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Assessing interaction effects in Latin

square-type designs

Rajeev KOHLI *

Latin, Graeco-Latin and hyper-Graeco-Latin squares are
experimental designs in which all main effects are confounded
with interaction effects involving two or more experimental
factors. Most marketing research experiments using these de-
signs blindly test for main effects without establishing that
interaction effects are indeed not significant. This paper first
shows how the presence of significant interaction effects can
distort the results of experiments using Latin square-type de-
signs. It then presents three procedures that test the assump-
tion of insignificant interaction effects in these designs and
discusses the conditions under which each method is best
employed. The unique feature common to all three procedures
is that they utilize the experimental data itself to test the
validity of the additivity assumption. Finally, a new procedure
is presented for replicated Graeco-Latin and hyper-Graeco
Latin squares that unconfounds a single, major main effect
from all second order interaction effects, and estimates one
two-way interaction effect involving the major experimental
factor of interest. Applications illustrating the usefulness of all
four procedures are presented.

1. Introduction

Latin, Graeco-Latin and hyper-Graeco-
Latin squares are related experimental de-
signs using three, four and five experimental
factors, respectively. Collectively, the three
designs are referred to as Latin square-type
designs in this paper. Holland and Cravens
(1972: 272) and Peterson (1982: 601) note
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that these designs have been used more often
than any others in marketing. Applications of
Latin square-type designs to marketing and
consumer research are described by Sawyer
(1973), Edell and Staelin (1983), Mitchell and
Olson (1981), Moore, Hausknecht and
Thamodaran (1986), Sheluga; Jaccard and
Jacoby (1979), Currim and Sarin (1983),
Brunk and Federer (1953), Cox (1964),
Hoofnagle (1963), and Smith, Clement and
Hoofnagle (1956).

A major reason for the popularity of Latin
square-type designs is that they use a small
number of treatments (e.g., products, ad-
vertisements, prices) and experimental units
(e.g., test cities, supermarkets, households),
both of which can be expensive in many
marketing experiments. However, a conse-
quence of their economy is that these designs
confound all main effects with interaction
effects among two or more experimental fac-
tors. Latin square-type designs are therefore
recommended when the main effect of only
one experimental factor is of interest. The
remaining factors are assumed to not interact
with each other or with the principal experi-
mental factor. However, in practice, interac-
tion effects can be significant in many experi-
ments using these designs. For example,
among the previously noted studies, Currim
and Sarin (1983) employ product attributes,
and Edell and Staelin (1983) use ad structure,
ad content and product class as factors in a
Latin square; Mitchell and Olson (1981) em-
ploy brand name /ad content and number of
repetitions as two of three factors in a Latin
square; and Moore, Hausknecht and
Thamodaran (1986) use ads and speed of
exposure as two of four factors in a Graeco-
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Latin square. Even in studies in which only
one main effect is of interest, the assumption
that all interaction effects are insignificant is
not so clear cut. For example, Sheluga, Jac-
card and Jacoby (1979) use subjects and order
of testing as factors in a Latin square in which
the main effect of preference scaling tasks is
of interest. Because it is possible for the effect
of order of testing to vary differently across
both tasks and subjects, the significance of
interaction effects should not be assumed in
such experiments. Rather, it should be veri-
fied, if possible from the experimental data
itself. Hypotheses of interest should be tested
only after confirming their interaction effects
are not significant. Alternatively, if only one
main effect is of interest and, as in many
cases, a Latin square-type design is replicated,
it is useful to perform the replication over a
set of different squares across which the
principal main effect of interest is not con-
founded with at least second order interaction
effects, which generally are considered to be
the 'interaction effects most likely to be sig-
nificant.

The purpose of this paper is to describe a
procedure by which these objectives can be
attained. First, three methods for testing in-
teraction effects in Latin-square-type designs
are described, the conditions under which each
i1s appropriate are discussed, and examples
illustrating their usefulness are presented.
Next, a procedure that ensures that a single,
major main effect is not confounded with any
second order interaction effects in Graeco-
Latin and hyper-Graeco-Latin squares (but
not in Latin squares) is described. A sec-
ondary benefit of this procedure is that it
permits estimation of any one two-way inter-
action effect involving the main experimental
factor of interest. This is a new procedure
which, to our knowledge, has not been previ-
ously described in either the statisfics or the
marketing literatures.

2. Tests for interaction effects in Latin
square-type designs

Before discussing the proposed testing pro-
cedures, consider an example that illustrates
the erroneous conclusion that can result from
using a Latin square-type design when inter-
action effects are significant. Suppose that a
test marketing experiment is conducted using
products (T;), prices (P;) and ad budget (A,)
as experimental factors, each at three levels.
Assume, first, that the factors are used in a
full-factorial design. The 27 combinations of
test products, prices, and ad budgets are ran-
domly assigned to, and simultaneously imple-
mented in, two test cities each (i.e., 54 test-ci-
ties are employed in this hypothetical exam-
ple). Per-capita sales over a three month
period are recorded for each city (table la),
their ANOVA (table 1b) indicating that the
main effects of all three factors are signifi-
cant, as are three of the four interaction ef-
fects. !

Now consider the nine italicized values in
table 1a, which correspond to observations
for a Latin square (table 2a). A researcher
may elect to use the Latin square in an actual
test-marketing experiment because it uses far
fewer cities than the full-factorial design. But
will the Latin square provide useful informa-
tion about the effects of the three factors on
sales? An ANOVA for the Latin square data
(table 2b) suggests that it will not: all three
main effects now appear insignificant, sug-
gesting that none of the factors affect sales.
Clearly the confounding of the main effects
with the significant interaction effects seri-
ously distorts the results of the Latin-square
experiment. Even from a predictive stand-
point, a comparison of the w?® statistic (Hays
(1963)), which measures the variation in the

! The data in table 1 are in fact for a brick-manufacturing
experiment reported by Youden and Hunter (1955: 402,
table 2). The current test-marketing context is assumed for
expository purposes.



COLUMBIA BUSINESS SCHOOL

Table 1
Per capita sales ( X 100) and ANOVA for test marketing exam-
ple employing a 33X 3 factorial design.

(a) Per capita sales data for test marketing experiment:
3 X 3 X 3 factorial design (2 observations per cell).

Advertising Price  Test product
T T, Ty

P, 9.45,9.61 9.33, 9.68  9.62,9.50
A P, 9.69,9.60 944, 882 942,958"
P; 9.64,9.64 949, 964 965,974
P, 9.05,897  9.69. 927  9.08,8.92
A, P, 9.36,9.46  9.25, 985 8.92,5.04
P, 9.40,9.24  9.05, 943" 950,917
P, 842,845* 848, 872 851,831
Al P, 8.68,790 9.8/, 989 B8.72.8.79
P, 8.45,880  9.93,1020 890,902

(by ANOVA of 3X 3 X 3 factorial design for test marketing
experiment

>

Source df SS MS F w*
Test products 2 1.2022 0.6011 13183 ** 0.089
Prices 2 0.7892 0.3946 8.654 ** 0.056
Ad. budget 2 34130 1.7065 37.423** 0.130
Test products

X prices 4 0.1864 0.0466 0.978
Price X ad.

budget 4 27336 0.6834 14.987 **

Test products
X prices X ad.

budget 8 17360 0.2170  4.759 **
Error 27 1.2312 0.0456
Total 53 12.0108

* Duplicate observations in the partially replicated Latin square
of table 4.
** p <0.05.

dependent variable accounted for by a factor,
suggests that the main effects in the full-fac-
torial design explain a much larger fraction of
variance than the confounded main effects in
the Latin square.

As the example illustrates, the validity if
the results obtained from a Latin square-type
experiment can be seriously hampered when
interaction effects are significant. The effect
of such confounding can be less extreme in
other experiments, but the types of errors
remain the same: significant main effects can
appear 1nsignificant, insignificant main ef-

3
(a) Latin square
C, C, s C,
A, B, B, cee B,
A, B, B, S B,
‘A'u Bu l3;1 e B,
(b) Partially replicated Latin square
C1 CZ e Cu
Ay BIB{ BZ T Bu
As B, B;B; T B,
Aa Ba B] o Bu—lB;—l

Fig. 1. Latin square and partially replicated Latin square.

fects can appear significant, and the predic-
tive accuracy of the model can be reduced.

2.1. Tukey’s test for non-additivity in Latin
square-type designs

One method for assessing if there are sig-
nificant interaction effects in a Latin

Table 2
Per capita sales (X 100) and ANOVA for test marketing exam-
ple employing a 3 X3 Latin square.

(a) Per capita sales ( X 100) for Latin square experiment *

Ad. Budget Test product

T T, T,

Prices Sales Prices Sales Prices Sales
A, Py 9.64 P, 933 P, 9.42
A, P, 836 P, 9.05 P, 9.08
A, P, 842 P, 981 P, 8.90

(b) ANOVA for Latin square experiment

Source df SS MS

Test products 2 0.1352  0.0676 02984 0°
Prices 2 07892 03946 06218 0°
Ad. budget 2 0.5196 0.2598  1.1505 0.042
Residual 2 04516  0.2258

o0

Total 1.3872

2 Observations for the Latin square correspond to the itah-
cized values in table 1.
b w? =0 if the F-statistic is less than 1 (Hays (1963)).
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Table 3

Analysis of MBA-student preferences for job profiles generated by a 4 X 4 Latin square.

(a) Preference data

Type of job Salary

$32,000 $28,000 $25,000 $23,000

Location Rating Location Rating Location Rating Location Rating
Marketing East Coast 1.000 Midwest 0.667 South 0.594 West Coast 0.000
Consulting Midwest 0.842 South 0.225 West Coast 0.625 East Coast 0.613
Finance South 0.773 West Coast 0.553 East Coast 0.225 MidWest 0.531
Accounting West Coast 0.553 East Coast 0.649 MidWest 0.030 South 0.735
(b) Analysis of variance
Source df SS MS F
Location 3 0.018 0.0060 0.052
Salary 3 0.392 0.1307 1122
Type of job 3 0.080 0.0270 0.232
Residual 6 0.699 0.1165
Total 15 1.189
(c) Analysis of variance following partitioning of residual for the non-additivity test
Source df SS MS F
Location 3 0.018 0.0060 0.10
Salary 3 0.392 0.1307 2.182
Type of job 3 0.080 0.0270 0.451
Non-additivity 1 0.3997 0.3997 6.673 **
Error 5 0.2993 0.0599
Total 15 1.189
** p<0.05.
square-type experiment is Tukey’s non-ad- main effects and residual components.

ditivity test. Consider the Latin square in fig.
la. The experimental factors are denoted A, B
and C, and their respective levels are denoted
A;, B, and C,. Each factor appears at a
ievels. The main effects model for the Latin
square is

yijk=H+ai+,8j+Yk+€uk, (1)
where y, , is the response variable, p is the
mean effect of treatments, «;, B;, v, are the
effects associated with levels A,.,'Bj, C,, re-
spectively, and ¢, is a normally distributed
random error term with mean zero and vari-
ance o2 A standard ANOVA of the Latin
square partitions the y, ; sums of squares into

Tukey’s procedure further partitions the re-
sidual sums of squares into non-additivity
and error components (see Appendix A for
details). The ratio of non-additivity- and error
mean-squares is used to test if interaction
effects are significant. If they are, the Latin
square experiment is unlikely to yield
meaningful results.

As an example, consider the data in table
3a regarding an MBA student’s preferences
for multi-attribute job descriptions. As in an
earlier study by Currim and Sarin (1983),
salary, location and type of job were used as
factors in a 4 X4 Latin square. An MBA
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Table 4

Per capita sales and ANOVA for test marketing example employing a 3 X 3 Latin square.

(a) Partially-replicated Latin-square

Ad. budget Test product

T T, T,

Price Sales Price Sales Price Sales
A, P, 9.64 P, 9.33 P, 9.42,9.58 *
A, P, 9.36 P, 9.05.9.43 % P, 9.08
A, P, 842,845* P, 9.81 Py 8.90
(b)y ANOVA for partially-replicated Latin-square
Source df- SS MS F
Ad. budget 2 0.7175 0.3588 12.59 **
Test product corrected for ad. budget 2 0.2737 0.1369 4.80
Price corrected for test product and prices 2 0.6663 0.3331 11.69 **
[nteraction 2 0.4083 0.2042 7.165 **
Error 3 0.08545 0.0285
Total 11 2.1512

* Duplicates correspond to observations market by a * in table 1.

** p<0.10.

student evaluation the 16 job profiles accord-
ing to Currim and Sarin’s procedure, which
combines conjoint analysis and von Neu-
mann-Morgenstern utility theory. Table 3b
presents the results of a standard ANOVA,
which indicates that none of the job attributes
significantly affect the student’s job prefer-
ences. However, a partitioning of the residual
into non-additivity and error components (ta-
ble 3c) suggests the non-additivity component
is significant, and that the conclusion of sig-
nificant main effects may be erroneous. Thus,
using a Latin square to generate job profiles
is inappropriate here, and it is not possible to
conclude whether or not the attributes signifi-
cantly affect the student’s job preferences.
As the example suggests, some of Currim
and Sarin’s subjects could also have had pref-
erences that are in fact affected by salary,
location and type of job, but which appear
not to be because a Latin square was used to
generate job profiles. An application of the
non-additivity test would have been useful to

identify subjects whose preferences are not
appropriately modeled by the Latin square.
Additional data from these subjects could
then have been obtained to unconfound inter-
action effects, starting with two-way interac-
tions. The result would have been a more
valid assessment of individual risk attitudes
and their classification into risk categories
(segments), and a more accurate assessment
of the predictive accuracy of the proposed
methodology.

Observe that the main benefit of Tukey’s
test is that it uses no additional observations
beyond those collected for the Latin square.
However, if there are only a few residual
degrees of freedom (e.g., in a 3 X3 Latin
square, 4 X 4 Graeco-Latin square, and 5 X 5
hyper-Graeco-Latin square), the further loss
of 1 degree of freedom for Tukey’s non-ad-
ditivity term test can significantly reduce the
precision of the statistical tests. In such cases,
the replication methods described below are
more appropriate.
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2.2. Testing interaction effects via partial or
complete replication

Partial replication (Youden and Hunter
(1955)) or complete replication can also be
used to test the additivity assumption in Latin
square-type designs. In partial replication,
duplicate observations are obtained in ‘a’
cells of an ‘a X a’ Latin square-type design. A
duplicate occurs in exactly one cell in each
row and each column. For convenience, the
cells in which the duplicates occur can be
shown as lying along the main diagonal (fig.
1b). Randomizing the rows and columns
changes the pattern of duplicated cells.

Table 5

The duplicate observations provide an
estimate of error variance, the within cells
variation being entirely due to random
fluctuations in responses to identical treat-
ments. Interaction sums of squares are esti-
mated as the difference between the sums of
squares unexplained by the experimental fac-
tors, and the error sums of squares.

To illustrate, consider the previously dis-
cussed test-marketing example. Augment the
nine original observations of the Latin square
with three duplicate observations along the
diagonal (table 4a). The duplicates are taken
from the full-factorial experiment and corre-
spond to the observations marked with a # in

Fully replicated Latin square design and test for interaction effects = Hoofnagle’s (1963) apple sales data. *

(a) Experimental design: Apple sales by treatment and time periods in nine retail food stores

Store Experiment period
Oct.—Nov. 11 Nov. 13-Nov. 25 Nov. 27-Dec. 9
Treatment Sales Treatment Sales Treatment Sales
Pounds Pounds Pounds
First replication:
Store 1 A 779 B 496 C 424
Store 2 B 312 C 314 A 238
Store 3 C 803 A 599 B 314
Second replication:
Store 4 A 703 B 416 C 319
Store S B 376 C 458 A 276
Store 6 C 623 A 397 B 556
Third replication:
Store 7 A 557 B 382 C 346
Store 8 B 313 C 489 A 396
Store 9 C 170 A 211 B 85
(b) ANOVA for fully replicated Latin square including test for interaction effects
Source df SS MS F
Stores 8 448,801 56,100.13 6.169 **
Time periods 2 157,245.5 78,627.25 8.646 **
Treatments 2 49,976.3 24,988.15 2.7480 *
Interaction 2 51,029 25,514.5 2.805 *
Error 12 . 109,134.2 9,094.52
Total 26 816,195

? Treatments represent color ranges of apples.

* p<0.10.
** p < 0.025.
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table la. Table 4b presents the ANOVA for
the partially replicated Latin square. The large
value of the interaction mean squares relative
to the error mean squares gives warning that
the main effects are confounded with signifi-
cant interaction effects (note that even with 3
df for error, the F-value for interaction effects
is 7.165, which is significant at less than the
10% level). Thus, if the experiment were con-
ducted using the Latin square, the sales data
from three additional cities (i.e., the dupli-
cates) could be used to at least caution the
researcher that the main effects are not what
they appear to be, and that inappropriate
strategic conclusions can be drawn from the
experiment.

A completely replicated Latin square-type
design has r (= 2) observations in each cell.
Like partial replication, it is recommended
over Tukey’s procedure when there are only a
few residual degrees of freedom. However,
when resources permit, complete replication
should be preferred for two reasons. First,
because each cell has the same number of
observations, all main effects are orthogonal.
Second, the error variance is based on a sig-
nificantly larger number of degrees of free-
dom, and hence the statistical tests have
greater precision.

As for partial replication, the within-cells
variability in a fully-replicated design pro-
vides an estimate of the error variance. An
estimate of interaction sums of squares is
therefore obtained as the difference between
the sums of squared unexplained by the main
effects and the sums of squares due to error.

As an example of the complete replication
procedure, consider the data in table 5a from
Hoofnagle (1963: 155). A 3 X 3 Latin square
is used to study the effect of color of apples
on their sales. Test stores, time periods and
color of apples are used as design factors. The
Latin square is replicated three times (i.e.,
r=3), different supermarkets being used in
each replication. During each time period,
apples of a specific color are simultaneously

marketed in three stores, one store per Latin
square. All stores carry each color range in
one of the three time periods.

An ANOVA of the sales data is reported in
table 5b. Unlike the original analysis by
Hoofnagle, it uses the replicates to test if the
main effects are confounded with significant
interaction effects. The analysis indicates that
interaction mean squares are nearly three
times the error mean square (the correspond-
ing F-value is marginally significant at the
10% level). It is therefore possible that signifi-
cant interaction effects confound the main
effects, and that sales are hor actually af-
fected by the color of apples.

2.3. Rotation of Graeco-Latin and hyper-
Graeco-Latin squares

The preceding procedures only test for the
presence of significant interaction effects in
Latin square-type designs. However, they do
not unconfound main and interaction effects.
A procedure is now presented to ensure that a
single, major main effect of interest is not be
confounded with any second-order interac-
tion effect in Graeco-Latin or hyper-Graeco-
Latin squares, and to also permit the estima-
tion of any one second-order interaction ef-
fect involving the major factor of interest.
The procedure is not applicable to Latin
squares, because in this case it results in a
full-factorial design.

The proposed procedure utilizes an initial
‘a X a’ Graeco-Latin (hyper-Graeco-Latin)
square to generate a set of a Graeco-Latin
(hyper-Graeco-Latin) squares. Only the ‘new’
squares are employed in the experiment, the
initial square serving as a ‘seed’ for gener-
ating these squares. To facilitate exposition,
we develop the procedure via an example for
a 5 X5 Graeco-Latin square. Subsequently,
we generalize the procedure to Graeco-Latin
squares of any size, and then to hyper-
Graeco-Latin squares.
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(a) ‘Seed’ Graeco-Latin square (S;)
C, C, C,4 Cy Cs
A, B,D, B,D, B;D; B,D, BsD;
A, B,D, B;D, B,Ds BsD, BD,
A; B;Ds B;D, BsD, B;D; B,D,
A, B,D, BD; B,D, B,D; B;D
As; BD, BDs B,D, B;D, B,Ds
(b) Graeco-Latin squares generated by ‘rotating’ S,
C, C, C, C, Cs
A, B,D, B,D, B;D; B,D, BsD;
A, B,D; B;D, B,D; BiD; B;D,
A; B;Ds B,D; BsD, BD; B;D, (Sy)
A, B,D, BsD; B,D, B,D; B;D
As; BsD, B;D; B,D, B;D, B,Ds
G G, G, C, Gs
A, B,Dy BD, B,D; BD, BD,
A, B;Ds BD, B;D, B;D; B,D,
A, B,D, BsD; B,D, B,Dy B;D, (S,)
As B;D, B,;Dy B,D; B;D, B,Ds
A, B,D, B,D, B;D; B;D, B;Ds

¢, ¢ ¢ C G
As BD, B,D; B,D; ByD, B,D;
A, B,D, B,D, B,D, B,D, BDs
A, B,D, B,D, B,D; BD, B,D, (Ss)
A, B,D; B,D, BD, BD, B,D,
A, B,D, BD, BD, B,D; B,D,

Fig. 2. ‘Rotation’ procedure for generating five Graeco-Latin
squares (S,-S;) from a ‘seed’ Graeco-Latin square (S;).

Fig. 2a displays a 5X 5 Graeco-Latin
square (S;) that is utilized as the seed for the
five new Graeco-Latin squares (S;-Ss) shown
in fig. 2b. Let the ith row of S, be called
ordered array O,. For example, the following
ordered array appears in the third row of S;:
O,=B,D; B, D, B, D, B, D, B, D,. In
each of the five new Graeco-Latin squares,
levels A;—A are assigned to rows 1-5, and
levels C,-Cs are assigned to columns 1-5.
Ordered arrays O;-O; are assigned to the
rows of S,-S; in a manner to be described
below. For the moment, note that once an
ordered array is assigned to row A; of a
Graeco-Latin square, its first term is written
in the cell identified by row A -column C,, its
second element in the cell identified by row
A -column C,, etcetera. Thus, a Graeco-Latin
square (S,-S;) is completely specified once
each of its row is assigned an ordered array.

To assign ordered arrays to rows, write a
5 X 5 Latin square whose columns correspond
to Graeco-Latin squares (S,-Ss), rows to rows
of Graeco Latin squares (A,—As) and cell
entries to ordered arrays (O;-0s):

Graeco-Latin Square
Row of Graeco-
Latin Square S, S, S S, S

A, 0, 0, 0, 0, O,
A, 0, 0, 0, O, O,
A, o, 0, O, O, O,
A, 0o, O, 0, 0, O,
A o, 0, 0, 0, O,

Each column of the Latin square identifies
a new Graeco-Latin square (S,-S;). For ex-
ample, S, is obtained by assigning ordered
arrays O0,-O5 to rows A,;-A,, respectively,
and by assigning ordered array O, to row A.
Observe that each ordered array appears ex-
actly once in each new Graeco-Latin square,
so that Graeco-Latin squares S,-S; differ only
with respect to which ordered arrays are as-
signed to which rows. The Latin square only
ensures that, across S,--Ss, each ordered array
is assigned exactly once to each row. Because
the Latin square rotates, across S;,-Ss, the
rows associated with an ordered array, we call
this technique a ‘rotation’ procedure.

The procedure immediately generalizes to
Graeco-Latin squares in which each factor
has ‘a’ levels. The ordered arrays of an initial
(‘seed’) “a X a” Graeco-Latin square are used
to generate ‘a’ new Graeco-Latin squares.
The rows in which the ordered arrays appear
in each Graeco-Latin square are, in turn, de-
termined by an ‘a X a’ Latin square that em-
ploy Graeco-Latin squares, ordered arrays and
rows of Graeco-Latin squares as factors.

While the ordered arrays in Graeco-Latin
squares consist of combinations of levels of
two factors (B and D), they consist of com-
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Table 6. *

(a) ‘Rotated’ Graeco-Latin squares for car mileage study *

Drivers Cars Drivers Cars Drivers Cars

o G, G G G, G, ¢ G, G
D, Gk G3P, G, P, D, G, Py Gp, G;P, D, G;P, G, Py Gp
D, G:Ph, GPy G;P, D, G;Py G, P, GP, D, G,P G:Py G.P,
Dy G,P, G,P G,P, D, G,P, G;P, G,P, D, G,P, G,Pp, G;P;

(b) ANOVA for ‘rotated” Graeco-Latin square for car mileage study

Source df SS MS F

Cars 2 72 36 10.75 **
Gasoline grades 2 18 9 2.687
Drivers 2 54 27 8.06 **
Order-of-driving 2 54 27 8.06 **
Cars X Gasoline-grades 4 36 18 5.373 **
Error 14 47 3.35

Total 26 281

* Cell entries denote performance in miles per gallon.
** p<0.05.

binations of levels of three factors (B, D and
E) in hyper-Graeco-Latin squares. In all other
respects, the procedure for generating the set
of hyper-Graeco-Latin squares is the same as
for Graeco-Latin squares.

For both Graeco-Latin and hyper-Graeco-
Latin squares, the proposed procedure results
is a set of squares across which the main
effect of factor A is not confounded with any
second order interaction effect. Additionally,
the interaction effect between the A and C
factors is also estimable, so that the design
can also be used when this interaction effect
is expected to be significant. Derivation of
these properties of rotated Graeco-Latin and
hyper-Graeco-Latin squares are presented in
Appendix B.

As an example of the rotation procedure,
suppose that three cars, three drivers and
three grades of gasoline are used in a study
comparing the fuel efficiency of three car
models. A Graeco-Latin square is used for
the experiment (table 6a), the rows (D,) corre-
sponding to drivers and the columns (C,) to
cars. G,;, G, and G, are the three grades of

gasoline. Finally, P, (first), P, (second) and P,
(third) are the three positions in the sequence
in which the cars are tested by each driver.
Since each of P,, P, and P, appear exactly
once in every column, the cars associated with
P,, P, and P, are tested first, second and
third, respectively, by each driver. Thus, sys-
tematic differences among drivers, gasoline
grades and order of testing are eliminated in
the Graeco-Latin square if all interaction ef-
fects are assumed insignificant. However, this
assumption is inappropriate because the in-
teraction effect between cars and grades of
gasoline can be significant if the fuel ef-
ficiency of cars varies differently by the types
of gasoline.

The proposed rotation of Graeco-Latin
squares 1s appropriate in this case because it
unconfounds the main effect of cars from all
second-order intéraction effects, and also per-
mits the interaction effect between cars and
gasoline grades to be estimated. Note that the-
rotation does not involve any major ad-
ditional expenditure, because the same drivers
and cars are used across the rotations. Note
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also that, in a single 3 X3 Graeco-Latin
square, there are no degrees of freedom avail-
able for error, so that replications of the
Graeco-Latin square are anyway required to
estimate error variance. The rotation proce-
dure is gainfully employed in this case be-
cause the only change across the Graeco-Latin
squares it generates is in the order in which
the three cars are tested by each driver, and
the gasoline grade used in a car when it is
tested by the same driver across replicates.
The three Graeco-Latin squares produced
by the rotation procedure are shown in table
6a. Suppose that the fuel efficiency study
yields the results shown, the response variable
being noted in miles per gallon. An ANOVA
of these data appears in table 6b. The interac-
tion effect between cars and gasoline grades is
significant, as is the main effect of cars. That
is, some cars are more efficient than others,
and the relative efficiency of cars also varies
by the gasoline grade employed. Had a mere
replication of the Graeco-Latin squares been
performed instead of their rotation, the inter-
action effect between cars and gasoline grades
would not have been detected. Further, this
significant interaction would have con-
founded the main effects, which as a result
would be either exaggerated or subdued.

3. Conclusion

To use Latin square-type designs, a re-
searchers must assume that all interaction
effects are insignificant. This paper discusses
how Tukey’s non-additivity test, and partial
or complete replication can be used to assess
the validity of the ‘additivity’ assumption. A
‘rotation’ procedure is then presented so that,
across a set of Graeco-Latin (hyper-Graeco-
Latin) squares, the main effect of a single,
major factor is not confounded with any sec-
ond order interaction effect. This procedure
also permits estimation of any one second-or-
der interaction effect involving the major ex-
perimental factor of interest.
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The choice between Tukey’s non-additivity
test and the two replication based tests de-
pends on the size of the design and the re-
sources available to a researcher. If losing a
single degree of freedom for non-additivity
significantly reduces the precision of statisti-
cal tests, partial or complete replication pro-
cedures are to be preferred. Between the two
replication procedures, complete replication
is preferred because the effects are orthogo-
nally estimated and there are more degrees of
freedom for error. However, complete repli-
cation also requires more experimental units.
Thus, a researcher must make a trade-off
between the resources required for collecting
more data and the precision of the results.
The rotation procedure for Graeco-Latin and
hyper-Graeco-Latin squares requires the
greatest number of observations, and should
be employed when second order interactions
are likely to be significant, so that at least the
main effect of the principal experimental fac-
tor can be guaranteed to be unconfounded.
Moreover, this design permits estimation of
any one, two-way interaction involving the
main experimental factor, so that hypothesis
regarding such an interaction, if of interest,
can be tested. Of course, there are a variety of
other fractional factorials that can be more
suitable than a Latin square-type design in
many experimental settings. In these cases, a
researcher should investigate alternative de-
signs rather than restrict attention to the
seemingly simple family of Latin squares.

Appendix A

Tukey’s non-additivity test for Latin square-type
designs

The non-additivity component for Tukey’s
test for an ‘a X a’ Latin Square is computed
as follows. Let

Y = mean of all 4 responses,
Y, = mean for A; (row i),
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Y, = mean for B,

Y, = mean for C, (column k),

where 4, B and C are the experimental fac-
tors (fig. 1a). The ANOVA model

Vig=p+ a,'+Bj+Yk 1€ (A~1)

leads to the following parameter estimates:

&=Y, -7,

B=Y -7, (A2)
=Y~ ?,

and the fitted (predicted) values

Yo=Y+ +8+1. (A.3)
Let

Zi= Y2 (A 4)

Use Z,, as a dependent variable in a main
effects model in which in the A, B and C
factors are again the independent variables;
Le.,

Zy=0+8+0,+p,+2,, (A.5)

where @ is the mean effect of treatments, §,,
8, p, are the effects associated with 4,, B,
C,, respectively, and £, is a normally dis-
tributed error term. The ANOVA model (A.5)
leads to the following parameter estimates:

§=2.-Z,

0=2,-2, (A.6)
f’k = Zk - Z,

and the fitted values

Ziw=Z+8+86,+p,. (A7)

In expressions (A.6) and (A.7), Z is the
grand mean of the Z-variable, and Z,, Z Z,
are the means of the Z-values associated with
A,;, B;, C,, respectively. The non-additivity
sums of squares are shown by Tukey (1955)
to be

2i,j[(Zijk - ZAijk)(Yijk— };ijk)]z )

SSnonadd = N 2
Ei,j(zijk - Zijk)
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The error sums of squares are obtained as the
difference between the residual sums of
squares (i.e., the sums of squares unexplained
by the main effects of 4, B and C) and the
non-additivity sums of squares. The non-ad-
ditivity mean squares (MS,,.q4q4) are based on
one degree of freedom (i.e., MS .44 =
SS, onadga)s and the error mean squares (MSE)
on (a—1)(a —2)— 1 degrees of freedom. The
statistic (MS,,,.qa/MSE) has an F-distribu-
tion, a significant value of the statistic indi-
cating that significant interactions do indeed
confound the main effects in the Latin square.

Expression (A.8) can be generalized to test
for interaction effects in Graeco-Latin and
hyper-Graeco-Latin squares. A Graeco-Latin
square employs a fourth factor (D) in ad-
dition to the three factors (A4, B, C) in a
Latin square. Therefore the main-effects
models (A.1) and (A.5) include additional
parameters for the effects of factor D. The
estimates of these parameters contribute to Y
and 2, which in turn enter into the compu-
tation of the non-additivity sums of squares
(A.8). Similarly, a hyper-Graeco-Latin square
employs a fifth factor ( £) in addition to the
four factors (A4, B, C, D) in a Graeco-Latin
square. Therefore the main-effects models
(A.1) and (A.5) include additional parameters
for the effects of factor E, the estimates of
these effects contribute to ¥ and 2, which in
turn enter into the computation of the non-
additivity sums of squares.

Appendix B

Confounding patterns in rotated Graeco-Latin
and hyper-Graeco-Latin squares

We begin by deriving the results for an
‘a X a’ Graeco-Latin square in which A4, B,
C and D are the experimental factors. First
write the full, fixed effects model containing
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terms for all main effects and interaction
effects for the four factors:

Y=+ a;+ B+ v+ 8+ (aB) i+ (ay)
+(ad)y+ (BY)ju+ (B8) i+ (¥8) 4
+(aBy) i + (aB8) i+ (ayd) i
+(BYS) jis+ (aBY8) ijui+ €,y (B.1)

In expression (B.1), y, ;, is the response vari-
able; p is the mean response; «;, B, Yy, 0/
are the main effects associated with 4;, B,
C,, D,, respectively; the bracketed terms with
two, three and four elements are the second,
third, and fourth order interactions, respec-
tively, among some or all of factors A4, B, C,
and D; and ¢, is a normally distributed,
random error term.

The following standard assumptions are
associated with the linear-model (B.1):

Sa,=20=2y,=28=0,
Z(aB)ij=2(aB)ij=2(ay)u
= .. 2 (Y8) = Z(v8) 1, =0,
Ei(aBY)ijk =2,-(aﬁy),-,-k = Zk(aBY)ijk
= ... Z,(BY8) ju
=2, (BY8) jur=Z,(BY8) s =0,
Z(aBy8)ijm=2;(aBy8)ijw =2 (aBY8)iju
=2,(aBy8) ik =0. (B.2)

Define the following totals across Graeco-
Latin squares:

G = grand total of observations across
Graeco-Latin squares,
T, = total of observations in which level 4,

H

of factor A appears,

T, = total of observations in which level B,
of factor B appears,

T, = total of observations in which level C,
of factor C appears,

T, = total of observations in which level D,
of factor D appears.
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It follows from (B.1) and (B.2) that
T,=a*[p+ ] + (ByS)-terms

+ (aBy8)-terms + error,
T = az[,u + ,8]-] + (8 )-terms

+ ( By8 )-terms + error,
T,=a*[p+ 7] + (v8)-terms

+ ( By )-terms + error,
T,=a’[p+8,] + (By)-terms

+ ( By8 )-terms + error. (B.3)

Observe that T; involves no second-order-
interaction terms. Consequently, assuming all
third and fourth order interaction effects are

insignificant, the expected value of 7, is
E[T] =a’[p+a],

and therefore the estimate of «; (the main
effect for level 4,) is

&;=[T/a*] - &, (B.4)
where fi = G/a’ is the estimate of the mean
effect. Note that because 7, does not contain
any second-order interaction terms, the main
effect of factor 4 is not confounded with any
second order interaction effect. Further, the
expressions for 7, T, and 7, do not involve
the (at)-terms, which are associated with the
A X C interaction effect. Because all other
interaction effects are assumed to be insignifi-
cant, the expected values of these terms are

E(T)=a*[p+ 8],

E(T,) = a’[n+ . (B.5)
E(T)) =a*[n+8],

and the main effects estimates

B=[1/a%] -1,

= [Twa?] - p, (B.6)
b,=1T/a*] - .

for B;, C, and D, respectively.
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As previously noted, the A X C interaction
effect (i.e., the ay-terms) are also estimable in
the above design. To see this, consider the
sum across Graeco-Latin squares of the ‘a’
terms in the ikth cell (i.e., the cell identified
by row i, column k). This sum (7;;,) is

Ty=alp+a+y,+ (ay) ] + (B8) terms

+(afB8) terms + (afBy8) terms + error.
(B.7)

Since only the main effects and the 4 X C
interaction effects are assumed significant, the
expected value of T}, is

E[Ti] =alp+a,+ v+ (av)u]. (B.8)
It follows from (B.6), (B.7) and (B.8) that
(a¥)=1/a|T,;~ a& —af, +ap], (B.9)

which is the expression for the ikth term of
the 4 X C interaction.

For hyper-Graeco-Latin squares, an analy-
sis similar to that above shows that the main
effects are not confounded with the 4 X C
interaction terms in the set of hyper-Graeco-
Latin squares produced by the rotation proce-
dure. Further, the 4 X C interaction effect is
also estimable across this set of hyper-
Graeco-Latin squares.

References

Box, George E.P., Wiliam G. Hunter and J. Stuart Hunter,
1978. Statistics for experimenters. New York: Wiley.

Brunk, Max E. and Walter T. Federer, 1953. Experimental
designs and probability sampling in marketing research.

13

American Statistical Association Journal 48 (September),
440-452.

Cox, Keith, 1964. The responsiveness of food sales to shelf
space changes in supermarkets. Journal of Marketing Re-
search vol. 1 (May), 63-67.

Currim, Imran S. and Rakesh K. Sarin, 1983. A procedure for
measuring and estimating consumer preferences under un-
certainty. Journal of Marketing Research 20 (August),
249-256.

Edell, Julie A. and Richard Staelin, 1983. The information
processing of pictures in print advertisements. Journal of
Consumer Research 10 (June), 45-61.

Hays, William L., 1963. Statistics for psychologists. New York:
Holt, Rinehart and Winston.

Holland, Charles W. and David W. Cravens, 1973. Fractional
factorial experimental designs in marketing research. Jour-
nal of Marketing Research 10 (August), 270-276.

Hoofnagle. William S., 1963. Experimema]/designs in measur-
ing the effectiveness of promotion. Journal of Marketing
Research 2 (May), 154-162.

Mitchell, Andrew A. and Jerry C. Olson, 1981. Are product
attribute beliefs the only mediator of advertising effects on
brand attitude?. Journal of Marketing Research 18 (August),
318-332.

Moore, Danny L., Douglas Hausknecht and Kanchana
Thamodaran, 1986. Time compression, response opportun-
ity, and persuasion. Journal of Consumer Research 13
(June), 85-99.

Peterson, Robert A., 1982. Marketing research. Plano, TX:
Business Publications, Inc.

Sawyer, Alan G., 1973. The effects of repetition of refutational
and supportive appeals. Journal of Marketing Research 10
(February), 23-33.

Sheluga David A., James Jaccard and Jacob Jacoby, 1979.
Preference, search, and choice: An integrative approach.
Journal of Consumer Research 6 (September), 166-176.

Smith, Hugh M., Wendell E. Clement and William S. Hoofna-
gle, 1956. Merchandising natural cheddar cheese in retail
food stores. MRR-115 (Washington, DC: U.S. Department
of Agriculture) April.

Tukey, John S., 1949. One degree of freedom for non-additiv-
ity. Biometrics 5 (September), 232-242.

Tukey, John S., 1955. Queries. Biometrics 11 (March), 111-113.

Youden, William J. and J. Stuart Hunter, 1955. Partially
replicated Latin squares. Biometrics vol. 11 (December),
399-405.



