is identical to that in ‘udu’ 
(green) and ‘duu’ (red). 
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Figure VII—Diagram of tree structure used in solving the model for each state of nature 
across time 
 
Second, the agent’s utility is path-dependent. The history of mitigation depends on the 
process by which the agent learns the state. Thus, consumption, and mitigation, will 
depend upon the path. Consequently, in solving for the agent’s utility along each of these 
paths, we need to keep track of the path by which the agent learned about the damage 
function. Consumption decisions depend on it. 
 
For example, following equation (2), the consumption flow at the start of period 1 is given 
by 𝑐𝑐1 = 𝑐𝑐0̅ ∙ 𝑒𝑒0.02×15�1 − 𝐷𝐷1(𝐶𝐶𝐶𝐶𝐶𝐶1, 𝜃𝜃1) − 𝜅𝜅1(𝑥𝑥1)�. That is, the consumption at the start of 
period one (in 2030), 𝑐𝑐1, is equal to endowed consumption (2015 consumption plus 1.5% 
growth for 15 years), minus the fractional cost of damages and of mitigation chosen at the 
beginning of period one. Mitigation is optimally chosen by the agent, and is therefore a 
function of the state—mitigation will be lower if the agent learns that the world is in state 
‘d’ rather than state ‘u’. 
 
This analysis gives us consumption levels 𝑐𝑐0 and 𝑐𝑐1, for the two states in 2015 and in 2030, 
respectively. To interpolate between 𝑐𝑐0 and 𝑐𝑐1, we fit an exponential growth function to 
consumption levels, using 5-year intervals. Note that this is equivalent to assuming that 
immediately after choosing the mitigation level in period zero, the agent’s consumption 
starts to reflect climate damages from the first revealed state (‘u’ or ‘d’). However, she is 
not allowed to change the period zero mitigation to reflect this knowledge until the next 
period. 
 
This interpolation ensures that the agent’s consumption path is relatively smooth. It also 
introduces approximation errors. However, adding more periods at which the agent can 
choose a new level of mitigation would result in far higher computational costs. With 𝑇𝑇 
periods, we have a “2𝑇𝑇+1 − 1”-dimensional optimization problem: Each model run 
requires choosing 2𝑇𝑇+1 − 1 optimal mitigation levels. In the ‘easy’ spirit of EZ-Climate, 



– 25 – 

simplifying makes the solution both tractable and doable in the first place. While similar 
attempts at integrating Epstein-Zin preferences into climate-economy models require 
supercomputers (see, e.g., Cai et al., 2016, 2015, 2013), EZ-Climate is solvable on a 
standard personal computer within minutes. 

3. Results 

EZ-Climate’s main output is the optimal price of one ton of CO2 today, in year 2015, and 
at the beginning of each of the subsequent five periods—years 2030, 2060, 2100, 2200, 
and 2300. These are the times in the model when mitigation decisions are made. Figure 
VIII shows the results for the CRRA model run and our base-case model calibration, using 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 6 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 18, as well as an EIS of 0.9 and 𝑅𝑅𝑅𝑅 = 7, calibrated to 
observed financial asset prices. 

 
Figure VIII—Optimal price per ton of CO2 under constant relative risk aversion (CRRA) and 
our base case, employing 𝑹𝑹𝑹𝑹 = 𝟕𝟕 in both cases, and 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟔𝟔, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟏𝟏𝟏𝟏, and 𝑬𝑬𝑬𝑬𝑬𝑬 =
𝟎𝟎.𝟗𝟗 in the base case 
 
The difference in optimal price paths is striking: Under the CRRA case, the expected 
optimal price is consistently low. Under the Epstein-Zin base case, the price first increases 
slightly and then decreases to a value almost as low as in the CRRA case. Significantly, an 
RA = 7, calibrated to observed equity risk premia, decreases the CO2 price under CRRA 
assumptions to below $1 in 2015, while the price in EZ-Climate’s base case is well over 
$100/ton CO2. 
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It is difficult to overemphasize the probabilistic nature of this model. The precise 2015 
price represented in Figure VIII for Epstein-Zin utility is $124.94, which we round to $125 
throughout our discussion. Even when leaving the damage simulation, explained in 
section 2.3, constant optimal prices in a random sampling of 30 optimization runs range 
from $124.89 to a high of $126.50. The $124.94, thus, is toward the lower, conservative 
end of this particular sample. Anything more precise than saying “around $125” would 
amount to false precision. 
 
Note that the 2015 price comes from a single node in the tree. In each subsequent year, 
that price is set in expectation over all possible states of nature in that given year. The left 
panel of Figure IX shows optimal base-case CO2 prices across time and states for one 
model run. All grouped nodes at a given time have the same degree of fragility and, thus, 
the same damage for a given amount of atmospheric greenhouse-gas concentrations. The 
lines connecting the boxes indicate the paths that information about the Earth’s fragility, 
𝜃𝜃, has taken, a feature explored in Section 2.4 above. 
 

 
Figure IX—Optimal price per ton of CO2 across time and states (left) and average mitigation 
up to a particular time and state (right) in the base-case calibration (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟔𝟔, 
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟏𝟏𝟏𝟏, and 𝑬𝑬𝑬𝑬𝑬𝑬 = 𝟎𝟎.𝟗𝟗) 
 
The right panel of Figure IX shows the fractional, average mitigation up to each time and 
state. It reveals the reason for sometimes wildly different prices at the same node. In 
general, the greater is 𝜃𝜃 revealed to be, the higher is the optimal average mitigation effort, 
ranging from slightly over 50% to over 100% in the final period. 
 
Optimal average mitigation levels, in turn, are closely linked to climate damages at each 
node, which similarly depend on the path chosen (Figure X, left panel). Both Figure IX 
and Figure X also show the large costs associated with negative 𝜃𝜃 draws in latter periods. 
Repeated good (‘d’ for down) draws in early periods, followed by a bad (‘u’ for up) draw in 
the final period results in half the amount of average mitigation up to that point (52%) 
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compared with reaching the same node via an early bad (‘u’) draw followed by good draws 
(104%). Associated climate damages range from 5.5% (‘ddddu’) to 1.4% (‘udddd’) , 
respectively (Figure X, left panel). 
 
Lastly, the right panel in Figure X plots GHG concentrations along the optimal base-line 
pathway. The relatively small changes along most paths across time reveal the inherent 
inertia in the climate system. The large differences across nodes in the final period, from 
close to pre-industrial levels of 280 ppm to well over 800 ppm, reveal the enormous costs 
of bad 𝜃𝜃 draws. Looking at GHG levels also confirms our prior conclusions around the 
importance of path dependency: the ‘ddddu’ path results in ultimate GHG levels above 
800 ppm, whereas the ‘udddd’ path results in levels close to 300 ppm. Bad news is costly. 
Bad news received late is extremely costly. 
 

 
Figure X—Climate damages (left) and GHG concentrations (in parts per million, ppm, right) 
along the optimal CO2 price path across time and states in the base-case calibration 
 
Following GHG levels closely across time, especially in early periods, also demonstrates 
the positive environmental impact of moving onto an optimal CO2 price path. Despite 
inertia, from 2015 to 2030 alone, optimal GHG concentrations decline from 400 to 
around 390 ppm.26 
 
Finally, we present both consumption of our representative agent in each node of the tree 
along the optimal path in the base case, and costs of mitigation as a percentage of 
economic output (Figure XI). The latter, in part, corroborates earlier observations around 
how costly bad news is—however, not necessarily the fact that bad news received late is 

                                                   
26 See Section III.E on the large social costs of delayed implementation of the optimal CO2 price path. See, 
e.g., Le Quéré et al. (2016) for rough corroborative evidence for such a relatively rapid decline in 
concentrations under aggressive mitigation scenarios, relying on the net flow of atmospheric carbon into 
land and ocean sinks. 
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extremely costly. A ‘ddduu’ path, for example, results in costs larger than those following 
any other path of getting to the same final node. 
 

 
 
Figure XI—Consumption (left) and cost of emissions reductions (right) along the optimal 
CO2 price path across time and states in the base-case calibration 
 
EZ-Climate’s optimal carbon price depends on a number of inputs. Figure I reveals the 
importance of 𝑅𝑅𝑅𝑅 for calibrating economic variables to capture observed equity risk 
premia, and its influence on the optimal CO2 price. 
 
Given the apparent importance of the use of Epstein-Zin preferences to capture climate 
risk, it might then be surprising to see how little of the overall optimal CO2 price is 
explained by risk aversion as opposed to expected climate damages (Figure XII). There, 
too, the importance of moving to Epstein-Zin preferences in the first place is apparent, 
but once done, most of the impact comes from the expected damage component of the 
damage distribution being discounted at lower rates, rather than the higher curvature of 
the utility function across states of nature. 
 
Crost and Traeger (2014) and Cai et al. (2016) support this conclusion, though their 
explanations differ. Crost and Traeger (2014) suggests it is because of a failure to account 
for disasters. Cai et al. (2016) attempt to model such climate disasters and still find a 
similarly small role for risk. One explanation might be that even the type of disasters 
modeled by Cai et al. (2016) and represented here in EZ-Climate do not yet capture true 
uncertainty (Brock and Hansen, 2017; Wagner and Zeckhauser, 2017). For example, 
although we include tipping points in the simulation of our damage function, these events 
are averaged with others to create an average loss in a given state. Moreover, although the 
state of nature is not known in advance, the probability of each state and the average loss 
in any given state and for any given degree of mitigation is known in advance. That 
information is used optimally to mitigate against those potential damages. Our tipping 
points do not in any sense catch our agent by surprise. All this ascribes yet more 
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importance to the calibration of the damage function itself, and to considerations of 
model mis-specification (Brock and Hansen, 2017). 

3.1. Risk decomposition 

Figure I presents the optimal CO2 price as a function of the assumed equity risk premium 
for both Epstein-Zin and CRRA utility and points to the importance of using the former. 
We further decompose the optimal CO2 price into a risk aversion and an expected 
damages component. 
 
Let 𝐷𝐷𝑠𝑠,𝑡𝑡 denote the marginal damage, that is the loss of consumption in state 𝑠𝑠 in future 
period 𝑡𝑡 that results from putting one more ton of carbon into the atmosphere today (at 
time 0). The optimal CO2 price then is given by: 
 

(32) ∑ ∑ 𝜋𝜋𝑠𝑠,𝑡𝑡𝑚𝑚𝑠𝑠,𝑡𝑡𝐷𝐷𝑠𝑠,𝑡𝑡
𝑆𝑆(𝑡𝑡)
𝑠𝑠=1

𝑇𝑇
𝑡𝑡=1 �= ∑ 𝐸𝐸0�𝑚𝑚�𝑡𝑡𝐷𝐷�𝑡𝑡�𝑇𝑇

𝑡𝑡=1 �, 
 
where 𝑚𝑚𝑠𝑠,𝑡𝑡 is the pricing kernel in state 𝑠𝑠 at time 𝑡𝑡, which is the marginal value today of 
one additional unit of consumption in state 𝑠𝑠 at time 𝑡𝑡,27 𝜋𝜋𝑠𝑠,𝑡𝑡 denotes the probability of 
state 𝑠𝑠 at time 𝑡𝑡, and 𝑆𝑆(𝑡𝑡) denotes the number of states at time 𝑡𝑡. That is, to calculate the 
cost to the representative agent of an additional ton of carbon emissions, we sum over all 
consumption damages, in every state of nature at every future time, multiplied by the 
value of an additional unit of consumption in that state at that time. Equation (32) can be 
decomposed to equal: 
 

(33) ∑ 𝐸𝐸0[𝑚𝑚�𝑡𝑡] ∙ 𝐸𝐸0�𝐷𝐷�𝑡𝑡�𝑇𝑇
𝑡𝑡=1�������������

𝐸𝐸𝐸𝐸

+ ∑ 𝑐𝑐𝑐𝑐𝑣𝑣0�𝑚𝑚�𝑡𝑡 ,𝐷𝐷�𝑡𝑡�𝑇𝑇
𝑡𝑡=1�������������

𝑅𝑅𝑅𝑅

. 

 
Note that 𝐸𝐸𝑜𝑜[𝑚𝑚�𝑡𝑡] = 1

𝑅𝑅𝑓𝑓(0,𝑡𝑡)
, where 𝑅𝑅𝑓𝑓(0, 𝑡𝑡) is the payoff, at time 𝑡𝑡, to a $1 investment in a 

risk-free bond at time 0. Alternatively, 𝐸𝐸0[𝑚𝑚�𝑡𝑡] is the risk-free discount factor between 
today and 𝑡𝑡. We can, thus, rewrite the first component of (33) as the sum of the marginal 
damages, discounted back to the present at the risk-free rate and label it expected 
damages, 𝐸𝐸𝐷𝐷 = ∑ 𝐸𝐸0[𝐷𝐷�𝑡𝑡]

𝑅𝑅𝑓𝑓(0,𝑡𝑡)
𝑇𝑇
𝑡𝑡=1 . The second component is the risk premium (RP) over the 

expected damages that society is willing to pay, defined as the covariance of the marginal 
damages with marginal utility. 
 
Rewriting (33) then gives the risk premium as the difference between the optimal CO2 
price and the expected-damages: 
 

(34) 𝑅𝑅𝑅𝑅 = optimal CO2 price − 𝐸𝐸𝐸𝐸, 
 

                                                   
27 Equivalently, 𝑚𝑚𝑠𝑠,𝑡𝑡 is defined as the ratio of marginal utility with respect to current consumption in that 
state to the marginal utility today, that is 𝑚𝑚𝑠𝑠,𝑡𝑡 = � 𝜕𝜕𝜕𝜕

𝜕𝜕𝑐𝑐𝑠𝑠,𝑡𝑡
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝑐𝑐0
�� , where 𝑐𝑐𝑠𝑠,𝑡𝑡 denotes the agent’s consumption in 

state 𝑠𝑠 at time 𝑡𝑡. 
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both of which are readily calculated by EZ-Climate. Figure XII shows the result for our 
base-case calibration (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 6 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 18). 

 
Figure XII—Percentage of the optimal 2015 CO2 price explained by risk 
aversion, as opposed to expected damages, under Epstein-Zin and CRRA 
preferences, translated into the implied equity risk premium using Weil 
(1989)’s conversion, while holding implied market interest rates stable at 
3.11% 
 
Like the optimal CO2 price in Figure I, this decomposition varies widely with the assumed 
equity risk premium—and it crucially depends on the distinction between using Epstein-
Zin versus CRRA preferences. For low risk premia, less than 5% of the optimal CO2 price 
is explained by risk aversion. For our base case calibration with an EIS of 0.9 and 𝑅𝑅𝑅𝑅 = 7, 
around 10% is explained by risk aversion. 

3.2. Sensitivity to climate damage parameters 

Two key damage-function parameters are 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, assumed to equal 6 
and 18, respectively, in our base-case calibration. Figure XIII shows the sensitivity of the 
optimal CO2 price to both parameters: the optimal CO2 price increases with decreasing 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
 
There is no single ‘right’ combination of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, at least given our 
current state of knowledge of the underlying climate science. The base-case calibration in 
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EZ-Climate employs 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 6 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 18. Lower values of each increases 
the optimal CO2 price along their respective dimension.28 

 
Figure XIII—Optimal 2015 CO2 price increases with decreasing 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 and 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
 

3.3. Sensitivity to mitigation cost parameters 

On the mitigation cost side, two important factors are the rate of technological change 
and the potential for an outright backstop technology. Climate-EZ includes parameters 
capturing both exogenous and endogenous technical change, represented by coefficients 
𝜑𝜑0 and 𝜑𝜑1, respectively, in equation (24). 
 
Figure XIV shows how the optimal CO2 price in early periods first increases with 𝜑𝜑0 
moving from 0 to 1.5% before decreasing again with increased exogenous technical 
change. The relatively low optimal price of CO2 in early years with low 𝜑𝜑0 is explained by 
the fact that the larger future GHG concentrations will lead to large damages in bad states, 
decreasing the marginal benefit of mitigation today. 

                                                   
28 See Section II.C.ii, in particular Figure IV and Figure V, on more on the damage-function calibration, 
incorporating 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
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Figure XIV—Optimal CO2 price in early years first increases then decreases with higher 
exogenous technical change, 𝝋𝝋𝟎𝟎 
 
Endogenous technical change is assumed to be proportional to average mitigation up to 
time 𝑡𝑡. Figure XV shows the sensitivity of the optimal CO2 price to 𝜑𝜑1 ranging from 0 to 
1.5%, which can best be seen as multiples of average mitigation affecting learning-by-
doing.29 The optimal CO2 price increases at first slightly and then decreases with 
increased endogenous technical change in later years. 

                                                   
29 In all cases, exogenous technical change, 𝜑𝜑0, is 1.5% per year, plus the multiple 𝜑𝜑1 of average mitigation 
to date (see Section II.B.ii). For example, with 𝜑𝜑1 = 1 and average mitigation for the first 15 years equal to 
0.50, then the rate of technical change would be 𝜑𝜑0, or 1.5%, plus 𝜑𝜑1 ∙ 𝑋𝑋15, or 1 ∙ 0.50%, summing to 2.0% 
per year. Costs after 15 years, 𝜅𝜅15(𝑥𝑥), will have declined to (1 − 2%)15 = 73.8% of today’s costs, given by 
equation (24). For simplicity, our base case assumes 𝜑𝜑1 = 0%, in addition to 𝜑𝜑0 = 1.5%. 
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Figure XV—Optimal CO2 price decreases with increased endogenous technical change in 
later years 
 
Endogenous technical change, in turn, interacts with the availability of a backstop 
technology (Figure XVI). The EZ-Climate base case assumes essentially no backstop 
technology—i.e. a ‘join’ price of 𝜏𝜏∗ = $2,000 and a full-on backstop at 𝜏̃𝜏 = $2,500.30 The 
“$350 backstop” path assumes 𝜏𝜏∗ = $300 and 𝜏̃𝜏 = $350, with no endogenous technical 
progress, 𝜑𝜑1 = 0. The third scenario assumes 𝜏𝜏∗ = $300, 𝜏̃𝜏 = $350, and 𝜑𝜑1 = 0.67. This 
$350 backstop assumption plus endogenous technical change at first leads to a slightly 
higher optimal CO2 price, though over time endogenous technical change helps decrease 
the optimal CO2 price as well. 

                                                   
30 See Section II.B.i for an explanation of the integration of backstop technologies. Figure II shows this base-
line backstop assumption, and the more aggressive scenario assuming 𝜏𝜏∗ = $300 and 𝜏̃𝜏 = $350. 
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Figure XVI—Optimal CO2 price decreases with backstop, with or without endogenous 
technological change 

3.4. Sensitivity to economic and preference parameters 

As important as climate risk and mitigation cost parameters are in EZ-Climate, a proper 
calibration of fundamental economic parameters has at least as much influence on the 
optimal CO2 price. One key input is the assumed rate of economic growth. 
 
A large fraction of climate damages is likely to occur in the distant future. Even in the 
worst states of nature modeled here, the economy in 2100 or 2300 will be a multiple of 
the size of today’s. As a result of this large disparity in current and future consumption 
levels, future damages are discounted at a high rate31, posing significant ethical challenges 
that can cut both ways.32 On the one hand, a much richer society will be better equipped 
to deal with the challenges of climate change. On the other, a much richer society will be 
willing to pay comparatively more for a healthy planet—and, in the case of oft-irreversible 
damages brought about by climate change, would have wanted earlier generations to 
mitigate more (Sterner and Persson, 2008). 
 

                                                   
31 In the EZ-Climate base case, with a growth rate of 1.5%/year, the risk-free rate is around 3.11%/year. 
32 The broader ethical and discounting debate has spawned hundreds of contributions, sometimes with 
well-founded opposing conclusions (e.g., Arrow et al., 2013; Broome, 2008; Dasgupta, 2008; Gollier, 2012; 
Gollier and Weitzman, 2010; Heal, 2017; Summers and Zeckhauser, 2008). 
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EZ-Climate, like most other climate-economy models such as, for example, DICE, takes 
economic growth as exogenous. Our base case assumption, before climate damages and 
mitigation costs, is an exogenous rate or growth of 1.5% per year.33 This assumption is 
consistent with empirically observed growth rates over the past century. However, a 
number of scholars now argue that we should anticipate far lower growth going forward 
than we have observed in the past century (Gordon, 2016, 2012). At the same time, we 
cannot exclude the possibility of higher growth rates. 
 
Figure XVII shows the effect of changing growth rates, while also adjusting the EIS, to 
hold real interest rates constant at the assumed rate of around 3.11%.34 Optimal CO2 
prices in early periods are highly sensitive to these simultaneous changes in economic 
growth rates and EIS. 

 
Figure XVII—Increasing (decreasing) economic growth rates, while changing EIS to keep 
real interest rates constant at 3.11% per year, increases (decreases) optimal CO2 prices 
dramatically in early periods 
 
Figure XVIII, by contrast, shows the impact of changing growth rates while holding the 
EIS constant. The impact on optimal CO2 prices is comparatively small. 

                                                   
33 See, for example, Bansal, Ochoa and Kiku (2016), who relax the assumption of an exogenous growth 
rate and investigate directly the impact of climate change on growth rates. 
34 See footnote 10 for a discussion of real interest rates in our base case. 
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Figure XVIII—Changing economic growth rates, while keeping EIS constant at 0.9, has little 
impact on optimal CO2 prices (note the y-axis scale compared with Figure XVII) 
 
Given the considerably smaller discount rate, why is it that the SCC does not increase 
more in response to this change? The answer lies, in part, in our damage specification in 
equation (2), where damages, for a given level of fragility and cumulative mitigation, are 
proportional to the baseline level of consumption, given any specific economic growth 
rate 𝑟𝑟: 𝑐𝑐𝑡𝑡� = 𝑐𝑐0� ∙ (1 + 𝑟𝑟)𝑡𝑡 . Thus, in an alternative specification with a 1% as opposed to 1.5% 
annual growth rate, and consumption in year 2300 that is lower by a factor of 4, we are 
also implicitly specifying that damages are lower by a factor of 4. Whether it is reasonable 
to assume that, if people are poorer in the future, they will be hurt proportionally less by 
climate change is subject to vigorous debate, and worthy of future research (e.g., Convery 
and Wagner, 2015; Heal and Park, 2016). 
 
The comparison of Figure XVII and Figure XVIII also makes the importance of the EIS 
clear. Ours is calibrated to a risk-free bond yield rate of around 3.11%, implying an EIS of 
0.9.35 Figure XIX shows the optimal CO2 price path for various EIS levels. Note that this 
figure does not hold real interest rates constant. That connection with bond yields implies 
the EIS is not a free parameter to be chosen but one that needs to be calibrated based on 

                                                   
35 Note that calibrations of EIS have changed widely over time. Earlier estimates, most notably by Hall 
(1988), are much closer to zero. Bansal and Yaron (2004), in a model with Epstein-Zin preferences and 
consumption shocks, estimate an EIS of 1.5. Other estimates vary further (Havránek, 2015; Thimme, 2017), 
while Epstein et al. (2014) offers a potent critique by pointing to the sizeable magnitude of implied time 
premia by standard calibrations of Epstein-Zin utility specifications. Note that our calibrated EIS of 0.9 is 
below Bansal and Yaron’s (2004), largely because their model assumes persistent shocks to consumption 
growth rates. The only shocks to consumption on Climate-EZ stem from climate risk. 
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assumed bond yields. Our base-case EIS of 0.9 corresponds with a bond yield of 3.11%. 
The higher EIS of 1.2 corresponds with a yield of 2.74%, and the lower EIS of 0.6 a yield 
of 3.77. 

 
Figure XIX—A higher (lower) EIS goes hand-in-hand with a higher (lower) optimal CO2 price 
in early years 
 
Lastly, we explore the impact of the pure rate of time preference, 𝛿𝛿 = (1 − 𝛽𝛽) 𝛽𝛽⁄ . First, we 
hold the EIS fixed at 0.9, while 𝛿𝛿 varies from 0.25% to 0.75% (Figure XX). Holding EIS 
fixed, a higher 𝛿𝛿 implies a higher real interest rate and, thus, lower optimal CO2 prices, 
and vice versa. Corresponding bond yields vary from 2.89% to 3.32% for 𝛿𝛿 from 0.25% to 
0.75%, respectively. Note the large changes in early optimal CO2 prices, despite holding 
EIS constant at 0.9. 
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Figure XX—Optimal CO2 prices increase (in early years) with decreasing pure rate of time 
preference, 𝜹𝜹, holding EIS fixed at 0.90 
 
Second, we vary EIS in order to hold real interest rates fixed at around 3.11% while 
adjusting 𝛿𝛿 (Figure XXI). The two effects from EIS and 𝛿𝛿 counteract each other. On net, 
a lower EIS, corresponding with a lower 𝛿𝛿, implies a higher optimal CO2 prices. 
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Figure XXI—Optimal CO2 prices increase with decreasing pure rate of time preference, 𝜹𝜹, 
holding real interest rates fixed at close to 3.11%,while adjusting EIS accordingly 
 
Note that as EZ-Climate is calibrated to observed real interest rates, 𝛿𝛿 is a less important 
parameter than, for example, in a Ramsey-style model like DICE. 
 
Lastly, Figure XXII shows the importance of the RA calibration. Optimal CO2 prices 
decline under any EZ calibration. CRRA preferences lead to a declining CO2 price only 
when risk aversion equals 10/9 ~ 1.1, when CRRA and EZ preference specifications 
coincide. We choose RA = 7 in our base-case calibration. Calibrations differ widely in the 
literature. See, e.g., Schroyen and Aarbu (2017) for a review of RA calibrations, showing 
significantly lower values in “welfare states” like Norway but higher values (>9) for 
countries like the United States. OECD averages for RA toward large income risks are 
close to 7 (Schroyen and Aarbu, 2017). 
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Figure XXII—Unlike with CRRA preferences, optimal CO2 prices decline over time with EZ 
utility. The sole exception for CRRA preferences is with risk aversion (RA) = 10/9 ~ 1.1, when 
CRRA and EZ preferences coincide 
 

3.5. Social cost of delay 

Up to this point in the paper we have focused on analyzing the optimal CO2 price, given 
that climate policy is assumed to be optimal over time. It is not. What then is the cost of 
a delay in pricing emissions at their optimal level? 
 
We are hardly the first to point to the potential costs of delay (e.g., Nordhaus, 2016; Stern, 
2015).36 Nordhaus (2017b) suggests that the large increases in the optimal price in his 
preferred calibration of the DICE model, from around $5 per ton of CO2 emitted in 2015 
in early iterations published in the 1990s to around $30 per ton in the latest iteration, is 
largely a reflection of those costs of delay in implementing an optimal CO2 price path.37 
However, this argument also points to the limits of models like DICE and the need for an 
optimal control model like EZ-Climate. In fact, looking at the price response to delay is 
positively misleading. The optimal CO2 price in the second period, after it has been 
constrained to be $0 in the first period, is lower than in the unconstrained case. The price 
reflects the marginal benefits of additional emissions reductions, but the price alone does 
not show the enormous costs to society of not following the optimal path. That 
necessitates a look at the deadweight cost of delay. 

                                                   
36 This discussion of the cost of delay is distinct from debates about the proper incorporation of climate risk, 
reflected, for example, in debates among Nordhaus (2015, 2013), Pindyck (2013, 2012), Stern (2013), and 
Weitzman (2011, 2009). See the discussion in the introductory section and references in footnotes 4 and 6. 
37 Nordhaus (2017a), meanwhile, decomposes the change further and counts “revisions in the treatment of 
the carbon cycle” as the largest single contributor, followed by revisions to the damage and utility functions. 
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We find that the avoidable deadweight cost of delay in pricing emissions is shockingly 
high. Employing EZ-Climate, we quantify the cost of delay by constraining mitigation to 
zero in the first period and asking how much additional consumption would be required 
during that period in order to bring the utility of the representative agent to the level of 
utility of the unconstrained optimal solution. With our 15-year-long first period in the 
base case, consumption throughout the first period would have to increase by around 36% 
(Table IV), or by over $10 trillion each year, given current annual global consumption of 
around $30 trillion. 
 
The cost of delay increases at a slightly faster rate than with the square of time. For 
example, decreasing the first-period length to 5 years, and, thus, having a 5-year instead 
of 15-year delay results in a total utility loss equivalent to increased consumption of over 
11% over the 5 years. For a 10-year delay, the equivalent annual consumption loss over 
the period is almost 23%. Each year of delay causes the equivalent annual consumption 
loss over the entire first period to increase by roughly 2.3%, and it also increases the time 
interval of the loss, thus leading to a slightly more than quadratic rate of increase in 
deadweight loss of utility over time (Table IV). Given global consumption of around $30 
trillion growing at 1.5% per year, a one-year delay in pricing emissions in our base case 
would cost the equivalent of about 2.3% or approximately $700 billion. A five-year delay 
would cost the equivalent of $17 trillion, and a 15 year delay would cost roughly $180 
trillion, about six times current annual global consumption. 
 

Table IV—Social cost of delay by first-period length 

First-period length Annual consumption impact 
during first period 

5 years 11% 
10 years 23% 
15 years 36% 

 
The marginal damage of emissions is much greater if mitigation is delayed. In our base 
case, the marginal benefit of reductions equals the carbon price of around $125 per ton of 
CO2 in 2015 (see e.g. Figure VIII). If, instead, mitigation is constrained to zero in the first 
15-year period, the marginal benefit of each ton of CO2 reduced increases to over $340 
per ton. 

4. Future research and extensions 

We have emphasized throughout the discussion here that the EZ-Climate model and its 
parameterization are ad hoc and merit considerable future scrutiny by the scientific 
community. What we believe is unique and innovative is the methodology and solution 
approach outlined here. The EZ-Climate model better takes account of climatic risks, 
without undue computational burdens. 
 
There are many possible avenues for future work and research. First and foremost is a 
better calibration of some of the key parameters, perhaps led by climate damages in 
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general and the probability and impact of tail risks in particular. The modular format of 
EZ-Climate allows for other, more sophisticated climate damages efforts to replace our 
current calibrations, while maintaining the fundamental model structure. Hsiang et al. 
(2017) is but the latest and perhaps most sophisticated entry into this literature, in this 
case focused on climate impacts in the United States. Our base case climate damages 
calibration assumes a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of 6 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of 18. While we explore various 
specifications, none is linked to actual probabilities and impacts of low-probability, high-
consequence climatic events. The impacts of both parameters, and their interplay, is 
potentially large (Figure XIII). Moreover, our current modeling structure, while allowing 
for potentially large climate damages does not allow for true surprises, virtually 
eliminating catastrophic outcomes. 
 
Kopp et al. (2016) suggests a starting point for further analysis: First, start with candidate 
‘climatic tipping elements’ and take the growing body of empirical, econometric analyses 
to estimate their effects. Second, employ experiments with empirical, process-based 
impact models to assess the relative importance of different tipping elements. Third, 
examine social tipping elements such as civil conflict and their associated costs. Projects 
like the Climate Impacts Lab are beginning to quantify the impacts of some of these 
climatic and social tipping elements (Houser et al., 2015; Hsiang et al., 2017). Finally, 
where data are scarce, conduct structured expert elicitations to generate probability 
functions around tipping elements and their possible economic impacts (e.g., Cooke, 
2013).38 These calibrations are much needed to derive defensible estimates of the optimal 
CO2 price. 
 
A further extension is a reconsideration of how climatic risk and its interplay with 
economic variables is modeled. Climate damages, right now, are modeled to affect levels 
of consumption. What if they were to affect factor productivity and, thus, economic 
growth rates directly? While EZ-Climate, in its current iteration, relies on deterministic 
economic growth assumptions, a move to a stochastic economic growth framework would 
allow for exploring the interplay between climate and economic shocks (e.g., Bansal et al., 
2016). 
 
Another possible extension is around climate impacts on poor versus rich. EZ-Climate’s 
representative agent framework models the average, globally representative consumer. 
One could easily imagine different climate impacts based on wealth and income. While 
the rich may have more capital at risk, it would likely be the poor who will be hurt 
proportionally more, as they are less able to adapt. 
 
Lastly, any model like EZ-Climate needs to be seen in an appropriate context. Brock and 
Hansen (2017), among others, emphasize how climate-economic assessments are beset 
with at least three different types of uncertainty: climate risk in the traditional, Knightian 
sense of the word (Knight, 1921); ambiguity around model selection; and misspecification 

                                                   
38 See Mach et al. (2017) on the broader need to consider expert judgement in environmental assessment, 
and how to do so. 
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of any one particular model.39 Further improvements of EZ-Climate can hope to address 
the third kind of uncertainty. Addressing the first two will require an informed observer 
to be cautious about drawing conclusions. Some observers might point to the importance 
of calculating the optimal CO2 price in the first place. Some others might conclude that 
any such model conveys false precision to policy-makers, who may make too much of any 
one single number. A model estimate of the optimal CO2 price, in the end, is an important 
input into policy-makers’ decisions, but it is just that. Good climate policy goes much 
beyond simply getting the price right. It considers the uncertainty of any such estimate, 
the potential consequences of model misspecifications (Brock and Hansen, 2017), as well 
as behavioral aspects of climate policy making (Wagner and Zeckhauser, 2011). Moreover, 
it takes into account political economy considerations of implementing alternative 
climate policies (Keohane et al., 1998; Meckling et al., 2017; Wagner et al., 2015). 

5. Conclusion 

An oft-told analogy in climate economics represents the climate system as a hard-to-
navigate ocean liner. This image is often used to argue for early action through a slow and 
gradually increasing carbon price. Too strong a policy early on would be overly costly; a 
small course correction now will save us from hitting the far-off proverbial iceberg. There 
are indeed real costs of action. Tradeoffs abound.40 But as EZ-Climate’s base case optimal 
CO2 price paths show, once we include a proper accounting of risk aversion and extreme 
events, this standard logic gets turned on its head: The optimal carbon price may, in fact, 
be high today, declining over time (e.g. Figure VIII).41 
 
In EZ-Climate, that decline in optimal CO2 prices over time reflects the rate at which 
information is revealed going forward, the degree of risk aversion, and the potential for 
technological progress and backstop technologies. Either way, the initial ‘ocean liner’ 
logic does not hold. Or perhaps it gets completed: for turning a large ship long down the 
line takes bearing off decisively and early, especially in a world of uncertain obstacles. The 
less certain we are about the climate risks facing us in future states of the world, the higher 
the optimal price on carbon today. 

                                                   
39 See Heal (2017), Pindyck (2013, 2012), and Wagner and Zeckhauser (2017) for broader discussions of 
uncertainty in climate-economy models. See Lemoine and Rudik (2017a) for further guidance for recursive 
integrated assessment models. 
40 Typically modeled GHG emissions price paths, such as those feeding into the official U.S. SCC 
calculations, including perhaps most prominently Nordhaus’s DICE model, follow this logic (U.S. 
Government Interagency Working Group on Social Cost of Carbon, 2015). Cf. footnote 1. 
41 Ulph and Ulph (1994) similarly derive conditions for a declining carbon price, though, in their case, driven 
by optimal resource extraction in the context of climate policy, invoking notions of the so-called “Green 
Paradox” (Jensen et al., 2015). Acemoglu et al. (2012) derives a high, “temporary” optimal price, together 
with a high subsidy for “clean” technologies, which eventually replace the “dirty” technology altogether and, 
thus, remove the need to price GHGs. Lemoine and Rudik (2017b), in turn, find that an efficient optimal 
CO2 price first rises and then falls steeply over time. 
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