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Abstract. We show that elimination by aspects (EBA) generalizes nested logit and cross-
nested logit models. The latter two models are equivalent to a special case of EBA called
preference trees. The transformations between preference trees and nested logit models
become more complex when the utilities of alternatives are functions of covariates. In
this case, a simple model in one domain corresponds to a complex model in the other.
An extended EBA model, in which the utilities of alternatives are functions of covariates,
represents a two-stage choice process. Alternatives are first screened using a probabilistic
lexicographic rule and then compared in terms of their compensatory utilities. We pro-
vide a typology of the relations between EBA and other logit models, and we discuss
issues concerning estimation, statistical testing, and data collection. We describe an appli-
cation illustrating (1) the process of constructing a preference tree with covariates and
(2) the different implications obtained from a preference tree and a comparable nested
logit model.

Keywords: elimination by aspects • preference trees • hierarchical elimination model • nested logit model • cross-nested logit model •
two-stage choice model • order independence • independence of irrelevant alternatives

1. Introduction
Elimination by aspects (EBA) is a probabilistic choice
model that generalizes the multinomial logit and rank-
ordered logit models (Kohli and Jedidi 2015). We show
that it also generalizes nested logit and cross-nested
logit models. The latter two models are equivalent to a
special case of EBA called preference trees (Tversky and
Sattah 1979). The equivalence is simpler when the util-
ities of the alternatives are not functions of covariates.
Otherwise, a simple preference tree corresponds to a
complex nested logit model, and a simple nested logit
model to a complex preference tree. A two-stage EBA-
like model can be formulated in which options are first
screened using a probabilistic lexicographic rule and
then evaluated in terms of their compensatory utilities.
Our analysis extends the result obtained by Batley

and Daly (2006), who showed that a nested logit model
with three alternatives and two nests is equivalent to
a preference tree. Although limited to a small prob-
lem, their result is notable because earlier research was
either inconclusive about the relation between nested
logit models and preference trees (McFadden 1981) or
suggested that the twomodels were similar but distinct
(Tversky and Sattah 1979). Like Batley and Daly (2006),
we consider the equivalence between EBA and nested
and cross-nested logit models, but not the entire class
of Generalized Extreme Value (GEV) models, which is
known to approximate any random utility model arbi-
trarily closely (Dagsvik 1995).

The present results may be useful for the following
reasons. First, they provide a more complete account

of the extent to which EBA generalizes logit mod-
els. Second, nested logit and cross-nested logit models
assume a generalized extreme value distribution. EBA
and preference trees do not require this assumption,
but only assume that the aspects have independent,
extreme value distributions. Third, simple formula-
tions of nested logit models and preference trees are
not equivalent when the utilities of the alternatives
are functions of covariates. In these cases, both mod-
els can be estimated and compared. Fourth, by using
attributes as covariates, EBA and preference trees can
be extended to model a two-stage choice process. In
the first stage, a subset of alternatives is screened using
a probabilistic lexicographic rule. In the second stage,
an alternative is selected if it has the highest multi-
attribute utility among the screened alternatives. This
formulation has the advantage that the parameters for
both stages are simultaneously estimated using a com-
mon error structure.

Whether to use EBA, its generalization, or one of
its special cases, depends on the same considerations
that apply when selecting any general model or its spe-
cial cases: the modeling objective and the adequacy of
the restrictions imposed by a special case. A multino-
mial logit model is appropriate when it is known, or
verified after estimation, that independence of irrele-
vant alternatives (IIA) violations do not occur. A nested
logit model or a preference tree is suitable when vio-
lations of order independence are expected to occur
across, but not within, nests.1 The more general EBA is
useful when substitutability is expected, or confirmed
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after estimation, to differ across pairs of alternatives.
The extended EBA formulation, inwhich the utilities of
alternatives are functions of covariates, is appropriate
when a tree structure is too restrictive but the unre-
stricted EBA model has too many parameters. It is also
useful for estimating a two-stage choice process.
Section 2 characterizes the equivalence of nested

logit models and preference trees, with and without
covariates. It also shows that preference trees can rep-
resent cross-nested logit models. Section 3 describes
the known relations between EBA and logit models.
Section 4 discusses estimation, statistical testing, and
data collection for EBA. Section 5 describes an appli-
cation in which the utilities of alternatives are func-
tions of covariates. It illustrates the process of building
an extended preference tree, compares the choice pro-
cesses for a preference tree and a nested logit model,
and contrast their marketing implications.

2. Equivalence
We describe preference trees and nested logit models
and show how the parameters of one can be trans-
formed into the parameters of the other.We then obtain
a transformation mapping the parameters of a cross-
nested logit model onto the parameters of a preference
tree. Finally, we obtain a transformation of parame-
ters between preference trees and nested logit mod-
els when the utilities of alternatives are functions of
covariates.

We begin by summarizing EBA. Let A denote the set
of aspects describing the alternatives in a choice set C.
An aspect can be a discrete attribute level (say, the color
blue) or a threshold value associated with a continu-
ous attribute (say, a maximum price). Let aspect k ∈ A
have random utility uk � vk + εk , where εk has an inde-
pendent, extreme value distribution. EBA eliminates
alternatives and aspects in stages. Let A j denote the set
of aspects that appear in one ormore of the alternatives
at stage j. EBA selects aspect k ∈ A j with probability
pk � exp(vk)/

∑
i∈A j

exp(vi). It eliminates all alternatives
that do not have aspect k and then advances to the next
stage, stopping when only one alternative remains.

2.1. Preference Tree
A preference tree is a special case of EBA in which the
aspects and alternatives can be represented by a tree
(Tversky and Sattah 1979). Each node in a preference
tree, except the root, is associatedwith a distinct aspect.
Each path from the root to a terminal node describes
an alternative. We say that a preference tree has n > 1
levels if each path from the root to a terminal node
has n aspects.2 We use the terms “node” and “aspect”
interchangeably in the following development.
Let S(0)� {k0}, where k0 denotes the root of the pref-

erence tree. Let S(k0) be the set of nodes that are (imme-
diate) successors of the root. Let S(k0 , k1) be the set of

nodes that are successors of node k1 ∈ S(k0). More gen-
erally, let S(k0 , . . . , kr) be the set of nodes that are suc-
cessors of node kr ∈ S(k0 , . . . , kr−1), where r � 1, . . . , n.
Each path from the root to a terminal node in the tree
represents an alternative. The nodes on the path cor-
respond to the aspects that appear in the alternative.
For brevity, we sometimes use the term “alternative kn”
to refer to an alternative associated with the terminal
node kn ∈ S(k0 , . . . , kn−1).

We define the following sets to facilitate the repre-
sentations of preference trees and nested logit models
with arbitrary numbers of levels. Let

Ω0 � {S(0)} and Ω1 � {S(k0)}.

Node k1 ∈ S(k0) is succeeded by the nodes in the set
S(k0 , k1). The collection of these sets is

Ω2 � {S(k0 , k1) | k1 ∈ S(k0), S(k0) ∈Ω1}.

More generally, node kr−1 ∈ S(k0 , . . . , kr−2) is succeeded
by the nodes in the set S(k0 , . . . , kr−1). The collection of
these sets is

Ωr � {S(k0 , . . . , kr−1) | kr−1 ∈ S(k0 , . . . , kr−2),
S(k0 , . . . , kr−2) ∈Ωr−1}, for each r � 2, . . . , n.

Figure 1 shows the setsΩ0,Ω1 andΩ2 for a tree with
n � 2 levels.

Example 1. Let the first level of a preference tree have
two nodes, representing ground and air travel. Let the
node representing ground travel be succeeded by three
nodes, representing train, bus, and car. Similarly, let
the node representing air travel be succeeded by three
nodes, representing first class, business class, and econ-
omy class. Then

S(0)� {k0}, Ω0 � {S(0)}
S(k0)� {Ground, Air}, Ω1 � {S(k0)}� {{Ground, Air}}

S(k0 ,Ground)� {Train, Bus, Car},
S(k0 ,Air)� {First class, Business class, Economy class}
Ω2 � {S(k0 ,Ground),S(k0 ,Air)}

�
{
{Train, Bus, Car},
{First class, Business class, Economy class}

}
.

Figure 1. A preference tree with n � 2 levels

S(k0, k1)

S(k0)

S(0)

�1 = {S(k0)}

�0 = {S(0)}k0

k1

k2 �2 = {S(k0, k1) | k1 ∈S(k0), S(k0) ∈�1}

Notes. Every path from the root k0 to a terminal node k2 ∈ S(k0 , k1)
identifies an alternative, for each S(k0 , k1) ∈Ω2.
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Let aspect k have random utility uk � vk + εk ,
where εk has an independent, extreme value distribu-
tion for each k ∈ S, where S ∈Ωr and r � 1, . . . , n. Then
the EBA choice probabilities can be computed in the
manner described by Kohli and Jedidi (2015).
To obtain a transformation of parameters between

preference trees and nested logit models, we use a
result by Tversky and Sattah (1979) showing that the
choice probabilities in a preference tree are equal to
those in a hierarchical elimination model, which we
discuss next.
Hierarchical Elimination Model. In the first stage, the
hierarchical elimination model selects aspect k1 ∈ S(k0)
with probability

p(k1 ∈ S(k0))�
exp(vk1

)+ Jk1

Jk0

,

where
Jk0

�
∑

k∈S(k0)
{exp(vk)+ Jk},

and

Jk1
�

∑
k∈S(k0 , k1)

{exp(vk)+ Jk},

for all k1 ∈ S(k0) and S(k0) ∈Ω1.

In the second stage, it selects an aspect k2 ∈ S(k0 , k1)
with probability

p(k2 ∈ S(k0 , k1))�
exp(vk2

)+ Jk2

Jk1

,

where

Jk2
�

∑
k∈S(k0 , k1 , k2)

{exp(vk)+ Jk},

for all k2 ∈ S(k0 , k1) and S(k0 , k1) ∈Ω2.

In general, if the first r − 1 stages select aspects
k1 , . . . , kr−1, then the rth stage selects an aspect kr ∈
S(k0 , . . . , kr−1)with probability

p(kr ∈ S(k0 , . . . , kr−1))�
exp(vkr

)+ Jkr

Jkr−1

,

where

Jkr
�

∑
k∈S(k0 ,...,kr )

{exp(vk)+ Jk}, for all kr ∈ S(k0 , . . . , kr−1)

and S(k0 , . . . , kr−1) ∈Ωr , r �1, . . . ,n−1.

The values of Jkn−1
, . . . , Jk0

are obtained recursively,
using the initial values Jkn

� 0, for all kn ∈ S(k0 , . . . , kn−1),
where S(k0 , . . . , kn−1) ∈ Ωn . The unconditional proba-
bility that the hierarchical elimination model selects
an alternative associated with the terminal node kn ∈
S(k0 , . . . , kn−1) is

P(kn ∈ S(k0 , . . . , kn−1))�
n∏

r�1
p(kr ∈ S(k0 , . . . , kr−1)).

Tversky and Sattah (1979) proved the following equiv-
alence theorem.

Theorem 1. The EBA choice probabilities for a preference
tree are equal to the choice probabilities for a hierarchical
elimination model.

2.2. Nested Logit Model
A nested logit model has the same graphical represen-
tation as a preference tree. Each terminal node corre-
sponds to an alternative. Each other node corresponds
to a nest. We use the set notation introduced in the
preceding subsection to represent sets of nodes.

Let u′k � wk + ek denote the random utility of alterna-
tive k ∈ S(k0 , . . . , kn−1), for all S(k0 , . . . , kn−1) ∈Ωn . Here,
wk is a deterministic utility component, and ek is a
random component with a generalized extreme value
distribution. The nested logit model associates a (nest-
ing) parameter λk with each nest k ∈ S(k0 , . . . , kr−1),
where S(k0 , . . . , kr−1) ∈Ωr and r � 1, . . . , n. A sufficient
condition for a nested logit model to be consistent
with utility maximization is that the nesting parame-
ters λk lie in the interval (0, 1]. To identify themodel, let
(1) λk0

� 1, and (2) λkn
� 1, for each terminal node kn ∈

S(k0 , . . . , kn−1), where S(k0 , . . . , kn−1) ∈ Ωn . The nested
logit model selects nest k1 ∈ S(k0)with probability

q(k1 ∈ S(k0))�
exp((λk1

/λk0
)Ik1
)

exp(Ik0
) .

In this expression,

Ik0
� ln

{ ∑
k∈S(k0)

exp
(
λk

λk0

Ik

)}
is the inclusive values associated with nest k0 ∈ S(0);
and

Ik1
� ln

{ ∑
k∈S(k0 , k1)

exp
(
λk

λk1

Ik

)}
is the inclusive value associated with nest k1 ∈ S(k0),
where S(k0) ∈Ω1.
Suppose nest k1 ∈ S(k0) has been selected. Then

the nested logit model selects nest k2 ∈ S(k0 , k1) with
probability

q(k2 ∈ S(k0 , k1))�
exp((λk2

/λk1
)Ik2
)

exp(Ik1
) , for all k2 ∈ S(k0 , k1).

In this expression,

Ik2
� ln

{ ∑
k∈S(k0 , k1 , k2)

exp
(
λk

λk2

Ik

)}
is the inclusive value associated with nest k2 ∈ S(k0 , k1),
where S(k0 , k1) ∈Ω2.
More generally, suppose that the sequence of nests

k1 , . . . , kr−1 has been selected. Then the nested logit
model selects nest kr ∈ S(k0 , . . . , kr−1)with probability

q(kr ∈ S(k0 , . . . , kr−1))�
exp((λkr

/λkr−1
)Ikr
)

exp(Ikr−1
) .
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In this expression,

Ikr
� ln

{ ∑
k∈S(k0 ,...,kr )

exp
(
λk

λkr

Ik

)}
is the inclusive value associated with nest kr ∈
S(k0 , . . . , kr−1), where S(k0 , . . . , kr−1) ∈ Ωr , for all r � 1,
. . . , n − 1. Since Ikr−1

is a function of Ikr
, the values

of Ikn−1
, . . . , Ik0

are obtained recursively, using the ini-
tial values Ikn

� wkn
, for all kn ∈ S(k0 , . . . , kn−1), where

S(k0 , . . . , kn−1) ∈Ωn . The unconditional probability that
the nested logit model chooses an alternative associ-
ated with the terminal node kn ∈ S(k0 , . . . , kn−1) is

Q(kn ∈ S(k0 , . . . , kn−1))�
n∏

r�1
q(kr ∈ S(k0 , . . . , kr−1)).

2.3. Equivalence of Preference Trees and
Nested Logit Models

We show that preference trees and nested logit mod-
els are equivalent. Given the parameter values for one
model, there are parameter values for the other that
obtain the same choice probabilities for all alternatives.
We prove the following theorem in the appendix.

Theorem 2. Preference trees and nested logit models are
equivalent.

The following example illustrates the proof of
Theorem 2.

Example 2. Consider a tree with n � 3 levels. Let
Jk3

� 0, λk0
� λk3

� 1 and Ik3
� wk3

. Then the probabili-
ties of selecting node k3 ∈ S, where S � S(k0 , k1 , k2) ∈Ω3,
have the following values for the preference tree and
the nested logit model:

p(k3 ∈ S) �
exp(vk3

)+ Jk3

Jk2

�
exp(vk3

)
Jk2

,

q(k3 ∈ S) �
exp((λk3

/λk2
)Ik3
)

exp(Ik2
) �

exp((1/λk2
)wk3
)

exp(Ik2
) .

Since Jk � 0 for k ∈ S(k0 , k1 , k2), the value of Jk2
in the

preceding expression for p(k3 ∈ S) is

Jk2
�

∑
k∈S(k0 , k1 , k2)

{exp(vk)+ Jk} �
∑

k∈S(k0 , k1 , k2)
exp(vk).

Similarly, since λk � 1 when k ∈ S(k0 , k1 , k2), the value
of exp(Ik2

) in the preceding expression for q(k3 ∈ S) is

exp(Ik2
)�

∑
k∈S(k0 , k1 , k2)

exp
(
λk

λk2

Ik

)
�

∑
k∈S(k0 , k1 , k2)

(
1
λk2

wk

)
.

Equating the numerators of p(k3 ∈ S) and q(k3 ∈ S) gives

vk3
�

wk3

λk2

, for all k3 ∈ S � S(k0 , k1 , k2).

It follows that Jk2
� exp(Ik2

) and p(k3 ∈ S) � q(k3 ∈ S),
because the denominators of p(k3 ∈ S) and q(k3 ∈ S) are
equal to the sum of their numerators across all k3 ∈ S.

Similarly, the probabilities of selecting node k2 ∈ S,
where S � S(k0 , k1) ∈Ω2, have the following values for
the preference tree and the nested logit model:

p(k2 ∈ S) �
exp(vk2

)+ Jk2

Jk1

,

q(k2 ∈ S) �
C2 exp((λk2

/λk1
)Ik2
)

C2 exp(Ik1
) ,

where C2 is a positive constant associated with the
second level of the tree. Equating the numerators of
p(k2 ∈ S) and q(k2 ∈ S) gives

exp(vk2
)+ Jk2

�C2 exp
(
λk2

λk1

Ik2

)
, for all k2 ∈S�S(k0 , k1).

It follows that Jk1
� C2 exp(Ik1

) and p(k2 ∈ S)� q(k2 ∈ S),
because the denominators of p(k2 ∈ S) and q(k2 ∈ S) are
equal to the sum of their numerators across all k2 ∈ S.
We use the relation Jk2

� exp(Ik2
) to write the preceding

expression in either of the following two forms:

vk2
� ln

{
C2 exp

(
λk2

λk1

Ik2

)
− exp(Ik2

)
}
,

and

λk2
�

λk1

ln Jk2

{
ln{exp(vk2

)+ Jk2
} − ln C2

}
,

Finally, the probabilities of selecting node k1 ∈ S,
where S�S(k0) ∈Ω1, are given by the following expres-
sions for the preference tree and nested logit model:

p(k1 ∈ S) �
exp(vk1

)+ Jk1

Jk0

,

q(k1 ∈ S) �
C1 exp((λk1

/λk0
)Ik1
)

C1 exp(Ik0
) �

C1 exp(λk1
Ik1
)

C1 exp(Ik0
) ,

where λk0
� 1 and C1 is a positive constant associated

with the second level of the tree. Equating the numer-
ators of p(k1 ∈ S) and q(k1 ∈ S) gives

exp(vk1
)+ Jk1

� C1 exp(λk1
Ik1
), for all k1 ∈ S � S(k0).

Since the denominators of p(k1 ∈ S) and q(k1 ∈ S) are
equal to the sum of their numerators across all k1 ∈ S,
this condition implies that Jk0

� C1 exp(Ik0
), and thus

p(k1 ∈ S)� q(k1 ∈ S). We use the relation Jk1
�C2 exp(Ik1

)
to write the preceding expression in either of the fol-
lowing two forms:

vk1
� ln{C1 exp(λk1

Ik1
) −C2 exp(Ik1

)},
for all k1 ∈ S(k0);
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and

λk1
�

1
ln Jk1

− ln C2
{ln{exp(vk1

)+ Jk1
} − ln C1},
for all k1 ∈ S(k0).

The constants C1 and C2 can have any positive values
for which λk1

, λk2
∈ (0, 1], and the logarithms in the

expressions for vk1
and vk2

have positive arguments.

2.4. Cross-Nested Logit Model
Cross-nested logit models relax the assumption that
each alternative belongs to a single nest. These mod-
els have been developed only for trees with two levels.
We consider the generalized nested logit (GNL) model
by Wen and Koppelman (2001), which subsumes the
cross-nested logit models by Papola (2004), Vovsha
and Bekor (1998), and Vovsha (1997) as special cases.
Bierlaire (2006) showed that GNL is a member of the
family of generalized extreme value models. We show
that it is a special case of EBA.
Recall that each terminal node k2 ∈ S(k0 , k1) in a two-

level tree corresponds to an alternative. GNL assumes
that each alternative is a partial member of each set
(nest) S ∈ Ω2. A parameter θk(S) characterizes the
degree of membership of alternative k in nest S, where∑

S∈Ω2
θk(S)� 1. Alternative k does not belong to nest S

if θk(S) � 0, and it belongs to only nest S if θk(S) � 1.
GNL associates the following deterministic utility with
alternative k in nest S ∈Ω2:

wk(S)� wk + ln{θk(S)}, for all S � S(k0 , k1) ∈Ω2.

Observe that wk(S) 6 wk because ln{θk(S)} 6 0. The
unconditional choice probability for alternative k is
given by∑

S∈Ω2
pk(S), where pk(S) is the probability that

alternative k in nest S is chosen by the preference tree.
GNL reduces a cross-nested logit model to a nested
logit model in which each alternative is a partial mem-
ber of each nest. Thus, the transformation given in the
preceding section allows the representation of a cross-
nested logit model by a preference tree.

2.5. Extended Preference Trees
Nested logit models allow the deterministic utility
components of the alternatives to be functions of
covariates. We show that such a model is equivalent
to an extension of a preference tree in which all aspect
utilities are functions of covariates. Similarly, a prefer-
ence tree in which the utilities of the alternatives are
functions of covariates is equivalent to a nested logit
model in which all the parameters, including the nest-
ing parameters, are functions of covariates.
Consider a nested logit model in which alternative

kn ∈ S, S ∈Ωn , has the deterministic utility

wkn
� β′kn

zkn
� β0kn

+ β1kn
z1kn

+ · · · ,

where zkn
� (1, z1kn

, . . . , )′ is a column vector of covari-
ates, and β′kn

� (β0k , β1k , . . .) is a row vector of parame-
ters, for alternative kn . If the parameters are common
across the alternatives, then β′kn

� β′ � (β0 , β1 , . . .). As
described in the proof of Theorem 2, an equivalent
preference tree has the parameters

vkn
�

wkn

λkn−1

, for all kn ∈ S and S ∈Ωn , and

vkr
� ln

{
Cr exp

(
λkr

λkr−1

Ikr

)
−Cr+1 exp(Ikr

)
}
,

for all kr ∈ S and S ∈Ωr .

Since wkn
is a function of covariates, vkn

� wkn
/λkn−1

and

Ikn−1
� ln

{ ∑
k∈S(k0 ,...,kn−1)

exp
(

wk

λkn−1

)}
are also functions of covariates. The other Ikr

values
are also functions of the covariates because they are
recursively obtained by using the relation

Ikr
� ln

{ ∑
k∈S(k0 ,...,kr )

exp
(
λk

λkr

Ik

)}
.

Thus, if the utilities of the alternatives are functions of
covariates in a nested logit model, then all aspect utili-
ties are functions of covariates in an equivalent prefer-
ence tree.

Similarly, consider a preference tree in which aspect
kn ∈ S, S ∈Ωn , has the deterministic utility

vkn
� µ′kn

zkn
� µ0kn

+ µ1kn
z1kn

+ · · · ,

where µ′kn
� (µ0kn

, µ1kn
, . . .) denotes a row vector of

parameters. Since kn is a terminal node, it appears
in only one alternative. If the parameters are com-
mon across alternatives, then µ′kn

� µ′ � (µ0 , µ1 , . . .). As
described in the proof of Theorem 2, an equivalent
nested logit model has the parameters wkn

� λkn−1
vkn

and

λkr
�

1
ln Jkr

− ln Cr+1
{ln{exp(vkr

)+ Jkr
} − ln Cr},

for all kr ∈ S, S ∈Ωr and r � 1, . . . , n − 1.

Since λkr
is a recursive function of vkn

, each λkr
and Ikr

is also a function of the covariates.
To illustrate, consider the correspondence between

a two-level preference tree and a nested logit model.
Let vk2

� µ′k2
zk2

; that is, let the unique aspect of each
alternative in the preference tree have a deterministic
utility that is a linear function of covariates. Then the
correspondence implies the following.

(1) The deterministic utilities of the alternatives in
an equivalent nested logit model are functions of
covariates:

wk2
� λk1

vk2
� λk1

µ′k2
zk2

� β′k2
zk2
.
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(2) The inclusive value parameters in a nested logit
model are functions of covariates:

λk1
�

ln(evk1 + Jk1
) − ln C1

ln Jk1

,

where

Jk1
�

∑
k2∈S(k0 , k1)

evk2 �
∑

k2∈S(k0 , k1)
eµ
′
k2

zk2 .

Thus, if we generate data from a preference tree with
covariates, then a nested logit model will obtain a per-
fect fit to the data only if the inclusive value parameters
are functions of covariates. Similarly, as shown above,
if we generate data from a nested logit model with
covariates, then a preference tree will obtain a perfect
fit to the data only if all the aspect utilities are functions
of covariates.

3. Relations Among Models
Figure 2 shows the relations between EBA and several
other choice models.3 Wediscuss these relations below.
(1) EBA is equivalent to a probabilistic lexicographic

rule: to select an alternative, a person probabilistically
arranges the aspects in decreasing order of their util-
ities, then uses them in a lexicographic rule. Tversky
(1972a, b) described the conceptual correspondence
between EBA and a probabilistic lexicographic rule.
Kohli and Jedidi (2015) formalized it by showing that
if the aspect utilities have extreme value distributions,
then the set of lexicographic sequences can be parti-
tioned into mutually exclusive and collectively exhaus-
tive subsets, each corresponding to an EBA instance.
Suppose an EBA problem is defined over n aspects,
and that an EBA instance uses a subset of m 6 n aspects
to select an alternative A. Without loss of generality, let
1, 2, . . . ,m denote the aspect sequence used by the EBA
instance. Let S denote the set of ordered sequences
over all n aspects in which aspect i precedes aspect j,
for all 1 6 i < j 6 m. Then all sequences s ∈ S choose
alternative A by eliminating the same alternatives in
the same sequence. The sum of the occurrence proba-
bilities for the sequences inS is equal to the probability
that the EBA instance chooses A.
(2) EBA generalizes the rank ordered logit model. If

an EBA instance uses all n aspects to eliminate alter-
natives,4 then it occurs with a probability given by
the rank-ordered logit model (Beggs et al. 1981). More
generally, as discussed above, the probability of an
EBA instance is obtained by adding the probabilities of
occurrence for a subset of aspect sequences, and each
aspect sequence occurs with a probability given by the
rank ordered logit model.

(3) A probabilistic lexicographic rule reduces to a
deterministic lexicographic rule over a sequence of
aspects, say 1, . . . , n, when vk − vk+1 is sufficiently large

for all k � 1, . . . , n − 1. For example, suppose v1 �

(n − 1)v and vk+1 � vk − v, for each k � 2, . . . , n. Then

exp(vk)∑n
j�k exp(v j)

�
1∑n

j�k exp(v j − vk)
>

1
1+ (n − k)exp(−v) .

Thus, the probabilistic lexicographic rule selects the
aspect sequence 1, . . . , n with probability

n−1∏
k�1

exp(vk)∑n
j�k exp(v j)

>
n−1∏
k�1

1
1+ (n − k)exp(−v) .

The right-hand side of this expression, and thus the
probability of choosing the aspect sequence 1, . . . , n,
can be made to be arbitrarily close to one by choosing
a sufficiently large value for v > 0.
(4) Extended elimination by aspects refers to an EBA

model in which (i) each alternative has a unique aspect,
and (ii) the utility of a unique aspect is a function of
covariates. Thus, a unique aspect is a composition of
covariates, including product attributes, that are asso-
ciated with an alternative. In a preference tree, the
unique aspects are represented by terminal nodes.

Extended EBA captures a consideration-then-choice
process, but without separately formulating a con-
sideration stage and a choice stage. Choosing a
unique aspect at any stage of elimination corresponds
to choosing an alternative. Any preceding elimina-
tion stages represent a consideration phase in which
alternatives are eliminated using the shared aspects.
The number of elimination stages in the consider-
ation phase can differ from one choice occasion to
another, as can the specific sequence of aspects used
for eliminating alternatives. Only one error model is
used, since all aspects, including the unique aspects,
have independent random utilities with extreme value
distributions.

(5) As discussed in Section 2, a preference tree is a
special case of EBA. It is equivalent to a nested logit
model in which the utilities of the alternatives are not
functions of covariates. An extended preference tree is
a special case of extended EBA. It is equivalent to a
nested logit model in which the utilities of alternatives
are functions of covariates. In the latter case, (i) the
aspect utilities in a preference tree are functions of the
covariates used in a nested logit model, and (ii) the
inclusive value parameters in a nested logit model are
functions of the covariates used in a preference tree.

There is also a conceptual difference between the
extended preference tree and the nested logit model.
An extended preference tree not only describes a two-
phased decision process but also allows the same prob-
abilistic elimination by aspects that is used by EBA. As
a consequence, the number of steps in the elimination
phase is not fixed. An alternative may be chosen at the
first step, with a probability that depends on its utility
and the utilities of all other alternatives and aspects; or
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it may be selected after one or more steps, with a prob-
ability that depends on its utility, and the utilities of all
other surviving alternatives and aspects. A nested logit
model, like the hierarchical elimination model, only
allows a sequential elimination of alternatives. Tversky
and Sattah (1979, p. 548) observed that the probabilistic
elimination process associated with a preference tree
is more likely to be used for decisions like choosing a
restaurant or a movie, which have no fixed sequence of
choice points (they call this free access). A sequential
elimination process, described by nested logit and hier-
archical elimination models, is more likely to be used
for decisions that have a natural hierarchy of choice
points (they call this sequential access). For example,
sequential access occurs when a person first decides
whether to travel by train or airplane, and only then
evaluates the options in a schedule of trains or flights.
(6) EBA allows a distinct aspect to be associatedwith

each subset of alternatives in a choice set. Thus, the
number of parameters in an unrestricted EBA problem
increases exponentially with the number of alterna-
tives in a choice set, and the expressions for the EBA
choice probabilities become increasingly more com-
plex. In contrast, the number of parameters in a pref-
erence tree increases only linearly with the number
of alternatives. The choice probabilities have simple

Figure 2. Choice models related to elimination by aspects (EBA)

Extended
elimination by aspects

Elimination by aspects
Probabilistic lexicographic rule

Hierarchical
elimination model

Nested
logit model

Cross nested
logit model

Rank ordered
logit model

Deterministic
lexicographic rule

Multinomial
logit model

Unique aspects of alternatives
are functions of covariates

Preference tree

All aspects are used
for elimination

vk      vk + 1,
for all k = 1, . . . , n – 1Aspects can be represented

by nodes in a tree

Notes. Extended elimination by aspects is the only model with covariates in this figure. Similar relations exist between extended EBA and
version of the other models with covariates (except the rank-ordered logit model and the deterministic lexicographic model).

expressions for a hierarchical elimination model, and
thus for a preference tree, with any number of levels.

(7) A cross-nested logit model generalizes a nested
logit model by allowing alternatives to be partial mem-
bers of multiple nests. We showed in Section 2 that a
cross-nested logit model can be represented by a pref-
erence tree. An advantage of the preference tree rep-
resentation is that it does not require the assumption
of a generalized extreme value distribution. A related
benefit is that the latter error structure has been used to
construct cross-nested logit models with two levels. In
contrast, a preference tree representing a cross-nested
logit model can be obtained for any number of levels
by assuming that the aspect utilities have independent,
extreme value distributions.

(8) It is well known that a nested logit model
reduces to a multinomial logit model when each nest-
ing parameter is equal to unity. A multinomial logit
model in which the utilities of alternatives are func-
tions of covariates is also a special case of an extended
preference tree.

4. Estimation
The relations among the models shown in Figure 2
can be useful for both confirmatory and exploratory
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analysis of choice data. In a confirmatory context, a
hypothesized preference structure can be estimated
and compared to any more or less restricted specifi-
cations. In an exploratory context, an aspect can be
associated with each subset of alternatives in a choice
set. Likelihood ratio tests and model selection crite-
ria, such as Akaike information criterion (AIC) and
Bayesian information criterion (BIC), can be used to
identify the aspects retained in the model. The inter-
pretation of a retained aspect needs to be based on
the commonalities among the alternatives in which it
appears. As discussed below, this approach is practi-
cal only for problems with a small number of alterna-
tives. Bentley and Seetharaman (2016) illustrated it for
a problem with five brands, using data on the choices
made by a panel of households.
As noted, an extended preference tree can be used

for modeling a two-stage choice process. It also offers
a compromise between the highly constrained prefer-
ence tree and the unconstrained EBA. Like a preference
tree, it can require fewer parameters than an unre-
stricted EBA model; like a nested logit model, it allows
the utilities of the alternatives to be functions other
additional aspects and covariates.

We now discuss (1) how the number of aspects
affects estimation, (2) the identification of important
aspects, (3) the representation of preference hetero-
geneity, and (4) issues concerning the data used for
estimating EBA models.

Number of Aspects
An EBA model with m alternatives can have O(2m)
parameters. Including all possible aspects is reasonable
only when m is small; otherwise, too many parame-
ters may need to be estimated. For example, a full EBA
model has over one thousand parameters when there
are m �10 alternatives and over onemillion parameters
when there are m � 20 alternatives. It may also not be
necessary to estimate a full EBA model if the purpose
is to assess the effects of manipulated variables, such
as product attributes in a conjoint choice experiment,
on consumer choice. In such cases, the aspects should
be primarily defined in terms of the attributes.
Even for an exploratory model, it is better to begin

with a simple nested logit model/preference tree and
then add more aspects by (1) sequentially introduc-
ing more levels in a tree, (2) selectively adding aspects
across nests, and (3) specifying the utilities of the alter-
natives to be functions of covariates. Observe that the
model can be estimated even if the same aspects are
used for nesting and as covariates, because the differ-
ences in the utilities of pairs of alternatives is unaf-
fected by identical values of their nesting aspects. Typ-
ically, the deterministic utilities of alternatives will
have alternative-specific constants. As in a nested
logit model, the parameters of the covariates may or
may not be constant across alternatives. Differences in

likelihoodvalues canbeused for assessing themarginal
benefit of adding one or more aspects and for compar-
ing alternative preference trees. Likelihood ratio tests
can be used to prune trees and compare alternative tree
models. If useful, selected aspects across nests can then
be added.

One advantage of a preference tree over a nested
logit model is that the choice probabilities are simple
functions of the deterministic aspect utilities. In con-
trast, the choice probabilities for a nested logit model
are recursive functions of the inclusive values. For
small problems, theremay be no computational advan-
tage of using one or the other model. But for problems
with several nesting levels, the preference tree may be
easier to specify and estimate.

Assessing Aspect Importance
Suppose two aspects, with deterministic utilities v1 and
v2, are available at an elimination stage. The probabil-
ity that aspect 1 is used for eliminating alternatives at
the stage is 1/(1 + exp(v2 − v1)). Both v1 and v2 may
be large negative values, but if v1 � v2, each attribute
will be selected with equal probability. Thus, an aspect
with a large negative, deterministic utility is not neces-
sarily an unimportant aspect. It is better to assess the
importance of an aspect by comparing the effect of its
exclusion on the maximum likelihood value. This is
feasible for the more general EBA model but not for a
preference tree. In the latter case, removing an aspect
also eliminates all alternatives in which it appears.
For example, if “ground” and “air” are two aspects
in a preference tree describing transportation choices,
then neither aspect can be removed without eliminat-
ing alternatives. We can only test one preference tree
against another.

Modeling Preference Heterogeneity
There are several ways of introducing heterogeneity
in EBA. First, in a preference tree, the parameters
of the utility functions may be allowed to be differ-
ent for each S ∈ Ωn−1. This approach is practical only
if |Ωn−1 | is small. Otherwise, the parameters may be
allowed to differ only across the first two or three lev-
els of the tree. Second, the utilities of the alternatives
can be functions of demographic variables. Alterna-
tively, the parameters associated with the attributes
can be functions of demographic or other person-
specific variables. Finally, random effects and latent
class formulations can be used to represent unobserved
heterogeneity in consumer preferences.

Data for EBA Models
EBA is useful when choices violate IIA or the weaker
order-independence condition. A data set may show
no violations of these conditions for two reasons. First,
consumer preferences may be consistent with IIA and
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order independence. Second, preferences may violate
the conditions but not in the choice sets used to esti-
mate the model. For example, suppose we collect data
for the red-bus-—blue-bus problem. A logit model will
fit the data well if we only consider a choice set with
two buses and a car. It will also fit the data well if we
consider only one bus and one car. But a single logit
model will not fit well if the data contain choices from
both types of choice sets. Thus, it is better to collect data
by fixing pairs of alternatives across multiple choice
sets and varying the other alternatives in these sets.
Any independence violations are then more likely to
be captured in the data. Otherwise, there may be little
difference in the fits obtained by a multinomial logit
model and EBA, not because independence violations
do not occur, but because the data do not have a suffi-
cient number of such instances.

5. Application
We illustrate the approach to building and testing an
EBA/preference tree model for a problem concern-
ing the prediction of transportation choices by 210
nonbusiness travelers between Sydney, Canberra, and
Melbourne (Louviere et al. 2000). A traveler could
drive, fly, or ride a train or bus, to a destination. Sev-
eral flights, trains, and buses, with different prices
and travel times, were available to passengers travel-
ing between each pair of cities. Some of the options
had stops and transfers, which added to the total
travel time.

Process of Model Construction
The number of alternatives across city pairs and travel
modes was too large to construct a full EBA model.
We started by estimating a nested logit model and a
preference tree using intuitively reasonable groupings
of alternatives. Both models used the covariates dis-
cussed below. Each tree partitioned the alternatives
into two groups. The first tree had a public-private
partition (bus-train and air-car), the second a ground-
air partition (car-train-bus and air).5 Both structures
have been previously used to construct nested logit
models (Louviere et al. 2000, Hensher and Greene
2002). We selected the tree with the ground-air par-
tition based on a likelihood ratio test relative to the
MNL model (χ2(1) � 5.62, p < 0.05 for nested logit
model; and χ2(1) � 45.67, p < 0.001 for the preference
tree). For the nested logit model, the public-private
partition (bus-train and air-car) achieved better fit than
the ground-air partition, but obtained inclusive value
estimates that were larger than one (the estimate was
much larger than one for the private nest). Constrain-
ing the inclusive values to lie between zero and one
resulted in a substantial reduction in the likelihood
value. A likelihood ratio test suggested that the con-
strained model was no different from the multinomial
logit model (χ2(2) � 0.87; p > 0.5). For the preference

Figure 3. Structure of preference tree

Ground

Bus Train Car Air

Train-Car

tree, the ground-air partition had one less parame-
ter, but significantly better fit, than the public-private
partition.

Next, we examined the three ways in which the
ground alternatives could be partitioned into two
nests: (1) car and bus-train, (2) train and bus-car, and
(3) bus and train-car. We selected the last partition (bus
and train-car), which is shown in Figure 3, based on the
results of likelihood ratio tests (χ2(2) � 10.22, p < 0.01
for the nested logit model; and χ2(2)� 47, p < 0.001 for
the preference tree). The nested logit model allows for
the choice of bus only by the sequential selection of
ground and bus, and the choice of train or car by the
sequential selection of ground and train-car. The cor-
responding preference tree allows the bus to be chosen
in two ways: (1) in one step, without eliminating any of
the other three alternatives; and (2) after choosing the
ground aspect. Similarly, it allows train or car to be cho-
sen in three ways: (1) in one step, without eliminating
any of the other three alternatives; (2) after choosing
the train-car aspect in the first step; and (3) after choos-
ing the ground aspect in the first step and the train-car
aspect in the second step. As discussed below, these
differences in the choice processes for the nested logit
model and the preference tree lead to different inter-
pretations and implications of the results.

Covariates
Travel cost, traveling time, and waiting time could
be potentially used as aspects in a preference tree.
We used them as covariates because the data set did
not have information on the origin and destination
cities for the travelers. Without this information, it is
not meaningful to associate an aspect weight with a
particular price or traveling/waiting time. For exam-
ple, a $120 air ticket may be inexpensive for a flight
between Sydney and Canberra but expensive for a
flight between Sydney and Melbourne (the latter pair
of cities is more distant but typically has cheaper
flights). For this reason, a single aspect weight cannot
be associated with the travel cost across pairs of cities.
Instead, we used travel cost and traveling/waiting
times as covariates in the present analysis.

We also used the number of traveling companions
and family income as covariates. These variables can-
not be used as aspects because they are characteris-
tics of travelers, not alternatives. We included them to
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model the effect of (observed) heterogeneity in trav-
eler characteristics on the utilities of alternatives. Alto-
gether, we used the following five covariates in our
analysis:
(1) (in-vehicle) travel cost across all stages of a jour-

ney (in Australian dollars)
(2) the traveling time in a vehicle
(3) the waiting time at a terminal (equal to zero for

car)
(4) the number of companions a traveler had on a

trip (party size)
(5) the household income (in thousands of Aus-

tralian dollars).

Estimation and Results
We estimated the preference tree and the correspond-
ing nested logit model shown in Figure 3. For com-
parison, we also estimated a multinomial logit model.
Ninety percent of the choice sets were randomly
selected to estimate the models. The other ten percent
were used for holdout validation. The procedure was
repeated one hundred times. All parameter estimates
were obtained using the full information maximum
likelihood method implemented using the Proc NLP
routine in SAS.

We began by confirming the equivalence of the pref-
erence tree and the nested logit model in the absence of
covariates (that is, when the models had only intercept
terms). Both models obtained identical log-likelihood

Table 1. Model Performance Statistics

Average hit rate (%)

Model No. of par. Log likelihood ρ2 BIC In-sample Holdout

Multinomial logit 9 −174.22 — 396.56 73.3 73.3
Nested logit 11 −169.11 0.03 397.04 73.8 70.3
Preference tree 11 −150.74 0.13 360.30 81.3 81.6

Table 2. Parameter Estimates for Multinomial Logit, Nested Logit, and Preference Tree

Multinomial logit model Nested logit model Preference tree

Variable Estimate Std. error Estimate Std. error Estimate Std. error

Plane constant 5.847 1.128 3.656 1.411 1.728 1.293
Train constant 5.613 0.653 4.064 0.864 5.375 0.758
Bus constant 3.626 0.491 2.931 0.612 3.471 0.570
Ground constant — — — — -5.341 1.081
Car-train constant — — — — -15.774 2.560
In-vehicle cost −0.009 0.008 −0.008 0.006 0.003 0.008
In-vehicle time -0.004 0.001 -0.004 0.001 -0.016 0.002
Terminal time -0.102 0.011 -0.073 0.015 -0.088 0.012
HH income (plane) 0.0140 0.012 0.016 0.011 0.025 0.011
HH income (train) -0.049 0.014 -0.034 0.012 -0.056 0.017
Party size (plane) -0.973 0.249 -0.788 0.235 -0.644 0.253
Inclusive value (ground) — — 0.451 0.115 — —
Inclusive value (car-train) — — 0.765 0.205 — —

Note. Numbers in bold are parameter estimates that are significant at the 5% level.

values (LL � −283.76). The parameter estimates could
be transformed from one model to the other in the pre-
viously described manner.

Using covariates improved the fits and predic-
tions of all three models. Table 1 shows (1) the log-
likelihood values, (2) the ρ2 values, (3) the BIC values,
and (4) the average in-sample and out-of-sample hit
rates. The ρ2 value, which measures the improvement
in the log-likelihood value over the multinomial logit
model, is 3% for the nested logit model and 13% for
the (extended) preference tree. The BIC value, which
penalizes for over-parametrization, indicates that the
preference tree is the best model. It also obtains better
hit rates than the nested logit model, both in sample
(73.8% versus 81.3%) and out of sample (70.3% ver-
sus 81.6%).6

Table 2 shows the parameter estimates for the three
models. For model identification, we set the constant
for car to zero. Thus, all (including constants for
ground and car-train constants in the preference tree
model) should be interpreted relative to car. Follow-
ing Louviere et al. (2000), we estimated the income
parameters for only plane and train, and the party
size parameter for only plane. All parameter estimates
have the expected signs. The inclusive values for the
nested logit model are between zero and one. Mostly
the same variables are significant in all three mod-
els. In-vehicle (travel) cost is not significant, probably
because it varies a great deal across pairs of cities.7 The
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constant for plane is significant for the multinomial
logit and nested logit models, but not for the prefer-
ence tree. The parameter estimate for car-train is much
smaller than for any other aspect in the preference tree,
which implies that there is a very small probability that
a person uses train-car to screen alternatives in the first
stage. Household income has a significant and posi-
tive effect on air travel in the preference tree but not
in the other two models. It also has a significant and
negative effect on train travel in all three models. Both
in-vehicle time and terminal time have significant, neg-
ative, effects.

Comparison of Preference Structures
The preference tree and the nested logit model pre-
dict similar total shares of choices for the four travel
modes, but assume different choice processes. The
nested logit model assumes hierarchical elimination,
and the preference tree nonhierarchical elimination, of
the alternatives.
Table 3 compares the choice processes implied by

the two models. It decomposes the choice probabili-
ties into direct and indirect components. Direct prob-
abilities correspond to choices made from a set with
all four alternatives. Indirect probabilities correspond
to choices made after eliminating one or more alter-
natives. In both models, air travel can only be chosen
directly, with a predicted choice probability equal to
27.62%. The preference tree additionally predicts direct
choice probabilities of 13.79% for train, 4.39% for bus
and 10.51% for car. Thus, the preference tree predicts
an additional 13.79 + 4.39 + 10.51 � 28.69% of direct
choices for train, bus, and car, from a choice set consist-
ing of all four alternatives.
Indirect choices after the elimination of air account

for 44%of the choices for the preference tree and 62.38%

Table 3. Comparison of Preference Structure: A Decomposition of Preference Tree and Nested Logit Model Choice
Probabilities (%)

Preference tree

Ground (44%)

Alternative Direct (66%) Direct (96.9%) Train-car (3.1%) Train-car (0.0013%) Total

Air 27.62 — — — 27.62
Train 13.79 14.26 1.02 0.0006 29.08
Bus 4.39 9.62 — — 14.01
Car 10.51 17.55 1.24 0.0007 29.29

Nested logit model

Ground (62.38%)

Alternative Direct (27.62%) Direct (13.95%) Train-car (86.05%) Total

Air 27.62 — — 27.62
Train — — 29.91 29.91
Bus — 13.95 — 13.95
Car — — 28.53 28.53

of the choices for the nested logit model. There are no
consumers who directly screen for train-car at the first
step (this occurs by definition for the nested logitmodel
and has a probability of only 0.0013% for the prefer-
ence tree). Thus, in both models, all consumers who do
not make a direct choice first screen using ground as an
aspect. In the preference tree, 96.9% of all choices are
then made directly by choosing among train, bus, and
car. In contrast, thenested logitmodel predicts that only
13.95%of all choices (for bus) aremadedirectly after the
ground aspect is selected. It requires train and car to be
chosen only after the elimination of bus.

Thus the preference tree and nested logit mod-
els provide substantially different decompositions of
the choice probabilities because they assume different
choice processes. Which model provides a more accu-
rate description of the actual choice process cannot
be assessed based on the fits and predictions alone,
although the statistics in Table 1 favor the preference
tree in the present application. Such an assessment
requires additional process-tracing information.

Elasticities for Travel Time
Table 4 shows the own and cross elasticities for travel
time, for each of the four alternatives. The first row
in the panel labeled “preference tree” shows that a
1% reduction in the travel time for air increases the
choice probability for air by 0.91%, and decreases the
choice probabilities for train, bus, and car by 0.28%,
0.40%, and 0.39%, respectively. The second row shows
the effect of a 1% reduction in the travel time for train
on the percentage changes in the choice probabilities
for each of the four alternatives. The other rows have
similar interpretations.

The data in Table 4 shows three discernible patterns.
First, in all three models, the own price elasticities are
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Table 4. Own and Cross Elasticities for Waiting Time, for
Each of the Four Alternatives

Air Train Bus Car

Preference tree
Air 0.91 −0.28 −0.40 −0.39
Train −0.18 2.63 −1.80 −1.58
Bus −0.08 −1.00 4.35 −1.01
Car −0.28 −1.49 −1.74 2.58

Nested logit
Air 0.25 −0.07 −0.11 −0.12
Train −0.36 1.15 −0.73 −0.49
Bus −0.27 −0.34 2.12 −0.42
Car −0.52 −0.43 −0.80 1.34

Multinomial logit
Air 0.24 −0.06 −0.10 −0.11
Train −0.33 0.95 −0.48 −0.44
Bus −0.25 −0.23 1.53 −0.29
Car −0.51 −0.38 −0.52 1.17

the highest for bus, followed by train and car, and then
air. Second, the magnitudes of the own elasticities are
substantially higher for the preference tree than for
the nested logit and multinomial logit models. That
is, the preference tree implies that the market is much
more responsive to marginal reductions in travel time
than is suggested by the two logit models. The own
elasticity for bus is more than twice as large in the
preference tree (4.65) than in the nested logit model
(2.12), and three times as large than in the multino-
mial logit model (1.53). Even the own elasticity for air,
which is in a separate branch in the preference tree
and nested logit models, is almost four times as large
for the preference tree (0.91) than for the nested logit
model (0.25) and the multinomial logit model (0.24).
Third, the magnitudes of the cross elasticities are dif-
ferent for the preference tree and the other two logit
models. For example, the preference tree predicts that
a 1% reduction in travel time for bus has virtually no
effect on the demand for air; the nested logit model
predicts a decline in the choice probability for air of
0.27%, which is close to the 0.25% decline predicted by
the multinomial logit model. On the other hand, the
preference tree predicts a larger increase in the share
for train when its travel time is reduced by 1% than
does a nested logit model (2.63% versus 1.15%). The
resulting loss in the share for air travel is smaller for
the preference tree than the nested logit model (0.18%
versus 0.36%). The overall pattern is that the elasticities
for the nested logit model are quite similar to those for
the multinomial logit model, but different from those
for the preference tree.

Implications
The choice processes assumed by the nested logit
model and the preference tree have different implica-
tions for the structure of competition in themarket. The

Table 5. Effect of 10% Less Travel Time for Train on Choice
Probabilities

Change in average
choice probability (%)

Base choice Multinomial Nested Preference
Alternative probability (%) logit logit tree

Plane 27.60 −0.96 −1.07 −0.57
Train 30.00 2.96 3.62 8.42
Bus 14.30 −0.72 −1.07 −2.80
Car 28.10 −1.28 −1.48 −5.05

preference tree suggests far greater direct competition
among all four alternatives than does the nested logit
model. It also implies that the three ground alterna-
tives compete directly against each other for the most
part. In contrast, the nested logit model assumes that
train and car compete directly with each other, and as
a group against bus.

To further assess the differences in the implications
of the two models, we simulated the effect of a 10%
reduction in the travel time for train on the choice prob-
abilities of the four alternatives. Table 5 compares the
predicted changes in these probabilities for the multi-
nomial logit model, the nested logit model, and the
preference tree. The multinomial logit and nested logit
models predict increases of 2.96% and 3.62% in the
share of train travel. The preference tree predicts a
much larger increase of 8.42% in share. It also predicts
that 60% (5.05× 100/8.42) of the share gain for train is
attained at the expense of car travel. The corresponding
share gain from car is about 43% for both the multino-
mial logit and nested logit models.

Table 6 shows the ratios of the choice probabilities for
air and bus, and air and car, before and after the 10%
change in the rail travel time. The ratios are approxi-
mately equal across the three models before the travel
time change. After the change, they are substantially
higher for the preference tree than for the other two
models. The most noticeable change is in the ratio
of the choice probabilities for air and bus travel. In
both the nested logit model and the preference tree, a
shorter train journey reduces the choice probability for
air to a lesser extent than it does the choice probabili-
ties of bus and car. But the effect is more pronounced in
the preference tree, which implies a greater violation
of IIA than does the nested logit model.

Table 6. Effect of 10% Less Travel Time For Train on
Probability Odds

Multinomial logit Nested logit Preference tree
Probability
odds Before After Before After Before After

Air/bus 1.93 1.96 1.98 2.06 1.97 2.41
Air/car 0.98 0.99 0.97 0.98 0.94 1.12
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6. Conclusion
Elimination by aspects (EBA) is a choice model that
allows violations of order independence. It generalizes
the multinomial logit and rank ordered logit models
(Kohli and Jedidi 2015). This paper shows that it also
generalizes nested logit and cross-nested logit mod-
els. EBA can be extended to represent a consideration-
then-choice process. Preference trees with covariates
are a special case of the extendedmodel. We illustrated
the process of developing a preference tree with covari-
ates, compared it with a nested logit model, decom-
posed the choice probabilities into direct and indirect
components, and assessed the market response to
changes in product offerings.
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Appendix
A.1. Proof of Theorem 2
The probabilities of selecting node kr ∈ S, where S � S(k0 ,
. . . kr−1) ∈Ωr , have the following expressions for a preference
tree and a nested logit model:

p(kr ∈ S) �
exp(vkr

)+ Jkr

Jkr−1

,

q(kr ∈ S) �
Cr exp((λkr

/λkr−1
)Ikr
)

Cr exp(Ikr−1
) , where Cr > 0.

In the above expressions,

Jkr−1
�

∑
k∈S(k0 ,...,kr−1)

{exp(vk)+ Jk};

and
Ikr−1

� ln
{ ∑

k∈S(k0 ,...,kr−1)
exp

(
λk

λkr−1

Ik

)}
is the inclusivevalueassociatedwithnode kr−1∈S(k0 , . . . , kr−2),
where S(k0 , . . . , kr−2) ∈Ωr−1 for all r � 1, . . . , n.

Observe that we have multiplied and divided the numer-
ator and denominator of q(kr ∈ S) by a constant Cr , which
is associated with level r of the tree. Let Cn � 1. We obtain
conditions on the other values of Cr , r � 1, . . . , n − 1, below.

Let the numerators of p(kr ∈ S) and q(kr ∈ S) be equal;
that is, let

exp(vkr
)+ Jkr

� Cr exp
(
λkr

λkr−1

Ikr

)
,

for all kr ∈ S, S ∈Ωr , r � 1, . . . , n , (A.1)

where λkn
� λk0

� 1, Ikn
� wkn

and Jkn
� 0. Then

Jkr−1
�Cr exp(Ikr−1

), for all kr−1 ∈ S(k0 , . . . , kr−2), r �2, . . . ,n ,

because the denominators of p(kr ∈ S) and q(kr ∈ S) are equal
to the sum of their numerators across all kr ∈ S. It follows that
p(kr ∈ S)� q(kr ∈ S) if the condition in Equation (A.1) is satis-
fied. To obtain a mapping of the parameters of a nested logit

model onto the parameters of a preference tree, we rewrite
Equation (A.1) as

vkr
� ln

{
Cr exp

(
λkr

λkr−1

Ikr

)
− Jkr

}
,

kr ∈ S, S ∈Ωr , for all r � 1, . . . , n − 1.

Substituting Jkr
� Cr+1 exp(Ikr

) gives

vkr
� ln

{
Cr exp

(
λkr

λkr−1

Ikr

)
−Cr+1 exp(Ikr

)
}
,

for all kr ∈ S, where S ∈Ωr and r � 1, . . . , n − 1,

where S � S(k0 , . . . , kr−1). The values of Cr , r � 1, . . . , n − 1,
are arbitrary except that they must ensure that the logarithm
on the right-hand side is defined. For r � n, we have Jkn

� 0,
Ikn

� wkn
and Cn � 1, which gives

vkn
�

wkn

λkn−1

, kn ∈ S, S ∈Ωn .

To obtain a mapping of the parameters of a preference tree
onto the parameters of a nested logit model, we rearrange
A.1 to obtain

λkr
�
λkr−1

Ikr

{ln{exp(vkr
)+ Jkr

} − ln Cr}.

Weuse the relation Jkr
�Cr+1 exp(Ikr

) to substitute Ikr
� ln Jkr

−
ln Cr+1 in the preceding expression to obtain

λkr
�

1
ln Jkr

− ln Cr+1
{ln{exp(vkr

)+ Jkr
} − ln Cr},

for all kr ∈ S, where S ∈Ωr and r � 1, . . . , n − 1.

Since Jkn
� 0, Ikn

� wkn
and Cn � 1, we obtain wkn

� λkn−1
vkn

,
for all kn ∈ S, where S ∈Ωn .

Endnotes
1Order independence is a weaker condition than IIA. The latter
requires the ratio of the choice probabilities for two alternatives to
be independent of the other alternatives in a choice set. Order inde-
pendence requires the ordering, but not necessarily the ratio, of the
choice probabilities for two alternatives to be independent of other
alternatives in a choice set.
2 If necessary, we can extend a path using dummy nodes, each of
which is selected with probability one if its preceding aspect is
selected.
3We thank a reviewer for suggesting the diagram shown in Figure 2.
4This can occur only if there are at least n alternatives in a choice set.
5We first searched for the best partition of the four modes of trans-
portation from a total of 10 possible partitions, obtained by placing
one or two distinct alternatives in one partition and the rest in the
other partition. Based on likelihood ratio tests, the two best parti-
tions that emerged were (i) public (train-bus) and private (air-car),
and (ii) ground (train-bus-car) and air.
6We also estimated a cross-nested logit model with two nests. We
do not report the results because we encountered convergence issues
in the maximum likelihood estimation of this model. Some of the
parameter estimates had no standard errors, and the gradient values
at the optimum were not equal to zero.
7As noted previously, we do not have information matching costs
with city pairs.
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