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The authors model product consideration as preceding choice in a seg-
ment-level conjoint model. They propose a latent-class tobit model to esti-
mate cardinal, segment-level preference functions based on consumers’
preference ratings for product concepts considered worth adding to con-
sumers’ self-explicated consideration sets. The probability with which the
utility of a product profile exceeds an unobserved threshold corresponds
to its consideration probability, which is assumed to be independent
across product profiles and common to consumers in a segment. A mar-
ket-share simulation compares the predictions of the proposed model
with those obtained from an individual-level tobit model and from tradi-
tional ratings-based conjoint analysis. The authors also report simulations
that assess the robustness of the proposed estimation procedure, which
uses an E-M algorithm to obtain maximum likelihood parameter

Consideration Sets in Conjoint Analysis

estimates.

Conjoint simulations are frequently used to predict the
market share of new product concepts. Since the introduction
of POSSE by Green, Carroll, and Goldberg (1981), many
commercial products with simulation capabilities have been
successfully introduced (e.g., Johnson 1987). A variety of ex-
tensions to the scope of the simulations have appeared in the
marketing literature (e.g., Green and Krieger 1985; Kohli
and Krishnamurti 1987; Kohli and Mahajan 1991; Kohli and
Sukumar 1990; McBride and Zufryden 1985).

An alternative approach, first proposed by Louviere and
Woodworth (1983), uses conjoint choice experiments to es-
timate preference functions at the aggregate or segment lev-
el (DeSarbo, Ramaswamy, and Cohen 1995). One advantage
of this method is that by allowing a no-choice or current-
choice option, it permits the modeling of consideration sets,
in which an item is selected only if its utility exceeds a
threshold (i.e., the utility of the no-choice alternative). As a
consequence, the market share prediction for a new item can
take into account both the consideration probabilities for
distinct subsets of items and the choice probabilities of the
items in a considered subset. In contrast, traditional conjoint
simulations assume that a test product is always considered
by each consumer. There is another advantage to this
method: Because the number of consumers choosing an
item depends on the considered set, choice-set experiments
enable a new product to affect category penetration. Tradi-
tional conjoint allows for no such effect. This advantage of
choice-set experiments is likely to be particularly important
in markets in which a significantly improved new product
can increase the number of category adopters.
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the Smeal Distinguished Chair of Marketing, Smeal College of Business,
Pennsylvania State University.
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The extensive use and enduring popularity of traditional
conjoint analysts suggests that it may be useful to enhance it
in a manner that allows for the inclusion of consideration
sets in these models. We propose such a procedure, which,
similar to choice-set experiments, models consideration as a
function of product attributes. The proposed approach builds
on the popular full-profile ratings-based conjoint analysis in
two ways. First, we ask a consumer to specify which of the
existing brands he or she considers in making a purchase.
We assume that the selected brands are random draws from
an unknown probability distribution that is identical across
consumers within a market segment but can vary across seg-
ments. Thus, we do not require either the existence of a
well-defined consideration set or the ability to enumerate all
possible items that might be considered by a consumer. In-
stead, both the elicited set size and its composition are as-
sumed to be random variables. Second, we sequentially pre-
sent product profiles, while at each step asking the consumer
to provide a preference rating only if the item is worth
adding to the self-explicated consideration set. Thus, the da-
ta obtained are censored so that no ratings are obtained for
product profiles not judged worth consideration by a con-
sumer. We assume that (1) consideration judgments and
preference ratings are simultaneously provided by the con-
sumer, (2) each evaluation is independent but is anchored to
the self-explicated consideration set, and (3) the preference
evaluations are probabilistic and dependent on the composi-
tion of the described consideration set.

The data are used to estimate consideration and choice
probabilities simultaneously in a linear-threshold model.
However, in contrast to previous research that assumes the
suitability of a linear consideration model (e.g., Roberts and
Lattin 1991), we show that consideration based on a dis-
junctive rule or a conjunctive rule that is applied to all or a
subset of attributes is a special case of a linear threshold
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model. Therefore, our approach is adequate for representing
these two consideration processes.

Provided sufficient degrees of freedom are available, the
model can be estimated at the individual level (Malhotra
1986). However, if, as is often the case, sufficient individ-
ual-level data are not available (e.g., if the subset of consid-
ered items is small, if the number of parameters is large
compared to the number of profiles), we propose using a la-
tent-class model that pools the data across consumers and si-
multaneously estimates consumer segments, segment-level
part-worth functions, and segment-membership probabili-
ties for consumers. In contrast to traditional conjoint share
simulations (e.g., using a max-utility rule to simulate choic-
es for all consumers), the present approach predicts market
size (the proportion of consumers considering a product),
conditions choice (and hence share) on consideration, and
reflects estimation error in the predictions. Methodological-
ly, the model generalizes the latent-class tobit model pro-
posed by Jedidi, Ramaswamy, and DeSarbo (1993), which
allows only one observation (consideration and product rat-
ing) per consumer. In the present conjoint setting, we permit
multiple profile evaluations per respondent (repeated mea-
surement) and use similarities in the within-subject response
vectors to identify segments, part-worth functions, and seg-
ment membership probabilities for consumers.

First, we describe the proposed consideration model, its
relationship to conjunctive and disjunctive processes, and
the consequences of including consideration on market size
and share predictions. Second, we present the new, segment-
level model for analyzing the censored preferences. Third,
we discuss the results from two simulations that use syn-
thetic and commercial conjoint data. The first simulation as-
sesses the robustness of the proposed procedure to viola-
tions of the model assumptions. The second simulation com-
pares the segment and individual-level models with a tradi-
tional conjoint model that ignores the effect of consideration
and performs share simulations by using the popular maxi-
mum utility rule.

THE CONSIDERATION MODEL, MARKET SIZE,
AND MARKET SHARE

New products, especially when they offer substantial im-
provements over existing alternatives, can influence consid-
eration by nonusers (e.g., cellular phones, satellite dishes)
and frequency of brand consideration by category users
(e.g., Parmalat milk, over-the-counter formulation of Pep-
cid, nondrowsy allergy and cold remedies, new age bever-
ages such as Snapple). Process-tracing studies (e.g.,
Bettman 1979) suggest that consumers make consideration
judgments using noncompensatory processes (Olshavsky
and Acito 1980). In contrast, models for analyzing classifi-
cation data (e.g., logit, discriminant analysis) assume a com-
pensatory process, and have been used as approximate spec-
ifications in the consideration models proposed by Hauser
and Wernerfelt (1990), Roberts and Lattin (1991), and De-
Sarbo and Jedidi (1995).

Cattin (1981) notes the suitability of a linear model for
representing conjunctive preferences over discrete attribut-
es. We show that both conjunctive and disjunctive process-
es can be represented as special cases of a linear threshold
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model.! The threshold of the linear model determines the
rule used, and its parameters determine the acceptability of
an attribute level.

To simplify the exposition, we begin by examining one
brand (product profile) that is considered for purchase with
probability p by a consumer. We assume that p is a function
of the brand’s utility u*, which in turn is a linear function of
attributes, each of which is defined at a finite number of dis-
crete levels; that is,

1) u*=a+2bmxm+e,
m

where a is a constant, X, is a suitable dummy variable iden-
tifying the attribute level, and € is an error term.

Let w = 1 (0) denote that the brand is acceptable (unac-
ceptable) to the consumer. We assume

1ifu*=a+mexm+ezT,

(2) W= m
0 otherwise;

or, equivalently,

Lify* = by + ) bpXp + €20,
m

3) w =
0 otherwise,

where T is a utility threshold for the brand to be considered,
y* =u* —T, and by = a — T. Thus, the probability p that the
brand is considered by the consumer is given by

p=P(w=])=P(y*20)=P[eZ—(b0+ mexm)],

which increases with its utility by + X, b, X, and depends
on the density function of the error term, which we assume
is normal with zero mean and variance 62. Thus, a brand has
a consideration probability of 1 — ® [(b, + X, b,x,,)/0],
where @ is the cumulative normal density function. Note
that ignoring consideration (p = 1) is equivalent to setting T
(and thus by) to a large negative number compared to the
parameters b,

We assume that the error is independent of the considered
brand, and thus the brands have independent consideration
probabilities. Noncompensatory consideration models such
as the conjunctive and disjunctive rules also assume inde-
pendent consideration of items, and traditional conjoint
models assume that all items are considered. Nevertheless,
the independence assumption implies the possibility of large
consideration sets, which can be unreasonable in many cas-
es. Although prespecified constraints on the set size can be
imposed either at the estimation or the subsequent market

IThe sufficiency of the linear model for representing lexicographic pref-
erences is suggested in an example by Olshavsky and Acito (1980) and is
readily established as follows: Let attribute k have n, levels and leti= 1, 2,
..., n denote a decreasing lexicographic preference order for the n = ¥, n,
levels across attributes. Let level j; of attribute k; have rank i. Then the lin-
ear modelu = 3, by Xjik- Where X, = 1 if level j; of attribute k; appears in
the product and equals zero otherwise, represents a lexicographic prefer-
ence order if its parameters satisfy the condition by, > Yy max, ., ; (6,1
It can be shown that the preferences u lie between an ordinal scale and an
ordered semimetric (Coombs 1964).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



366

simulation stage, this ad hoc approach does not reflect the
effect of set size on the modeling of consideration.

A more reasonable approach is to assume that the consid-
eration of an item depends on the size and composition of an
existing consideration set. Moreover, it is also more realistic
to assume that consumers have neither well-defined consid-
eration sets nor the ability to enumerate all the items they
might consider. Asked to identify considered items, a con-
sumer probabilistically specifies a set s = {i li=1,2, .. J.A
reasonable assumption is that the more desirable the items in
s (or the larger the size of s), the smaller the chance of a new
item being considered by a consumer. Equivalently, the
threshold T increases with the utility of the items in s and the
size of s. Thus, we assume

T=cy+cug+er,

where ug is a measure of the desirability of s (i.e., ug =
u( | S | U, 1= 1, 2, ...)), ¢ is the threshold value when there
are no previously considered items, and ey is a random error
term representing preference uncertainty (and in the subse-
quent segment-level model, within-segment variation in
preferences). Equivalently,

4 T=cy+c|(ug+e,)+ep=cy+cug+e,

where Uy is the true set-utility, e, is an error term that cap-
tures uncertainty in ug, and e = c,e, + eg. Thus, Equation 2
can be written as

lifu*=a+2bmxm+62c0 + ¢, + e,
O = m

0 otherwise;

or

lify*=b0+2bmxm +€20,
(6) w = m

0 otherwise;

where by = a — ¢y — cju and € = € — e. Note that ug is
absorbed in the additive constant and is not independently
estimable. If sufficient degrees of freedom are available, the
intercept by can be estimated at the individual level and the
remaining parameters at the segment level. Note that the
individual-specific constant by subsumes the effect of ug
(the utility the consumer obtains from an existing consider-
ation set), which can depend on both the size and composi-
tion of the consideration set. Thus, a segment-level model
that estimates individual-level intercepts reflects the possi-
bility that the utility of an existing consideration set varies
by consumer.

The linear threshold function of Equation 2 is sufficient
for representing disjunctive and conjunctive processes. Let
¢ > 0 denote the number of attribute levels acceptable to the
consumer and let m = 1, 2, ..., £ identify these levels in
Equation 2. Consider a special case of Equation 2 with the
parameters constrained to have values a = 0 and

lifm=1.2,..]1,
m=

0 otherwise;
or, equivalently,
: lifu*=30h-; x +e=T,
2) W=
0 otherwise.
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If A denotes the total number of attributes, then u* =
Zfr‘: | Xm 18 an integer with a minimum value of zero if
none of its attribute levels are acceptable (¢ = 0) and a max-
imum value of A if it is acceptable on all product attributes
(¢ = A). Thus, a disjunctive rule that requires a considered
alternative to have at least one acceptable attribute is equiv-
alent to the condition

{lifu*zl,

0 otherwise;

and a conjunctive rule that requires all A attributes to be
acceptable corresponds to the condition

1ifu*2A,
w=

0 otherwise.

More generally, a consideration rule that requires an accept-
able alternative to have at least k acceptable attributes is rep-
resented by a constrained linear threshold model, with the
threshold taking a value of T = k. The addition of the error
term in Equation 2' permits uncertainty or error in the
threshold T, which is more accurate than a deterministic
noncompensatory rule unfailingly used by a consumer.

Without the integer constraints, the model described by
Equation 2' can be estimated using binary logit or probit.
The constraints restrict the parameter space to 2LA values,
where L is the total number of levels across attributes, 2L is
the number of distinct beta vectors, and A is the number of
possible threshold values. Thus, these two noncompensato-
ry models correspond to a constrained specification of the
linear threshold model.

Effect of Consideration on Market Size

A consumer asked to identify a consideration set selects a
set ¢ of items. Assume that this set is identified with an
(unobserved) probability p.. Presented with a new alterna-
tive j, the consumer considers it with probability p;, given
the set ¢ (i.e., p. is a conditional probability). Thus, the prob-
ability that at least one of the brands in ¢ U {j} is considered
is

@) pepj+ (1 —pJp; + (1 —pjp. = pj(1 —=po) + pe.

Introducing brand j therefore increases the consideration
probability of at least one brand by d = p;(1 — p.) and
increases the unconditional consideration probability by

> il =po,

ceC

where C is the set of all consideration sets c. In saturated
markets (e.g., soft drinks), or in markets in which no short-
term category-level alternatives exist (e.g., car batteries), the
probability p_ for any consideration set c is likely to be close
to one for most consumers, and a new brand is unlikely to
affect category consideration (i.e., d is close to zero).
However, if a category offers no particularly attractive alter-
native for a market segment (e.g., satellite dishes, electronic
mail), and more attractive alternatives are available in a sub-
stitutable category (e.g., cable television, telephone, facsim-
ile machine), then p, is likely to be close to zero for con-
sumers in these segments. An improved new product j (e.g.,
Sony’s miniature satellite dish, Netscape) can increase cate-
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gory consideration, which tends to p; as the consideration
probability p_ of a subset ¢ of existing brands tends to zero.
Thus, the value of d is larger for better new products and is
lower if the existing set of brands are attractive and/or a
choice must be made.

Effect of Consideration on Market Share

Consideration can affect market share in two ways: by
giving higher weight to choices in more probable consider-
ation sets, and, when choice is not necessary, by eliminating
all items from consideration. Specifically, let s(j |c) denote
the choice probability of item j from a given consideration
set ¢. The unconditional choice probability of item j is

® 5= Y P sGlo,

which weights the conditional choice probabilities s(j | c) by
the consideration probabilities p(c). Let p = ¥, p(c) denote
the probability of the consumer considering at least one
item. Then, the unconditional share of choices for brand j is
given by silp.

Market share predictions obtained from traditional con-
joint simulations differ in two ways from those obtained by
the previous procedure. First, they assume p = 1, thereby re-
quiring a consumer to consider at least one alternative (oth-
er values of p can be used, though the criteria and methods
for selecting these value are unclear). Second, they permit
only one consideration set—the set of all available items—
and assume p(c) = O for all other consideration sets. Thus,
the prediction error for traditional conjoint simulations due
to any consideration effects is (Sj/p) -s( l c*), where c* is
the set comprising all alternatives. Note that the preceding
development is easily generalized to account for segmenta-
tion and heterogeneity in consideration and choice
probabilities.

ESTIMATING CONSIDERATION PROBABILITIES

Consider a consumer whose preference y* for a given
product concept (or brand) is specified by Equation 3 or,
equivalently, by Equation 6. Conditional on an existing con-
sideration set, the proposed data-collection procedure
requiring the customer to rate only considered brands pro-
vides a preference rating y = y* if the product profile is con-
sidered acceptable and a censored value y = 0 if the brand is
not considered. Assuming that the untruncated preference
y* has a normal distribution, the unconditional density func-
tion for the censored preference y is given by (see Amemiya
1984)

©) mw=%«nw¢aﬂ-a

where ¢ and @ denote the density and cumulative distribu-
tion functions of the standardized normal variate

7= y_(b0+2mbmxm) )
(o)

Eety = {yj, j=1,2, .., ]} denote the censored preferences
a consumer provides for a set of J product profiles. Because
the preference ratings are assumed to be independent, the
joint density function for the censored ratings is given by IT;
h;(y;), where the subscript j identifies the product profiles.
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The parameters b, of a consumer’s preference model can
be obtained by maximizing the likelihood function

(10) L =Ty =T, éq»(zj)wj' ®(z)! -,

where w. = 1 (0) if the consumer considers (does not con-
sider) brand j. Alternatively, if preference homogeneity is
assumed across a sample of I consumers, the parameters of
an aggregate preference model can be estimated by maxi-
mizing the likelihood function

(11) L= HiJ hj(Yij) = niJ l ¢(Zij)w‘1 ‘D(Zij)l T
(e}

where yjj is consumer i’s censored preference rating for
product profile j, h; is the density function for profile j and
is common across consumers, and wj; = 1 (0) if product pro-
file j is acceptable (not acceptable) to consumer i.
Furthermore, if individual membership in K prespecified
segments is available, the estimates of the parameters for the
segment preference functions can be obtained by maximiz-
ing the likelihood function

(12) L3 =TT 5 [hy(yip)]1%

=TI [ - Oz Wik D(zi)'! - W-Jk}d'k,
Ok
where y;; is the censored preference rating for product pro-
file j given by consumer i in segment k, h; is the density
function for profile j and segment k, wy, =1 (0) if product
profile j is acceptable (not acceptable) to consumer i in seg-
ment k, d;; = 1 (0) if consumer i belongs (does not belong)
to segment k, and?

(13) R (boic + Xy DrnkXjem)
Ok

Finally, in the most general case, in which segment mem-
bership is unknown, assume that all consumers initially have
the same probability A, of membership in segment k, k = 1,
2, ..., K; that is, P(d;, = k) = A, for all i. Because the densi-
ty of y; conditional on membership in segment k is II;
hji(y;), its unconditional distribution is a finite mixture of
such densities. That is,

(14) by = " M T ey
k

The estimation of both the segment partworths b, and
the “mixing proportions” A, can be achieved by maximizing
the likelihood function,

15 Ly= ni hm()'i)-

Because the number of segments is generally unknown, £,
must be maximized for various values of K. The optimal
number of segments is selected on the basis of the minimum
Consistent Akaike Information Criterion (CAIC)

(16) CAIC = - 2In £,(K) + Ng(1 +InT),

where Ng = JK + 2K — 1 is the number of effective parame-
ters, —2In £,(K) is the usual 2 measure for the likelihood

2If sufficient degrees of freedom are available, the intercept term can be
estimated at the individual level (i.e., by) by introducing an additional
I - 1 consumer-specific dummy variables in the utility equation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



368

function, and Ng(1 + In I) is a penalty term that accounts for
the improvement in fit obtained by increasing the number of
parameters and the number of data points in the model (see,
e.g., Bozdogan 1987).

With hy(y;;) and A, Bayes rule can be used to estimate
the posterior probability P, that consumer i belongs to seg-
ment k, where (see Jedidi, Ramaswamy, and DeSarbo 1993)

amn Py =Bl | gy = SR IRETY)
¢ Ao T by ;)

These posterior probabilities, when evaluated at the maxi-
mum likelihood estimates )\k, bmk, and 6, k=1,2,.. K, m
=1, 2, ... M, represent a fuzzy classification (clustering) of
I consumers into K latent segments. The adequacy of the
estimated membership probabilities is assessed through an
entropy measure

2k — Piln Py i
IInK

which has a value of one when all membership probabilities
are either zero or one and equals zero when all membership
probabilities are equal to 1/K.

A brief overview of the E-M algorithm developed to esti-
mate the segment memberships and partworth simultane-
ously is subsequently described.3 This algorithm is general
because it can be used to perform individual- (£;), segment-
(L; and £,), and aggregate-level (L) conjoint analyses
when preference ratings are truncated or untruncated and
when segment memberships are known or unknown.

The E-M Algorithm

The E-M algorithm, which is suited for models with cen-
sored and missing data, is a general iterative method for
obtaining maximum likelihood estimates (Dempster, Laird,
and Rubin 1977; Goodman 1974; Grover and Srinivasan
1987; Malhotra 1986; Zenor and Srivastava 1993). The E-M
method cycles between an expectation phase in which the
missing data (segment membership and censored observa-
tions) are replaced by their expected values, given provi-
sional estimates for b, © i and Ay, and a maximization
phase in which the “full” data are then used to obtain new
estimates for the model parameters. This iterative process
continues until no further improvement in the likelihood
function is possible.

Schematically, the proposed E-M algorithm can be
described as follows:

Initialization step. Randomly generate initial estimates of
the segment partworth b, the variance cﬁ of the prefer-
ence functions, and the mixing proportions A, k=1, 2, ...,
K. Using Equation 17, estimate Py = E(dikl y;) for all con-
sumers and segments. Use the following equation to esti-
mate the expected value E(y*; | ;i =0) for product profile j,
which is censored (not conmdere(i) by consumer i:

(19) E(YU |le_0)_ ZP,k{zbmk -0y 1 ¢£D . )}
= k

where zj, = X, bryXjn/O.

(18) E=1-

3 The details of the derivations are available in a working paper.
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Let

(20) g {Yij' A
%=1, i

Y EGylyy=0) ify;=0.

Thus, §;; equals the actual (expected) value of profile j’s rat-
ing if consumer i considers (does not consider) profile j
acceptable in the profile evaluation task.

Recursion step. Use the updated membership probabili-
ties and the updated values of the y;; to reestimate the fol-
lowing parameters:

21 B, = (X' X) ! X' Py 9 ;

b3
(22) ol= Z Pl (95— Zm BmicXjm)? + var ()]

i 2 P
and
(23) = 3k
: I

where By = (b, m=0, I, .., M}, X = {Xjp, j= 1,2, ..., J;

m=0,1, .., M}, and

o(z;x)
ZP.k{ck +[2bmkxjm k 1—(I>2kzk)}
J

2
(24) var (¥;5) = 1_ |:Gk %} } ify; =05
s ij

0 ify; =0

Reestimate E(d;) = Py and §;; using the new estimates of
bk O, and Ay.

Termination step. Stop when the increase in the likelihood
function value £, in Equation 15 is below a threshold, or if
the number of iterations reach a preset maximum.

As other researchers have noted (e.g., Grover and Srini-
vasan 1987; Zenor and Srivastava 1993), an E-M algorithm
can converge to local optima and therefore is typically im-
plemented using multiple starting points. All simulations re-
ported here use ten random starting points. The solution
maximizing the likelihood function is retained as the final
solution. Also, though the E-M algorithm can in general
converge slowly, it performed reasonably well here, with the
maximum time for obtaining a final solution being 60
seconds.

SIMULATIONS

Two simulations were performed: The first assessed the
ability of the segment-level (latent class) model to recover
preference functions and segment membership, and the sec-
ond tested the relative performance of the segment- and in-
dividual-level tobit models, as well as the traditional con-
joint model, to predict the market performance of a new
product.
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Objectives and Design of the First Simulation

An estimation procedure should at least be able to accu-
rately recover segment membership, consideration probabil-
ities, and preference ratings from sample data. Furthermore,
the procedure should be robust in recovering this informa-
tion from noisy data, data in which the subset of considered
items is small, and data that violate the assumption of nor-
mal errors. Our objective of this simulation is therefore to
perform a “stress test” of the proposed estimation procedure,
assuming the proposed model accurately reflects considera-
tion and consumer preferences. Thus, using the following
six factors and two replications per cell, we generated 972
problems according to a 2 x 35 factorial design:

1. Misspecification of the error distribution (normal, uniform,
exponential),

2. Alternative levels of error variance (10%, 20%, 30% of the
true variance),

3. Changes in proportions of unacceptable (censored) products
(20%, 40%, 60%),

4. Alternative sample sizes (100, 300 consumers),

5. Vaniations in the numbers of segments (2, 4, 6) with different
average preferences, and

6. Differences in the number of design (dummy) variables (4, 8,
12).

The “true” partworth for segment k was identically and
independently generated from a uniform distribution over
the range [k, k]. For each simulation run, the true segment
ratings were computed for 16 orthogonal product profiles.
The profile ratings for consumers in a segment were gener-
ated by adding random observations from the appropriate
(uniform, exponential, or normal) distribution; its variance,
which was determined by the simulation trial, was 10%,
20%, or 30% of the variance in the true segment ratings of
the 16 profiles (Srinivasan 1975). The appropriate propor-
tion of product profiles (20%, 40%, or 60%) with the lowest
observed ratings were censored for each consumer. These
data were used to estimate the segment-level model.

Results of the First Simulation

The correlation between the true and estimated partworth
has a mean value of .979, and is significantly reduced by da-
ta censoring (p < .05); its mean value decreased from .983
with 20% censoring (unacceptable) to .975 with 60% cen-
soring. The correlation between the actual (0 or 1) and esti-
mated posterior probabilities of segment membership has an
average value of .953 across trials and is significantly af-
fected at the 5% level by the number of segments, the num-
ber of design variables, and the error distribution. The most
important among these is the error distribution; the lowest
mean correlation was .905 for the exponential distribution.
Variations in the proportion of unacceptable profiles (data
censoring), error magnitude, and sample size have no sig-
nificant effects on the correlation.

Finally, 89.3% of the product profiles were correctly clas-
sified into acceptable and unacceptable categories, with on-
ly data censoring having a significant effect (p <.05) on the
correct classification percentage, which drops to 88.1% for
60% truncation. Overall, the performance of the proposed
procedure is reasonable on this classification measure. Thus,
this initial test of the estimation procedure suggests that it
performs well in recovering the preference functions, pre-
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dicting consideration, and identifying the number and mem-
bership of market segments.

Objectives and Design of the Second Simulation

Adequate recovery of parameters notwithstanding, it is
not clear if the predictions of a traditional conjoint model
differ substantially from those of the proposed model. If the
traditional conjoint model is sufficiently robust to yield
share predictions close to those obtained from the proposed
model, then the additional complexity of the latter may not
be justifiable from a predictive standpoint, even if the pro-
posed model provides a more faithful representation of con-
sumer choice processes. Also, the segment-level tobit gains
observations by pooling across respondents, whereas the in-
dividual-level tobit is better at capturing idiosyncratic pref-
erences. It is therefore important to compare the two models
in terms of their ability to predict market size and market
share.

A second simulation was performed to address the previ-
ous issues. Specifically, our objectives are to (1) compare
the standard conjoint model with the individual- and seg-
ment-level tobit models in terms of market share predictions
and (2) assess the ability of the two (individual- and seg-
ment-level) tobit models in capturing the market penetration
achieved by all products on the market.

The number of profile evaluations (16, 32) and the pro-
portion of unacceptable products (20%, 40%, 60%) were
varied across the simulation runs. Censored preference rat-
ings for 32 product profiles described over six attributes
(four with two levels, and one each with three and four lev-
els) were collected for a commercial conjoint study. These
data were analyzed for 211 respondents through the seg-
ment-level tobit model.4

Four segments comprising 36%, 18.5%, 28%, and 17.5%
of the consumers were identified through CAIC. The esti-
mated values of the consideration probabilities (which
across segments have average values ranging from .20 to
.81), the segment part worth (b, ), and the error variances
(s ) of the segment preference functions were treated as the
simulation parameters. These parameters were used to gen-
erate segment k’s true rating for product profile j (y. k) the
selected profiles were spe(:lfxed by a simulation trial. A ran-
dom observation from N(0,s k) was added to segmem k’s
true preference score to generate consumer i’s rating yl i for
product profile j. These uncensored profile ratings were
used as the dependent variables in a least-squares regression
to estimate individual-level preference functions for the
standard conjoint model. Ten replications were used per
treatment condition, which resulted in 2 X 3 X 10 = 60 sim-
ulated data sets. The individual- and segment-level tobit
models were estimated after the appropriate percentage of
consumer responses were censored.

Nine choice sets, each comprising three items, were gen-
erated to examine the effects of various combinations of
consideration probabilities on the share predictions of the
models. The mean (across segments) values of the consider-
ation probabilities for the items in each choice set S; are as
follows:

4The details of this empirical application are available in a working
paper.
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= (.20, .24, .27}
S, = {.20, .23, 47}
S; = (.20, 47, 47}
S, = {47, 47, 51)
Ss = {.20, .24, 81}
Sg = {.20, .47, 81}
S, = {47, 47, 81}
Sg = {47, .81, .81}
Sg = {.80, .81, .81}

For each choice set, the two tobit models were used to sim-
ulate the segment penetration across products, and all three
models were used to simulate the market shares.

Market segment penetration for a choice set S; is comput-

ed as
Pi(Si) = I—H(l - Pik)»

J€§;

where p; is the consideration probability of product profile
j in segment k. Share of a product within a segment is
obtained by first using Equation 8 to compute the within-
segment unconditional choice probability and then normal-
izing this quantity by p,(S;). That is,

D Aeme(le)

ceC;
SJk(Sn) =¥ Pk(sl)
where G is the set of all possible consideration sets in S; and
s ( |c) is the conditional probability that product profile j
has the maximum utility in consideration set ¢ € C, for seg-
ment k (i.e., P[uj > uy, | # j]). The market-level penetration
and share estimates are obtained by weighting the corre-
sponding segment-level values by the mixing proportions
A Note that though presented at the segment level, this
approach for computing penetration and shares is also
applicable for individual as well as aggregate analyses.
Furthermore, this approach is preferable to either ignoring
error (as in the max-utility rule) or using probabilistic rules
that are independent of the errors (e.g., Bradley-Terry-Luce
(BTL) and logit computed using the partworth estimates).5
Finally, recall that traditional conjoint analysis assumes
Pi(S;) = 1 and only uses the set of all items c* = §; as the
consideration set. Thus, using our approach to predict share
in traditional, ratings-based conjoint amounts to computing
the probability that a product profile has the maximum util-
ity for each consumer (segment) and then averaging
(weighting) these quantities to obtain market share.

Results of the Second Simulation

The true market penetrations for S; through Sg are shown
in the first panel of Table 1 and vary from 55.6% for S, to
99.3% for Sy. The values of the normalized root mean
square deviation between the true and estimated market pen-
etration across the treatments for the individual- and seg-
ment-level tobit models also are shown in Table 1. On aver-
age, the root mean square deviation has a value of 8.85% for
the individual-level tobit model and 4.35% for the segment-
level tobit model.

5Tt is easy to show that conjoint data are unsuitable for both BTL, which
requires ratio utilities, and logit, which permits only the addition of a con-
stant term to the utilities.
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Table 1

ACCURACY OF PREDICTED MARKET PENETRATION: ROOT

MEAN SQUARES DEVIATION*

Panel 1
True Market Individual- Segment-
Choice Set Penetration Level Tobit Level Tobit
S1 55.6% 4.7% 1.8%
S2 67.3 6.4 3.1
S3 71.5 6.2 32
S4 86.2 9.9 5.2
S5 88.4 8.4 42
S6 91.9 1.5 4.1
S7 94.7 10.7 5.4
S8 98.0 12.6 6.0
S9 99.3 13.2 6.5
Panel 2
Number of Individual- Segment-
Product Profiles Level Tobit Level Tobit
32 8.0% 3.6%
16 9.7 5.1
Panel 3
Percentage of
Unacceptable Individual- Segment-
Product Profiles Level Tobit Level Tobit
20% 8.9% 3.6%
40 94 42
60 83 53

*The cell entries are the percentage values of the root mean squares devi-
ation between the true and estimated market sizes.

An analysis of variance performed on the arc-sin trans-
formed values of the normalized root mean squares con-
firms that the performance of both tobit procedures deterio-
rates with reductions in the number of product profiles eval-
uated, that the accuracy of the predictions varies across
choice sets, and that the segment-level tobit model better
approximates the actual market size (all F-tests were signif-
icant at the 1% level). Note, however, that both models per-
form reasonably well, that the market size reduction can be
large, and that either model is a substantial improvement
over current simulations that ignore market size effects.

The share prediction for the two tobit models were ob-
tained by computing the average value of the individual or
segment choice probabilities, with the latter weighting the
segment choice probabilities by the mixing proportions A,.
Across treatment conditions, the root mean squared devia-
tion between the predicted and true market shares is 32.45%
for the standard conjoint model, 12% for the individual-lev-
el tobit model, and 5% for the segment-level tobit model.

In Table 2, we show the variation in the market share pre-
dictions across the treatments for the three models. Both to-
bit models perform significantly better than the determinis-
tic simulation that ignores the effect of consideration, which
is a conclusion supported by an analysis of variance of the
arc-sin transformed values of the normalized root mean
squares (p < .01). A Tukey pairwise comparison of the arc-
sin transformed root mean squares also indicates that the
segment-level tobit model provides closer market share es-
timates than the individual-level tobit model (p < .05), espe-
cially if the data are highly censored. An analysis of the
(z-transformed) correlation between the true and estimated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Consideration Sets 371
Table 2
TRUE AND ESTIMATED SHARE: ROOT MEAN SQUARES (RMS) AND CORRELATION COEFFICIENT (CORR)
Panel 1
True Market Share Traditional Individual- Segment-
of Brand Conjoint Level Tobit Level Tobit
Choice Set 1 2 3 RMS* CORR RMS CORR RMS CORR
S1 27 .28 44 30.5% .76 11% 95 6% .98
S2 1 A3 .76 41.5 67 15 93 4 12%
S3 .04 .05 91 29.5 72 10 .96 4 1
S4 45 43 12 36.0 .76 9 97 6 99
S5 .30 .30 .40 25.5 .88 10 98 6 98
S6 H 10 .19 26.5 19 11 98 5 99
S7 .50 48 .02 325 A3 12 .96 5 1
S8 47 44 .09 425 49 12 95 6 .99
S9 31 .28 41 30.5 74 15 .76 8 .98
Panel 2
Traditional Individual- Segment-
Number of Conjoint Level Tobit Level Tobit
Product Profiles RMS CORR RMS CORR RMS CORR
32 31.9% 13 11% 93 6% .99
16 33 2 13 90 + .99
Panel 3
Individual- Segment-
Percentage of Unacceptable Level Tobit Level Tobit
Product Profiles RMS CORR RMS CORR
20% 9% 97 3% .996
40% 11 96 5 992
60% 14 .89 8 979

*The cell entries are the values of the percentage of the root mean squares deviation between the true and estimated market shares.

**All values are rounded off to the second decimal place.

market shares for the three models, which are also reported
in Table 2, supports the previous conclusions. Across treat-
ments, the correlation between the true and estimated mar-
ket shares is .73 for the deterministic conjoint simulations,
.94 for the individual-level tobit, and .99 for the segment-
level model.

In summary, the market shares predicted by the tradition-
al conjoint and tobit models are substantially different.
Which model is closer to real consumer decision processes
is an open question, but the results do not support the use of
the simpler traditional model on the basis of predictive sim-
ilarity alone. Between the individual- and segment-level to-
bit models, however, the latter appears to provide better
share predictions and marginally better market penetration
predictions-—assuming the accuracy of the proposed consid-
eration model. Overall, the segment-level model appears to
outperform the individual-level tobit model, and both pro-
duce share predictions substantially different from the tradi-
tional conjoint model.

CONCLUSION

Our analysis suggests that, as in conjoint choice experi-
ments, including the effect of consideration can improve the
predictive performance of the conjoint choice simulators
used for predicting the effect of product introductions and
changes on market share and can provide an estimate of the
potential changes in market penetration that occur as a con-
sequence of brand introductions, deletions, or reformula-
tions. Both the segment- and individual-level tobit models

perform better than the commonly used max-utility model,
which ignores consideration as well as the error component
in the preferences.

The proposed segment-level tobit model performs better
than the individual-level tobit model in large part because it
pools information across customers with similar prefer-
ences. The limited degrees of freedom for the individual-to-
bit model can result in larger standard errors for the para-
meters than those obtained with the segment-level model.
On the other hand, the segmentation itself is important, be-
cause aggregate estimation can significantly decrease the
standard errors due to the pooling of heterogeneous prefer-
ences. In this sense, the segment-level tobit model is a use-
ful extension of the existing estimation procedures because
it reflects the advantages of both segment-level conjoint
models and individual-level models that take into account
the effect of consideration.

An additional benefit of the segment-level model is that
as it pools observations across consumers with similar pref-
erences, it offers the potential for reducing the amount of da-
ta collected from a respondent. This feature is likely to be
increasingly valuable as firms begin to implement conjoint
studies with large numbers of attributes. Both respondent ef-
fort and data-collection costs can be potentially reduced by
using block designs to identify the profiles evaluated by a
consumer, with the master design itself permitting estimates
of main and interaction effects at the segment level.

There are at least six important areas that need further de-
velopment. First, further research should develop and test
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alternative consideration set measures that do not assume in-
dependence of the evaluations. Second, the more technical
issue is the development of associated predictive models
that reflect the interdependence of items in consideration
sets. Third, our model assumes the same utility function for
consideration and preference. An alternative specification is
to model the two decisions separately, in which a random
utility approach is used to model consideration (binary
choice) and a linear multiattribute model is used to represent
preferences conditional on consideration (see Maddala
1983, p. 224). Thus, it is important to extend this two-stage
model by using a latent class framework to estimate seg-
ment-level parameters. It also would be interesting to exam-
ine the robustness of our model in selecting the correct num-
ber of segments and in predicting market share as compared
to a two-stage model. Fourth, as was suggested by our for-
mulation of conjunctive and disjunctive processes, it may be
useful to develop explicit tests for alternative consideration
processes in future models. Fifth, though we have focused
largely on the problem of incorporating consideration sets
into full-profile rating-based conjoint analysis, it would be
interesting and useful to compare our model to choice-based
conjoint models (e.g., DeSarbo, Ramaswamy, and Cohen
1995; Louviege and Woodworth 1983), especially because
these models permit the specification of a “choose-none” al-
ternative. Sixth, we do not assess if the proposed model
makes better share predictions than the standard conjoint
model in a real market situation. A strong test would be to
compare the predictions of the two models with actual
choice. A weaker test would be to compare them on the ba-
sis of the prediction of revealed brand choices.
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