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PROBABILISTIC SUBSET CONJUNCTION
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The authors introduce subset conjunction as a classification rule by which an acceptable alternative
must satisfy some minimum number of criteria. The rule subsumes conjunctive and disjunctive decision
strategies as special cases.

Subset conjunction can be represented in a binary-response model, for example, in a logistic
regression, using only main effects or only interaction effects. This results in a confounding of the
main and interaction effects when there is little or no response error. With greater response error, a logistic
regression, even if it gives a good fit to data, can produce parameter estimates that do not reflect the
underlying decision process. The authors propose a model in which the binary classification of alternatives
into acceptable/unacceptable categories is based on a probabilistic implementation of a subset-conjunctive
process. The satisfaction of decision criteria biases the odds toward one outcome or the other. The authors
then describe a two-stage choice model in which a (possibly large) set of alternatives is first reduced
using a subset-conjunctive rule, after which an alternative is selected from this reduced set of items. They
describe methods for estimating the unobserved consideration probabilities from classification and choice
data, and illustrate the use of the models for cancer diagnosis and consumer choice. They report the results
of simulations investigating estimation accuracy, incidence of local optima, and model fit.

Key words: noncompensatory decision strategies, conjunctive/disjunctive strategies, subset-conjunctive
strategies, consideration sets, binary data, choice models, maximum likelihood estimation.

1. Introduction

First brought to notice by H.M. Johnson in 1935 (Coombs, 1951), conjunctive and disjunctive
decision rules have been widely studied in psychology, and related disciplines like marketing (e.g.,
Teigen, Martinussen & Lund, 1996; Westenberg & Koele, 1994; Grether & Wilde, 1984; Lussier
& Olshavsky, 1979; Payne, 1976; Payne, Bettman & Johnson, 1988; Wright & Barbour, 1977;
Wright, 1975). The two rules are used for screening large sets of alternatives. Examples are the
screening of applicants (e.g., for jobs by employers and mortgage applications by banks; see
Dawes 1979 and Grether & Wilde, 1984) and the formation of consideration- or choice-sets by
consumers (e.g., Huber & Klein, 1991; Roberts & Lattin, 1991; Andrews & Srinivasan, 1995).
Marketing managers often use conjunctive rules when defining target markets over demographic
variables; and doctors use such rules when diagnosing illnesses based on a conjunction of
symptoms.

Maris (1999) describes the use of conjunctive and disjunctive rules for representing cog-
nitive processes in latent response models. Einhorn (1970) considers a mathematical model
that approximates conjunctive and disjunctive rules for continuous predictor variables. Mela &
Lehmann (1995) propose a method for inferring conjunctive and disjunctive rules in a regres-
sion framework. Boros, Hammer & Hooker (1994, 1995), Van Mechelen (1988), and Leenen &
Van Mechelen (1998) examine Boolean regression for inferring the rules from binary response
data. Swait (2001) considers a penalized utility function in a compensatory utility-maximization
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framework that allows representation of conjunctive and disjunctive choice strategies and their
combinations.

We introduce subset conjunction, a screening rule by which an acceptable alternative sat-
isfies a minimum number of criteria, not necessarily one criterion (disjunctive) or all criteria
(conjunctive). A person who favors a conjunctive strategy, but finds few acceptable alternatives,
has two options: either accept some previously unacceptable attribute levels; or reduce the num-
ber of criteria, say t, that an acceptable alternative must satisfy. Similarly, if there are too many
acceptable alternatives, a person who otherwise uses a disjunctive strategy can increase the value
of t, or can switch acceptable attribute levels to unacceptable. In this sense, a subset conjunctive
rule offers flexibility, allowing one to vary the size of an acceptable subset by changing the
number of criteria satisfied by an acceptable alternative.

The proposed decision strategy subsumes conjunctive and disjunctive rules as special cases.
In principle, it is a special case of Barthelemy & Mullet’s (1987) algebraic model of categorical
judgment (see also Montgomery, 1983; Barthelemy & Mullet, 1996) and of Crama, Hammer &
Ibaraki’s (1988) partially defined Boolean functions. We restrict attention to discrete attributes
and show that subset-conjunctive rules can be represented by binary response models that contain
only main effects, or only interaction effects. Consequently, the main effects are confounded in
these models with the interaction effects if there is little or no error in the response variable.
With more error in responses, a logistic regression produces good overall fits to the data but finds
parameter estimates that do not reflect the underlying decision process. In this paper, we propose
a probabilistic model that generalizes the deterministic form of a subset-conjunctive rule. Each
attribute level is acceptable not with certainty, but with a probability, which can be unobserved.
We then describe an extension of the model to choice data with consideration modeled as an
unobserved step preceding the choice of an alternative. We describe methods for estimating the
models from binary and multinomial choice data, and illustrate them with examples from cancer
diagnosis and consumer psychology. Finally, we report simulation results relating to estimation
accuracy, model fit, and incidence of local optima.

2. Binary Response

Let m denote the number of attributes or decision criteria. Let attribute k have nk discrete
(nominal or ordinal) levels, 1 ≤ k ≤ m. An alternative has one level of each attribute. Thus, there
are at most

∏m
k=1 nk possible alternatives. A person’s evaluation is a classification of an alternative

into one of R ≥ 2 categories. For simplicity, we consider R = 2, in which case a person classifies
an alternative i as acceptable if it is satisfactory on at least t attributes, 1 ≤ t ≤ m; otherwise,
the person classifies the alternative as unacceptable. The condition t = 1 gives a disjunctive rule;
and the condition t = m gives a conjunctive rule.

Suppose there is no response error. We can represent a subset-conjunctive strategy by a
linear model in the following manner. Let xk ∈ {0, 1} represent the kth of m binary attributes;
let xk = 1(0) denote an acceptable (unacceptable) attribute level, 1 ≤ k ≤ m. Consider m = 2.

Suppose a person evaluates an alternative to be acceptable if it is acceptable on both attributes;
otherwise s/he finds the alternative to be unacceptable. That is,

y =
{

1, if x1 = x2 = 1,

0, otherwise,
(1)

where y = f (x1, x2) = 1(0) if an alternative is acceptable (unacceptable). As x1 and x2 are 0–1
variables, we can replace x1 = x2 = 1 in (1) by the condition x1x2 ≥ 1; i.e.,

y =
{

1, if −1 + x1x2 ≥ 0,

0, otherwise.
(2)
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Equation (2) has the familiar form of a binary logistic/probit model with an interaction term,
albeit without error.1

Now suppose a person finds an alternative acceptable if it is acceptable on at least t = 2 of
the m = 3 possible binary attributes; i.e.,

y =
{

1, if (x1 = x2 = 1) or (x1 = x3 = 1) or (x2 = x3 = 1),
0, otherwise.

(3)

We replace xk = x� = 1 by xkx� ≥ 1 in (3), 1 ≤ k < � ≤ 3. Then

y =
{

1, if (x1x2 ≥ 1) ∨ (x1x3 ≥ 1) ∨ (x2x3 ≥ 1),
0, otherwise.

(4)

The disjunctive “or” (∨) in the above expression can be represented by the condition that the sum
of the two-way products exceeds zero; i.e.,

y =
{

1, if −1 + x1x2 + x1x3 + x2x3 ≥ 0,

0, otherwise.
(5)

Equation (5) has the form of a binary logistic/probit model with all t = 2 way interaction effects
among the m = 3 binary variables.

In general, an error-free binary-response model with all t-factor interaction effects and an
intercept (= −1) describes a subset-conjunctive strategy requiring an acceptable alternative to
satisfy at least t criteria, 2 ≤ t ≤ m.2 That is, we can represent

y =
{

1, if xk = 1 for at least t values of 1 ≤ k ≤ m,

0, otherwise,
(6)

by the interaction-effects model

y =
{

1, if −1 + ∑
α∈At

x
α1
1 x

α2
2 x

α3
3 . . . xαm

m ≥ 0,

0, otherwise,
(7)

where

At =
{

α

∣∣∣ m∑
k=1

αk = t

}
, 1 ≤ t ≤ m, (8)

and

α = {α1, α2, α3, . . . , αm}, αk ∈ {0, 1}, x0
k ≡ 1, xk ∈ {0, 1}, 1 ≤ k ≤ m. (9)

There is another way of representing a subset-conjunctive strategy in a linear model. As the
xk are 0–1 variables, the condition x1 + x2 + x3 + · · · + xm ≥ t is satisfied only if at least t of
the m values of xk are ones. Thus,

y =
{

1, if −t + ∑m
k=1 xk ≥ 0,

0, otherwise,
(10)

implies that an alternative is acceptable (y = 1) if it is acceptable on at least t of m attributes (i.e.,
if at least t of the m xk’s are ones). For example,

y =
{

1, if −2 + x1 + x2 ≥ 0,

0, otherwise,
(11)

1The corresponding logistic regression is

y =
{ 1, if β0 + β1x1x2 + ε ≥ 0,

0, otherwise,

where in this case β0 = −1, β1 = 1, and ε is a logistic error term.
2For t = 1, the corresponding representation has only main effects and an intercept term with value −1.
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represents a conjunction over two binary attributes, and

y =
{

1, if −2 + x1 + x2 + x3 ≥ 0,

0, otherwise,
(12)

represents a subset conjunction in which an acceptable alternative is satisfactory on at least two
of the three attributes.

In summary, an error-free subset-conjunctive process can be represented in at least two ways
by the model

y =
{

1, if β0 + ∑
k βkxk + ∑

l<k βlkxlxk + ∑
j<k<� βjk�xjxkx� + · · · ≥ 0,

0, otherwise,
(13)

where the β’s are the model coefficients. One representation has only interaction effects of order
t . The other representation has only main-effects terms. A model with both sets of terms cannot
be estimated because the main effects are confounded with the interaction effects.3

One can use this result to infer a subset-conjunctive process from (say) a logistic regression
when there is low response error in the data. In a main-effects model:

1. the coefficient estimates should all have nearly the same value, βk ≈ β;
2. the intercept should be β0 ≈ −tβ, 1 ≤ t ≤ m; and
3. the logit for all items should fall in the extreme tails of the distribution so that all probabilities

are close to zero or one; i.e., β0 + (t − 1)β � 0 and β0 + tβ 	 0.

But this method of inferring a subset-conjunctive rule fails if the response error is large.
For example, we find in two simulated examples with larger response error (m = 5, t = 2) that
the main and interaction effects are not confounded, but it is also not possible to interpret the
underlying process as a subset conjunction: a stepwise logistic regression finds all significant main
effects, a few significant second-order interaction effects, and a significant third-order interaction
effect with a negative coefficient.4

How then should one infer a subset-conjunctive rule from data? If there is no response error,
a deterministic conjunctive (disjunctive) rule can be identified by setting an attribute level to be
acceptable (unacceptable) only if it appears in at least one acceptable (unacceptable) alternative.
For data with error, Boros et al. (1994, 1995), Van Mechelen (1988), and Leenen and Van
Mechelen (1998) examine deterministic algorithms for this Boolean regression problem. We
examine a probabilistic formulation that allows for binary and multinomial choice responses and
permits any subset-conjunctive process.

2.1. Probabilistic Subset Conjunction

Let πjk denote the probability with which level j of attribute k is acceptable, 1 ≤ j ≤ nk, 1 ≤
k ≤ m. Deterministic conjunctive/disjunctive models assign 0-1 values to the probabilities. We
assume that the acceptability of one attribute level is independent of the acceptability of another
attribute level.

3Observe that this is a different source of confounding than the more familiar variety arising from the aliasing of
main and interaction effects in an experimental design (which in a binary response model affects the estimation of the
unobserved response function). One can have data from a full factorial design, but the parameter estimates will continue
to be confounded if the data arise from a subset-conjunctive process.

4Logistic regressions with only main effects, or with only two-way interaction effects, find all significant parameter
estimates and comparable likelihood values. Neither pattern of parameter estimates suggests that the underlying process
is a subset conjunction. That regression can produce good model fits, without reflecting an underlying decision process,
is well known; see, e.g., Dawes and Corrigan (1974).
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Let xijk = 1(0) if level j of attribute k appears (does not appear) in alternative i. Then the
probability that alternative i is acceptable on attribute k is

pik =
nk∏

j=1

π
xijk

jk . (14)

Let qik = 1 − pik. Let θs
i (k,m) denote the probability that alternative i is acceptable on at least

s of the (m − k + 1) attributes k, k + 1, k + 2, . . . , m. For example,

θ1
i (k,m) = 1 −

m∏
u=k

nu∏
j=1

(1 − πju)xiju (15)

denotes the probability that alternative i is acceptable on at least one of the attributes k through
m. Let

θs
i (k,m) = 0 for all s > m − k + 1. (16)

Then the probability that alternative i is acceptable on at least t of m attributes is given by the
recursion

πt
i = θ t

i (1,m) = pi1θ
t−1
i (2,m) + qi1θ

t
i (2,m). (17)

The disjunctive (t = 1) and conjunctive (t = m) rules have the particularly simple forms

π1
i = 1 −

m∏
k=1

qik = 1 −
m∏

k=1

nk∏
j=1

(1 − πjk)xijk , πm
i =

m∏
k=1

pik =
m∏

k=1

nk∏
j=1

π
xijk

jk . (18)

The recursion can be used to write πt
i in terms of the πjk for all 2 ≤ t ≤ m − 1. For example,

π2
i = pi1θ

1
i (2,m) + qi1θ

2
i (2,m) (19)

is the probability that alternative i is acceptable on at least t = 2 attributes. The right-hand side
can be expanded by successively substituting

θ1
i (k,m) = pik + qikθ

1
i (k + 1,m), (20)

θ2
i (k,m) = pikθ

1
i (k + 1,m) + qikθ

2
i (k + 1,m), 2 ≤ k ≤ m. (21)

As an illustration, consider a problem with m = 7 attributes, each with nk = 3 levels. Let

θ1
i (k, 7) = 1 −

7∏
�=k

3∏
j=1

(1 − πj�)xij� . (22)

Then the probability that alternative i is acceptable on at least t = 2 attributes is given
by

π2
i = pi1θ

1
i (2, 7) + qi1

(
pi2θ

1
i (3, 7) + qi2

(
pi3θ

1
i (4, 7) + qi3

(
pi4θ

1
i (5, 7)

+qi4
(
pi5θ

1
i (6, 7) + qi5pi6pi7)

)))
. (23)

Let Nh denote the number of alternatives evaluated by subject h, where 1 ≤ h ≤ N. Let
yih be a dummy variable that indicates whether subject h finds alternative i acceptable (1) or
unacceptable (0), 1 ≤ i ≤ Nh.5 Estimates of πjk can be obtained by maximizing the likelihood

5The set of alternatives evaluated by a subject can be the same or different across subjects. Technically, we
should have used subscript ih to denote the ith alternative evaluated by subject h. We avoid such notation, however, for
simplicity.
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function

Lt =
N∏

h=1

Nh∏
i=1

(
πt

i

)yih × (
1 − πt

i

)1−yih
, (24)

where 0 ≤ πjk ≤ 1, for all 1 ≤ j ≤ nk, 1 ≤ k ≤ m. Additionally, one can restrict the estimates

to satisfy a priori preference orderings on the attribute levels. The likelihood function can be max-
imized using standard nonlinear optimization packages (e.g., PROC NLP in SAS) for problems
with under 30 predictor dummies. Larger problems require specialized algorithms, two of which
are described in the Appendix.

As the πt
i are probabilities, the likelihood function is naturally scaled between zero and one.

The upper bound on the likelihood (log-likelihood) value is one (zero), which happens when
all acceptable alternatives have πt

i = 1 and all unacceptable alternatives have πt
i = 0. The least

informative model corresponds to the case where πt
i = πt .

Let NA = ∑N
h=1

∑Nh

i=1 yih denote the number of acceptable alternatives. Let NU = ∑N
h=1∑Nh

i=1(1 − yih) denote the number of unacceptable alternatives. Then a naive estimate for the
acceptance probability of each alternative is obtained by setting π̂ t = NA/(NA + NU ). The ratio
of the estimated likelihood function Lt to its value L(0) at π̂ t gives the relative odds for the two
models. A measure of the improvement in the log-likelihood value relative to that of the naive
model is ρ2 = 1 − [log Lt/log L(0)] (see Ben-Akiva & Lerman, 1993, p. 167).

An attribute k is irrelevant if all levels j have a common consideration probability πjk. Such
an attribute can be eliminated from the model if the consideration probabilities are all zeros or all
ones, the value of t being reduced by one in the latter case. A good model should have at least
some πjk biased toward the extreme values, and there should be within-attribute differences in
the πjk values.

2.2. Example

Fine needle aspiration (FNA) is a method for extracting a sample of cells from a patient. It
is used in breast cancer diagnosis, after a patient has developed a lump in a breast. The nuclei of
the extracted cells are examined for abnormal characteristics and used to assess if a patient has
breast cancer.

We examine data from 569 patients, 212 with malignant tumors and 357 with benign tu-
mors, to see if the presence of breast cancer can be predicted by a subset-conjunctive rule defined
over seven cell characteristics listed in the leftmost column of Table 1. The seven character-
istics are taken from a larger set of 30 variables that Wolberg, Street, Heisey & Mangasarian
(1995) use in a linear-programming model for classifying tumors into malignant and benign
categories.6

Table 1 shows the parameter estimates for disjunctive, conjunctive, and five subset-con-
junctive models, with subset sizes varying from two to six.7 The lowest log-likelihood value
corresponds to a subset-conjunctive model requiring at least t = 2 of the seven criteria to be
“satisfied” for a malignant classification. With a ρ2 = 0.775, this model is a significant improve-
ment over the naive model. The estimated probabilities (Table 1, t = 2) suggest the following
conclusions:

6As the present model only allows discrete characteristics, we construct three categories for each of the seven
originally continuous variables, using the 25th percentile and the 75th percentile of the observed values as cutoff points.

7Parameter estimates are obtained by maximizing the likelihood function in (24) for t = 1, . . . , 7, where the
probability that alternative i is acceptable on at least t of the m = 7, three-level attributes, πt

i , is derived recursively using
equation (17). Equation (23) provides an example for the special case t = 2.
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TABLE 1.
Breast cancer diagnosis using the probabilistic subset-conjunction rule.

Subset size (t)

Conjunctive Disjunctive
Variable 7 6 5 4 3 2 1

Std. error of radius
x11 Low 0.43 0.77 0.77 0.00 0.00 0.00 1.00
x21 Medium 1.00 1.00 1.00 0.13 0.09 0.00 1.00
x31 High 1.00 1.00 1.00 1.00 1.00 0.27 0.79

Std. error of compactness
x12 Low 1.00 1.00 0.00 0.00 0.00 0.00 1.00
x22 Medium 1.00 1.00 0.00 0.00 0.00 0.00 0.95
x32 High 1.00 1.00 0.00 0.00 0.00 0.00 1.00

Worst radius
x13 Low 0.04 0.00 0.00 0.00 0.00 0.00 1.00
x23 Medium 0.67 0.05 0.05 0.34 0.31 0.06 1.00
x33 High 1.00 1.00 1.00 1.00 1.00 1.00 0.03

Worst texture
x14 Low 0.48 0.19 0.19 0.00 0.00 0.00 1.00
x24 Medium 1.00 0.84 0.84 0.23 0.31 0.00 1.00
x34 High 1.00 1.00 1.00 1.00 1.00 0.34 0.75

Worst smoothness
x15 Low 1.00 0.92 0.92 0.00 0.00 0.00 1.00
x25 Medium 1.00 1.00 1.00 0.00 0.00 0.00 1.00
x35 High 1.00 1.00 1.00 1.00 0.35 0.05 0.94

Worst concavity
x16 Low 0.27 0.00 0.00 0.00 0.00 0.08 1.00
x26 Medium 1.00 1.00 1.00 1.00 1.00 1.00 1.00
x36 High 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Worst # concave points
x17 Low 0.06 0.00 0.00 0.00 0.00 0.00 1.00
x27 Medium 0.66 0.18 0.18 0.00 0.00 0.00 1.00
x37 High 1.00 1.00 1.00 1.00 1.00 0.93 0.05

Minus log-likelihood 134.13 97.22 97.22 93.13 85.19 84.38 96.01

Subset size t = 2 is best solution.

1. Malignancy is mainly determined by three characteristics: high “worst radius,” medium-to-
high “worst concavity,” and high “worst number of concave points.”

2. Tumors with two of the above three characteristics are almost certainly malignant.
3. Tumors with one of the above three characteristics have a moderate risk of malignancy if the

“standard error of radius” and/or the “worst texture” have a high value.
4. Tumors are benign if they have:

(a). low values of “worst radius” and “worst concavity”; and
(b). low-to-medium values of “standard error of radius,” “worst radius,” “worst texture,”

“worst smoothness,” and “worst number of concave points.”
5. All other tumors carry a low risk for breast cancer.

A stepwise logistic regression, with selection entry set at the p = .05 level, also fits the
data well. The best-fitting model has only main-effects terms; the estimated logistic regression
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equation is (see Table 1, column 1, for variable definitions):

u = 10.05 − 8.64x13 − 5.43x23 − 3.53x14 − 1.97x24 − 7.82x17 − 4.9x27, LL = −83.84,

where u is the logit of the probability of accepting the alternative and LL is the log-likelihood
value. The logistic-regression and subset-conjunctive models are similar in terms of their overall
fits, but can make different predictions because the former has a compensatory structure and
the latter has a noncompensatory structure. For example, setting x13 = x17 = 1 and x23 = x14 =
x24 = x27 = 0 in the logistic regression gives

u = 10.05 − 8.64 − 7.82 = −6.41, p(malignancy) = e−6.41

1 + e−6.41
= 0.0016.

That is, cell samples with “low” worst radius (x13 = 1), “low” worst number of concave points
(x17 = 1), and “high” values on the other characteristics, are associated with a very small proba-
bility of malignancy. The corresponding subset-conjunctive model with t = 2 gives a probability
of malignancy that exceeds 0.27 + 0.34 = 0.61 (see Table 1). Unfortunately, there are no cases
in the sample to test for this difference (and other similar differences) in the predictions of the two
models, for the reason that cancerous cells are simultaneously altered on several cell features. We
therefore cannot say that the underlying process is a subset conjunction, but only that the data
are consistent with the process, and that there are conditions (albeit unobserved in the present
instance) where the outcomes can differ substantially from the predictions of a logistic regression.

To use the subset-conjunctive model for cancer diagnosis, one has to select a probability
cutoff for classifying a tumor as benign or malignant. Although the value of this cutoff should
depend on the relative importance of the type I and type II errors (it is evidently more costly to
misdiagnose a malignant tumor), we ignore this here and assume that the two types of errors are
equally important. That is, we classify a tumor as malignant if πt

i > 0.50. The corresponding hit
rate is 94.20%, which is identical to that obtained from logistic regression but much higher than
the 62.74% predicted by the maximum-chance criterion.

A test of predictive validity is obtained by running a ten-fold cross validation. We randomly
select 90% of the observations for model estimation and use the remaining 10% for prediction.
We repeat this analysis 100 times. The mean hit rate across randomly drawn, holdout samples is
94.53%, and the 95% confidence interval is [89.01%, 98.43%]. The first of these is slightly lower
than the hit rate obtained using a linear-programming classification (Wolberg et al., 1995), which
has a mean value of 97.5% in ten-fold cross validations. We suspect two reasons for the poorer
performance: the use of seven instead of thirty predictor variables, and the need to discretize
these variables to use our model. For comparison, the mean hit rate from logistic regression is
93.53% and the 95% confidence interval is [87.71%, 98.01%]. Both measures are slightly worse
than those obtained from the subset-conjunctive model.

Computationally, the maximum likelihood procedure performs reasonably well in this ex-
ample. Fifty two of the 100 runs with random starts converged to the maximum likelihood value
of −84.38; 21 runs converged to a value of −94.11; 12 runs converged to a value of −95.36; and
15 runs converged to a value of −98.59. Although the proportion of runs that converged to the
largest maximum-likelihood value is reasonably high, this result emphasizes the need to rerun
the estimation procedure several times (e.g., ≥ 10 times) in any application to ensure that proper
convergence is achieved. This task can be performed quickly since the procedure’s convergence
time is generally low (an average of 43 seconds for this application). An alternative approach is to
use rational starting values (see the Appendix). Finally, and more importantly, the parameter esti-
mates across the 52 converged runs are identical. This suggests that the subset-conjunctive model
is identified and does not suffer from model equivalence problems. Section 4 reports the results of
a simulation study that investigates the incidence of local optima in subset-conjunctive models.
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3. The Multinomial Subset-Conjunctive Model

The extension to multinomial response is useful when one has reason to believe that a
subset-conjunctive strategy underlies the choice among alternatives in a choice set. For example,
consumer choice is often described as a phased decision process in which consumers first screen
options for further consideration and then make a choice among the considered alternatives
(Payne et al., 1988). Other examples are physicians prescribing one of several possible drugs, and
parents choosing one of several acceptable pre-schools for their children. We extend the above
(binary) subset-conjunctive model to these situations, inferring from choice data the unobserved
consideration rule used by a person. To achieve this, we have to extend the formulation to
predict how a person chooses among screened options. Consideration becomes a latent variable,
which we have to infer from choice data; and choice becomes conditional on consideration, each
consideration set being assigned a probability that depends on the subset-conjunctive rule and
the consideration probabilities assigned to the attribute levels.

Consider a choice set S, with |S| = R alternatives. As in the binary case, let πt
i denote the

probability that alternative i is acceptable to a person using a subset-conjunctive rule. Then a
person chooses none of the R alternatives if they are all unacceptable. In this case, the no-choice
probability is

P t (S̄) =
R∏

i=1

(
1 − πt

i

)
. (25)

If the person makes a choice, then at least one of the R alternatives is considered. The alternatives
in choice set S define 2R possible subsets, including the empty (no choice) set. Let ω denote a
particular subset and let 	 = {ω} denote the set of all subsets, |	| = 2R. Then the probability
that the consideration set is ω (i.e., that only alternatives in ω are acceptable) is

πt (ω) =
∏
i∈ω

πt
i

∏
i∈S\ω

(
1 − πt

i

)
. (26)

Given a consideration set ω ∈ 	, we wish to specify the conditional probability of choice P t
i (ω)

for each alternative i ∈ ω. Let P t
i (ω) be an increasing function of the consideration probabilities;

i.e.,

P t
i (ω) = f

(
πt

i |i ∈ ω
)
, ω ∈ 	 (27)

where

0 ≤ P t
i (ω) ≤ 1,

∑
i∈ω

P t
i (ω) = 1,

∂f

∂πt
i

> 0, i ∈ ω. (28)

A particularly simple functional form is obtained by imposing the proportionality condition

P t
i (ω) ∝ πt

i . (29)

In this case, the conditional probability of choice given consideration set ω is

P t
i (ω) = πt

i∑
�∈ω πt

�

, i ∈ ω. (30)

One can use alternative or modified forms for the function f (·) — a priori, there is no ba-
sis for choosing one over another. We will use the above form because it is simple, relates
to the Luce (1959) choice axiom, and has the form of the so-called “attraction models” in
marketing (Cooper, 1993). The unconditional choice probability for item i in choice set S is thus
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given by

P t
i (S) =

∑
ω∈	

P t
i (ω) · πt (ω), P t

i (ω) ≡ 0 if i �∈ ω. (31)

Let yih indicate whether (1) or not (0) person h selects alternative i from choice set S, 1 ≤ h ≤ N.
Let �h denote the set of choice sets evaluated by person h 1 ≤ h ≤ N .8 Given a random sample
of N homogeneous subjects, estimates for the values of the consideration probabilities πjk and
the optimal subset-size t, 1 ≤ t ≤ m, are obtained by maximizing the likelihood function

L =
N∏

h=1

∏
S∈�h

(
[P t (S̄)](1−∑

i yih)
∏
i∈S

[P t
i (S)]yih

)
, (32)

where
∑

i yih = 1(0) if a person makes a (no) choice.9 We maximize the function for each value
of 1 ≤ t ≤ m and select the value of t for which the likelihood function has the largest value.

To illustrate the computation of the elements of the likelihood function, consider a conjunc-
tive rule with m attributes (t = m), and a choice set S of size R = 2. There are three nonempty
consideration subsets in this case: ω1 = {1} and ω2 = {2}, which contain alternatives 1 and 2,

respectively, and ω3 = {1, 2}, which contains both items 1 and 2. Let

πm
i =

m∏
k=1

nk∏
j=1

π
xijk

jk (33)

denote the probability that alternative i is acceptable to a person using a conjunctive rule. Then
it is easy to verify that

P m
i (S) = 1 × πm

i × (
1 − πm

l

) + πm
i(

πm
i + πm

l

) × (
πm

i × πm
l

)
, i, l = 1, 2, (34)

and

P m(S̄) = (
1 − πm

1

) × (
1 − πm

2

)
. (35)

It is important to note that the parameters πjk are uniquely identified only if the data collection
allows a “no-choice” option for each choice set. Intuitively, it is easy to see that without a “no-
choice” option, it is not possible to observe when an alternative is unacceptable. Technically, the
proportionality relation between choice and consideration probabilities implies that in the absence
of a no-choice option, the consideration probabilities can be estimated up to a proportionality
constant. The inclusion of a no-choice option eliminates this indeterminacy, because the “no-
choice” probability is equal (not just proportional) to the probability that no item is considered
in a choice set (see equation (25)).

3.1. A Consumer Psychology Example

We examine data obtained from 326 people participating in a commercial study of personal
computer preferences. Every person was presented a sequence of eight independent choice sets,
which differed across respondents and were selected from a master experimental plan. A person
either rejected all alternatives in a choice set or selected one that was his/her most preferred. All
choice sets were constructed to have three alternatives, each of which was characterized using

8The choice sets �h can be the same or vary across subjects. Technically, we should have used subscript Sh to
denote the choice set evaluated by subject h. We avoid such notation, however, for simplicity.

9It is important to note here that the index h is used to denote observations and not parameters. This is because we
are assuming homogeneous subjects. Ideally, the model should account for preference heterogeneity across subjects in
which case the parameters need to be indexed by h as well. The authors are presently working on such an extension.
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five attributes:

1. Brand (A, B, C, D, E);
2. Performance (below average, average, above average);
3. Warranty period (90 days, 1 year, 5 years);
4. Service location (ship back to manufacturer for service, service at local dealer, on-site service);

and
5. Price (Low, Med–Low, Med–High, High) .10

Ideally, the analysis of such choice data should account for preference heterogeneity, which in
the proposed multinomial model lies in the form of a subset-conjunctive rule (reflected in the value
of t) and in the values of the consideration probabilities. The required extensions—in Bayesian
or finite-mixture frameworks—are nontrivial and are currently being developed. Here, we restrict
ourselves to estimating aggregate multinomial subset-conjunctive models and comparing these
with the following nested multinomial logit model (see Maddala, 1983, pp. 67–70).

Let Uih denote the latent utility person h has for choice alternative i ∈ S, where each
choice set S ∈ �h has three alternatives. Following the tradition in random-utility models (e.g.,
McFadden, 1973), we write Uih = Vih + eih, where eih is an error term that follows an extreme
value distribution and Vih is a linear function of the observed product attributes; i.e.,

Vih =
5∑

j=2

βj1xij1 +
4∑

k=2

3∑
j=2

βjkxijk +
4∑

j=2

βj5xij5, i ∈ S, S ∈ �h, (36)

where the xijk are dummy variables defined in the first column of Table 2, and the βjk are the
associated regression parameters. Note that we use j = 1 as the reference level for each attribute
and that βj1, 1 ≤ j ≤ 5, are brand-specific constants (intercepts) that capture the values of brands
B, C, D, and E, respectively, relative to the reference brand A.

Recall that a person has to select at most one (i.e., one or none) of the alternatives from choice
set S. Let P0h = 1 − φ denote the probability that a person makes no choice. The unconditional
probability that person h selects alternative i ∈ S is then given by

Pih = φ × exp(Vih)∑
�∈S exp(V�h)

, i, � ∈ S, S ∈ �h. (37)

Let yih indicate whether (1) or not (0) alternative i ∈ S is selected by person h. Then the likelihood
function is

L =
N∏

h=1

∏
S∈�h

(
[P0h]

(
1−∑

i∈S yih

) ∏
i∈S

[Pih]yih

)
, (38)

where
∑

i∈S yih = 0 if no item is chosen from S; and
∑

i∈S yih = 1, otherwise.
The maximization of the likelihood function in equation (38) produces the following utility

(unobserved response) function:

V̂ih = −0.35xi21 − 0.58xi31 − 0.836xi41 − 1.181xi51 + 1.48xi22 + 2.16xi32 + 0.456xi23

+ 0.82xi33 + 0.66xi24 + 0.91xi34 − 0.21xi25 − 0.85xi35 − 1.22xi45, LL = −2617.75,

with φ̂ = 0.88. These estimates, which are all significant at the p = 0.05 level, do not appear to
suggest a subset-conjunctive rule.

Table 2 shows the results for each of the five subset-conjunctive models. The goodness-of-fit,
assessed in terms of the likelihood value, is the best for a subset conjunctive rule with t = 4, which

10As this is a proprietary study, we were not provided with the actual brand names and the actual price levels used
in the study.
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TABLE 2.
Subset-conjunction consideration probabilities for personal computers.

Subset size (t)

Conjunctive Disjunctive
Variable 5 4 3 2 1

Brand
x11 A 1.00 0.74 0.57 0.50 0.25
x21 B 0.99 0.55 0.34 0.30 0.10
x31 C 0.95 0.46 0.25 0.20 0.04
x41 D 0.83 0.30 0.08 0.07 0.00
x51 E 0.72 0.23 0.00 0.00 0.00

Performance
x12 Below average 0.34 0.02 0.00 0.00 0.00
x22 Average 0.80 0.64 0.61 0.59 0.28
x32 Above average 1.00 1.00 1.00 1.00 0.53

Warranty
x13 90 day 1.00 0.58 0.12 0.03 0.00
x23 1 year 0.77 0.84 0.31 0.19 0.00
x33 5 year 1.00 1.00 0.51 0.36 0.11

Service
x14 Ship back to mfg 0.70 0.52 0.31 0.03 0.00
x24 Service at local dealer 0.97 0.91 0.67 0.30 0.08
x34 On-site service 1.00 1.00 0.78 0.43 0.17

Price
x15 Low 1.00 0.97 1.00 0.52 0.25
x25 Med–Low 0.98 0.87 0.89 0.42 0.20
x35 Med–High 0.79 0.55 0.53 0.11 0.01
x45 High 0.63 0.39 0.33 0.00 0.00

Minus log-likelihood 2641.10 2600.32 2619.50 2644.23 2801.43

Subset size t = 4 is best solution.

has a log-likelihood value slightly lower than the value obtained for the nested logit choice model.
The disjunctive model has by far the worst fit and stands apart from the others. The conjunctive
and subset-two models have comparable values for the log-likelihood. Both are substantially
worse than the subset-three and subset-four models. As one might expect, the consideration
probabilities for the subset conjunctive rule with t = 3 are smaller than the corresponding values
for t = 4, because the former requires an acceptable alternative to “qualify” on fewer attributes.

For t = 4, there is substantial separation in the consideration probabilities across the levels
of each attribute, implying that all attributes matter for consideration. The attribute with the
largest range over its levels is performance (0.98), followed by price (0.58), brand name (0.51),
service (0.48), and warranty (0.42).

To further assess the goodness-of-fit for the t = 4 solution, we compute the values of
the mean absolute deviation (MAD) between observed choice proportions and predicted choice
probabilities across all choice sets and consumers (see Table 3). By design, each level of the
performance, service, and warranty attributes appears in one of the three brands in each choice
set. Consequently, the MAD values for these three factors, which range from 0.002 to 0.010,

are identical to the overall MAD values. The MAD values for the other two factors are also quite
small, ranging between 0.002 and 0.018 for brand names, and between 0 and 0.019 for price.
Overall, the t = 4 model appears to fit the choice data very well.
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TABLE 3.
Mean absolute deviation between observed choice proportions and predicted choice probabilities by subset
conjunction model (t = 4).

Mean absolute deviations
Number of

Factor observations Alternative 1 Alternative 2 Alternative 3 No-Choice

Brand
A 1549 0.017a 0.003 0.010 0.004
B 1528 0.002 0.004 0.005 0.006
C 1558 0.017 0.006 0.008 0.016
D 1553 0.017 0.002 0.016 0.003
E 1559 0.004 0.002 0.016 0.018

Price level
Low 1914 0.009b 0.000 0.009 0.000
Med–low 1906 0.013 0.007 0.001 0.019
Med–high 1918 0.011 0.000 0.001 0.012
High 1915 0.009 0.000 0.001 0.008

Overall 2608 0.010 0.002 0.002 0.009

Note:The mean absolute deviations for the other factors (performance, service, and warranty) are
identical to the overall values reported above, because the design forces each level of these
attributes to appear in each choice set.

aA person can choose at most one of three alternative personal computers in a choice set. There are
1549 choice sets featuring brand A as one of the three alternatives. Across these choice sets, the
difference between the observed choice proportion and predicted choice probability has a mean
absolute value of 0.017 for the alternative labeled 1.

bThere are 1914 choice sets featuring an alternative at a low price. Across these choice sets, the
difference between the observed choice proportion and predicted choice probability has a mean
absolute value of 0.009 for the alternative labeled 1.

For comparison, we also compute the MAD values for the nested-logit model. The results
show that both models produce virtually identical results. Specifically, the overall MAD between
the observed choice proportions and predicted choice probabilities ranges between 0 and 0.005
across choice alternatives. The MAD values by factor range between 0.0044 and 0.011 for brand
names, and between 0.006 and 0.010 for price.

To illustrate how the results from the subset-conjunctive model offer insights beyond those
produced by the nested-logit model, assume that the model with t = 4 describes consumer
consideration, and only brands A, C, and E are available. Suppose a new product were to be
launched with above average performance, five-year warranty, and on-site service. Then this
product will be considered by a person only if it is acceptable on one or both of price and brand
name. Suppose the product were to be introduced at the lowest price level. Then the choice of a
brand name will not be especially important, because brand name has only a small effect on the
consideration probability; see Figure 1. Even at the Med–Low price, the consideration probability
exceeds 0.90 for all three brand names. But if the product were launched at the high price, then
the choice of a brand name becomes an important factor, the consideration probabilities ranging
between 0.84 if the product is marketed as brand A and 0.53 if it is marketed as brand E.11 Thus,
the sensitivity of the consideration probability to price changes depends on the choice of brand
name. Such inferences are not possible with a nested-logit model, because it does not distinguish

11The consideration probability for an alternative is the probability that the alternative is acceptable on at least t = 4
attributes. We use equation (17) to compute the consideration probabilities.
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FIGURE 1.
Price impact on consideration probabilities for personal computers.

between product consideration and choice, and because it has additive terms that do not suggest
such interaction effects.

The nested-logit and subset-conjunctive models also differ in their market-share predictions.
Suppose consumers are offered brands A, C, and E, and each brand has above-average perfor-
mance, five-year warranty, and on-site service. We examine how the choice probability—and
thus the market share—of a brand varies with its price, assuming that the other two brands are
available at a Med–Low price. Figure 2 plots the market shares predicted by the nested-logit and
subset-conjunctive models; the two models make very different predictions. Table 4 shows the
variation in market shares as the prices of the brands change from high to low. Consider brand
A: the nested-logit model predicts it will gain 29% market share, 19% from brand C and 10%
from brand E; the subset-conjunctive model predicts it will gain 9% market share, drawing about
equally from both brands C and E. Now consider brand C: as its price goes from high to low, its
market share increases by 21% according to the nested-logit model and by 17% according to the
subset-conjunctive model. According to the subset-conjunctive model, both brands A and E lose
about the same market share to brand C; according to the nested-logit model, brand A loses the
most. Finally, the nested-logit model predicts a much smaller market-share gain for brand E than
does the subset-conjunctive model (13% versus 23%) when the price of brand E is reduced from
high to low; the sources of share gain also differ in the two models. Note that these differences in
the market-share predictions occur despite the comparable predictive validity of the two models
on such measures as likelihood value and MAD. A priori, one cannot say which model is correct,
because this requires observing how the market responds to actual price changes. But if these
changes were to be observed, one could discriminate between the two models.

4. Simulated Testing of Subset-Conjunctive Models

We performed three simulation experiments to test the proposed class of subset-conjunctive
models. Our primary purpose in the first experiment is to assess how well the estimation procedure
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FIGURE 2.
Impact of price changes on choice probabilities.

recovers both the true subset size of the conjunctive process, and the true parameters of the
subset-conjunctive models. The second experiment compares the likelihood function values of
the correctly specified subset-conjunctive model and of a main-effects logistic regression, for
varying subset sizes. Recall that subset-conjunctive models can be represented as additive logistic
regression models in the absence of error. Hence the purpose of this experiment is to examine
whether correctly specified conjunctive models result in improvement of fit relative to logistic
regression models. Finally, in the third experiment, we investigate the incidence of local optima
when estimating each model.

4.1. First Simulation

We estimated subset-conjunctive models using a (2 × 2 × 2) factorial design with the
following treatments: true model (binary vs. multinomial subset-conjunctive), sample size (1600
and 3200 observations), and amount of uncertainty in data (low, high). Recall that an attribute is
informative (low uncertainty) if the probabilities of acceptance of its levels are extreme (close to
zero or one) and different from each other. One way to operationalize the amount of uncertainty
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TABLE 4.
Effect of maximum price change in each brand’s price on market shares.

Predicted change in market share for brand

Nested logit Subset conjunction
Price change

in brand A C E A C E

A 0.29a −0.19 −0.10 0.09 −0.05 −0.04
C −0.16b 0.21 −0.05 −0.10 0.17 −0.08
E −0.08 −0.05 0.13 −0.12 −0.11 0.23

aIf the price of brand A changes from “high” to “low,” then its market share
increases by 29%.

bIf the price of brand C changes from “high” to “low,” then the market share of
brand A decreases by 16%.

in a model is by drawing the parameters from Beta distributions with different parameters. We
selected Beta(0.1, 0.1) and Beta(0.5, 0.5) for the low and high levels of uncertainty, respectively.

This experiment uses m = 5 binary predictors xk ∈ {0, 1}, 1 ≤ k ≤ 5, and assumes a subset-
conjunctive process with t = 3. We generate N = 1600 (3200) alternatives, i.e., 50 (100) per cell
of the 25 factorial design, obtained by taking all combinations of the predictor variables. For
each alternative i = 1, . . . , N, we used the values of the πjk parameters, generated from the
appropriate Beta distributions, to compute the probability π3

i that the alternative is acceptable on
at least three of the five attributes (see equation (17)). This gives the probability with which we
generate the response variable yi ∈ {0, 1} for the binary subset-conjunctive model.

To generate data for the multinomial subset-conjunctive model, we constructed choice sets
of size three. The alternatives in each choice set are randomly drawn (without replacement)
from the set of N alternatives. For each choice set, we first compute the considerat probabilities
π3

1 , π3
2 , π3

3 and then convert them into choice and no-choice probabilities (see equations (25)
and (31)) which we used to generate the choice outcome (y1, y2, y3, y4), where y4 = 1 indicates
no-choice.

In this experiment, we perform 20 replications per treatment. Each replication uses a set of
πjk values selected from the appropriate Beta distributions. The data set for each replication is
used to estimate subset-conjunctive models with t varying from 1 to 5. The model performance
criteria of interest are the recovery of the true model parameters and the recovery of the true
subset size, which we set to t = 3. We use the MAD between the true and estimated parameters
as a measure of bias. We estimate the subset size by estimating the model for t = 1 to 5. We
select the subset size t , which corresponds to the solution with the maximum likelihood value.
Thus the percent of replications that points to t = 3 is our measure of true subset size recovery.

The results in Table 5 show that the recovery of the parameters is excellent across all
the treatment conditions. In general, the algorithm estimates the parameters accurately for both
models, regardless of sample size or amount of uncertainty. The MAD ranges from 0.007 to 0.09,
and has a mean value of 0.035. The recovery of the true subset size is also excellent. The percent
of replications pointing to the true subset size (t = 3) ranges from 90% to 100%, and has a mean
of about 97%.

4.2. Second Simulation

The objective of this simulation is to compare the likelihood values of correctly specified
subset-conjunctive models with those obtained from logistic regressions. In this experiment,
we estimate subset-conjunctive and logistic regression models using data generated using a
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TABLE 5.
Summary results for simulation study 1.

Sample size Small Large

Conjunctive model Uncertainty Low High Low High Overall

MAD 0.008a 0.091 0.007 0.050 0.039
Binary Selection 100.0% 95.0% 100.0% 95.0% 97.5%

MAD 0.013 0.055 0.008 0.050 0.031
Multinomial Selection 100.0% 90.0% 100.0% 95.0% 96.3%

MAD 0.010 0.073 0.007 0.050 0.035
Overall Selection 100.0% 92.5% 100.0% 95.0% 96.9%

aAcross all 20 replications in this cell, the difference between the true and estimated parameters
has a mean absolute value, MAD = 0.008. Recall that the subset conjunctive model is estimated
while varying the subset size t from 1 to 5. Selection represents the percent of runs whose
likelihood values are maximum at t = 3. Hence, in this cell, 100% of the runs pointed to the true
subset size of t = 3.

(2 × 2 × 5) factorial design with the following treatments: sample size (1600 and 3200 ob-
servations), amount of uncertainty in data (low, high), and subset size (1, 2, 3, 4, and 5). We
generate data for the subset-conjunctive model following the same approach discussed above.
However, unlike experiment 1 where t = 3, we varied the subset size from t = 1 to t = 5 and
generate 100 replications per treatment. Each replication uses a set of πjk values selected from
the appropriate Beta distributions. The data sets for each replication are used to estimate both
the correctly specified model and a main-effects logistic regression. As our primary goal is to
compare likelihood values, we report the relative difference between the log-likelihood values of
the two models (ln LLR − ln LSC)/ ln LSC, where the subscript denotes logistic regression (LR)
or subset conjunction (SC). Note that this ratio is positive if the subset-conjunctive model has a
higher likelihood value than the logistic regression model.

Table 6 reports the results. Across all replications and treatments, the true subset-conjunctive
models always produce likelihood values slightly higher (i.e., better) than are obtained from
logistic regressions. The relative differences range from as low as 0.001 to as high as 0.0299,
and have a mean value of 0.011. These differences tend to be higher with lower amounts of

TABLE 6.
Summary results for simulation study 2.

Small sample Large sample

Low High Low High
Subset size uncertainty uncertainty uncertainty uncertainty Overall

1 0.019a 0.003 0.019 0.002 0.011
2 0.029 0.007 0.024 0.006 0.017
3 0.022 0.003 0.009 0.003 0.009
4 0.025 0.009 0.024 0.007 0.016
5 0.004 0.003 0.004 0.002 0.003

Overall 0.020 0.005 0.016 0.004 0.011

aAcross all 100 replications in this cell, the relative difference between the log-likelihood
value of the subset-conjunctive model and that of a main-effects logistic regression is
0.019.
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uncertainty. The average relative difference varies from 0.004 for the high uncertainty level to
0.018 for the low uncertainty level. In other words, with higher uncertainty, it becomes harder to
distinguish between correctly specified subset-conjunctive models and logistic regressions. If we
assume that empirical data contain more error, the benefits of subset-conjunctive models should
be assessed in terms of improved interpretability, and less emphasis should be put on model fit
when the likelihood values are close.

4.3. Third Simulation

To investigate the incidence of local optima, we generate 30 data sets (10 for each of
the 3 subset-conjunctive models) following the same approach as in experiment 1. However,
we specify the average values for the sample size and uncertainty levels. Specifically, we set
N = 2400 observations and draw the parameters from Beta(0.3, 0.3). For each data set, we
estimate the correctly specified model 10 times using random starting values, and once using
the true parameter values as starting points. We classify a randomly started solution as a local
optimum if its likelihood and parameter estimates do not match those obtained from a solution that
used the true parameters as starting values. Using this criterion, none of the 300 runs converge
to local optima. Specifically, the mean absolute deviation between the two sets of parameter
estimates is zero and the likelihood values are virtually identical. Thus, local optima do not seem
to be a problem for correctly specified models. However, as discussed in section 2.2, it is always
useful to rerun the estimation procedure several times in any application to ensure that proper
convergence is achieved.

In summary, the simulation results suggest that the parameter estimates for the subset-
conjunctive models are robust. In general, the accuracy of estimating the parameters and the
subset sizes are excellent. Comparisons of model fit show that logistic regressions produces
likelihood values very similar to those of a correctly specified subset-conjunctive model, and that
the differences in log-likelihood values get smaller with higher uncertainty. Finally, we did not
encounter any problems of convergence, for the sample size and the uncertainty level examined.

5. Conclusion

One often encounters “logical” varieties of noncompensatory rules in decision making.
Doctors use such rules to diagnose illnesses, marketing executives use them to describe target
markets, and consumers use them to screen alternatives into consideration or choice sets. We
introduce a generalization of disjunctive and conjunctive decision rules in which an acceptable
alternative satisfies a minimum number of criteria, not necessarily one criterion or all criteria.
The data produced by a subset-conjunctive rule result in a confounding of main and interaction
effects in a logistic regression, provided the error in the responses is small. With greater response
error, a logistic regression gives parameter estimates that do not reflect the underlying decision
process, even though they produce good fits to the data. Thus, one cannot use a logistic regression
to infer a subset-conjunctive rule from classification data. To make such inferences, or to test the
consistency of data with a subset-conjunctive rule, we propose a probabilistic form of a subset-
conjunctive strategy in which an attribute level has a probability of being acceptable to a person.
We describe an extension of the model and propose a choice model in which consideration is
modeled in the first stage as a subset-conjunctive strategy, and choice is modeled in the second
(conditional) stage as a function of the consideration probabilities. We describe methods for
estimating the unobserved probabilities using binary and multinomial choice data, and illustrate
the models using cancer diagnosis and consumer psychology examples.

Computationally, standard nonlinear optimization packages, such as those available in SAS,
can be used for estimating model parameters for 20–30 dummy coded predictor variables. In all
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our examples, these procedures converged in a few seconds, and never took more than 5 minutes,
on a mainframe computer. For larger problems, it is preferable to use specialized algorithms,
several of which are described in the Appendix. All of these are approximation algorithms, which
can be used to obtain good starting solutions for an exact solution procedure.

We also report the results of simulations that suggest the adequacy of the estimation pro-
cedure in recovering both the true parameter values and the subset sizes. Local optima do
not appear to be a problem for correctly specified models. We suggest using multiple start-
ing values to further guard against local optima. The simulation results show that logistic
regression models have likelihood values close to the likelihood values of correctly speci-
fied subset-conjunctive models and that the differences between the two models get smaller
as the amount of uncertainty in data increases. This result emphasizes the need for assessing the
benefits of subset-conjunctive models in terms of improved interpretability, and not on model
fit alone.

One limitation of the proposed models is their restriction to discrete attributes. A useful
extension is to allow a mixture of continuous and discrete attributes; for all continuous attributes,
Einhorn’s (1970) model is a reasonable approximation for conjunctive/disjunctive strategies. A
second limitation is the inability of the present model to reflect differences in logical strategies
used by different groups of individuals. While this is not a significant consideration in the breast-
cancer example, it is an important concern in the consumer psychology example. Latent-class or
Bayesian extensions of our methods are can be useful for reflecting heterogeneity in processes
and probabilities.

6. Appendix. Parameter Estimation for Binary Response

We restrict the discussion to the estimation of a conjunctive model (t = m). The estimation
of a disjunctive model follows the same approach; one only has to reverse the code of the response
variable.

We begin by substituting for πm
i and taking the logarithm of the likelihood function

Lm =
N∏

h=1

Nh∏
i=1

(
πm

i

)yih × (
1 − πm

i

)1−yih
.

This gives

log Lm =
N∑

h=1

Nh∑
i=1

yih

m∑
k=1

nk∑
j=1

xijk log πjk +
N∑

h=1

Nh∑
i=1

(1 − yih) log(1 −
m∏

k=1

nk∏
j=1

π
xijk

jk ).

The first term on the right-hand side can be simplified by noting that

N∑
h=1

Nh∑
i=1

yih

m∑
k=1

nk∑
j=1

xijk log πjk =
m∑

k=1

nk∑
j=1

[ N∑
h=1

Nh∑
i=1

yihxijk

]
log πjk =

m∑
k=1

nk∑
j=1

NA
jk log πjk,

where NA
jk = ∑N

h=1

∑Nh

i=1 yihxijk is the number of acceptable alternatives in the data that have
level j of attribute k, 1 ≤ j ≤ nk, 1 ≤ k ≤ m. However, no such simplification is possible for
the second term. One way to construct an approximation algorithm is to replace this second term
in log Lm by a polynomial approximation, after substituting

z = −
m∏

k=1

nk∏
j=1

π
xijk

jk
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in the identity (Gradshteyn, Ryzhik, & Jeffrey, 1994, p. 52)

log(1 + z) = z − 1

2
z2 + 1

3
z3 − 1

4
z4 + · · · =

∞∑
s=1

(−1)s+1 zs

s
, −1 < z ≤ 1.

Truncating the series after (say) the quadratic term and substituting for log(1 + z) in the expression
for log Lm gives

log Lm ≈
m∑

k=1

nk∑
j=1

NA
jk log πjk −

N∑
h=1

Nh∑
i=1

(1 − yih)

[
m∏

k=1

nk∏
j=1

π
xijk

jk + 1

2

m∏
k=1

nk∏
j=1

π
2xijk

jk

]
.

The first-order conditions yield

NA
jk = πjk

N∑
h=1

Nh∑
i=1

(1 − yih)
∑

j,k|xijk=1

[(
m∏

s=1|s �=k

nk∏
u=1|u �=j

πxisu

su

)
+

(
πjk

m∏
s=1|s �=k

nk∏
u=1|u �=j

πxisu

su

)]
,

for all 1 ≤ j ≤ nk, 1 ≤ k ≤ m. The solution for this system of (n1 + n2 + n3 + · · · + nm)
simultaneous equations is subject to the constraints 0 ≤ πjk ≤ 1, and any a priori orderings of
the πjk; such a solution can be found using standard gradient search methods.

Parameter estimates can also be obtained from a scoring model, developed along the lines
described by Rao (1973, p. 366) for the multinomial distribution. The score at πjk is

Sjk = d log Lm

dπjk

, I(πjk) = V

(
d log Lm

dπjk

)
,

where log Lm denotes the log-likelihood function and V is the variance operator. If the values
of the efficient scores and information at the trial values π = {π0

jk} are indicated with the index
0, then small additive corrections δπjk are given by the simultaneous equations Iπ = S0, where
I is the information matrix, π is a column vector of the πjk, and S0 is a column vector of
the Sjk. This operation is repeated with corrected values each time until stable values of the πjk

are obtained. The variance of the final estimates π̂jk is given by the ith diagonal element of I.

The major computational step in this method is the inversion of the information matrix at each
stage of the approximation. Rao observes that the inverse typically does not change much after
the first few iterations, and can be kept fixed after this point.

Finally, methods of moments can be used to estimate the parameters when there are multiple
observations per treatment/alternative, and when there are more treatments than the number
of parameters. Equating the observed and expected proportions of acceptable alternatives for
each treatment gives a system of simultaneous equations, from which the parameters can be
estimated using weighted least squares, the weights reflecting the relative sample sizes on which
the treatment proportions are estimated.
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