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arketing variables that are included in consumer discrete choice models are often endogenous. Extant

treatments using likelihood-based estimators impose parametric distributional assumptions, such as nor-
mality, on the source of endogeneity. These assumptions are restrictive because misspecified distributions have
an impact on parameter estimates and associated elasticities. The normality assumption for endogeneity can
be inconsistent with some marginal cost specifications given a price-setting process, although they are consis-
tent with other specifications. In this paper, we propose a heterogeneous Bayesian semiparametric approach for
modeling choice endogeneity that offers a flexible and robust alternative to parametric methods. Specifically, we
construct centered Dirichlet process mixtures (CDPM) to allow uncertainty over the distribution of endogeneity
errors. In a similar vein, we also model consumer preference heterogeneity nonparametrically via a CDPM.
Results on simulated data show that incorrect distributional assumptions can lead to poor recovery of model
parameters and price elasticities, whereas the proposed semiparametric model is able to robustly recover the
true parameters in an efficient fashion. In addition, the CDPM offers the benefits of automatically inferring the
number of mixture components that are appropriate for a given data set and is able to reconstruct the shape of
the underlying distributions for endogeneity and heterogeneity errors. We apply our approach to two scanner
panel data sets. Model comparison statistics indicate the superiority of the semiparametric specification and the
results show that parameter and elasticity estimates are sensitive to the choice of distributional forms. Moreover,
the CDPM specification yields evidence of multimodality, skewness, and outlying observations in these real

data sets.
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1. Introduction

Over the past decade, a growing number of stud-
ies have documented the importance of account-
ing for endogeneity and heterogeneity in discrete
choice models involving aggregate (e.g., Berry et al.
1995, Chintagunta 2001, Park and Gupta 2009) or
disaggregate choice data (e.g., Chintagunta et al.
2005). Prices and other marketing variables are often
endogenous because these are set by firms taking into
account product attributes that are unobserved by
the researcher. This results in a correlation between
the observed marketing variables that are included
in the systematic component of utility functions and
the unobserved factors. It is well known that failure
to account for the endogeneity of marketing variables
leads to inconsistent parameter estimates (Villas-Boas
and Winer 1994, 1999). Similarly, a failure to account
for individual differences in model parameters can
yield misleading inferences about consumer response
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sensitivities. Both types of inferential problems can
have important consequences for managerial actions.

A number of different approaches have been pro-
posed for handling the endogeneity problem in
individual-level discrete choice models. These range
from structural approaches that explicitly model the
supply side using a game (e.g., Yang et al. 2003,
Villas-Boas and Zhao 2005) to limited information
approaches that model the price-setting process as
a linear equation (e.g., Villas-Boas and Winer 1999).
The latter can be considered a “reduced-form rep-
resentation” of an underlying supply-side model.
A variant of the limited information approach is
the recently proposed control-function method (Petrin
and Train 2010) that uses extra variables to control
for the portion of the variation in the unobserved
factors that is not independent of prices. Endogene-
ity is also handled using brand and time-specific
fixed effects in the utility function. These fixed effects
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represent unobserved attributes of brands that are
correlated with prices (Goolsbee and Petrin 2004,
Chintagunta et al. 2005). A number of estimation
methods have been used in dealing with the endo-
geneity problem. These include generalized method
of moments (GMM), maximum likelihood estima-
tion, fixed-effects, and two-step approaches as well as
Bayesian methods (Chintagunta et al. 2005, Yang et al.
2003, Rossi et al. 2005, Kuksov and Villas-Boas 2008).

In this paper, we investigate how inferences about
model parameters and price elasticities in individual-
level discrete choice models are sensitive to the
distributional assumptions about endogeneity and
heterogeneity errors. We study whether misspeci-
fication of these distributional forms matters and
propose a heterogeneous Bayesian semiparametric
approach for simultaneously modeling endogeneity
and heterogeneity. Our approach is based on cen-
tered Dirichlet process mixtures (Yang and Dunson
2010), which allow uncertainty about the distribu-
tional forms. We show that assumptions about the
joint distribution of the brand and time-specific con-
stants and the residuals in the pricing equation can
have a significant impact on the estimates of utility
parameters and price elasticities.

Previous researchers have been either agnostic
about the distributional forms for the unobserved
variables, as in a GMM approach, or have assumed
normally distributed unobserved variables (Villas-
Boas and Winer 1999, Yang et al. 2003, Chintagunta
et al. 2005). Assuming a parametric distribution leads
to efficiency gains when the true distribution is
used but may distort inferences otherwise. Villas-Boas
(2007) and Park and Gupta (2009) point out that such
an assumption of normality could be inconsistent with
some marginal cost function specifications given a
price-setting process, while being consistent with oth-
ers. Methods based on the GMM are inherently more
robust but can be less efficient than likelihood-based
approaches. Here, we show how using a nonparamet-
ric Bayesian framework gives the benefits of robust-
ness and enhanced efficiency when compared with
parametric models with misspecified distributions.

Our nonparametric approach is related to that of
Conley et al. (2008), who use Dirichlet process mix-
tures for instrumental variable estimation in linear
models. We use centered Dirichlet process mixtures
(CDPM) instead because identification restrictions are
needed on the nonparametric distributions in the con-
text of discrete choice models. We show how the
CDPM can be used in the context of discrete choice
models within a data-augmentation framework. Our
approach for handling endogeneity can be considered
a robust extension of the control-function method
because it nonparametrically determines the appro-
priate control function to use in a given situation.

In addition, it allows a single-step estimation proce-
dure without the need for additional procedures to
calculate the uncertainty in parameter estimates.

We also use the CDPM approach to model hetero-
geneity in our framework. Heterogeneity is typically
handled in discrete choice settings using latent class
models, or via parametric distributions such as the
multivariate normal or a finite mixture of normal dis-
tributions (Geweke and Keane 1999, 2001; Rossi et al.
2005). Researchers have also used the Dirichlet process
(Ansari and Mela 2003, Ansari and Iyengar 2006, Kim
et al. 2004) to accommodate discrete representations
of heterogeneity in choice models. Recently, Burda
et al. (2008) use Dirichlet process mixtures to nonpara-
metrically specify a continuous distribution of het-
erogeneity. However, none of the above papers have
simultaneously considered the endogeneity problem.
Our CDPM approach to modeling heterogeneity can
be regarded as a nonparametric extension of the
finite mixture of the normals approach in that the
CDPM uses a countably infinite mixture of normals,
but it automatically infers the number of mixture
components that are appropriate for a given data
set while taking into account this additional source
of uncertainty. Our approach is capable of flexibly
accommodating situations that may be characterized
by multimodality, skewness, outlying observations,
and misspecification of functional form for the utili-
ties without having to build specific models for each
situation. In addition to the above benefits, Bayesian
methods allow the incorporation of prior information,
when available, and are an inherently small sample
in nature. In contrast, the small sample properties of
other estimation procedures such as the GMM are not
well understood in such complex contexts.

By applying our methods to both simulated and
scanner panel data sets, we show that distributional
assumptions about endogeneity errors impact param-
eter inference and price elasticity estimates signifi-
cantly. Our simulations show that the CDPM approach
is capable of recovering the true parameters and price
elasticities under many different assumptions for the
endogeneity and heterogeneity distributions. Specif-
ically, we show that when the true distribution is
a normal, the CDPM is capable of mimicking the
normal with some loss in efficiency compared with
the true parametric model. In contrast, we find that
a parametric model based on multivariate normal
distributions does a poor job in recovering the param-
eter estimates and price elasticities when the errors
come from nonnormal distributions that are multi-
modal, skewed, or heavy tailed. We apply our model
to two scanner panel data sets involving household
cleaner and shampoo categories. We find that param-
eter estimates are sensitive to the choice of distri-
butional forms and that the CDPM yields evidence
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of multimodality, skewness, and outlying observa-
tions. Model comparison statistics based on the widely
applicable information criterion (WAIC; Watanabe
2010) and the deviance information criterion (DIC;
Spiegelhalter et al. 2002) also indicate the superiority
of the CDPM specification.

The rest of this paper is organized as follows.
Section 2 introduces our modeling framework and
presents the Dirichlet process and centered Dirichlet
process mixtures. Section 3 describes our simulation
and reports the results. Section 4 details the applica-
tion and discusses the results obtained from apply-
ing alternative models on the two panel data sets.
Section 5 concludes the paper with a discussion of
its limitations and highlights areas of future research.
All other details of the analysis are located in the
appendices.

2. Model

In this section, we describe our semiparametric
approach for handling endogeneity and heterogene-
ity in a discrete choice setting. As in the literature,
we follow a random utility framework (Guadagni and
Little 1983). We assume that on any given shopping
trip (e.g., a store week), consumers choose either a
single unit of the brand that gives the highest util-
ity within a product category or an outside option
(e.g., decide not to purchase within the category).
Let | be the number of brands available in the cat-
egory. The different choice alternatives can then be
indexed by j=0,1,...,], where j =0 refers to the
“outside good,” or the no-choice option. Let con-
sumers be indexed by i =1, ..., I. The choices made
by consumer i are observed over t =1,...T; shop-
ping trips. The utility u;, that consumer i receives
from product j on trip t depends on the observed and
unobserved attributes of the product and takes the
following form:

j=0,

Ujor = €jots

, @
Uiy =X, B — apj + My + €5,

i=1,...,].

The vector x;; contains nonprice marketing variables
such as feature and display activities for brand j on
trip t as well as brand dummies (i.e., brand-specific
intercepts), and p;, represents the price paid for the
brand on trip t. The parameter vector B, represents
the consumer’s response sensitivities to these market-
ing variables, and «; captures the price sensitivity
of the consumer. There are two types of unobserved
variables (n; and €;) in the utility equation for a
brand. The demand shock 7, is common across all
consumers who shop in a store in a given week and
represents the average utility that these consumers
obtain from the unobserved attributes of product ;.

Such unobserved product attributes could include
shelf space and shelf location in the store, or the
presence of store coupons, for the week in which
the trip is made, all of which are unobserved by the
researcher. Because some of these unobserved fac-
tors could be common across brands, we allow the
demand shocks to be correlated across the different
brands in a store in a given week. The error €, repre-
sents factors that vary independently and identically
distributed (i.i.d.) over brands, consumers, and pur-
chase occasions. Assuming these are extreme value
results in a logit model, whereas an assumption of
normality yields a probit choice model.

The price for each product typically depends on
all its attributes, both observed and unobserved.
Thus, the prices in the utility equation are correlated
with the demand shocks 7. Ignoring these unob-
served attributes, therefore, can result in endogeneity
bias and inconsistent parameter estimates. Previous
researchers have handled this endogeneity problem
using either a full information or a limited infor-
mation approach (e.g., control functions as in Petrin
and Train 2010). In the full information approach, the
price-setting process for the firms is explicitly mod-
eled using a game-theoretic framework and the actual
prices in the data are assumed to be the equilibrium
outcome of such a game (Yang et al. 2003, Villas-
Boas and Zhao 2005). A number of different price-
setting processes have been explored in the literature,
including marginal cost pricing and Nash equilibrium
pricing for single and multiproduct firms or retailers
(Sudhir 2001). Such an explicit modeling of the price-
setting process can yield efficiency gains if the cor-
rect process is used. However, it is unclear whether
prices in the market place are indeed the outcome
of an equilibrium because managers may not know
enough about competition for the typical common
knowledge assumptions to be correct. Moreover, even
if the prices are from an equilibrium, the actual game
is unobservable, and there is always a danger that
the price-setting process is misspecified. In such cases,
the wrong model of the supply side can potentially
contaminate the demand side parameters (Berry 2003,
Dubé and Chintagunta 2003). Another concern with
such a structural approach is that it is often unclear
whether the equilibrium of a particular game being
assumed is unique, and this has implications for the
use of the structural model to examine the effect of
policy changes (Berry et al. 1995).

In contrast, the limited information approach
(Villas-Boas and Winer 1999) is agnostic about the
price-setting process and can therefore be considered
more flexible and robust. In this paper, we follow such
an approach and assume that the pricing equations
for the | brands can be written as

pi=zyvjtowy, j=1,....], @)
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where z;, contains an intercept and the instrumen-
tal variables that are correlated with the price but
are independent of the common demand shock, Mjts
in the utility specification. The error w;, in the pric-
ing equation represents unobserved factors that affect
costs. Endogeneity arises if 7, and w;; are correlated.
Given the possible presence of shared unobservables
across brands and the equilibrium considerations that
the price of one brand may depend on the demand
shocks of all brands, we assume that the price shocks
w;’s and the demand shocks 7;’s are all mutually
correlated.

Rivers and Vuong (1988), Ching (2010), and Petrin
and Train (2010) present alternative approaches to
handling endogeneity that do not require the joint
modeling of the demand and price shocks. Ching
(2010) allows the demand shocks to directly enter the
pricing equation in a linear fashion. Such a specifi-
cation, however, amounts to assuming a normal joint
distribution.! Petrin and Train (2010) suggest a two-
step procedure in which residuals from the pricing
equation are used in the demand model as a con-
trol function. This approach requires specifying the
functional form for the control function. Our semi-
parametric approach toward joint modeling of these
shocks can be considered a robust extension of the
control-function method because it nonparametrically
determines the appropriate control function to use in
a given situation. Moreover, it offers advantages that
stem from joint modeling of the errors when com-
pared with a two-step control-function approach.

We show in this paper that assumptions about
the joint distribution of n, = {0y, ..., 7y}, and o, =
{wyy, ..., 05} can impact inferences regarding the
other parameters in the utility function. Previous
researchers have either used approaches (e.g., based
on GMM) that makes no specific assumptions about
this joint distribution or have assumed a paramet-
ric distribution such as the normal (Villas-Boas and
Winer 1999, Park and Gupta 2009, Yang et al. 2003).
The GMM approach, although robust to misspecifica-
tion, can be inefficient in the context of linear instru-
mental variable models, as has been shown by Conley
et al. (2008). The assumption of joint normality, if true,
can lead to efficient inference, but otherwise can dis-
tort conclusions. The normality assumption can be
inconsistent with some price-setting behaviors of firms
(Villas-Boas 2007). The presence of outlying observa-
tions or the misspecification of the utility function can
also result in nonnormal errors. We therefore model
this joint distribution flexibly using a Bayesian non-
parametric approach. In particular, we assume that

! Ching (2010) suggests a general polynomial of demand shocks to
approximate the pricing policy function but uses a linear specifica-
tion because of data limitations.

the vector of unobserved variables {, = {n,, »,} is
distributed according to a centered Dirichlet process
mixture.

2.1. Centered Dirichlet Process Mixtures for
Endogeneity

We assume that the {,’s are independently drawn
from an unknown continuous distribution that is cen-
tered at zero. Note that the systematic component of
the utility includes brand-specific intercepts to cap-
ture the mean attraction of each choice alternative.
These brand intercepts are substantively important in
brand choice contexts (e.g., research involving brand
equity), and researchers are also often interested in
characterizing the heterogeneity in brand intercepts
for purposes of preference segmentation. Hence, they
cannot be treated as nuisance parameters that are inte-
grated out of the analysis. Given their inclusion in the
systematic part of the utility, the unobserved compo-
nent {; needs to have an expectation of zero.

We model the distribution for {, as a mean mix-
ture of normals N(v,, ), with the mixing distribution
over the means v, being an unknown distribution G,
which is common for all brands. We let the prior for
this mixing distribution be a centered Dirichlet process
CDP(G,, k), with concentration parameter k and base
distribution G,. This gives the following hierarchy for
the distribution of the {,’s:

gt ~ N(vt/ Q)/
v,~G, ®)
G ~ CDP(G,, k).

The covariance matrix € and the concentration
parameter k are given priors at a higher level.
The centered Dirichlet process (Yang and Dunson
2010) is a generalization of the Dirichlet process (DP)
introduced by Ferguson (1973). We now briefly review
the basic properties of these processes.

2.1.1. Dirichlet Processes and Dirichlet Process
Mixtures. In Bayesian nonparametrics, the Dirichlet
process is used to model the uncertainty about the
functional form of an unknown distribution G and
can thus be considered a distribution over distribu-
tions. A Dirichlet process prior for G is determined by
two parameters: a base distribution function G, that
sets the location of the Dirichlet process prior and a
positive concentration parameter k. Realizations from
the Dirichlet process are discrete with probability one,
which implies that the resulting v, that draws from G
will be grouped into clusters. The discrete nature of
the DP can be made precise by looking at its construc-
tive definition via the stick-breaking representation
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because of Sethuraman (1994). According to this def-
inition, G ~ DP(G,, k) implies that

G=)> m, 8,/
h=1 (4)
7Th:VhH(1_Vl)/ Vi, ~Beta(l, ), Ohii\d'GO/
I<h
where §, denotes a discrete measure concentrated
at random atom 6,, h =1,...,00; and V, is an
infinite sequence of stick-breaking probabilities (see
Figure 1(a)). The construction of the probabilities
(i.e., the weights for the atoms) can be understood
using the following metaphor of breaking a stick into
successive segments. Starting with a stick of length
one, the first break is at 7; = V;. The remaining por-
tion 1 — V; is then recursively broken to obtain 7, =
aQ-=v)V,, my =1 - V))(1 = V,)V;, and so on. Such
a representation ensures that the infinite sum of the
weights converges to one (see Figure 1(b)). The con-
centration parameter k measures the strength of belief
in the prior guess G,. Larger values of k generate
smaller values of the stick-breaking probabilities, V,
resulting in a sampled distribution G that mimics the
base distribution G,,. In contrast, for small values of «,
the sampled G is likely to place most of its mass on a
few atoms.
Inferences in DP models can use either a Polya-urn
representation of the DP (Blackwell and MacQueen

Figure 1 (a) Stick-Breaking Representation of Dirichlet Process;
(b) Stick-Breaking Metaphor for the Probabilities of
Dirichlet Process
(@)
7
T3
s
Lo
T, T
‘ M
>
6, 6, 0, 0, 65 0, 6,
0, ~ Gy, = Vhll_II(] -V), V,~Beta(l, k)
<h
(b)
1
~ 1-V L Vi R
1=V -vy Vo(1-V))

1973, Ansari and Mela 2003, Ansari and Iyengar
2006, Conley et al. 2008) or the stick-breaking one.
We choose the latter because it allows a straight-
forward implementation of the centering restriction
using a truncation approximation.

Because the realizations of the DP are discrete in
nature, and the unobserved variables in the util-
ity and pricing equations are best considered to be
continuous, one can mix the DP with a continuous
distribution such as the normal to yield a countably
infinite mixture of normals. Any smooth density can
then be accurately approximated using such a Dirich-
let process mixture (DPM; Antoniak 1974). However,
we need a continuous distribution that is centered at
zero to model the variability in {,. This cannot be
ensured by merely choosing the base distribution G,
to have a zero mean. In such a case, the prior expecta-
tion of the mean of G is zero, but the posterior expec-
tation of the mean of G can differ significantly from
this prior expectation and can bias inferences about
the utility parameters and price elasticities. Hence, we
use centered Dirichlet process mixtures to enforce this
identification constraint.

2.1.2. Centered Dirichlet Process Mixtures. We
follow Yang et al. (2010) and specify a CDPM distri-
bution for the endogeneity errors as follows:?

{~N(v, Q),
v, ~G,

G=3 VETT( - VDS, ©)
h=1  l<h
0, =0; — U5,
0: ~G,, VE~Beta(l,«F),

where G, is a multivariate normal distribution with
specified mean and variance. Our choice of a normal
distribution for G, yields computational advantages
because of conjugacy and allows us to nonparamet-
rically deviate from the normal, which is a common
choice for parametric models.

In the above, ¥, is the unconstrained mean under
the DP(G,, k) prior. The mean ¥ and the variance
3¢ of the DP prior can be written as

o= Vi [1A-vHe;,

h=1 I<h

6 =2 Vi [T = V) (0 — ) (0] — 0t -

h=1 I<h

(6)
The above construction implies that the induced mix-
ture of normal distributions has a mean equal to

2In the rest of this paper, we use superscript  to denote parameters
from unconstrained Dirichlet processes.
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E(L,|G) =0 and a variance V({, | G) = 2% + Q, thus
yielding a flexible prior that respects the identification
constraint.

This completes our discussion of endogeneity pri-
ors. We now move to a discussion of consumer
heterogeneity.

2.2. Centered Dirichlet Process Mixtures
for Heterogeneity

Consumers are heterogeneous in their price sensi-
tivities @; and other response parameters f3;. Incor-
porating such consumer heterogeneity is crucial for
accurate parameter inference, substantive concerns,
and targeting. There is a vast literature in marketing
on different ways of modeling unobserved hetero-
geneity. Previous researchers have used finite mix-
tures (i.e., latent class), normal distributions, and finite
mixtures of normals to model the variation in the
individual-level parameters. Of these, the finite mix-
ture of normals approach yields the greatest flexibility
in modeling heterogeneity because it allows for mul-
timodality, which may be important if different seg-
ments exist in the market place. However, it has the
disadvantage that one needs to separately determine
the number of components of the mixture. In contrast,
when CDPM distributions are used, the number of
components are automatically determined based on
the data.

To model heterogeneity, we begin by rewriting the
utility function in Equation (1). The utility function
can be written as a sum of two components. The first
component is a composite of factors that vary across
products and time but do not vary across consumers,
whereas the second component includes quantities
that vary across consumers. Thus, we have

w = [x;B — apy +m; ]l + Wi N + €5, )
where w), = (x,, —p;). In the above equation, B and
a are population means and represent the aggregate
response tendencies in the population. Denoting the
term in square brackets that does not vary across con-
sumers as pj;, we can rewrite the utility function as

Uijp = [js + Wi N + €. 8)
Because the variables in wj, are also included as part
of w;, the individual coefficients N; are constrained
to have a zero mean for identification. Analogous to

our treatment of endogeneity, we flexibly model the
heterogeneity using a CDPM of the following form:

)\i NN(wi/ A)/
w; ’\’F,

F= S VETIA= V)3, ©)

h=1  I<h
O, =9, -5,
9 ~F, Vf~Beta(l,«"),

where F, is a multivariate normal distribution with
specified mean and variance. As before, ¥} is the
unconstrained mean of the corresponding Dirichlet
process, and A is the covariance matrix that is esti-
mated from the data.

2.3. Full Model

Bringing together the endogeneity and heterogeneity
submodels, i.e., Equations (5) and (9), respectively, our
modeling framework can be succinctly represented as
follows:

Ujjp = Wjy +w}t)\i + €,
we=xB —ap, +n,
p,=zy+w,

{, ~ CDPM(G,, %),
A, ~ CDPM(E,, M),

(10)

y
€;; ~normal or extreme value.

Estimation proceeds via Markov chain Monte Carlo
(MCMC) methods based on data augmentation of the
utility u;; and the mean utility u; as well as a trunca-
tion approximation of the CDPM such that the result-
ing full conditional distributions are all available in
closed form. The full conditional distributions used in
our MCMC scheme are provided in Appendix A, §A.1.

Inferences about parameters and the number of
components in Dirichlet process mixtures depend to
some extent on the prior for x and the choice of
the base distribution G,. In particular, the number of
clusters could depend on the variance of the base mea-
sure. In practice, data are standardized before analy-
sis and the base distribution is chosen to have close
to unit variance. Unlike most applications in statis-
tics, we use large data sets in our applications and
thus inferences are mostly driven by the information
contained in the likelihood. In the rest of this paper,
we will employ the probit framework for the utilities.
The logit can also be applied with appropriate modifi-
cations to our estimation scheme. We use the MCMC
draws in tandem with the Geweke-Hajivassiliou-
Keane (GHK) algorithm (Geweke 1989, Hajivassiliou
and McFadden 1998, Keane 1994) to compute price
elasticities and model comparison statistics WAIC and
DIC. Details regarding these statistics are reported in
Appendix A, §A.2.

3. Simulated Data

In this section, we apply simulated data to study
the suitability of modeling the distributions of choice
endogeneity and individual heterogeneity using
CDPM. We demonstrate that the proposed model is
able to properly recover the utility parameters and
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price elasticities irrespective of the underlying distri-
butions for the errors. We show that when the actual
endogeneity and heterogeneity errors are normally
distributed, our approach recovers preference param-
eters with some loss in efficiency. More importantly,
we illustrate that when the normality assumption is
violated and the data come from multimodal, skewed,
or heavy-tailed distributions only models based on
the CDPM are able to recover the true parameters
and elasticities accurately. In such instances, models
that assume normal distributions for endogeneity and
heterogeneity errors yield incorrect estimates of the
utility parameters and price elasticities. For the sim-
ulation study, we mainly focus on inferences when
data come from multimodal distributions. However,
we also report briefly, in the end of this section, on
the performance of our model applied on data coming
from unimodal, but skewed and heavy-tailed distribu-
tions. We now describe our simulated data.

3.1. Simulated Multimodal Data

We simulate four different data sets with varying dis-
tributional assumptions on the endogeneity and het-
erogeneity errors according to a 2 x 2 design involving
two factors.

e The first design factor varies the distribution of
choice endogeneity. That is, we simulate the endo-
geneity errors {, = {n,, o} from either a single multi-
variate normal distribution or from a mixture of seven
multivariate normal distributions. In the latter case,
we choose the weights, means, and covariance matri-
ces of the component distributions to ensure a multi-
modal distribution that is centered at zero.

¢ The second design factor varies the heterogeneity
distribution that characterizes the differences in the
individual-level utility parameters. Analogous to the
first factor, we assume that the person-specific coef-
ficients, N;’s, come from either a single multivariate
normal distribution or from a mixture of seven mul-
tivariate normal distributions.

Note that we deliberately refrain from using a
Dirichlet process mixture for generating the endo-
geneity and heterogeneity errors because our interest
is in showing how the CDPM framework can flexi-
bly handle a variety of data sets that are not directly
based on it. The resulting data sets are as follows:

e D1: This uses normal endogeneity and hetero-
geneity components.

¢ D2: This uses the mixture distribution for endo-
geneity but the normal distribution for heterogeneity.

¢ D3: This uses normal endogeneity and the mix-
ture distribution for heterogeneity.

* D4: This uses mixture distributions for both the
endogeneity errors and heterogeneity coefficients.

We use the same sample size for all four simu-
lated data sets with I =300 individuals, T =400 trips,
and two alternative brands | = 2 plus an outside

good on each choice occasion. We assume that the
vector x, contains the two brand constants and a
single brand-specific exogenous variable (e.g., pro-
motion). In addition, we assume a single brand-
specific endogenous variable (e.g., price). The “prices”
are generated according to Equation (2). The exoge-
nous variable and the “instruments” z, in the price
equations are assumed to be uniformly distributed
independently across brands and observations. The
brand-specific intercepts and the price and promotion
coefficients are allowed to be heterogeneous across
individuals. The true values for all utility and distri-
butional parameters for generating the four data sets
are reported in Appendix B.

3.2. Models
We estimate four models on each of the simulated
data sets. The models are as follows:

e M1: In this model, we use multivariate normal
distributions for both endogeneity and heterogene-
ity errors. This serves as a benchmark model, which
our other models can be compared with to assess the
gains from a semiparametric approach.

e M2: In this model, we use a multivariate normal
distribution to capture heterogeneity but allow the
endogeneity errors to follow a CDPM. A comparison
of M2 with M1 can reveal the benefits of a nonpara-
metric specification for the endogeneity distribution.

* M3: Here, we specify the endogeneity distribu-
tion to be multivariate normal but assume that the
heterogeneity distribution is a CDPM.

e M4: In the last model, we assume two different
CDPM specifications for the endogeneity and hetero-
geneity errors. Thus, M4 is the full model that we
consider in this paper.

Details about the priors for the four models can be
found in Appendix A, §A.1. We now discuss the esti-
mation results for each of the four data sets.

3.3. Results

The results for all 16 model runs are based on 50,000
MCMC draws after discarding an initial set of 50,000
burn-in draws. Convergence is assessed by monitor-
ing the trace plots of the model parameters.

3.3.1. D1: Normal Endogeneity and Normal Het-
erogeneity. Table 1 reports the posterior mean of the
utility parameters, the price elasticities, and their pos-
terior standard deviations for the four models when
applied to D1. In addition, the table also contains
the estimates of the concentration parameters of the
endogeneity and heterogeneity CDPM distributions
for models M2, M3, and M4. Comparing the poste-
rior means across models, we can conclude that all
four models recover well the true parameters and
elasticities. However, the standard deviations for the
utility parameters in models that involve the CDPM
are somewhat higher than those from M1. This loss
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Table 1 MCMC Estimation Results for D1
M1 M2 M3 M4

Parameter Truth Est. Std. Est. Std. Est. Std. Est. Std.
Intercept 1 1.3 1.325 0.060 1.328 0.179 1.326 0.102 1.328 0.177
Intercept 2 0.8 0.839 0.061 0.856 0.182 0.863 0.103 0.857 0.184
Promotion 0.7 0.628 0.031 0.652 0.036 0.653 0.058 0.650 0.050
Price 1.1 1.100 0.032 1.110 0.041 1.108 0.057 1.110 0.042
KE — — — 22.211 1.965 — — 22.237 1.974
K" — — — — — 17.905 1.698 17.903 1.730
e11 -1.130 —1.131 0.037 -1.132 0.035 -1.130 0.043 -1.133 0.037
e12 0.616 0.621 0.022 0.622 0.023 0.621 0.029 0.621 0.024
e21 0.365 0.372 0.011 0.372 0.011 0.371 0.013 0.372 0.012
822 —1.549 —1.557 0.045 —1.558 0.045 —1.556 0.055 —1.557 0.048
WAIC — 2.827 3.151 2.830 3.293

DIC — 2.804 3.290 2.807 3.341

in efficiency is not surprising given that the actual
data come from normal distributions. However, the
differences in standard deviations are small enough,
particularly for the elasticities, that the qualitative
conclusions based on the models remain unaffected.
Finally, we see that both the WAIC and the DIC
statistics are the lowest for model M1 and thus point
toward the correct model.

We can also assess how well the full model M4
recovers the unimodal nature of the heterogeneity and
endogeneity distributions. As an example, Figure 2
shows the actual distribution as well as the posterior
predictive distribution for endogeneity errors associ-
ated with the price equations for brands 1 and 2. It is
clear from the figure that the CDPM specification is
able to recover the unimodal nature of the true dis-
tribution. The recovery is similar for the other endo-
geneity components as well as for the multivariate
distribution of the heterogeneity errors.

3.3.2. D2: Mixture Endogeneity and Normal Het-
erogeneity. Table 2 reports the posterior mean and
standard deviations of the parameters and the

Figure 2

Actual Distribution of the Endogeneity Errors of D1 (Left) and the

elasticities for the four models on D2. Recall that, in
this data set, the actual endogeneity errors follow a
mixture of seven normal distributions. In M1 and M3,
the endogeneity component assumes a normal distri-
bution and is therefore misspecified. We see that the
posterior means for the parameters in these models
differ significantly from the true values. This differ-
ence is particularly pronounced for the brand inter-
cepts. In contrast, M2 and M4 yield estimates that are
close to the truth. This is because the CDPM specifica-
tion for the endogeneity component in these models
is able to mimic the true finite mixture of normals dis-
tribution. It is also interesting to note that model M3
is unable to recover the true parameters despite its
flexible handling of heterogeneity using the CDPM.
Thus, flexibility in the heterogeneity component is not
sufficient to account for misspecification in the endo-
geneity component. We can see from the table that
the posterior standard deviations, particularly for the
endogenous price variable, are also inflated for mod-
els M1 and M3 when compared with those for M2
and M4. Focusing on the elasticities, we see that
M2 and M4 are not only better at recovering the

Posterior Predictive Distribution of M4 (Right)
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Table 2 MCMC Estimation Results for D2
M1 M2 M3 M4

Parameter Truth Est. Std. Est. Std. Est. Std. Est. Std.
Intercept 1 1.3 1.543 0.291 1206  0.248 1674  0.326 1426  0.286
Intercept 2 0.8 1.826 0.349 0.818  0.244 1.986  0.398 0.802  0.282
Promotion 0.7 0.626 0.148 0.768  0.048 0.623  0.152 0.768  0.053
Price 1.1 1174 0.146 1.076  0.046 1273  0.188 1.026  0.051
KE — — — 6.217 1.215 — — 8.661 1.495
K — — — — — 2240  0.704 2512 0.757
el -0.273  -0.292 0.037 -0.258  0.012 —-0.317 0.047 -0.25  0.013
el12 0.102 0.111 0.014 0.099  0.005 0.120  0.018 0.098  0.006
e21 0.083 0.089 0.009 0.079  0.003 0.095  0.011 0.079  0.004
e22 -0.369  —0.393 0.043 -0.350 0.014 0420 0.054 —-0.347 0.016
WAIC — 2.557 2.108 2.304 2.342

DIC — 2.439 2.219 2.321 2.237

elasticities but do so efficiently, given the smaller stan-
dard deviations. We also find that the WAIC and DIC
statistics are the lowest for the correct model (M2).
These results clearly indicate that flexibility in model-
ing endogeneity is important to avoid the possibility
of misleading results.

3.3.3. D3: Normal Endogeneity and Mixture Het-
erogeneity. Table 3 reports the results for the four
models on D3. We find that all four models do a rea-
sonably good job in recovering the true utility param-
eters and price elasticities. In addition, we can see
that the posterior standard deviations are also com-
parable across the model. Recall that, in this data
set, the heterogeneity coefficients come from a mix-
ture of normal distributions, whereas the endogeneity
errors are distributed normal. The good performance
of models M1 and M2 (both models use a parametric
multivariate normal distribution for the heterogene-
ity component) indicates that inferences regarding the
utility parameters are not overly sensitive to the mis-
specification of the heterogeneity distribution.

An examination of the recovery of the endogene-
ity and heterogeneity distributions (figures are not
included for brevity) reveals that models M3 and M4

recover the exact shape of the seven-normal mixture
distribution for the heterogeneity, whereas model M1
is unable to do so. Thus, to the extent that uncover-
ing the pattern of individual differences is important
for managerial actions (e.g., segmentation), it is still
preferable to use the semiparametric specification.

3.3.4. D4: Mixture Endogeneity and Mixture Het-
erogeneity. Table 4 reports the results for the four
models on D4. It is clear from the table that models M1
and M3, which assume a parametric distribution for
the endogeneity errors, do a poor job of recovering the
true parameters as well as the price elasticities. More-
over, the associated posterior standard deviations for
these models are inflated compared with those from
models M2 and M4. The latter two models yield esti-
mates and elasticities that are close to their true values
because both accommodate endogeneity in a flexible
fashion. We also see that the WAIC and DIC identify
the right model M4.

Finally, as before, the full model is able to recover
multimodality of the underlying true distributions.
Figure 3 shows a bivariate marginal distribution of
the endogeneity errors (for the demand shock of
brand 1 and the price shock of brand 2) from the

Table 3 MCMC Estimation Results for D3
M1 M2 M3 M4

Parameter Truth Est. Std. Est. Std. Est. Std. Est. Std.
Intercept 1 1.3 1.098 0.123 1.251 0.213 1.284 0.130 1.214 0.115
Intercept 2 0.8 0.744 0.109 0.738 0.204 0.743 0.121 0.770 0.113
Promotion 0.7 0.604 0.034 0.603 0.035 0.606 0.075 0.587 0.067
Price 1.1 1.059 0.038 1.052 0.038 1.060 0.050 1.059 0.051
KE — — — 5.651 0.930 — — 1.967 0.592
Kt — — — — — 4.670 1.039 6.006 1.295
el —-0.602 —-0.584 0.019  -0.584 0.019 -0.584 0.020 —0.585 0.022
e12 0.294 0.290 0.011 0.290 0.011 0.288 0.011 0.291 0.012
e21 0.184 0.182 0.007 0.182 0.007 0.181 0.007 0.182 0.007
22 —-0.982 -0.976 0.030 -0.975 0.030 -0.974 0.031 —0.975 0.034
WAIC — 2.455 2.650 2.406 2.614

DIC — 2.423 2.483