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†École Polytechnique Fédérale de Lausanne and Columbia Business School and NBER, respectively. Con-
tact information: kd2371@columbia.edu and pierre.collin-dufresne@epfl.ch. We thank Scott Richardson,
and participants of seminars at Emory, LSE, LBS for helpful comments and discussions.



Introduction

The cross section of individual stock returns over the coming week or month is strongly

negatively related to the past returns of the same firms over the past week or month

(Jegadeesh 1990, Lehmann 1990). This negative serial correlation is generally interpreted

as evidence consistent with incomplete liquidity provision, and much empirical evidence

is consistent with this: Chan (2003) and Tetlock (2011) show that large stock price moves

exhibit more reversal if they are not associated with news and Da, Liu, and Schaumburg

(2013) show that within industry/residual based reversals have a far higher Sharpe ratio.1

In addition, Avramov, Chordia, and Goyal (2006) argue that the reversal e↵ect is

present only in small, illiquid stocks with high turnover, and Khandani and Lo (2007)

document a dramatic decline over time in the e�cacy of the strategy. Finally, the strength

of the reversal strategy appears to depend on arbitrageurs ability to access capital: Nagel

(2012) documents a strong positive correlation between the return of a $1-long/$1-short

short-term-reversal and the level of the VIX. He attributes this co-variation to being

consistent with the “... withdrawal of liquidity supply and an associated increase in the

expected returns from liquidity provision ... during times of financial market turmoil.”

Overall, he interprets his results as being consistent with limited investor capital, but

implicitly also with strong integration of capital markets.

We make several contributions to this literature. First, show that in fact the reversal

e↵ect is remarkably strong in even the largest and most liquid stocks. Second, we more

accurately estimate the nature of the reversal e↵ect: we show that the e↵ect is well

captured by a model in which a individual stock’s expected return is an exponentially

weighted function of it’s past residual returns, consistent with the slow-moving capital

hypothesis of Du�e (2010). Finally we show that, in contrast with evidence presented

elsewhere, while there is considerable variation over time in the both the rate mean

reversion, and the Sharpe-ratio of the short-term-reversal strategy, this time variation is

unrelated to standard measures of liquidity such as the VIX. It is, however, related to

the volatility of the short-term reversal strategy itself. Thus, this evidence is suggestive

of somewhat limited capital, but a lack of integration of financial markets.

1Da, Liu, and Schaumburg (2013) form portfolios based on past one-month returns. They show that
the alpha of their residual-reversal strategy has a large and statistically significant alpha w.r.t a “five-
factor” version of the Fama-French model.These results are summarized in their Table 2. The model
has a factors the standard Fama-French four factors plus the short-term reversal factor on Ken French’s
website.
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We proceed as follows: In Section 1 we describe our data sources and data selection

procedure, and in Section 2 we do basic analysis of the data that motivates our later tests.

In Section 3 we discuss our basic model, the estimation of this model and some issues

related to this estimation. and Section 4 concentrates specifically on the estimation of

the str process using the UC-ARIMA process implemented via a Kalman filter, and the

Hodrick and Prescott (1980) filter. Section 5 examines the covariation of the returns to

short-term liquidity provision with the VIX, and Section 6 concludes.

1 Data Description

Our primary sample is the 100 largest firms by market capitalization in the universe of US

common stocks, over the period from January 1927 through March 2013.2 Specifically, at

close on the last trading day of each calendar year we select the 100 firms with the largest

market capitalization. We trade only those firms over the next calendar year. What this

means is that our cross-section is the very largest firms in the CRSP universe. We do this

to ensure that each and every one of the stocks in our sample can be traded each trading

day.

Our data primarily comes from CRSP, and includes price, trading volume, and shares

outstanding. In addition, we get earnings announcement dates from COMPUSTAT.

1.1 Non-Trading:

Even though we restrict our sample to the 100 largest firms by market capitalization at the

beginning of each year, there is still a substantial amount of non-trading in the pre-1950

period. Specifically, before 1950 about half of the firms in our sample have at least one day

where they do not trade, and about a quarter of the sample has more than 10 non-trading

days. One reason for this is that, pre-1950, the number of traded firms is considerably

smaller. A second more important reason is that share turnover is considerably smaller

pre-1960.

However, post-1960, the number of non-trading days falls dramatically. As is seen in

Figure 1, the median number of firms which have at least one non-trading day in the

post-1960s sample is zero. In fact, in the last 54 years of our sample (1960-2013) there

2However, in our robustness checks, we also examine the largest 500 stocks, and the 100 and 500
largest firms where the sample is restricted to NYSE firms and to NASDAQ firms.
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This plot shows the number of firms in our sample of 100 firms which experienced at least
N non-trading days, by year. The first four lines in the plot give the number of firms that
experienced more than 0, 1, 2, and 10 non trading days, by calendar year.

Figure 1: Non-Trading Analysis

are only 6 firm-years (out of 5400) where there are more than 2 non-trading days, and

only one firm-year in which there are more than 10 non-trading days.

1.2 Share Turnover:

We define share turnover as trading volume in shares dividend by the total number of

shares outstanding. Both quantities are reported by CRSP on a daily basis.

Figure 2 plots the 42-day (2-month) rolling average of the annualized, value-weighted

turnover for our sample of the 100 largest firms. It is clear from this plot that share

turnover varies dramatically over our sample period, something we will exploit later in

our analysis. Turnover is over 100%/year in the late 1920’s, and then falls over the 1930

by about a factor of 20. Annualized turnover averages only 6.72% from 1940 through

1965, but begins a fairly steady rise in the late 1960s. It peaks in late 2008, during the

financial crisis, and reaches a 42-day average of 367% at the peak of the financial crisis.3

3The peak is the 42-day period ending on November 4, over which the average turnover is 367.3%.
The average value-weighted annualized turnover over the one-year period from 2009:06-2010:05 is 291%.
The highest one-day turnover in our sample is 2.59% on October 10, 2008, and the lowest is 0.003% on
August 24, 1940.
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This figure plots the 42-day (2-month) moving average of the annualized value-weighted
turnover of the 100 stocks in our sample, in percent/year. Turnover is defined as trading
volume dividend by the total number of shares outstanding.

Figure 2: Average Annualized Turnover

1.3 Delistings:

The median number of delistings per year in our sample is zero. However, some delistings

do occur. The maximum is in 1998, when there are six. Over half are in the two decades

between 1980 and 2000, and resulted from mergers. Hence, the delisting return supplied

by CRSP is probably reliable. If a firm is delisted, up until the delisting takes place, we

trade as if we are unaware that the delisting will take place. On the delist date, we assume

that any holdings, long or short, of that firm’s shares earn the return on that date plus

the CRSP delisting return.

Note the the universe of firms in our sample often changes on the last trading day of

each calendar year. If a firm leaves our sample (because it is no longer one of the 100

largest firms) we close out our position at the closing price on that day. Similarly, if a

firm enters the sample of the 100 largest firms, we start trading into that firm starting at

close on the last trading day of the year.
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This figure plots the average Fama-MacBeth coe�cients, the Fama-MacBeth t-statistics for a Fama-
MacBeth regression of the residual returns (calculated as described in the text) on the lagged residual
returns for the 100 largest common stocks traded on US exchanges. Lagged dependent returns which
occur within one day of the an earnings announcement date (per COMPUSTAT) are set to zero.

Figure 3: Fama-MacBeth Regression Results

1.4 Earnings Announcement Dates:

Our earnings announcement data is from COMPUSTAT. These data begin with earnings

announcements after September 1971 (i.e., third quarter earnings announcements, for

firms with a December fiscal year end), and continue through the end of our sample in

March 2014, giving us 170 quarters (⇠42.5 years) of earnings announcement dates.

2 Data Characterization

2.1 Return Decay Following Price Shocks

We begin with some simple empirical tests that help to characterize the patterns in our

data.

First, we run a daily Fama and MacBeth (1973) regression for the largest 100 firms,
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measured at the beginning of each year. We perform our analysis over the period from

January 1972 through the end of March 2014. Our choice of starting date is primarily

motivated by the fact that there are almost no non-trading days post-1972, and secondarily

by the fact that our COMPUSTAT data contains earnings announcement dates for almost

all firms (among the top 100) after 1972.

We first calculate residual returns for each of our 100 firms, for each day. We do this by

first estimating the market beta for each firm using daily data over the two years leading

up to the start of each calendar year for each of the 100 firms in our sample. We shrink

these estimated betas using the equation:

�

s

i

= 0.23 + 0.77 · �̂
i

(1)

The coe�cients in this shrinkage regression are the average coe�cients (intercept and

slope) from a pooled regression of the ex-post daily betas on the on the �̂

i

s (in equation

(1)).

We then calculate the residual return for each firm as:

✏

i,t

⌘ (r
i,t

� r

f,t

)� �

s

i

(r
m,t

� r

f,t

).

For our baseline Fama-MacBeth regression, our dependent variable is the cross-section

of residual returns for our 100 largest firms, and the vector of independent variables is

the lagged cross-section of residual returns, for lags between 1 and 30 days. That is, we

run daily cross-sectional regressions with the specification:

✏

i,t

= �0,t +
30X

⌧=1

�

⌧,t

· ✏⇤
i,t�⌧

(2)

where the ⇤ superscript in ✏

⇤
i,t�⌧

denotes that the ✏ is set to zero if it is within one day of

a COMPUSTAT earnings announcement date.

To be able to assess the e�cacy of zeroing out earnings-announcement date (EAD)

returns, we also run the regression:

✏

i,t

= �

a

0,t +
30X

⌧=1

�

a

⌧,t

· ✏
i,t�⌧

(3)

where, here, the residuals are not zeroed out on Earnings Announcement Dates.
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This figure plots the average Fama-MacBeth coe�cients and FM t-statistics for a FM regression of the
residual returns (calculated as described in the text) on the lagged residual returns for the 100 largest
common stocks traded on US exchanges. Here, the coe�cients are each for univariate regressions which
are run only on dates, for the dependent variable, there are four or more earnings announcements.

Figure 4: Fama-MacBeth Results - Earnings Announcement Dates Only

We discuss the motivation for zeroing out the earnings announcement date returns in

Section 2.2. Figure 3 presents the mean coe�cient as a function of ⌧ , and the coe�cient t-

statistic (i.e., 1p
T

�̂

⌧

/std(�̂
⌧

)). In addition we plot an exponential fit to the Fama-MacBeth

coe�cients.

Several things are of note here. First, even for these large market capitalization firms,

there is substantial evidence of reversal. The t-statistic on the two-day lagged return is

above 17, and the t-statistic on each of the returns from a two-day lag up to 12-days lag

is greater than 2.0.

It is notable that the magnitude of the Fama-MacBeth coe�cients as a function of lag

are well captured by a simple exponential function, except at the first lag,
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2.2 Earnings Announcement Dates

As noted above, we zero out the lagged returns in the forecasting regression when those

returns occur on earnings announcement dates. We also do this later when we construct

our trading strategy. We do this because we find that there is no evidence of reversal on

earnings announcement dates.

We show this in three ways. First, Figure 4 presents the results of regression returns

on lagged returns – similar to the regression of Figure 3 – except here the regression is run

only for dates on which the lagged returns are on earnings announcement dates.4 Note

that, with the exception of the one-day lag return, all of the coe�cients except one are

statistically indistinguishable from zero at the 5% level.

Second, we run the Fama-MacBeth regression in equation (2) in two ways, with the

dependent lagged residual returns set to zero on earnings-dates, and without. We can

then examine the e�ciency of each of the coe�cient portfolios in the baseline regression

(i.e., with the EAD returns zeroed out) and without. We do this by regressing the time

series of coe�cients, for a given lag, on the corresponding coe�cients with the alternative

regression. Recall that, if a portfolio is e�cient with respect to another portfolio, the

intercept of such a time series projection will be zero. The intercepts from these regres-

sions, and for the reverse regressions, for lags 1-10, are presented in Table 1. Note that

most of the coe�cients in the reverse regression are significantly di↵erent from zero, but

none of the coe�cient for the corresponding reverse regression are.

Our third test involves the construction of an alternative trading strategy. As we

discuss below, our baseline trading strategy constructs a portfolio where the weight on

each asset in the portfolio is an exponentially weighted sum of past residual returns. Note

that the weights on the past residual returns are negative – so the strategy is designed

to have a positive Sharpe ratio. In constructing those weights, we zero out any lagged

residual returns within one day of an earnings announcement. Over the 1972-2013 period,

our baseline strategy has an unconditional annualized Sharpe ratio of 3.08.

To test this approach, we construct a alternative trading strategy where we ignore

the earnings-announcement date. Over the same period, this strategy has an annualized

unconditional Sharpe ratio of 2.91, and is 98.9% correlated with the baseline strategy.

To further then compare the baseline strategy returns to the alternative strategy

4Or, rather, when the returns occur within one day of the earnings-announcement date in COMPUS-
TAT
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Table 1: Fama-MacBeth (1973) Earnings Announcement Date Analysis
This table gives the intercept (↵⌧ ) and the intercept t-statistics for time-series regressions of the baseline
FM-coe�cient portfolio returns (�̂t,⌧ from equation (2)) on the corresponding FM-coe�cient portfolio
returns for the cross-sectional regression in equation (3) where the lagged residuals returns ✏i,t�⌧ are not
set to zero on EADS. We also present the intercept and the t-statistic for the reverse regression – which
we denote

⌧ ↵

⌧

↵

a

⌧

t(↵
⌧

) t(↵a

⌧

)
1 0.00449 -0.004794 6.695 -6.974
2 -0.001005 -0.00313 -1.673 -4.999
3 -0.001048 -0.002741 -1.799 -4.508
4 -0.0002399 -0.002517 -0.4115 -4.175
5 -0.000506 -0.001316 -0.8575 -2.135
6 0.0006172 -0.00256 1.054 -4.19
7 0.0002584 -0.001872 0.4434 -3.085
8 -0.0001569 -0.001059 -0.279 -1.805
9 0.0002197 -0.001261 0.3853 -2.114
10 0.0002006 -0.000662 0.3512 -1.121

returns. To test the e�ciency of the two strategies we run the two regressions:

r

str

t

= ↵ + �r

str�a

t

+ u

t

r

str�a

t

= ↵

a + �

a

r

str

t

+ u

t

We find that ↵ = 93 bps/day, with a t-statistic of 7.0. In contrast, ↵a = �36 bps/day,

with a t-statistic of -2.8.

Note, however, that this simple test suggests that a more e�cient portfolio actually

shorts a small amount of the alternative trading strategy. Over this sample, the ex-post

e�cient combination puts positive weight on firms which experience positive returns on

earnings announcement dates – consistent with the presence of post-earnings announce-

ments drift. However, the Sharpe ratio of this MVE combination is only 3.11. In the rest

of our analysis here, we simply zero out the lagged residual returns of firms. This also

means that our strategy is really just a short-horizon reversal strategy, and doesn’t profit

from post-earnings announcement drift.
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3 A Model of Return Reversals

To motivate the construction of our test portfolio, we here develop a model for individual

firm excess returns (r̃
i,t+1). Our baseline model is:

r̃

i,t+1 = �

i,m

r̃

m,t+1 +B

i,t

�

t

+ �

i

h

✏,t

✏̃

i,t+1| {z }
⌘ũi,t+1

✏̃

i,t+1 ⇠ N (0, 1) (4)

where E
t

[✏̃
i,t+1✏̃j,t+1] = 0 8 i 6= j, and where 1

n

P
n

i=1 �
2
i

= 1.

Firm i’s excess return r̃

i,t+1 has a loading of �
i,m

a single common factor (the market).

u

i,t+1 denotes firm i’s residual return at time t+ 1.

3.0.1 The market return

While it is no particularly important for our estimation here, we nonetheless model that

process for the excess market return (r̃
m,t+1). Our model is:

r̃

m,t+1 = µ+ h

m,t

�̃

t+1| {z }
⌘ũm,t+1

, �̃

t+1 ⇠ N (0, 1) (5)

where E
t

[�̃
t+1✏̃i,t+1] = 0 8 i. The market return r̃

m,t+1 has a constant mean return, and

variance that follows a Glosten, Jagannathan, and Runkle (1993) GARCH process:

h

2
m,t

= !

m

+ �

m

h

2
m,t�1 + (↵

m

+ �

m

I[(r̃
m,t

� µ)<0]) u2
m,t

. (6)

Maximum likelihood estimates of the parameters in equations (5) and (6) are given in

Table 2.

3.0.2 Residual return specification

Expected return: As noted earlier, we specify that a firm’s residual return u

i,t+1 is not

mean zero, but rather has a conditional expected return that is negatively correlated with

it’s lagged residual returns for lags of up several weeks. Specifically, equation (4) specifies

that firm i’s conditional expected residual return E
t

[ũ
i,t+1] = B

i,t

�

t

is the product of a

firm specific exposure B

i,t

and a common premium �

t

. The exposure (B
i,t

) is governed
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by an autoregressive process:

B

i,t

= �

r

B

i,t�1 + (1� �

r

)ũ
i,t�1

= (1� �

r

)
1X

l=1

�

l

r

u

i,t�l

(7)

Firm i’s time t exposure is thus an exponentially weighted sum of its lagged daily residuals,

starting at time t � 1. Note that our specification does include the day t return in the

expected return for day t + 1 – we skip a day to avoid various econometric problems. 5

For our sample of the largest 100 firms, over the 1972-2014 time period, the average �

t

is about -0.12. This means that, following a residual shock of 1%, the price of a firm

i will fall (starting in one day) by about 12 basis points over the next few weeks. Our

estimation of equation (7) for daily returns gives a �̂

r

= 0.720, corresponding to a half-life

of this price decay of 2.4 days.

Variance Process Specification: Equation (4) specifies that the volatility of firm i’s

residual return is �

i

h

✏,t

– the product of a time-invariant but firm-specific term �

i

, and

the (common) level of cross-sectional volatility, h
✏,t

. Our specification is consistent with

Kelly, Lustig, and Van Nieuwerburgh (2012), who argue that time variation in individual

firm idiosyncratic volatilities are largely captured by a single factor structure. Here, all

changes in idiosyncratic volatility a result of changes in the common level h
✏,t

.

Equation (4) specifies that the shock to firm i’s residual returns is

(ũ
i,t+1 � B

i,t

�

t

) = �

i

h

✏,t

✏̃

i,t+1

5With this specification, the expected residual return at time t+ 1 is a function of residuals at times
t � 1 and earlier, skipping day t. This makes the strategy somewhat more implementable, as there is a
one-trading day gap between the point where the residual returns are observed and the portfolio weights
determined, and when the trades must be executed. This also avoid any potential bid-asked bounce
e↵ects. Note that (almost) every firm in our sample trades (almost) every day.
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This means that:

E
t

"
1

n

nX

i=1

(ũ
i,t+1 � B

i,t

�

t

)2
#

= h

2
✏,t

E
t

"
1

n

nX

i=1

�

2
i

✏̃

2
i,t+1

#

= h

2
✏,t

 
1

n

nX

i=1

�

2
i

!

= h

2
✏,t

(8)

That is, given our restrictions that 1
n

P
n

i=1 �
2
i

= 1 and that the ✏’s are i.i.d., unit-variance,

h

2
✏,t

is the conditional cross-sectional variance (as defined by the LHS of equation (8).)

The dynamics of h2
✏,t

are captured by an GARCH(1,1) process (Bollerslev 1986):

h

2
✏,t

= 

✏

+ ↵

✏

h

2
✏,t�1 + µ

✏

�

2
xs,t

, (9)

where �

2
xs,t

denotes the realized cross-sectional variance in period t:

�

2
xs,t

⌘ 1

n

nX

i=1

(ũ
i,t

� B

i,t�1�t�1)
2
. (10)

For an individual firm, equation (4) specifies that E
t

⇥
(ũ

i,t+1 � B

i,t

�

t

)2
⇤
= �

2
i

h

2
✏,t

. That

is, �2
i

is the ratio of an individual firm’s residual variance to the average residual variance

of the n firms in our sample. As noted earlier, in our empirical implementation, we

estimate �
i

at the beginning of each year, and then hold it fixed from the first trading day

of the year through the last, consistent with the specification in equation (4). Empirically,

we find considerable cross-sectional variation in �

i

.

Premium Specification: From equation (4), �
t

is the time-t expectation of the pre-

mium per unit of exposure that will be earned over period t+1 (i.e., between t and t+1).

The updating rule for �
t

is:

�

t+1 = ↵

�

�

t

+ (1�↵

�

)ũ
B1,t+1 (11)
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where ũ
B1,t+1 denotes the period t+1 residual return of a portfolio with unit exposure to

the str factor (that is, B
p,t

= 1), and specifically the portfolio with time-t weights:6

w

B1
i,t

=
B

i,tP
i

B

2
i,t

(12)

Here, �
t

should be interpreted as the econometrician’s estimate of the latent period-

t+1 premium �

⇤
t

– i.e., �
t

= E

t

[�⇤
t

]. Similarly, equation (11) should be interpreted as

describing the evolution of this expectation. It is a reduced form for the Kalman filter

solution to the system of equations:

�

⇤
t+1 = �

⇤
t

+ ṽ

t+1

ũ

B1,t+1 = �

⇤
t

+ ✏̃

B1,t+1

where �

⇤
t+1 is the latent/unobserved premium. In a later Section, we will model the

underlying premium �

⇤
t

as following a random walk.

In summary, according to this specification, when a firm experiences a large positive

residual-return, its expected residual return falls in response. Absent future shocks, the

expected return converges back towards zero with a rate governed by the parameter �

r

in equation (7). As we will see in a moment, our estimated �

r

= 0.75, corresponding to a

half-life for this decay of 2.4 days. In contrast, the magnitude of the price decline varies

slowly.

3.1 Model Estimation

In this section we present the results of the estimation of the reversal model described in

Section 3 for our sample of the 100 largest CRSP firms, and over our sample period of

1974:01-2013:03.

We begin with the estimation of the market process (equations (5) and (6)), which

we estimate jointly using a numerical maximum likelihood procedure. The results of this

estimation are reported in Table 2.

We also estimate the parameters of the individual firm process (equations (7), (11)

and (9)).

6Note that
P

i w
B1
i,t Bi,t = 1. If the residuals were uncorrelated and with uniform variance, this would

be the portfolio with minimum variance portfolio subject to the constraint that Bp,t = 1, and consequently
the minimum variance estimator of �⇤

t , conditional on only time t+ 1 returns.
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Table 2: Maximum Likelihood Estimates of Market Process Parameters
This table presents the estimates, standard errors and t-statistics from the joint estimation
GJR-GARCH process (equations (5) and (6)) over the period from 1972:01-2014:03. All
parameter estimates are obtained from an iterative ML procedure run on daily market
returns, where the market is defined as the equal-weighted average of the returns of the
100 largest firms, measured at the beginning of each year.

Joint Estimation of Equations (5) and (6)
Variable ML. Est. std. err. t-stat

µ

† 2.6119 1.0658 2.4505
!

†
m

1.5646 0.3555 4.4008
↵

m

0.0152 0.0039 3.9286
�

m

0.1006 0.0171 5.8844
�

m

0.9207 0.0102 90.3474

†The coe�cients and std. errors for µ are ⇥104, and for ! are ⇥106.

We estimate this in the following way. First, using the set of Fama-MacBeth regression

results plotted in Figure 3, we estimate �

r

. Specifically, fitting an an exponential decay

specification over lags between k = 2 days and 15 days (3 weeks) yields:

�̂
(k)

= ��e

��·k (13)

where � = 0.061 and � = 0.292, for k � 2, This gives a �

r

= e

�� = 0.715479, and a

half-life of 2.4 days. We use this specification in our subsequent tests.

Note that given this value of �
r

, and with a history of residual returns (u
i,t

in equation

(4)) for each firm, we can calculate using equation (7) the loading B

i,t

for each firm. With

these loadings, we can then calculate the weights in equation (12) for a portfolio with unit

loading on the factor.7

Next, we simultaneously estimate equations (9) and (11) using maximum likelihood,

using the calculated values of ũ
B1,t+1, and the calculated cross-sectional variance (in equa-

tion (10). The results of this estimation are presented in Table 3.

While the parameters here mostly appear reasonable, and the ex-ante ML estimates

appear to capture the time-series and cross-sectional variation pretty well.

For the cross-sectional variability, Figure 5 shows the daily realized cross-sectional

volatility and the estimated ex-ante h

✏,t

. Rather than just presenting this over the period

for which we estimate the model, this shows the forecast and realized cross-sectional

7Also, see footnote 6.
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Table 3: Maximum Likelihood Estimates of Individual Firm Model Parameters

This table presents the estimates, standard errors and t-statistics for the model parameters
in equations (7), (9) and (11). All estimates are obtained from an iterative ML procedure
run on daily returns from the 100 largest market capitalization at the start of each year.
The sample period is January 2, 1974 through March 28, 2013. Note that �̂0 is the starting
value of �

t

that maximizes the the likelihood function.

param. ML-est. std. err t-stat

�̂

r

0.751470
�̂0 0.084259 0.046678 1.805094
↵

�

0.997765 0.001298 768.672674


†
✏

4.741034 1.109324 4.273805
↵

✏

0.723503 0.021953 32.956604
µ

✏

0.260749 0.019914 13.093699

†The coe�cient and std. error for 
✏

are ⇥106.

volatility over the full period for which we have data. Figures 6 and 7 zoom in on realized

cross sectional volatility and h

✏,t

in two extreme periods, the financial crisis and around

the market crash of 1987.

The result of the joint estimation of �
t

, and of the volatility of �
t

are presented in

Figure 8.

Figure 9 presents – again over the full sample for which we have data – the rolling

252-day mean return, along with the model-forecast mean. Figure 10 presents the 252-day

rolling Sharpe-ratio (i.e., the annualized mean return scaled by the volatility. Figure 11

presents the rolling Sharpe-ratios for the top-100 NYSE firms by market capitalization,

and for the top-100 NASDAQ firms by market cap.

One concern is the value of ↵
�

, which is close to 1, suggesting the presence of a unit

root. For this reason, in the next section, we explore two alternative ways of estimating

�

t

: first, modeling it with a UC-ARIMA (Watson 1986) process and estimating this with

a Kalman filter, and second estimating this with a Hodrick and Prescott (1980) filter.

4 Estimating Reversal Magnitude Time Variation

Fitting a stationary process to the expected return of the str strategy suggests the pres-

ence of a unit root. We stochastically detrend the returns of the str strategy using two

16



Figure 5: Realized Cross-Sectional Vol and h

✏,t

approaches: the UC-ARIMA approach advocated by Watson (1986) and Stock and Wat-

son (1988), and a one sided-Hodrick and Prescott (1980) filter. What we find is that both

capture the slow variation in expected returns over both the post-1974 sample and the

full 1929-2014 sample.

4.1 UC-ARIMA

4.1.1 UC-ARIMA Specification

Based on this analysis, our premise is that the expected return of the str portfolio obeys

the following stochastic process:

�

t

= � + �

⌧

t

+ �

c

t

(14)

�

⌧

t

= �

⌧

t�1 + u

⌧

t

(15)

�

c

t

=
pX

k=1

�

k

�

c

t�k

+ u

c

t

(16)

That is, we assume the time-t premium �

t

is integrated, and can be decomposed into

two components: an integrated “trend” and a stationary “cycle.” (our terminology here

17



Figure 6: Realized Cross-Sectional Vol and h

✏,t

in the Financial Crisis

Figure 7: Realized Cross-Sectional Vol and h

✏,t

– September-December 1987
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Figure 8: Estimates of GARCH-ARMA parameters �0,t and the volatility of �0,t

Figure 9: Time variation in the forecast and realized strategy returns
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Figure 10: STR Strategy – Rolling Sharpe-Ratio

Figure 11: STR Strategy – Rolling Sharpe-Ratio: NYSE and NASDAQ firms

20



comes from the business cycle literature). The trend component �

⌧ follows a random

walk with drift. The stationary component is here specified to follow a stationary AR(p)

process.

We don’t observe either the two components of the expected return – �

⌧

t

and �

c

t

– or

their sum �

t

. Instead we observe the return to a portfolio for which the expected return

is �
t

:

r

str

t

= �

t

+ ✏

t

(17)

4.2 Kalman Filter Estimation

We use a Kalman filter to estimate the system of equations (14)-(17), and to provide

ex-ante estimates of �⌧

t

and �

c

t

.

To estimate this we first write equations (14)-(17) in state-space form. Here, we lay

this out for the case where �

c

t

follows an AR(2) process.

The state-space formulation has two governing equations. The state-evolution equation

describes the evolution of the state variables:

x
t

= Ax

t�1 +w
t

(18)

where, for our AR(2) setting:

x
t

=

2

664

�

⌧

t

�

c

t

�2�
c

t�1

3

775 , and A =

2

664

1 0 0

0 �1 1

0 �2 0

3

775 and w
t

=

2

664

u

⌧

t

u

c

t

0

3

775

The first two state variables are the trend and cycle component of the premium. The

final state variable, �2�
c

t�1, is essentially a “place-keeper” for the lagged component of the

premium; note that the final equation is of the system is an identity.

The shocks are necessarily mean zero and conditionally normal:

E

t�1[wt

] ⇠ N (0,Q) .
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We assume the trend and cycle shocks are uncorrelated:

Q =

2

664

�

2
⌧

0 0

0 �

2
c

0

0 0 0

3

775

We specify the relation between the state variables and the (observable) return to the str

portfolio r

str

t

with the measurement equation:

r

str

t

= Gx
t

+ ✏

t

. (19)

where G is specified to make the conditional expected return the sum of the two com-

ponents. The unexpected return ✏

t

is uncorrelated with any of the elements of w
t

and is

here specified to have constant variance R, though it is straightforward to incorporate a

GARCH process for the variance.

G =
h
1 1 0

i
and ✏

t

⇠ N (0, R)

4.2.1 Kalman Filter Updates

The filtering step: Suppose that the distribution of the state variable x
t

, conditional

on having observed all returns up through time t� 1 (i.e., rstr1 , r

str

2 , . . . , r

str

t�1) but not r
str

t

,

is given by:

x
t|t�1 ⇠ N

�
x̂
t|t�1,⌃t|t�1

�

The posterior distribution, conditional of rstr
t

, is given by:

x
t|t ⇠ N

�
x̂
t|t,⌃t|t

�
(20)

where:

x̂
t|t = x̂

t|t�1 +⌃
t|t�1G

0 �G⌃
t|t�1G

0 +R

��1
(rstr

t

�Gx̂
t|t�1)

⌃
t|t = ⌃

t|t�1 �⌃
t|t�1G

0 �G⌃
t|t�1G

0 +R

��1
G⌃

t|t�1.

The forecast step: With the distribution of x
t|t from equation (20) and the state

evolution equation (18) we can construct the distribution for the str portfolio return for

22



period t+1 by first “updating” the forecast of the state variable x
t

to create a distribution

for x
t+1, and then based on this distribution calculating the distribution for rstr

t+1.

First, the distribution of x
t+1|t is:

x
t+1|t ⇠ N

�
x̂
t+1|t,⌃t+1|t

�
(21)

where the mean and the covariance matrix come directly from equation (18):

x̂
t+1|t = Ax̂

t|t and ⌃
t+1|t = A⌃

t|tA
0 +Q

From equations (19) and (21), the distribution of the time t+ 1 str return is:

r

str

t+1 ⇠ N
�
Gx̂

t+1|t,G⌃
t+1|tG

0 +R

�
(22)

4.2.2 Estimating the Kalman Filter Parameters

We begin with a prior distribution for the state variables. Using equation (20) applied to

the parameters of the prior and the first return, we update the state variable distribution

parameters. We then apply equations (21) and (22) to forecast the next return. We apply

this method for each subsequent return.

Note that sequentially applying the Kalman filter gives us a time series of ex-ante

distributions (mean and variance) for r

str

t

. To estimate the parameters of the Kalman

filter, we simply apply maximum likelihood to the series of forecasts and realizations,

selecting the the set of process parameters that maximize the log-likelihood function. For

the AR(2) example laid out above, the parameter-vector has elements: {�1,�2, �
2
⌧

, �

2
c

, R}.
We apply the Kalman filter to returns from 1970:01-2014:03. However, the log-

likelihood calculation use only returns from 1974:01-2014:03. That is, we discard first

4 years of forecasts and returns. The logic for this is that we don’t want our prior to have

a strong e↵ect on the estimated parameters. Via trial and error, we found that after 1000

observations the e↵ect of the prior was minimal.

The MLE parameters, along with standard errors and t-statistics are presented in

Table 4, and a plot of the ex-ante expected return and its components, along with the

252-day rolling mean of the r

str

t

series, are plotted in Figure 12. 12.

Several things are of interest. First, while the parameters of the estimated cyclical

component appear reasonable, the magnitude is small. Consequently, it doesn’t provide
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Figure 12: Kalman-Filter Estimated Components of the Expected Return of the r

str

t

Portfolio, for a UC-AR(2) Model
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Table 4: Results of Estimation of UC-AR(2) Process for r

str

t

param. ML-est. std. err t-stat

�1 0.9862 5.10e-04 1930.7
�2 0.0031 4.58e-06 675.2
�

†
⌧

0.0803 5.50e-03 14.6
�

c

0.0008 1.24e-05 61.9
�

✏

38.33 4.71e-01 81.4

† ML estimates and standard errors for �⌧ , �c and �✏ are ⇥100.

much help in forecasting str returns: in either univariate regressions or multivariate (with

⌧

t�1 as the other RHS variable), it is statistically insignificant.

Secondly, based on Figure 12, it looks like the estimated stochastic trend captures

variation in the average returns of the str portfolio well. However, since what is plotted

in Figure 12 is the rolling mean return of the str portfolio, this could be because of the

averaging. To verify this, if we run a regression of rstr
t

on ⌧

t�5, gives a t-statistic of 11.28.8

4.3 Hodrick-Prescott Filter

As a robustness check, we also use a one-sided version of the Hodrick and Prescott

(1980, 1997) filter to estimate the expected return of the str portfolio. The HP filter

has frequently been used in the macro-economics literature as a technique for extracting

the stochastic-trend of integrated business-cycle variables. The HP-trend component of a

time-series (⌧
t

) is the solution to:

min
⌧t

 
TX

t=1

(y
t

� ⌧

t

)2 + �

T�1X

t=2

[(⌧
t+1 � ⌧

t

)� (⌧
t

� ⌧

t�1)]
2

!
(23)

That is, the HP-filter selects the trend ⌧

t

so as to find the best fit to the series y
t

, subject

to a penalty series of second derivatives of the trend. The penalty coe�cient � is chosen

so as to achieve a su�ciently smooth. (King and Rebelo 1993) note that the HP filter is

a low-pass filter, and HP-trend-component contains the low-frequency components of the

original series y

t

. Consistent with this Ravn and Uhlig (2002) show the value of � will

be dependent on the sampling frequent for y
t

, and should be proportional to the fourth

8Note, if we use the constant volatility strategy, the t-statistics rises to 15.78.
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power of the observational frequency. We select � based on spectral analysis, detailed

below.

4.3.1 Calculating the one-sided HP Filter Weights

A matrix representation of equation (23) is:

min
⌧ 0

(y � ⌧ )0I(y � ⌧ ) + �⌧ 0A0A⌧ (24)

where y and ⌧ are the T ⇥ 1 vectors of time-series observations and the extracted trend.

I is a T ⇥T identity matrix, and A is a block diagonal (T � 2)⇥T matrix with the form:

A =

2

666664

1 �2 1 0 . . . 0 0 0

0 1 �2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 . . . 1 �2 1

3

777775

Di↵erentiating equation (24) with respect to ⌧ 0 and rearranging gives the first order

condition for the HP-trend ⌧ that satisfies (24):

⌧ = (I+ �A0A)�1y

A straightforward way to solve this problem is to invert the block diagonal matrix (I +

�A0A). Note that each row of the inverted matrix represents the coe�cients of a moving-

average filter that can be applied to the original series y
t

to obtain the HP-trend ⌧

t

.

Two rows of the matrix (I + �A0A)�1 are plotted in the upper panels of Figures 13

and 14: the “middle” row (here N/2 for N = 10000) and the final row. In addition, in

the lower panels of the two Figures, we plot the spectrum of the two filters. Recall that,

since a convolution in the time domain is a multiplication in the frequency domain. To

HP-filter our str portfolio return data, we e↵ectively convolve the original return series

with the filter weights. An equivalent way to do this in the frequency domain is to the

the Fourier transform of the return series by the Fourier transform of the filter, and then

inverse Fourier transform. This will give exactly the HP filtered series. Therefore, to see

the e↵ect of the filtering, it can be useful to see the filter spectrum.

For both the two sided filter and the one sided filter, the smoothing parameter � was
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Figure 13: HP filter – E↵ective Kernel and Spectrum
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Figure 14: One-Sided HP filter – E↵ective Kernel and Spectrum
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Figure 15: HP filtered str Returns

chosen so the the returns components below a frequency of (1/5) years�1 are filtered out.

Note that the one-sided filter (the last row of the matrix) has a less appealing spectrum

(i.e., it has less of the box shape of a band-pass filter), and also su↵ers from phase

distortions (not plotted). However, because it is one-sided, it generates estimates of the

underlying stochastic trend based only on lagged returns, while the two-sided filter uses

both past and future return. For this reason, for our application we will use the one-sided

filter.

4.4 Results

5 Strategy Time Variation

While most of the empirical work in Nagel (2012) concentrates on time variation of the

average return of the short-horizon reversal strategy with predictive variables, Nagel notes

that his model predicts that the conditional Sharpe ratio associated with liquidity provi-
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Figure 16: One-Sided HP filtered str Returns
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sion strategies – such as the short-term reversal strategy that he explores – is likely to be

a↵ected by shocks which a↵ect financially constrained intermediaries.

He therefore also examines time variation in the compensation for risk (i.e., the Sharpe

Ratio) of his 5-day STR strategy. He proceeds in the following way:9

First, he estimates time variation in conditional volatility associated with the VIX by

running the regression specified in his equation (22):

|L̃R

t

| = a0 + a1 · VIXt�5 + a2 · dt�5 + u

t

(25)

where L̃

R

t

is the residual from the regression of daily reversal strategy returns on VIX
t�5

and d

t�5 (his decimalization dummy).10 The fitted values from this regression at each

time are used as estimator of �
t

, which is used in the regression

L

R

t

�

t

= b0 + b1 · VIXt�5 + b2 · dt�5 + e

t

, (26)

and the time series of fitted values from this regression are interpreted as the conditional

Sharpe ratio of the reversal strategy return.

This is clearly a much di↵erent approach than the one that we take here. First, our

baseline str portfolio is much di↵erent than the one Nagel employs: . Second, to estimate

the volatility of our str process, we fit a GARCH process to the residuals of the

This is an important distinction. Recently, Kelly, Lustig, and Van Nieuwerburgh

(2012) document that cross-sectional volatility and market volatility are not particularly

highly correlated, suggesting that the VIX is probably not a particularly good forecast of

the volatility of the short-term reversal strategy – something we will show directly below.

Second, if the VIX is only poor proxy for the true volatility, this will lead to an upward

biased estimate of the correlation between the Sharpe ratio of a return process and the

VIX. Intuitively while the fitted regression in equation (25) may be unbiased, when we

scale the strategy return by the fitted �

t

(in equation (26) we are scaling by a convex

function of the estimated volatility. Thus errors in estimated volatility result in a upward

biased estimate of the return of the scaled process (that is, E
⇥

1
�+✏̃

⇤
>

1
�

). When the

error variance is higher for larger levels of the VIX, this will result in a positive estimated

relation between the level of the VIX and the return Sharpe ratio, even the true Sharpe

9See Nagel (2012), p. 2025-26.
10dt takes a value of one prior to decimalization (April 9, 2001) and a value of zero thereafter
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This histogram is for the coe�cients obtained in regressing the estimated Sharpe-ratio,
using the technique described above, on the simulated level of the VIX, which in the
simulation is a noisy proxy for the true return volatility. There were 100,000 runs in the
simulation, and 3276 (= 13 ⇥ 252) time periods. The correlation between the simulated
VIX and the true volatility was 61%.

Figure 17: Simulation Histogram

ratio is actually constant.

In the Appendix, we demonstrate the existence of this bias via simulation. Figure

17 plots the histogram of the estimated relationship between the VIX and the strategy

Sharpe-ratio (using the simulation procedure outlined above), when the true Sharpe ratio

is constant.

Next, here are several regressions that further illustrate our points. Here, more con-

sistent with Nagel, we utilize a strategy constructed from the 500 largest capitalization

firms each year. The strategy we examine is an equal-weighted strategy which goes long

the ⇠250 firms with negative weighted residuals, and short the ⇠250 firms with positive

weighted residuals. Also, we match Nagel’s sample period..

First we regress the returns of the strategy on the dummy variable and on the VIX.
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r

str�ew

t

= a+ b · VIX
t�5 + c · d

t�5 + e

t

Variable Coef Std Err t-stat

-----------------------------------------------

d 0.0010 0.0003 3.19

VIX 0.0001 0.0000 4.11

intercept -0.0008 0.0004 -2.11

Consistent with Nagel, we see a the strongly significant relation between the strategy

returns and the VIX. Next, we regress the absolute values of the residuals from this

regression on the same two RHS variables:

Variable Coef Std Err t-stat

-----------------------------------------------

d 0.0025 0.0002 11.21

VIX 0.0002 0.0000 18.51

intercept -0.0002 0.0003 -0.96

Note another strong relation between the absolute residuals and the VIX.

Next, we regress the scaled strategy return on the two RHS variables:

Variable Coef Std Err t-stat

-----------------------------------------------

d 0.0999 0.0579 1.73

VIX 0.0060 0.0028 2.16

intercept -0.0150 0.0672 -0.22

Note that the scaled portfolio returns continue to be positively related to the VIX.

Next we examine the ability of the VIX to forecast the volatility of the str series.

We begin by regressing the absolute value of the residual returns of our EW strategy on

its own lagged one-week, one-month, and 6-month historical volatilities, each lagged 5

days. The regression R

2 is 7.8%, and the coe�cients on each of the three variables are

significant. Henceforth we use the square-root of the estimated variance, and label it as

�̂

t�5

Next, to illustrate our point we regress first the absolute value of the residual returns

on the VIX, and on the level of the VIX and on �̂. The regression of the |rstr�ew

t

| on the

VIX yields:
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Variable Coef Std Err t-stat

-----------------------------------------------

VIX 0.0002 0.0000 19.75

intercept -0.0000 0.0003 -0.07

with an R

2 of 10.6%. However, when we include �̂

t�5 as a RHS variable, we obtain:

Variable Coef Std Err t-stat

-----------------------------------------------

sigma 0.0005 0.0000 20.91

VIX 0.0000 0.0000 1.17

intercept -0.0012 0.0003 -4.58

Consistent with Kelly, Lustig, and Van Nieuwerburgh (2012), the �̂

t�5 is strongly

significant, and the VIX becomes insignificant. The VIX is not a good proxy for cross-

sectional volatility, or for the

We now repeat the set of regressions above, but including �̂

t�5 as a RHS variable in

each step. We present only the final regression in which the scaled strategy return is the

dependent variable:

Variable Coef Std Err t-stat

-----------------------------------------------

d 0.0103 0.0646 0.16

sigma 0.0177 0.0067 2.63

VIX -0.0008 0.0036 -0.23

intercept -0.0547 0.0651 -0.84

What this regression shows is that, after controlling for the volatility of the str strategy,

the VIX no longer has any power to forecast Sharpe-ratio. Interestingly, for this EW

strategy, we see that the historical volatility-based estimator �̂

t�5 does have power to

forecast the mean of the scaled strategy.

Finally, Figure 18 plots the VIX and our x-sectional volatility estimator. While the

high correlation (⇡60%) between the two are evident, there are clearly distinct di↵erences

in the behavior of the two series. For example, the cross-sectional volatility declines far

more quickly after the market decline in 2002-3, and following the financial crisis.

6 Conclusions

We estimate a short term reversal process for daily US equity returns. Over our primary

sample period of 1972-2014, and for our sample of the 100 largest traded firms, on average
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Figure 18: VIX and Historical Estimates of cross-sectional volatility

approximately 90% of idiosyncratic price shocks are permanent. The remaining 10% is

temporary, and decays exponentially toward zero, with a half life of about 2.5 days.

While the rate of decay (the half life) is relatively constant over time, the magnitude

decay varies considerably over the sample. Our findings are consistent with the slow

movement of capital (Du�e 2010). Also, in contrast with previous literature, we find no

evidence that this rate of mean reversion is related to market-wide measures of illiquidity,

such as the VIX. Our results are thus also consistent with a lack of integration across

capital markets.

The evidence presented here suggests several promising areas for future research. First,

it would be interesting to better understand the frictions behind the slow moving capital

that appear to result in the slow movement of prices back towards equilibrium levels

following an idiosyncratic price shock. Second, we should aim to better understand the

nature of the barriers that prevent a flow of capital into, and out of the strategies that

attempt to arbitrage the short-term reversal patterns we document here. What is the

nature of the barriers that prevent this flow of capital? Also, the very di↵erent patterns in

cross-sectional and time-series volatility – which has been noted elsewhere in the literature
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– suggest that a successfully modeling capital flows between sectors/markets may also

require better modeling of the volatility transmission mechanisms.
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