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THE MINIMUM SATISFIABILITY PROBLEM*
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Abstract. This paper shows that a minimization version of satisfiability is strongly NP-hard, even if each
clause contains no more than two literals and/or each clause contains at most one unnegated variable. The
worst-case and average-case performances of greedy and probabilistic greedy heuristics for the problem are
examined, and tight upper bounds on the performance ratio in each case are developed.
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1. Introduction. The satisfiability problem is perhaps one of the most well-studied
problems in logic theory. Given a set V of Boolean (true/false) variables and a collection
D ofclauses over V, the satisfiability problem is to determine ifthere is a truth assignment
that satisfies all clauses in D. The problem is NP-complete even when every clause in D
has at most three literals (Even, Itai, and Shamir [2]). The maximum satisfiability
(MAXSAT) problem is an optimization version of satisfiability that seeks a truth assign-
ment to maximize the number of satisfied clauses (Johnson [5]). The MAXSAT problem
is NP-hard even when every clause contains at most two literals (Garey, Johnson, and
Stockmeyer [4]).

In this paper, we consider the following complement of the MAXSAT problem.
Given a set U of Boolean variables and a collection C of clauses over U, find a truth
assignment that minimizes the number of satisfied clauses. We call this the minimum
satisfiability (MINSAT) problem. The existence of a truth assignment for the MINSAT
problem that satisfies no clause can be trivially determined because such an assignment
exists only if each variable or its negation appears in no clause. Similarly, if each clause
contains one literal, the solution to the MINSAT problem is readily obtained by setting
a variable true if it occurs in less clauses than its negation and setting the variable false
otherwise. However, we show that, in general, the MINSAT problem is NP-hard, even
if every clause contains no more than two literals. We then consider two heuristics for
solving the problem. The first is a greedy heuristic similar to a procedure described by
Johnson [5] for the MAXSAT problem. The second is a probabilistic greedy heuristic
similar to an algorithm by Kohli and Krishnamurti [6] for the MAXSAT problem. Like
the greedy heuristic, the probabilistic greedy heuristic selects a truth assignment one
variable at a time. Unlike the greedy heuristic, the probabilistic greedy heuristic introduces
a chance element in selecting a truth assignment, forcing a trade-off between the value
of a nonoptimal solution and the probability of its selection. We characterize the worst-
case and average-case performances of the two heuristics and show that, while the prob-
abilistic greedy heuristic can select an arbitrarily bad assignment in the worst case, on
average it satisfies no more than twice the optimal number of clauses, regardless of the
data-generating distribution. On the other hand, if each clause contains at most s literals,
the greedy heuristic satisfies no more than s times the number of clauses satisfied by the
optimal assignment. However, the average performance of the greedy heuristic depends
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upon the minimum probability with which it selects an optimal assignment at any step.
As this probability decreases (increases), the average performance of the greedy heuristic
tends to the worst-case (optimal) solution.

In 2 we show that the MINSAT problem is NP-hard. In 3 we formally describe
the greedy heuristic and analyze its worst-case and average-case performances. In 4 we
analyze the average-case performance of the probabilistic greedy heuristic. We derive
tight upper bounds on the performance ratio in each case. In 5 we extend our results
to Horn formulae, in which each clause has no more than one unnegated variable.

2. Complexity. We show in Theorem that the following decision problem, called
the 2-MINSAT problem, in which each clause contains exactly two literals, is NP-com-
plete. It follows that the MINSAT problem is NP-hard if each clause contains at least
two literals.

2-MINSAT.
Instance. Set U ofk variables, collection C ofn clauses over U such that each clause

c e C has cl 2 literals, positive integer n* < n.
Question. Is there a truth assignment for U that satisfies no more than n* clauses

in C?
In Theorem 1, we transform the following 2-MAXSAT problem, which is NP-

complete (Garey and Johnson [3, pp. 259-260]), to the 2-MINSAT problem.

2-MAXSAT.
Instance. Set V of h variables, collection D of clauses over Vsuch that each clause

d e D has dl 2 literals, positive integer l* < l.
Question. Is there a truth assignment for V that satisfies at least l* clauses in D?
THEOREM 1. The 2-MINSAT problem is NP-complete.
Proof Given a yes instance of the 2-MINSAT problem, we can simply count the

number of satisfied clauses and verify a yes instance in polynomial time. Hence the 2-
MINSAT problem is in NP. To show that it is NP-complete, we transform the 2-MAXSAT
problem to the 2-MINSAT problem as follows.

Let d qa / qb be a clause in an instance of the 2-MAXSAT problem, where qa
and qb denote either variables in V or their negations. For each clause d e D, define a
variable Wd. Let W { wall d e D}. For each clause d qa / qb of 2-MAXSAT, define a
pair of clauses Cld, C2d C for 2-MINSAT, where

ca q-a V wa, C2d q-b V ffd.
Let C {ca, c2ald D}. Let n* 2l- l*. Thus, given an instance of the 2-MAXSAT
problem defined over the set V of h variables and the set D of clauses, we construct in
polynomial time an instance of the 2-MINSAT problem defined over the set U V tO
Wof k h + variables and the set C of n 2l clauses. We now show that no less than
l* clauses can be satisfied by a truth assignment for 2-MAXSAT if and only if no more
than n* clauses can be satisfied by a truth assignment for 2-MINSAT.

Suppose there exists a truth assignment for 2-MAXSAT that satisfies m > 1" clauses.
Clause d qa V qb is not satisfied by an assignment if and only if both qa and qb are
false, in which case, both ca and c2a are satisfied. On the other hand, clause d is satisfied
if and only if at least one of qa or q6 is true. If both qa and q are true, then any truth
assignment for wa satisfies exactly one of cla and c2a. If qa is true and q6 is false, then a
false assignment for wa satisfies c2d but not ca. Similarly, if qa is false and q is true, then
a true assignment for wa satisfies ca but not c2a. Thus, if clause d is satisfied, a suitable
truth assignment for wa ensures that only one of ca or c2a is satisfied. Consequently, if a
truth assignment for 2-MAXSAT satisfies exactly m > 1" clauses, then a suitable truth
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assignment for each Wd Wensures that exactly m + 2(l- m) 2l- m < 2l- l* n*
clauses are satisfied in the corresponding instance of2-MINSAT. Hence every yes instance
of the 2-MAXSAT problem corresponds to a yes instance of the 2-MINSAT problem.

Now suppose that a truth assignment for the 2-MINSAT problem satisfies no more
than n* 2l- l* clauses. Consider the pair of clauses Cd a / Wd and C2d
Any assignment of wa ensures that at least one of these two clauses is satisfied. Let y
denote the number ofpairs Cld, C2d, d D, where exactly one clause in the pair is satisfied
by a given assignment for the 2-MINSAT problem. Without loss of generality, let Cld
a V Wd be the clause that is not satisfied. Then qa must be true, which implies that clause
d qa /qb must be satisfied. Hence, at least y clauses in D must be satisfied. Since there
are pairs Cld, C2d, there are y such pairs in which both clauses are satisfied. Thus,
the number of clauses in C that are satisfied is 2(l y) + y < n* 2l l*, which implies
that y > l*. Thus, if n* 2l l* clauses in C are satisfied for the 2-MINSAT problem,
then at least l* clauses in D are satisfied for the 2-MAXSAT problem. Hence, every yes
instance of the 2-MINSAT problem corresponds to a yes instance of the 2-MAXSAT
problem. []

3. The greedy heuristic. Let u, u2, uk denote an arbitrary ordering of the k
variables in U for the MINSAT problem. Given any ordering of the variables, the greedy
heuristic sequentially selects an assignment for each variable to satisfy the smallest number
of additional clauses. We begin by describing the greedy heuristic more formally below.

Initialization (Step 1). Let C C denote the set of all clauses in an instance ofthe
MINSAT problem. Let Cl(Ul) denote the subset of clauses in C that contain variable
u. Let CI(/I) denote the subset of clauses in C that contain variable ff. Let xl and y
denote the number of clauses in sets C(Ul) and C(ff). At the first step, the greedy
heuristic selects the partial assignment u (i.e., assigns u to be true) ifx < y. Otherwise,
it selects the partial assignment ffl (i.e., assigns u to be false). All clauses satisfied by
the partial assignment are eliminated. Let C2 denote the set of clauses not satisfied at the
end of Step 1. Thus,

C2
[CI\CI(,I)

if U is selected at Step 1,

if ff is selected at Step 1.

Recursion (Step j). Let C denote the set of clauses that are not satisfied at the end
of Step j- 1. Let Cj.(u.) denote the subset of clauses in C that contain uj. Let Cj()
denote the subset of clauses in Cj that contain ffj. Let xj and y denote the number of
clauses in sets Cj(uj) and C(). At Step j, the greedy heuristic includes u in the partial
assignment (i.e., assigns u to be true) if xj < y. Otherwise, it includes tT in the partial
assignment (i.e., assigns u to be false). All clauses satisfied by the partial assignment are
eliminated. Let Cj+ denote the set of clauses not satisfied at the end of Step j. Thus,

C\Cj(uj) if uj is selected at Step j,
Cj-+ {

[C\C() if . is selected at Step j.

Termination Step. Stop if C+ or ifj k.
Let c;I denote the number of literals in clause i" Let s maxil cil denote the

maximum number of literals in any clause. Let r denote the performance ratio for the
greedy heuristic, i.e., the ratio ofthe number ofclauses satisfied by the assignment selected

Note that we assign uj to be false if xj yj. This simplifies the subsequent worst-case analysis of the
heuristic, where we assume, without loss of generality, that the optimal solution is to set each variable true.
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by the greedy heuristic to the number of clauses satisfied by an optimal assignment.
Theorem 2 shows that the value of the performance ratio r is bounded from above by s.
As there are no more than k literals, s < k, and it follows trivially from Theorem 2 that
r<k.

THEOREM 2. r < sfor the greedy heuristic.
Proof. Without loss of generality, let each variable uj e U be true in the optimal

assignment. Let C*
___
C denote the subset of clauses in C that are satisfied if variable uj

is true. Let C* LJj C denote the subset ofclauses satisfied by the optimal assignment.
Let mj denote the number of clauses in the set C*. Let m denote the number of clauses
in set C*. At Step j, the greedy heuristic satisfies zj min(xj, yj} clauses in set Cj. Hence
the total number of clauses satisfied by the greedy heuristic is Y= zj. Now mj > xj,
which implies that

k k k

j=l j=l j=l

Also,
k

E m= E Icl <ms.
j= ci C*

Thus, an upper bound on the performance ratio of the greedy heuristic is

Y= zj ms
r= <_=s.

m m

To prove that the bound in Theorem 2 is tight, consider the following problem
instance in which there are s variables and s + clauses:

C tt V tt2 V V tts,

Ci=U-- for2<i<s+ 1.

Each variable uj, < j < s is true in the optimal assignment, which satisfies only one
clause c. The greedy heuristic sets each variable uj false, < j < s and satisfies s clauses,
c2, c3 Cs +. Hence, r s. Note that, in this worst-case example, a reordering of the
variables has no effect on the performance of the greedy heuristic. This example also
suffices to show that, given the solution selected by the greedy heuristic, an interchange
heuristic that seeks to maximally improve the solution value by replacing a literal by its
negation does no better than the greedy heuristic alone.

In [5] Johnson suggests weighted greedy heuristics for the MAXSAT problem, the
simplest of which ensures a worst-case error of 1/2 when each clause has no less than s
literals. An analogous weighted greedy heuristic for the MINSAT problem is as follows.
At Step j, the greedy heuristic assigns

uj true if levi > ci[,
ci (C)(uj) ci Cj(a)

uj false otherwise.

The intuition behind the weighting is that a literal should be selected if the unsatisfied
clauses that contain its negation are less likely to be satisfied by subsequent assignments
to variables. However, this weighting scheme does not improve the worst-case performance
of the greedy heuristic for the MINSAT problem. To illustrate, consider the following
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S + clauses defined over 2s variables uj, _< j < 2s 1"

1 Ul V /’/2 V V Us,

Ci H-’i-1 V H-s+I V s+2 V V /2s-l 2<i<s+l.

Each variable uj, < j < 2s is true in the optimal assignment, which satisfies only
one clause, Cl. At each step j of the greedy heuristic, an equal number of clauses are
satisfied by setting uj true or false. Regardless of the truth assignment for variable u at
Step j, there are an equal number of literals in each remaining (unsatisfied) clause. Con-
sequently, any weighting of the clauses does not affect the greedy solution, which in the
worst case assigns a "false" value to each variable u, < j < 2s and satisfies the s
clauses c2, c3, cs+. Note, however, that the ordering of the variables is critical to
this worst-case example. Thus, the performance ratio for this weighted greedy heuristic
for the MINSAT problem is no better than s. Indeed, other weighting schemes (e.g., a
scheme similar to Johnson’s [5] exponential weighting of clauses) also do not improve
the worst-case performance of the greedy heuristic.

We next examine the average performance of the greedy heuristic. Let Pk denote
the MINSAT problem defined over the set U of k variables. Let Pk-+ denote the MIN-
SAT problem at Stepj of the greedy heuristic, where problem Pk-j / is defined over the
subset of unassigned variables u, uj.+,..., uk. Following Kohli and Krishnamurti [6],
we assume that there is a probability pj. with which the truth assignment selected for a
variable at step j of the greedy heuristic appears in an optimal truth assignment for
problem Pk-/ . We assume that the pj are independent across the steps of the greedy
heuristic. However, we do not assume either the independence ofthe literals across clauses,
or any specific data-generating distribution.

Let rj denote the performance ratio of the greedy heuristic for problem P. Let E(r)
denote the expected value of r. Theorem 3 characterizes the lower bound on E(rk) as a
function of k and p min j k P.

THEOREM 3. E(rk) < (1 p)k/pfor the greedy heuristic.
Proof Without loss of generality, we assume that the optimal solution is to set

variable u true for all j, < j < k. We prove the theorem by induction on k, the number
of variables.

For k 1, the greedy heuristic chooses the optimal assignment and sets u true.
Hence, p p and E(rk) 1.

Let > be an integer such that

( p)*
E(rk) <_ for k l.

We show below that

E(r) <_
(1

fork= l+ 1.
Let Zl min {x, y }. If the greedy heuristic sets Ul true at Step 1, the value of the

optimal solution to problem Pk- is rn Zl, where rn is the value ofthe optimal solution
to problem Pk. However, if the greedy heuristic sets u false at Step 1, the value of the
optimal solution to problem Pk-1 is bounded from above by m. In either case, after Step
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t, the greedy heuristic solves an l variable MINSAT problem. Thus,

E(rt+ ) <- (z + p E(rt)(m z) + (1 -p)E(rt)m)
m

z--[ (1 -pE(rt)) + E(rt) _< + E(rt)(1 -Pl).
m

Let p* mini 2 Pi. By the induction hypothesis,

Thus,

E(r3 <-
(1 p,)t

p, (1 p).

py
_< and 1-p_< l-p,

Let p min {p*, p }. Then

(1 p*
p*

which implies that

E(rl+l)< q_(1--(1- p)t)( _p)=
1- (1- p)t+

P P

Note that the bound derived in Theorem 3 approaches as p approaches and that
it approaches k as p approaches zero. As k tends to infinity, the bound on the average
performance ratio for the greedy heuristic approaches 1/p.

To prove that the bound derived in Theorem 3 is tight, consider the following
example with k variables and n (k + 1)N + k clauses. The first (k + 1)N clauses are

U / U2 / V Uk for <_i<N

forN+ <i<2N,

for2N+ <i<3N,

forkN+ < < (k + 1)N.

The remaining k clauses are probabilistically generated, each clause containing exactly
one of the k distinct variables in negated form with probability p and in unnegated form
with probability p. Specifically, clause j, < j < k is given by

C(k + 1)N+j ] with probability P,

uj with probability p.

Each variable uj, <_ j <_ k is true in the optimal assignment. For N > k, the expected
performance ratio of the greedy heuristic can be verified to approach from below the
value

p + 2(1 p)p + 3(1 p)Zp + + (k 1)(1 p)k- 2p + k(1 p)k- (1 p)k.
P

Observe that the bound on the average performance ofthe greedy heuristic depends upon
the value of p, which can vary, depending upon the data-generating distribution. If, as
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in the above example, the value ofp can be made close to zero, the average performance
of the greedy heuristic can be made to approach its deterministic worst-case bound. In
the next section, we examine a probabilistic greedy heuristic that, regardless of the data-
generating distribution, never satisfies more than twice the number of clauses satisfied
by an optimal assignment for the MINSAT problem.

4. Probabilistic greedy heuristic. The proposed probabilistic greedy heuristic differs
from the preceding greedy heuristic by the introduction of a probabilistic element in the
choice of a truth assignment for each variable. In particular, at Step j, the probabilistic
greedy heuristic sets u. to be true with probability qj yj/(x + y) and sets u. to be false
with probability q. Thus, the probability of setting u. true increases as x/y decreases
and is only ifx 0, i.e., if no additional clauses are satisfied by setting u true at Step
j of the heuristic. However, if the number of additional clauses satisfied is greater when
uj is true than when it is false, then u is set true with a smaller probability than it is
set false.

The following theorem shows that, on average, the number of clauses satisfied by
the probabilistic greedy heuristic is no larger than twice the number of clauses satisfied
by the optimal assignment.

THEOREM 4. E(r) < 2 for the probabilistic greedy heuristic.
Proof Without loss of generality, assume that variable u is true in an optimal

assignment. We prove the theorem by induction on the number of variables k.
For k 1, the greedy heuristic sets u true with probability q y/(x + y) and

sets u false with probability q. The expected number of satisfied clauses is

y x 2xlY1qx + (1 q)y x+ y .
x + y x + y x + y

As u is true in the optimal assignment, the value of the optimal solution is rn x.
Thus, for k 1, the value of the expected performance ratio for the probabilistic greedy
heuristic is

2xy 2y
E(r) < 2.

x(x + y) x + y
Let >_ be an integer such that

E(r) < 2 for k l.

We show that

E(r) < 2 fork=l+l.

If the probabilistic greedy heuristic selects u at Step 1, the value of the optimal
solution at the second step of the greedy heuristic is rn x, where rn is the optimal
solution value of the k variable MINSAT problem P. However, if the greedy heuristic
selects ff at Step 1, the value of the optimal solution at the second step is bounded from
above by m. Hence, the expected number of clauses satisfied by the probabilistic greedy
heuristic is bounded from above by

q(x + E(rt)(m x)) + (1 q)(y + E(rt)m).

As E(rt) _< 2 by the induction hypothesis, the value of the above expression is no greater
than

ql(x + 2(m x)) + (1 q)(y + 2m).

Thus, an upper bound on the expected performance ratio for the probabilistic greedy
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heuristic is

E(r+ ) <- (q(x + 2(m Xl)) + (1 q)(y + 2m))
m

--(2m q(xl + yl) + y) 2. l--1
rn

To prove the above bound is tight, consider the following example with k 2
variables and n N + clauses. Let

Cl /1 V /’/2,

C2 b/l

c=u-2, 3<i<N+ l.

The optimal assignment sets both u and u2 true and satisfies one clause, cl. The prob-
abilistic greedy heuristic sets u true or false with equal probability (= 1/2) at its first step.
If it sets u true, then it obtains the optimal solution, setting u2 true with probability
at its second step. Otherwise, at the second step, it

(i) sets u2 true with probability (N- 1)/N, satisfying 2 clauses, c and c2, and
(ii) sets u2 false with probability 1/N, satisfying N clauses, c2, c3, c4 CN+.

Hence the expected performance ratio (= expected number of satisfied clauses) for the
probabilistic greedy heuristic is

As N tends to infinity, the value of this expression approaches from below the bound
derived in Theorem 4. Note that k 2 in this example and that the optimal clause cl
contains s 2 variables. Thus, unlike the worst-case and average performance bound
for the (deterministic) greedy heuristic, the bound on the average performance of the
probabilistic greedy heuristic does not depend on k or s.. Hr dses. An important special case ofthe satisfiability problem occurs when
each clause contains no more than one unnegated variable. Such clauses are called Horn
clauses. The satisfiability problem defined over a set of Horn clauses can be solved in
linear time (Dowling and Gallier [1 ]).

We show below that the MINSAT problem continues to be NP-hard even if it is
restricted to a set of Horn clauses. In particular, we transform the 2-MINSAT problem
to a MINSAT problem in Horn clauses.

Let the 2-MINSAT problem be defined over the set V of h variables and the set D
of clauses. We transform this to a MINSAT problem in Horn clauses defined over a
set U of k h + variables and a set C of n 3l clauses. Let d q V q be a clause in
an instance of the 2-MINSAT problem, where q and q denote either variables in V or
their negations. For each clause d e D, define a variable we. Let W { we d e D}. The
set U is defined to be V U W. For each clause d q V qo of 2-MINSAT, define three
Horn clauses ce, ca, and c3e e C, where

ca= qa V if’a, ca= qb V ff, c= w.
Ifclause d is satisfied by a truth assignment, then the same truth assignment for variables
q and q, and a suitable truth assignment for variable we, satisfies two (the minimum
that must be satisfied) of the above three clauses. If clause d is not satisfied by a truth
assignment, the same truth assignment for variables q and q, and a suitable truth as-
signment for variable w satisfies one (the minimum that must be satisfied) of the above
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three clauses. Based on the above observations and using an argument similar to that in
Theorem 1, we can show that no more than l* clauses can be satisfied by some truth
assignment for 2-MINSAT if and only if no more than + l* clauses can be satisfied by
a truth assignment for the MINSAT problem in Horn clauses.

We can verify that the worst-case and average-case bounds for the greedy heuristic
and the probabilistic greedy heuristic remain unchanged for Horn clauses and that these
bounds continue to be tight. Finally, we note that the MAXSAT problem in Horn clauses
is also NP-hard (see the Appendix). Thus, while the satisfiability of Horn clauses can be
assessed in linear time, the identification of assignments that maximize or minimize the
number of Horn clauses satisfied are NP-hard problems.

Appendix. Complexity of MAXSAT for Horn clauses. We show below that the
MAXSAT problem comprised of only Horn clauses is NP-hard. In particular, we trans-
form the 2-MAXSAT problem to a MAXSAT problem in Horn clauses.

Let the 2-MAXSAT problem be defined over the set V of h variables and the set D
of l clauses. We transform this problem to a MAXSAT problem in Horn clauses, defined
over a set U of k h + 2l variables and a set C of n 5l clauses. Let d qa V qb be a
clause in an instance ofthe 2-MAXSAT problem, where qa and qb denote either variables
in V or their negations. For each clause d e D, define two new variables Wld, W2d. Let
W { Wld, W2dl d D}. The set U is defined to be V t_l W. For each clause d qa / qb

of 2-MAXSAT, define five Horn clauses Cld, C2d, Csd C, where

cla qa V ffla,

Czd qb / ff"2d,

C3d a’id V

C4d Wld,

C5d W2d.

If clause d is satisfied by a truth assignment, the same truth assignment for variables qa
and qb and a suitable truth assignment for variables Wld and W2d satisfy four (the maximum
that can be satisfied) of the above five clauses in MAXSAT. If clause d is not satisfied
by a truth assignment, the same truth assignment for variables qa and qb and a suitable
truth assignment for variables Wd and W2d satisfy three (the maximum that can be satisfied)
ofthe above five clauses. Based on the above observations and using an argument similar
to that in Theorem 1, we can now show that no less than l* clauses can be satisfied by
some truth assignment for 2-MAXSAT if and only if no less than 3l + l* clauses can be
satisfied by a truth assignment for the MAXSAT problem in Horn clauses.
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