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AVERAGE PERFORMANCE OF HEURISTICS FOR SATISFIABILITY*

RAJEEV KOHLI]" AND RAMESH KRISHNAMURTIzl:

Abstract. Distribution-free tight lower bounds on the average performance ratio for random search, for a
greedy heuristic and for a probabilistic greedy heuristic are derived for an optimization version of satisfiability.
On average, the random solution is never worse than ofthe optimal, regardless ofthe data-generating distribution.
The lower bound on the average greedy solution is at least of the optimal, and this bound increases with the
probability of the greedy heuristic selecting the optimal at each step. In the probabilistic greedy heuristic, prob-
abilities are introduced into the search strategy so that a decrease in the probability of finding the optimal
solution occurs only if the nonoptimal solution becomes closer to the optimal. Across problem instances, and
regardless of the distribution giving rise to data, the minimum average value of the solutions identified by the
probabilistic greedy heuristic is no less than of the optimal.
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1. Introduction. This paper examines the average performance of random search,
ofa greedy heuristic and ofa probabilistic version ofa greedy heuristic for an optimization
version of satisfiability. We derive tight lower bounds on the average performance of
each heuristic. The analysis assumes no specific data-generating distributions and therefore
is valid for all distributions.

A variety of analytic approaches have recently been pursued to analyze the average-
case performance of heuristics. These include representing the execution of algorithms
by Markov chains (Coffman, Leuker, and Rinnooy Kan 5 ), obtaining the performance
bound for a more tractable function that dominates the performance of the heuristic for
each problem instance (Bruno and Downey [3 ], Boxma [2 ]), and obtaining the per-
formance bound for a simpler, more easily analyzed heuristic which dominates the heu-
ristic of interest for each problem instance (Csirik et al. [6 ). Bounds that hold for most
problem instances have also been employed to obtain asymptotic bounds for the average-
case performance of various heuristics (Bentley et al. [1] and Coffman and Leighton
4 ]). A number of results from applied probability theory have been used for average-

case analyses by Frenk and Rinnooy Kan 10], Karp, Luby, and Marchetti-Spaccamela
14 ], Shor 17 ], and Leighton and Shor 15 ]. The vast majority of these approaches

begins by assuming independent, identically distributed data from a given density function.
The subsequent analyses are often difficult, and one rarely finds an explicit formula for
the quantity of interest. One reason for this is that conditional probabilities arise in the
analyses, and after a sufficient number of steps, the conditioning can make the analyses
formidable. Appropriate choice of distributional assumptions also is difficult, as are in-
ferences regarding the robustness of results for a given distribution to other distributions.

A well-known algorithm for solving satisfiability is the Davis-Putnam Procedure
(Davis, Logemann, and Loveland 7 ). Goldberg, Purdom, and Brown 11 ], and Franco
and Paull [9] have analyzed the average-case complexity of variants of this procedure
for solving satisfiability. Johnson 13 considers an optimization version of satisfiability,
called maximum satisfiability, proposes two heuristics for solving the maximum satisfi-
ability problem, and proves tight worst-case bounds on the performances of these heu-
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ristics. One of these heuristics is the greedy heuristic that we use in this paper. If each
clause contains at least variables, Johnson [13 shows a tight worst-case bound of
l/(l + for the greedy heuristic. Since we consider the most general optimization version
of satisfiability, where unary clauses (clauses with just one variable) are allowed, this
bound reduces to 1/2. As one ofour results, we derive this bound using a different approach.
Lieberherr and Specker 16 provide the best possible polynomial-time algorithm for the
maximum satisfiability problem where unary clauses are allowed, but the set of clauses
must be 2-satisfiable, i.e., any two ofthe clauses are simultaneously satisfiable. The lower
bound obtained for their algorithm is 0.618.

In the present analyses, we consider the lower bound of the average performance
making no assumption regarding the data-generating distribution. For two of the three
procedures (random search and the probabilistic greedy heuristic), we also make no
assumption regarding the independence of data. For the third (the greedy heuristic), we
assume independence, but only in a certain "aggregate" sense, which we discuss later.
Each ofthe bounds we obtain is tight. Our central results are as follows. Random search,
which has an arbitrarily bad performance in the worst case, provides solutions that, on
average, are never worse than 1/2 of the optimal. The greedy heuristic can potentially
improve on this performance. Although the lower bound on its average performance
ratio can be 1/2 of the optimal, this lower bound increases with the probability of the
heuristic selecting the optimal at each step. A probabilistic algorithm related to the greedy
heuristic is then described. The probabilities are introduced into the search strategy so
that a decrease in the probability of finding the optimal solution occurs only if the non-
optimal solution becomes closer to the optimal. The search probabilities are not fixed
a priori but exploit the structure ofthe data to force a trade-off for every problem instance.
Across problem instances, and regardless of the distribution giving rise to the data, the
average performance of the algorithm is never less than of the optimal.

Section 2 describes the maximum satisfiability problem, the random search pro-
cedure, and obtains a tight lower bound on its average performance. Section 3 introduces
the greedy heuristic, derives its worst-case bound, and a tight lower bound on its average
performance. Section 4 describes the probabilistic greedy heuristic and derives a tight
lower bound on its average performance.

2. The Msat problem. Consider the following optimization version of satisfiability:
given n clauses, each described by a disjunction ofa subset ofk variables or their negations,
find a truth assignment for the variables that maximizes the number of clauses satisfied.
The above problem, which is the most general version of maximum satisfiability, is NP-
complete (Johnson 13 ). We call this Msat.

We use the following tabular representation of Msat. For a problem involving n
clauses and k variables, construct a table Tk with n rows and 2k columns. The ith row
is associated with clause i, 1, n. A pair of columns, uj, z, is associated with the
jth variable, j 1, k. Let tij denote the entry in the cell identified by row and
column u, and let ti denote the entry in the cell identified by row and column z. For

1, n,j 1, k, define

o 1, ti 0, if clause contains variable j,

ti O, tij 1, if clause contains the negation of variable j,

o O, ti 0, if clause contains neither variable j nor its negation.

A truth assignment for satisfiability results in the jth variable being assigned a T
(True) or an F (False), j 1, k. This corresponds to selecting either column u
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(if the jth variable is assigned a T) or (if the jth variable is assigned an F), j
1, k, for Msat. Consequently, selecting uj or tb for each j, j 1, k, such that
the maximum number of rows in these columns have at least one 1, corresponds to
solving Msat for Tk; i.e., finding a truth assignment that maximizes the number ofclauses
satisfied.

Let T(uk)(T(k)) denote the table obtained by deleting from T all rows with a
in column u(), and deleting both u and zTk. Let the resulting table be denoted T_ 1.

That is,

if column ug is chosen from Tk,
T_

T(zTk), if column zTg is chosen from T.

In general, let T( uj)( T(fla)) denote the table obtained by deleting from T all rows
with a in column uj(zT), and deleting both uj and z, j 1, k. Let the resulting
table be denoted T_ 1. That is,

T(u), if column uj. is chosen from T,
T_

T(ff), if column ff is chosen from Tj..

Let xj denote the number of ’s in u and let nj denote the total number of ’s across
columns uj and in table T, j 1, k. Without loss of generality, assume that the
columns u, j 1, k, comprise the optimal solution for Msat described by T. Let
m denote the optimal solution to Msat described by Tk. In general, let m denote
the value of the optimal solution to Msat described by Tj., j 1, ..., k. Also, let
a() denote the value of the optimal solution to Msat described by T(uj)(T()), j
1, ..., k. That is,

a, if column u is chosen from T,
m_

Tj., if column ffj is chosen from T.
Example 1. Consider a problem consisting of three variables Xl, x2, and x3

and seven clauses given by
xl + xz, and 1. Table T3 for this problem is given in Fig. 1.

For the table T3 above, table T(u3) is obtained by deleting rows and 4 and the
columns u3 and if3. Table T2 T(u3) is given in Fig. 2. Similarly, we can obtain table
T(if3) by deleting rows 2, 3, and 5 and the columns u3 and if3. Table T2 T(ff3) is given
in Fig. 3.

Consider a random procedure that selects column u or with probability 1/2, j
1, -.., k. The procedure can easily be seen to select an arbitrarily bad solution in the

Row u3 ff

0
2 0
3 0
4 0
5 0
6 0 0
7 0 0

u2 =
0
0

0
0 0

0
0

0 0

FIG. 1. Table T3 for Example 1.
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Row u2 if2

0
2 0
3 0
4 0
5 0 0

0
0

o o
o

0

FIG. 2. Table T2 T( u3) for Example 1.

worst case. But how poorly does it do on the average? That is, if any data-generating
mechanism is used to construct instances of Msat, and if for each problem instance a
random solution is selected, what is the average value ofthe ratio ofthe random solution
value to the optimal solution value? Theorem shows that it is never less than 1/2. That
is, if J is the random solution to Msat described by Tk, then the ratio rk
fk/mk has an expected value E[ rk] >= 1/2. We begin by proving the following lemma.

LEMMA 1. aj mj Xj and 5. >= max { 0, mj nj }, j 1, k.
Proof. As uj, the optimal column for Msat described by table T, has xj l’s, the

optimal solution value to Msat described by table T(uj) is, trivially, aj mj xj. Also,
xj <= nj (by definition), so that mj xj >= mj nj. Of the mj xj rows with at least one
in T(uj), at most nj xj can also have ’s in column z. of T. Hence the Msat problem

described by T() has an optimal solution with value no smaller than mj xj

(nj xj) mj nj. As nj can exceed mj, and as the value of the optimal solution to
Msat described by T is nonnegative, >_- max { 0, mj nj }, j 1, k. E]

THEOREM 1. E[ rk] >= 1/2 for all k.
Proof. We prove the theorem by induction on the number of variables.
Base case. E[ r -> .
As each column of Tl is selected with probability 1/2, the expected value ofthe random

solution is

n
E[rl]=-Xl +(n -x) =--.

As the optimal solution value, corresponding to u, is ml Xl rt, the expected per-
formance ratio is

E[rl] (n/2)>_ (n/2)
x n 2"

Induction hypothesis. E[ rt] >= 1/2 for all _-< k 1.
Induction step. To prove E[ rk] >= 1/2.

Row U2 /2

0
2 0 0
3 0
4 0 0

0
o

o
0

FIG. 3. Table T2 T(if3) for Example 1.
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By the induction hypothesis, the random procedure applied to table T( Uk)(T(ffk))
has an expected solution value no smaller than 1/2a( 1/2/). Hence the random solution,
for table T, has an expected solution

E[JI> x+- + - nk x+-As a m x by Lemma 1,

mk Xk + nk--Xk+E[JI > xk+ 2 -Also, 6 >_- max { 0, m- n } by Lemma 1. Consider m > nk. Then / >_- m- n > 0,
and the above inequality for E[J] simplifies to

mk Xk + nk-- Xk +E[A] >_- xk+ 2 E 2

or

mk n_L xE[ Jl >=---t 4 4

The right-hand side attains the least value at x n, at which value

and

E[
E[ rk] >_- ".

mk 2

Now consider m _-< n. Then d >= 0 (>mk- n), and hence

1( mk--X)E[A]>- x+ 2 +-(n-x).
Simplifying,

mk nk XkE[J] >=--+ 2 -"
Since mk <= nk, the fight-hand side attains the least value at x nk mz:, at which value

mkE[j] >

and E[ r] E[f]/mk >= 1/2.
The lower bound on the average value E[ r] of r, is tight and is illustrated by the

example in Fig. 4. Assume that the data pattern shown in the figure is generated each
time; i.e., the data-generating mechanism presents the same pattern with x ’s in column
u2 and (n2 x) ’s in column u,, where x can range from to n2. The probability of a
particular value of x for a problem instance is determined by the distribution of the
random variable x. The average performance of the random solution is the average of
the performance ratio across the four solutions that can be selected, each solution being
selected with probability . The average performance ratio can be verified to be 1/2, which
is the lower bound on the expected performance ratio for random search.
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Row u2 2

0

x o
x+l 0 0

n2 0 0

ul

0 0

o o
o

o

FIG. 4. Worst case examplefor random procedure, x is a discrete random variable rangingfrom to n2.

3. The greedy heuristic. Random search, of course, appears to be a simplistic pro-
cedure for solving the problem. A greedy heuristic that selects columns based on the
number of ’s they contain is presented next (Johnson 13]), and its worst-case perfor-
mance and average performance are analyzed. We begin by describing the greedy heuristic.

Initialization. Order the columns of Tk so that nk, the number of ’s across u and
u-, is largest among all pairs of columns ut, ill, 1, k (the ordering plays no role
in the analysis and is used merely to detect the termination of the algorithm efficiently).
Ifx >= n- x, select column uk; otherwise, select column ff. Eliminate u and ff, and
all rows with a in the chosen column. Note that the resulting table is denoted by Tk.- 1.

That is,

if column uk is chosen from T,
T_

T(ff), if column ff is chosen from Tk.

Recursion. Order the columns of Tj and rename the variables ul through uj so that
nj, the number of ’s across uj and , is largest among all pairs of columns Ul, ffl,
1, j. If xj >= nj xj, select column uj; otherwise, select column . Eliminate uj and, and all rows with a in the chosen column. Again, note that the resulting table is
denoted by Tj_ 1. That is,

T(uj), if column uj is chosen from Tj.,
T_

T(/j), if column ffj is chosen from T.
Termination. Stop if T contains no ’s, or ifj 0.
Note that

aj,

denotes the value of the optimal solution to Msat described by Tj_ l, j 1, k. Let
j) denote the value ofthe greedy solution, and let rj fj/mj denote the performance ratio
of the greedy heuristic for Msat described by Tj. Theorem 2 shows that the worst-case
bound for the greedy heuristic is 1/2 of the optimal. We also show by an example that this
lower bound on the performance of the greedy heuristic is tight. We begin by proving
the following lemma.

LEMMA 2. mj_ >= mj- nj, j 1, k.
Proof. By Lemma 1, aj mj xj. As xj <= nj (by definition), aj >= mj nj. Also,

> max { 0, mj nj } >= mj nj by Lemma 1. As mj_ l, the value ofthe optimal solution
to Msat described by Tj_ l, is either aj or ., it follows that mj_ - mj rlj. i-1
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THEOREM 2. rk >= 1/2 for all k.
Proof. We prove the theorem by induction on the number of variables.
Base case. rl > 1/2.
The single-variable problem is described by table T1 with column ul containing x

l’s, and column ff containing (n x) l’s. The greedy heuristic selects the column
with more ’s, which also is the optimal column. Thus

and hence

fl m max { x,, n- xl },

flrl==l>=m 2

Induction hypothesis, rj >= 1/2 for all j < k 1.
Induction step. To prove rk >-- 1/2.
At the first step, the greedy heuristic chooses uk or ffk, whichever has the larger

number of ’s. Hence

J= max { xk, nk-- Xk } +f-
By the induction hypothesis, rk- >_- 1/2, so that

fk- rk- lmk- >=- mk-1.
Hence,

A>--max xk, nk-- Xk +- mk-
As the maximum of two numbers is no smaller than their mean, max xk, nk xk } >--
1/2 nk. Also, by Lemma 2, rnk_ >= mk nk. Thus,

mkfk >=- rlk +- mk- nk) 2"

Thus rk f/mk >= 1/2.
The bound specified by Theorem 2 is tight, and is illustrated by the example in

Fig. 5. The optimal solution is mk 2 k, corresponding to columns uj, j 1, k.
The greedy solution is 2k- + 1, corresponding to column ffk. Hence rk =f/mk
1/2 + e, where e /2 k. Since e can be made to approach 0 arbitrarily closely by increasing
k, rk can be made to approach 1/2 from above arbitrarily closely, giving rise to an asymptotic
upper bound of 1/2 for the worst-case performance of the greedy heuristic. Observe that
the worst-case bound for the greedy heuristic equals the average-case bound for the random
solution.

We are now ready to prove the lower bound on the average performance of the
greedy heuristic. Assume that a probabilistic data-generating mechanism is used to obtain
instances of Msat. Specifically, assume that the mechanism generates a larger number of

’s in uj with probability p, and generates a larger number of ’s in G. with probability
p), j 1, k. Note that we assume that p does not vary with j. However, we

make no distributional assumptions about the data-generating process. Theorem 3 char-
acterizes the lower bound on the average performance ratio for the greedy heuristic.

THEOREM 3.

[r]>
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Row

2k-2

2k-2+

2k-

Uk

0

Uk- k- U2

0 0
0
0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0

FIG. 5. Worst case examplefir the greedy heuristic with nk 2 + clauses

Proof. We prove the theorem by induction on the number of variables.
Base case. E[ r >= 1/(2 p
For a single-variable problem, the optimal column u has at least as many ’s

as the nonoptimal column ff. Therefore the value of the greedy solution equals the
number of ’s in the optimal column. Thus, the expected performance ratio ofthe greedy
heuristic is

E[f,]
E[r] 1_>- for any p, O_-<p_-< 1.

m 2 -p

Induction hypothesis. E[ rt] > /(2 p) for all =< k 1.
Induction step. To prove E[rk] > 1/(2 p).
If the greedy heuristic selects column uk from T, it guarantees a solution value of

at least x. In addition, table T_ T(u), generated at the first step, describes an Msat
problem for which the expected value ofthe greedy solution is, by the induction hypothesis,
no less than [1 /(2 p)]ak. Hence if column u is selected at step 1, the expected value
of the greedy solution is no less than x + /(2 p) a. By a similar argument, if the
greedy heuristic selects ff at step 1, the expected value of its solution is no less than
nk x + /(2 p) 7. Now u is selected with probability p, and ff is selected with
probability p). The expected value of the greedy solution is therefore

ak +(l-p) n-x+ 7E[J] >P x+ 2-p 2-p

Noting that ak m x by Lemma 1,

(m-x) +(l-p) nk-x+E[f]>=p x+2_p 2"P
Also, >= max 0, m- nk } by Lemma 1. Consider m > n. Then >- m- nk > 0,
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and the above inequality for E[J] becomes

1-(mk--Xk) +(1 --p) n:--x+E[f] >=p x+-_p 2-p

Simplifying,

1-Pxk+ m +(l-p) n-x+ (m-nk)E[AI>--p
2-p 2-p 2-p

Noting that x >_- (n)/2 if column u is chosen and nk x > (nk)/2 if column ff is
chosen, we get

m +(l-p) --+ (m-n)
2-p 2 2-p 2-p

which implies that

Hence

E[r]
E[J] >
m 2 -p

Now consider m < nk. Then 7 > 0 (>_-m- n), which implies

Simplifying,

E[J] >p m + -p)
2-p 2 2-p

pm+ -p)nk
E[j] >=

2-p

As m < n, the fight side of the above expression has a minimum at n m. Hence

pmk + p)rn rnE[J] >= =.
2 -p 2 -p

Thus, E[r] (E[f])/m >_- 1/(2 p).
The lower bound obtained in Theorem 3 is tight. To illustrate, consider the following

example involving k variables and n 2 rows, where s > k. Generate the data as
follows. Forj 1, k, set

ti,k-j + O, ti,k-j + 1,

ti,k-j + 1, ti,k_ j + O,

li,-j + 1, ti,-j + 0 with probability p,

li,k-j + =O, ti,-j + with probability -p,

if/= 1, ,2 s-J-

ifi=2s-J+ 1, ,2 s-j+l-

if/= 2s-j

if 2-J.

Generate O’s in all remaining cells.
Figure 6 is an example of the data generated for k 2, n2 2 7. The data

generated in this manner for arbitrary k and n 2 +l is shown in Fig. 7.
Since only one is generated probabilistically in column uj. or z, the probability of

the greedy heuristic choosing u is p, and the probability of choosing z is p), j
1, k. Note that each row has a in either column u or column ffk. The value of
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Row U2 /2

0
2 0
3 0
4 x2 yz
5 0
6 0
7 0

0
Xl Yl

0
0 0
0 0
0 0
0 0

FIG. 6. Data generatedfor k 2, n2 2 1. xi yi equals 0 with probability p, 0 with probability
1-p,fori- 1,2,-..,k.

Row

2
3
4

nk+
--V--

n,+ 1_
4

nk+

nk+l+l
4

nk+
2

nk+

nk+---+

nk

Uk- k- Uk-2 k-2

0
0
0

0
0
0
0

0

0
0
0
0

0

Ii

Xk

0

0

xk_

Yk 0

0 0

0 0

FIG. 7. Data generated for arbitrary k and n, 2 k+l 1. xi Yi equals 0 with probability p, 0 with
probability p, for 1, 2, ..., k.
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the optimal solution to Msat described by Tk is mk n k, because the collection of
columns uj., j 1, k, has at least n k nonoverlapping ’s. The expected perfor-
mance of the greedy heuristic is

n,+ n+ ( nk+ n+ 1)E[J]=p
2

+(l-p)
2

+p p
4

+(l-p)
4

n+ nk+ 1)k-P2 P 8
+(l-p)

8
+

( n+l n+l)+pk-1 p.
2

+(l-p) 2

2 1+-+ +...+

Since

and

E[r]

we get

n+ 2
1-E[ rk] <= -m-- 2-p

As m >_- n- k,

n-k 2-p -Let el (k + )/(n k) and e2 (P/2)k. Since ng > 2 and p >_- 0, it follows that

e > 0 and e2 > 0 for all k >_- 1. E[ r] may then be written as

E[r]-< (1 +e,)(1 -e2)2_p
implying that

E[rk] =< +e)2_p
Since n > 2 1, n grows exponentially faster than k. Consequently, e (k + )/
(n- k) approaches 0 for large k. Hence the upper bound on E[rk] can be made
arbitrarily close to 1/(2- p). As it is also a lower bound on E[ rg] by Theorem 3,
/(2 p) is a tight lower bound on E[ rg].

How small can p, and hence 1/(2 p), be? For the data-generating mechanism
described above, p can be arbitrarily small. The lower bound on the average performance
ratio for the greedy heuristic then approaches 1/2, the same as the lower bound on the
average performance ratio for the random procedure. However, the data-generating
mechanism described above is "perverse." Other mechanisms can possibly guarantee
higher minimum values for p, and hence a higher minimum performance ratio for the
greedy heuristic. One mechanism, similar to that used in Goldberg, Purdom, and Brown
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], is as follows: for all j 1, k, generate

tij 1,7ij 0, with probability q,

0 0, 7ij 1, with probability q,

o O, ti 0, with probability 2q.

The choice of q is arbitrary, and as in many simulations may be based on random
sampling from a- parametric distribution. In this case, the probability that uj has a larger
number of l’s than is 1/2, j 1, k, and hence E[rk] >- ].

Is there a way to improve the lower bound on E[ rk] for the greedy heuristic? So
long as p is governed by "nature" (i.e., by a data-generating mechanism which the al-
gorithm cannot control), there appears to be no way. But there is no reason why the
choice ofp should not be made a part of the heuristic. For instance, we may introduce
probabilistic choice at each step ofthe greedy heuristic so that, whateverp is, the heuristic
selects a solution with a probability it chooses. The perversity of a data-generating mech-
anism may then be superseded by the heuristic. We pursue this approach below by
describing a probabilistic version of the greedy heuristic, which we call the probabilistic
greedy heuristic.

4. The probabilistic greedy algorithm. Like the greedy heuristic, the probabilistic
greedy heuristic selects at step j column uj or zij. from table T, j 1, k. However,
each column is selected with probability proportional to the number of l’s it con-
tains. That is, u. is chosen with probability p xj/nj, and is chosen with probability

p (nj x9)/n9. We describe the heuristic more formally below.
Initialization. Order the columns of T so that n, the number of ’s across ug and

u-, is largest among all pairs of columns ut, fit, 1 1, k. Select column u with
probability p xk/n, and select column ff with probability p (n x)/nk.
Eliminate u and ff, and all rows with a in the chosen column, to obtain table T_ ,
where, as before,

if column uk is chosen from T,
Tk-

T(ffk), if column ffk is chosen from Tk.

Recursion. Order the columns of T so that nj, the number of ’s across u and ff,
is largest among all pairs ofcolumns ut, fit, 1, j. Select column uj with probability
p xj/n, and select column with probability p (n9 xj)/nj. Eliminate uj and, and all rows with a in the chosen column, to obtain table T_ , where, as before,

T(u), if column uj. is chosen from T,
Tj_

T(tij.), if column zT is chosen from T.
Termination. Stop if T contains no ’s, or ifj 0.
The probabilistic greedy heuristic forces a trade-off between the probability of se-

lecting the optimal solution and the value of the nonoptimal solution it identifies. We
illustrate the trade-off below for the Msat problem described by Tk. Assume that at each
of the first k steps the probabilistic greedy heuristic chooses the optimal column. At
step k, the probabilistic greedy heuristic chooses column u with probability p x/n,
and column ff with probability -p (nl x )/n. Hence the expected performance
ratio is

E[rk] =xx +(m--x) n--x (n--x)+(m--x)
nl ml Hi ml
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where ml Xl is the number of clauses satisfied by the optimal columns selected by the
greedy heuristic in steps to k l, and hence xl + ml Xl is the value of the greedy
solution ifcolumn ul is selected and n x + m x is the value ofthe greedy solution
if column ffl is selected. The trade-off can be seen in the expression for E[rk]. The
probability of selecting the optimal column u decreases as x decreases. However, as x
decreases, the value of the nonoptimal solution n x + m x n + ml 2x
increases. The lower bound on E[ rk] is obtained by choosing x so that E[ rk] has its
smallest value. It can be verified that E[ rk] is minimized by setting x 3n/4, at which
value, E[rk] nl/8m. Hence m -> x 3n/4. Thus

n > 1- n 5
min E[rk] 8m---= 8(3n/4) =g"

That is, the lower bound on the expected performance ratio is when the first k
columns selected by the greedy heuristic are optimal. As described below, the trade-off
between the probability of selecting the optimal solution and the value ofthe nonoptimal
solution occurs in general for the probabilistic greedy heuristic.

THEOREM 4. E[ rk] >= for all k.
Proof. We prove the theorem by induction on the number of variables.
Base case. E[ r >= .
For the single-variable problem, the optimal solution to Msat described by T1

is ml xl, and corresponds to column u of T as per our assumption. As the prob-
abilistic greedy heuristic selects u with probability p x/nl, and selects ff with prob-
ability p (nl x )/n, the expected value of its solution is

E[fl] =px +( -p)(n-x),

and the expected performance ratio of the heuristic is

E[f] [(xl/n)]x +[(nl-Xl)/n](n-x)
E[rl]

ml Xl

Given n, the lower bound on E[ r] is obtained by minimizing the above expression
with respect to x, which can be verified to occur at Xl nl/4. Substituting this value
ofx in E[ rl] and simplifying yields

2E[r1]>=24-2>_- -.
3

Induction hypothesis. E[ r1] > for all _-< k 1.
Induction step. E[ rk] >= for all k.
Ifthe probabilistic greedy heuristic selects column u from T, it guarantees a solution

value of at least x. In addition, T_ T(uk), generated at the first step, describes an
Msat problem for which the expected value of the heuristic solution is, by the induction
hypothesis, no less than a. Hence if column u is selected at step 1, the expected value
of the heuristic solution is no less than x + ga. By a similar argument, if the greedy
heuristic selects ffk at step 1, the expected value of its solution is no less than n x +
2-ga. Now u is selected with probability p xk/n, and ff is selected with probability

p (n x)/nk. The expected value of the heuristic solution is therefore

= x+ a +... n-x+ dk
nk - nk -As a =mg xg by Lemma l,

= Xk+ (m--xk) + n--x+n - n -
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Also, dk >= max 0, mk- n } by Lemma 1. Consider m > n. Then d -> mk- n > 0,
and the above inequality for E[J] becomes

Simplifying,

E[f]>x(2m x)-5-+-2 + (n/-- Xk)2 2(n-x)+ m nk).
n 3n

E[j]_>(x)2 2mkxk (nk--x) 2 2(n--x)+ + + (m--n).
3nk 3n n 3n

The fight side of the above expression can be verified to obtain its minimum value when
x nk/2, at which value of x,

2m[A]>
3

and hence

E[J] 2
E[r] >=-.

m 3

Now consider mk -< nk. Then d >= 0 (>m n), and hence

Simplifying

E[j]>xk( 2 ) n--x= xk+ (m--Xk) + (n--x).
flk nk

2mx (nk-- Xk) 2

[A] > (x)- + +
3n 3n n

The fight side of the above expression can be verified to obtain its minimum value when
x (3n mk)/4, at which value ofx

nk mk mE[J] >=---+ 2 12n"
The fight side of the above expression takes its smallest value when n m, for which

mk m m 2
E[J] >-----+- 1-- m.

Therefore E[r] E[f]/m >= .
It can be verified that for the data in Fig. 8, the expected performance of the prob-

abilistic greedy heuristic is

el= + +.+ +
3 +T

Noting that m n, the expected performance ratio equals E[r] + e, where
e / 4). Since e can be made to approach 0 arbitrarily closely by increasing k, E[ r
can be made to approach from above arbitrarily closely. Since the asymptotic upper
bound for the probabilistic eedy heuristic is , the lower bound of specified by Theorem
4 is tight.

As the data-generating mechanism plays no role in determining the lower bound of
the performance ratio for the probabilistic greedy heuristic, the bound obtained by
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FIG. 8. Worst case examplefor the probabilistic greedy heuristic with n 2 clauses.

Theorem 4 also holds if the same problem is sampled repeatedly; i.e., if the probabilistic
greedy heuristic is implemented multiple times to solve the same problem, the average
heuristic solution will be no smaller than of the optimal. Of course, in this case the
solution with the largest value is ofgreater interest than the average value ofthe solutions
across trials. For a large number of trials, the distribution of the largest value of the
probabilistic greedy solution corresponds to the extreme value distribution for the largest
among a sample of n observations. Since the largest value of the probabilistic greedy
solution is bounded from above by the value of the optimal, the distribution in this case
is characterized by the limited-value distribution (Gumbel [12 ), which corresponds to
the type-three distribution in the Fisher and Tippett characterization of extreme-value
distributions (Fisher and Tippett 8 ]). Thus, regardless ofthe data-generating distribution,
the asymptotic cumulative distribution function of the largest value of the probabilistic
greedy solution is

H[z] =exp

with corresponding density

W(mk--Z)
w-1

H(z),h(z)
mk--V mk--v

where z is the largest value of the probabilistic greedy solution across trials, H(v)
1/e 0.36788, and w > 0 is the shape parameter of the distribution (see, e.g., Gumbel
[12, pp. 164-165; p. 275]).

5. Conclusion. Two aspects of the probabilistic greedy heuristic should perhaps be
mentioned. First, it guarantees an average solution value ofno less than ofthe optimal
value regardless of the distribution of data. Second, the trade-off it forces between the
probability of selecting the optimal solution and the value of the nonoptimal solution is
a feature that is not evidently observed in other heuristics. Indeed, it is this feature of
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the heuristic that ensures that its average performance is never too bad. In contrast, while
the greedy heuristic can do well, its ability to do so depends on the value of p. For
independent observations from parametric distributions with p 1/2, it does as well, on
average, as the probabilistic greedy heuristic. But for perverse distributions, the greedy
heuristic on average can do as poorly as random search. On the other hand, for an
"unintelligent" procedure, the random search does quite well to ensure an average solution
of no less than 1/2 of the optimal, regardless of the data-generating distribution. It remains
an open question whether relaxing the independence assumption, or assuming specific
distributions, strengthens the bounds on the average performance for the greedy heuristic.
It may also be possible to strengthen the average bound for the greedy heuristic with
restricting assumptions on problem instances, such as when the set of clauses are 2-
satisfiable (Lieberherr and Specker 16 ), or when each clause contains at least variables,

-< =< k (Johnson [13]).
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