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It is becoming increasingly easier for researchers and practitioners to 
collect eye-tracking data during online preference measurement tasks. 
The authors develop a dynamic discrete choice model of information 
search and choice under bounded rationality, which they calibrate using 
a combination of eye-tracking and choice data. Their model extends 
Gabaix et al.’s (2006) directed cognition model by capturing fatigue, 
proximity effects, and imperfect memory encoding and by estimating 
individual-level parameters and partworths within a likelihood-based 
hierarchical Bayesian framework. The authors show that modeling eye 
movements as the outcome of forward-looking utility maximization 
improves out-of-sample predictions, enables researchers and practitioners 
to use shorter questionnaires, and allows better discrimination between 
attributes.
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A Bounded Rationality Model of Information 
Search and Choice in Preference 
Measurement

Choice experiments are used routinely in the fields of 
marketing, economics, and psychology. One common 
example is choice-based conjoint (CBC) analysis. An 
implicit assumption made in standard choice-based prefer-
ence measurement models is that respondents are fully 
rational and thus can systematically process all the choice-
relevant information (i.e., attribute levels of all alternatives) 
and choose the alternative that provides the greatest utility. 
However, the bounded rationality literature (Simon 1955) 
has found that this assumption is not necessarily valid, and 
consumers have been shown to balance the utility of the 
option they choose with the (cognitive) utility derived from
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the choice process itself (e.g., Payne, Bettman, and Johnson 
1988,1992, 1993).i

Trading off the costs of processing information with the 
benefits from the choice leads to some choice-relevant 
information not being processed at all. This phenomenon 
has long been recognized in the marketing literature (e.g., 
Hagerty and Aaker 1984; Hauser, Urban, and Weinberg 
1993; Meyer 1982) and has been documented using eye-
tracking evidence (Shi, Wedel, and Pieters 2013; Stiittgen, 
Boatwright, and Monroe 2012; Toubia et al. 2012). Recent 
models have endogenized the information acquisition 
process (Shi, Wedel, and Pieters 2013; Stiittgen, Boatwright, 
and Monroe 2012), but not in a way that explicitly captures 
the dynamic trade-off between the effort spent acquiring

]In doing so, they may revert to noncompensatory decision rules—for 
example, disjunctive,conjunctive (Gilbride and Allenby 2004,2006; Jedidi 
and Kohli 2005), lexicographic, and elimination by aspects (Johnson, 
Meyer, and Ghose 1989; Payne, Bettman, and Johnson 1988; Tversky, Sat- 
tath, and Slovic 1988; Yee et al. 2007). From a modeling perspective, we 
leverage the fact that noncompensatory decision rules are nested within 
additive utility models, and we do not model them directly (Jedidi and 
Kohli 2005, 2008; Yee et al. 2007).
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information and the benefits of making better-informed 
decisions.

Our article is an attempt to close this gap. We develop a 
dynamic discrete choice model of information processing 
and choice under bounded rationality, which we calibrate 
using a combination of eye-tracking and choice data. To the 
extent that (1) consumers are strategic in their information 
acquisition process and (2) information acquisition is moti-
vated by utility maximization, the information acquisition 
process should contain valuable information about con-
sumers’ preferences. In our model, one eye fixation corre-
sponds to one time period. The information acquisition 
process is driven at each period by exogenous factors (e.g., 
display layout) as well as endogenous factors (e.g., the 
information acquired up to that point). The information 
acquired in each period influences the evaluation of the 
choice alternatives, which will in turn affect how informa-
tion is acquired in the following periods. This feedback 
loop, combined with the forward-looking nature of our 
model, allows information acquisition in each period to be 
influenced by how it will affect the future evaluation of 
alternatives. We show that complementing choice data with 
eye-tracking data and modeling eye movements as out-
comes of forward-looking utility maximization can improve 
out-of-sample performance, enable practitioners and 
researchers to use shorter questionnaires, and allow better 
discrimination between attributes.

Although we collected our eye-tracking data in a dedi-
cated lab, commercial solutions are available, such as Eye- 
TrackShop (www.eyetrackshop.com) and YouEye (www. 
youeye.com), that allow for collection of eye-tracking data 
in an online environment using the consumer’s webcam. 
Therefore, we believe that the model developed in this arti-
cle and the data on which it relies will be widely accessible 
in the near future and that market researchers will be able to 
collect eye-tracking data systematically to augment tradi-
tional choice data.

The rest of the article is organized as follows. In the next 
section, we review some relevant prior literature. Then, we 
present our model, describe our data, report the estimation 
results, and discuss our conclusions.

PRIOR LITERATURE
Our model bridges the literature on dynamic discrete 

choices and eye tracking. Before reviewing these literature 
streams, we briefly introduce the context and type of data 
considered in our model. We consider a consumer who 
makes a series of choices in which alternatives are 
described by attributes that may have several levels. We 
assume that the choice-relevant information is presented to 
the consumer in a matrix such as that shown in Figure 1, 
with one column per alternative and one row per attribute 
(alternative formats could be modeled as well, as in Shi, 
Wedel, and Pieters [2013]). We also assume that we 
observe, for each choice question, a series of eye fixations 
that end when the consumer chooses one of the alternatives. 
On each search opportunity, the consumer makes a choice 
between acquiring some choice-relevant information (by 
visiting a cell in the matrix) or ending the search and choos-
ing one of the alternatives on the basis of the information

acquired up to that point. In the latter case, the consumer 
moves on to the next choice question.

Dynamic Models o f Search
The decisions made by consumers in the process of 

acquiring choice-relevant information and choosing one 
alternative are an example of a typical dynamic choice set-
ting, in which each decision may affect the utility offered by 
various future possible decisions. For example, acquiring a 
new piece of information on one alternative may change the 
identity of the alternative in the choice set with the highest 
expected utility. Such choice problems can be modeled 
using dynamic discrete choice models (e.g., Ching et al. 
2012; Chintagunta, Goettler, and Kim 2012; Dube, Hitsch, 
and Jindal 2012; Hartmann and Nair 2010; Huang, Khwaja, 
and Sudhir 2012; Misra and Nair 2011; Rust 1987; Toubia 
and Stephen 2013; Yao and Mela 2011). However, the stan-
dard approach to dynamic discrete choice modeling poses at 
least three challenges in our case. First, the state space is 
likely to be too large to allow estimation of a traditional 
dynamic discrete choice model using the tools and comput-
ers available today. For example, suppose there are four 
alternatives per choice question described by six attributes. 
In this typical scenario, simply keeping track of which cells 
of the matrix the consumer visited would require 224 possi-
ble states. Second, such an approach would not fit well with 
the assumption that consumers trade off decision accuracy 
and decision cost. In particular, when it is assumed that pro-
cessing information and making decisions are potentially 
costly, search models that require solving dynamic pro-
grams suffer from the “infinite regress problem” —that is, 
agents should optimize how they will optimize their deci-
sions and optimize how they will optimize the way they 
optimize their decisions, and so on (Gabaix et al. 2006). 
Third, a standard dynamic discrete choice model is not 
likely to be ecologically valid in our case because it would 
be challenging for the human brain to implement within the 
time frame considered in our data, in which eye fixations 
take place every 99.42 milliseconds, on average. Several 
researchers have argued that models based on dynamic pro-
gramming, while normative, should be adjusted to capture 
the behavior of boundedly rational consumers (e.g., 
Assunqao and Meyer 1993; Hutchinson and Meyer 1994). 
For example, Camerer, Ho, and Chong (2004) find that, 
given the constraints imposed by working memory, models 
that are forward looking by only one or two steps fit data 
better than fully forward-looking models.

In light of these issues, we base our model on the directed 
cognition (DC) model proposed and validated by Gabaix et 
al. (2006). According to this model, on each search occasion 
t, the participant chooses as if this search occasion were the 
last one in that question. In other words, if the consumer 
decides to acquire some information, he or she does so as if 
(s)he would be making a choice immediately after acquiring 
this new piece of information.

The DC model offers several benefits in addition to being 
computationally tractable for complex search problems 
such as ours. First, although the DC model is not fully for-
ward looking, neither is it myopic; it does capture the basic 
trade-off in search problems (i.e., search more and choose 
later using more information vs. choose now using the cur-



168 JOURNAL OF MARKETING RESEARCH, APRIL 2015

Figure 1
SCREENSHOT FROM THE FIRST QUESTION IN THE MAIN TASK

PART I - QUESTION 1

Please indicate your favorite product from the set below.
One out of 100 respondents will be selected as a winner and will receive 800 euros, which will be used to purchase a laptop 
automatically.
If you are selected as a winner, with 50% probability you will receive your preferred laptop from Part II. With probability 50%, you will 
receive your preferred laptop from one randomly selected question from Part I. All questions from Part I are equally likely to be selected. 
In all cases, you will receive both the laptop and the difference between 800 euros and its price.

A B c D

Processor speed 2.7 Ghz 2.7 Ghz 1.6 Ghz 3.2 Ghz

Screen size 40 cm 43 cm 40 cm 35.6 cm

Hard drive 160 GB 500 GB 320 GB 320 GB

Dell support 3 years 2 years 2 years 4 years

McAfee subscription 2 years 3 years 2 years 2 years

Price 500 euro 650 euro 500 euro 800 euro

o o o 0

[ submit 1

rently available information). Second, there is evidence that 
this model describes the actual behavior of human agents 
better than traditional search models based on optimal solu-
tions to dynamic programs. Using a simple experimental 
setting, Gabaix et al. (2006) show that the DC model pre-
dicts behavior better than a search model based on the opti-
mal strategy, which in that case was available in closed 
form, using the Gittins-Weitzman index (Gittins 1979; 
Weitzman 1979). In another experiment, the authors show 
that the model predicts behavior well in a more complex 
setup with some similarities to CBC analysis. In particular, 
Gabaix et al. used a setting in which choices were presented 
in a matrix format similar to Figure 1. However, each cell 
contained monetary payoffs, and the value of each alterna-

tive was the sum of the amounts in the corresponding cells 
(i.e., participants received the monetary value of the chosen 
alternative). The authors tested the DC model using a 
MouseLab paradigm (see Payne, Bettman, and Johnson 
1993) in which most information was hidden and partici-
pants could “open” only one cell at a time.

Although the DC model provides us with a framework 
that informs our modeling efforts, our model differs signifi-
cantly from that used by Gabaix et al. (2006). We compare 
our implementation of the DC model with theirs in the 
“Comparison with Gabaix et al. (2006)” subsection after 
describing our model in more detail.

We also note that Gabaix et al.’s (2006) DC model is 
related to previous studies in the marketing literature. For
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example, Hagerty and Aaker (1984) consider a similar con-
text in which information is presented to consumers in a 
matrix form. In their model, at each search opportunity, con-
sumers evaluate the expected gain from visiting each cell in 
the matrix. That gain is linked to the probability that visiting 
a piece of information will change the identity of the option 
that provides the greatest expected utility. Like Gabaix et 
al., Hagerty and Aaker assume that consumers select the cell 
in the matrix that will maximize the expected gain in utility 
in the next period. For a related model, see Meyer (1982).

Eye-Tracking Research in Marketing
Eye-tracking data are composed of fixations and saccades 

(Wedel and Pieters 2000). Fixations represent the time peri-
ods in which participants fix their eyesight on a specific 
location; saccades represent eye movements between two 
fixations. As a way to directly measure attention and 
involvement, eye-tracking studies have been conducted in 
numerous marketing settings, including branding (Pieters 
and Warlop 1999; Van der Lans, Pieters, and Wedel 2008a), 
advertising (Pieters, Rosbergen, and Wedel 1999; Pieters, 
Warlop, and Wedel 2002; Pieters and Wedel 2004; Rosber-
gen, Pieters, and Wedel 1997; Wedel and Pieters 2000, 
2008; Wedel, Pieters, and Liechty 2008), search effective-
ness (Van der Lans, Pieters, and Wedel 2008b), and brand 
display on supermarket shelves (Chandon et al. 2009).

Other studies have used eye tracking in preference mea-
surement settings. Toubia et al. (2012) use eye tracking in a 
purely descriptive manner to measure the impact of “gamify- 
ing” a preference measurement task on the amount of atten-
tion paid by consumers. Musalem, MeiBner, and Huber 
(2013) employ eye tracking to explore how consumers’ 
preferences for each level of an attribute relate to the amount 
of attention paid to that attribute level and to alternatives 
that contain it. Shi, Wedel, and Pieters (2013) use eye-tracking 
data to study and model how consumers switch back and 
forth between attribute-based and alternative-based strate-
gies when acquiring information about products described 
in a matrix format. The research closest to ours is probably 
that of Sttittgen, Boatwright, and Monroe (2012): they 
develop and estimate a model of search and choice in which 
consumers are assumed to use a “satisficing” rule; that is, 
they evaluate alternatives one after another and choose the 
first alternative they deemed to be satisfactory. The authors 
further assume that consumers use a conjunctive rule to 
decide whether an alternative is satisfactory (i.e., all attrib-
utes of the alternative must be acceptable).

The standard approach for modeling eye-tracking data 
among these articles is either to treat eye fixations as exoge-
nous (e.g., Musalem, MeiBner, and Huber 2013) or to endo- 
genize eye fixations using hidden Markov models (Liechty, 
Pieters, and Wedel 2003; Shi, Wedel, and Pieters 2013; 
Sttittgen, Boatwright, and Monroe 2012; Van der Lans, 
Pieters, and Wedel 2008a, b). The states in hidden Markov 
models of eye movements typically capture various infor-
mation acquisition strategies or modes of search. For exam-
ple, Sttittgen, Boatwright, and Monroe (2012) follow 
Liechty, Pieters, and Wedel (2003) and assume that con-
sumers move back and forth between a “local search” state 
and a “global search” state, which involve eye movements 
in the periphery of the current eye position (local) and in

different areas (global). Their model captures how the tran-
sition probabilities between these states are influenced by 
the consumer’s ongoing evaluations of the various alterna-
tives (i.e., which alternatives have already been classified as 
satisfactory or unsatisfactory on the basis of the information 
processed up to that point).

Our model takes a different approach. Compared with 
extant models based on hidden Markov processes, we allow 
consumers to be forward looking in how they acquire infor-
mation. We model information acquisition as the result of 
forward-looking utility maximization, in which the utility a 
consumer derives comes not only from the chosen product 
but also from the information acquisition process itself. 
Another key feature of our model is that we allow for 
imperfect memory encoding; in other words, a consumer 
may need multiple fixations in a region of interest before 
remembering the information it contains.

MODEL
In this section, we develop a dynamic discrete choice 

model in which the information processed by consumers is 
endogenized and modeled as the result of forward-looking 
utility maximization, in which the consumer derives (positive 
or negative) utility both from his or her final choice and from 
the search process itself. The model is designed to be cali-
brated using a combination of eye-tracking and choice data.

Specification
For ease of exposition, we focus on one consumer when 

describing our model. We index choice questions by k, and 
each choice question consists of selecting one of J alterna-
tives that are described by I attributes. For ease of presenta-
tion, we assume without loss of generality that all attributes 
have the same number of levels, L. The choice-relevant 
information is presented in a matrix such as that shown in 
Figure 1, with one column per alternative and one row per 
attribute.

For simplicity, we assume that the choice questions come 
from a random experimental design. In this case, attributes 
vary independently across alternatives, and there is no need 
to model inferences consumers may make across attributes 
and alternatives. However, our approach could easily be 
extended to nonrandom experimental designs.

Each time period in our model is a search occasion, t, in 
which the consumer chooses between acquiring some 
choice-relevant information (by visiting a cell in the matrix 
that contains the level of one attribute for one choice alter-
native) and ending the search and choosing one of the alter-
natives on the basis of the information acquired up to that 
point. In the latter case, the consumer moves to the next 
choice question.

As mentioned previously, our model is inspired by the 
DC model proposed and validated by Gabaix et al. (2006). 
According to that model, on each search occasion t, the par-
ticipant chooses as if the search occasion were the last one 
in that question. In other words, if the consumer decides to 
acquire some information, he or she does so as if (s)he were 
going to make a choice immediately after acquiring this 
new piece of information.
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We develop a likelihood-based implementation of the DC 
model that allows for heterogeneity in preferences. Like any 
dynamic model, our implementation specifies an action 
space, a set of state variables, a utility function, and state- 
transition probabilities. Next, we define each of these com-
ponents and the resulting likelihood function.

Actions. We denote the current position of the eyes in the 
I x J matrix that contains the choice-relevant information by 
p = (i, j). On each search occasion, the consumer may move 
his or her eyes to a different location (i', j ')  in the matrix or 
end the information acquisition process and choose one of the 
alternatives (j'), thereby moving to the next choice question.2

States. Although the attribute levels for each alternative 
in a choice question are known to the researcher, they are 
unknown to the consumer at the beginning of the question. 
Take Figure 1 as an example. Consumers learn the level of 
each attribute in each alternative when they move their eyes 
to the relevant cell in the matrix. In our data, we found that 
consumers revisited 62.22% of the cells they visited at least 
once. Therefore, it would be unreasonable to assume that 
consumers learn the level of attribute i for alternative j with 
certainty after only one fixation in cell (i, j). Instead, we 
assume an imperfect memory encoding process in which 
consumers form a set of beliefs about the true value of each 
cell. These beliefs are updated after each fixation, and they 
converge to the truth as the number of fixations increases.

Our two observed state variables are p, which captures 
the current eye position, and a set of numbers {n; j} in 
which n; j is the number of times cell (i, j) was visited (i.e., 
number of fixations in the cell that contains information on 
attribute i for alternative j). We follow Wedel and Pieters 
(2000) and assume that consumers extract a chunk of infor-
mation with each fixation on a cell. We denote as r] the 
amount of information extracted per fixation. Again follow-
ing Wedel and Pieters (2000), we further assume that the 
total amount of information stored by the consumer related 
to cell (i, j) is the sum of the activation levels of all memory 
traces: q  x  nj j . Suppose the true level in cell (i, j) is /0. After 
nj j fixations in that cell, the total amount of information in 
support of l0 being the true level is q  x n; r  The total 
amount of information in support of any other level being 
the true level is 0. If we assume some error in memory 
retrieval (S jj,/)  (Wedel and Pieters 2000), the probability 
that the consumer believes /0 is the true level is Prob(qnj j + 

;0 > 5; j /, V / * /0). If we assume that 5j / follows an 
i.i.d. double exponential distribution, the probability weight 
associated with each level l, w; j  j ,  becomes

(1)

exp(qni i j )

L - 1  + exp(qnj j)

______ 1_______
L -  1 + exp(r|n; j)

if l is the true level

if / is not the true level

We denote the 1 x L array of probability weights corre-
sponding to all possible levels in cell (i, j) as w, j (q , nj j), 
which equals [w; j  ,(q , n ^ ) , ..., W; j L(q , n ; j ) ] . Before the 
first visit to a cell, the consumer starts with a uniform belief, 
W;j (q , 0) = [1 /L ,.... 1/L] that reflects the random experi-
mental design (nonrandom designs would potentially give 
rise to different initial beliefs). The set of weights corre-
sponding to a cell is updated after each visit to the cell and 
converges to a vector that has a weight of 1 on the true level 
and 0 on all the other levels. Appendix A illustrates this 
process using a simple example.

We further assume the existence of unobserved state 
variables in the form of idiosyncratic shocks e(a) that cap-
ture information unobservable to the econometrician. This 
addition allows us to write a likelihood function for our 
model following a standard distributional assumption (see 
Rust 1987).

Utility function. The utility derived by the consumer at 
each search occasion is a function of the current state and the 
consumer’s action. We make a distinction between product- 
related utility derived by the consumer (i.e., the utility that 
comes from the alternative j chosen by the consumer) and 
search-related utility (i.e., the utility that comes from the 
search process, which may be positive or negative). The 
consumer derives product-related utility only upon ending 
the search.

We first describe product-related utility. For ease of expo-
sition, we do not include a subscript for the consumer in our 
equations, although all of the parameters are estimated at 
the individual level. We assume effects coding; that is, the 
partworth for the last level of an attribute is equal to minus 
the sum of the partworths for the other levels. Let (3j be the 
(L -  1) x 1 vector containing a consum er’s partworths for 
attribute i under effects coding. The L x 1 vector containing all 
partworths for attribute i is pj = 1̂ (1,, where 1̂  is an L x (L -  1) 
coding matrix:

1 0 ... 0
0 1 ... 0
0 0 ... 1
1 ........  -1

With perfect memory encoding, the consumer would 
know the true level contained in cell (i, j) after one fixation, 
and the partworth corresponding to that cell would simply 
be the appropriate element of (3;. However, with imperfect 
memory encoding, the consumer assigns a set of probability 
weights, Wj j(q, n; j), to each possible level in cell (i, j), and 
the expected value of the partworth corresponding to that 
cell is a weighted average of the partworths for attribute i: 
wij(q , njj)|3j. This expression converges to the appropriate 
element of |3; as the number of fixations on the cell 
increases. The product-related utility is specified as

(2) I? =

2We only consider fixations within the regions of interest that contain 
choice-relevant information. In the first search occasion in each question, 
the number of possible cells to move to is I x J instead of I x J -  1 (there is 
no “current” position). We collapse consecutive fixations within the same 
cell as one fixation because they are likely to be caused by participants ran-
domly moving their eyes in a very small range, as a result of blinking (non- 
consecutive fixations in the same cell are recorded as distinct fixations).

( 3 )  “ product ( a | { n } > P )  =

0 if a = move to (i', j ')

^ w i ,j '(Tl>ni,j')P i i f a  = c h o o se j'

Appendix A illustrates computation of product-related util-
ity using a simple example.
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In a case in which the consumer decides not to choose 
any alternative and continues searching instead, he or she 
derives search-related utility. Given the finding that the 
amount of information processed by participants tends to 
decrease as they progress through the questionnaire 
(Sttittgen, Boatwright, and Monroe 2012; Toubia et al. 
2012), we allow for fatigue effects by modeling search- 
related utility as a function of the question number, k.

Shi, Wedel, and Pieters (2013) document that a large pro-
portion of consecutive fixations are to contiguous cells 
when information about products is displayed using matri-
ces, as in our case. This is consistent with eye movements 
between cells being more cognitively costly when the cells 
are more distant. Moreover, Shi, Wedel, and Pieters identify 
an asymmetry in consumers’ propensity to make horizontal 
versus vertical eye movements. To capture these physiologi-
cal factors, we also allow search-related utility to be a func-
tion of the distance between the current location of the eyes, 
p, and the next cell visited and allow for different weights 
on horizontal and vertical movements. In particular, we 
model search-related utility as follows:3

. . [ 00 +0ik + e2d(a,p,e3) if a = m oveto (i',y )
(4 )  “ search ( a |P ’ k ’ 0 ) 1 n  , c  , ., ’0 if a = choose j

where d(a, p, 03) is a weighted Euclidean distance between 
the current cell (i, j)  and the next cell ( i \  j ')  defined as 
V(i -  i ')2 + 03(j -  j ') 2. The parameter 03 captures asymme-
tries between vertical and horizontal eye movements (this 
parameter is constrained to be nonnegative). Note that we 
do not restrict the signs of the parameters 0O, ©i, and 02.

Transition probabilities. The state variables capture eye 
position and the number of fixations in each cell. The transi-
tions between states are deterministic from the perspective 
of the researcher, given the custom er’s actions. However, 
from the perspective of the consumer, there is some uncer-
tainty regarding the true value of each cell, so the transitions 
between states are probabilistic. Suppose that the con-
sumer’s action, a, is to visit cell ( i \  j'). From the perspective 
of the consumer, for each possible level / there is a probabil-
ity (given by Wp j -  /[r|, n;-j-]) that this level will be found in 
cell (i', j'). Therefore, the value function is based on a set of 
transition probabilities given by the current set of probabil-
ity weights, Wj-i'Oi, ni',j')> which are a function of the cur-
rent state variable, npy . These weights represent the proba-
bility of observing each level in each cell on the basis of the 
consum er’s current beliefs. (Note that we assume that the 
consumer knows which cell he or she is visiting; the only 
uncertainty is related to the level contained in the cell.)

Suppose that /0 is the true level in cell (i', j'). To specify 
the Bellman equation, we need to model all possible state 
transitions from the perspective of the consumer. In particu-
lar, we need to model what would happen when the con-
sumer sees a level in cell ( i \  j ')  that is different from l0. 
Although this never happens, it must be addressed because 
the weights [wp jp ;(r|, n^j')] are positive for all levels, not

3We also tested a version of the model with only the parameter 0O in the 
search-related utility function. The deviance information criteria (DICs) 
favored the more complex version, and out-of-sample performance was not 
greatly affected. Details are available from the authors.

just the true level. If level l * l0 were to be found in cell ( i \  
j ') , the amount of information in support of that level being 
the true level would increase from 0 to r|. As a result, the 
probability weight associated with the level would be 
updated to exp(r|)/[L -  2 + exp(r|np A + expCq)]. The 
weight associated with the true level would be updated to 
exp(r|np j ') /[L -  2 + exp(r|npj<) + exp(ri)], and the weights 
associated with the other levels would be updated to 1/[L -  
2 + exp(rinp j© + exp(ri)]. With a slight abuse of notation, 
we denote the product-related utility based on the new 
beliefs that would be formed if level l were found in cell (i', 
j ) as uproduct(a |{n p jp /}, |3).

After the fixation to cell ( i \  j ') ,  the state variable corre-
sponding to that cell, npj-, is incremented by 1, and the set 
of probability weights corresponding to that cell is updated 
to wp j'(ri, np j' + 1) on the basis of Equation 1. There is no 
need to specify transition probabilities for the other state 
variables (p[current fixation position] and e[a]) because the 
former evolves deterministically and the latter is assumed to 
satisfy the conditional independence assumption (Rust 
1987).

Likelihood function. The DC model assumes that con-
sumers act on each search occasion as if this search occa-
sion were their last opportunity to acquire new information. 
Mathematically, this implies that consumers behave on each 
search occasion as if they are solving the following opti-
mization problem:

(5) maxi max [uproduct(a|{n},p) + e(a)], 
3 — IJ /

max
a = {i',j'}

U search (a|p, k,e) + e(a) wr,y j  (r|, nr ,r )

x amaX}[UproduCt ( a1 {np,f ,; } ’ P) +  e (a' ) ]

The first term, maxa = {j'}{uproduct(a|{n}, (3) + e(a)}, is the 
maximum utility the consumer can derive by ending the 
search and choosing one of the alternatives given the cur-
rent state variables {n} and the consum er’s partworths (3. 
The second term is the maximum utility the consumer can 
derive by continuing the search, where usearch(a|p, k, 0) + 
e(a) is the search-related utility and wp j- ;(r|, np jO captures 
the state-transition probabilities (from the consumer’s per-
spective) and maxa' = {j}[Uproduct(aj{np j '  ,}, |3) + e(a')] is the 
maximum utility derived from choosing one of the alterna-
tives in the next period given that level / is found in cell (i',
j').

Assuming that the idiosyncratic shocks, e, satisfy the 
conditional independence assumption and follow a double-
exponential distribution gives rise to the following likeli-
hood function in which 0  = {(3, 0, iq}:

(6) P(a|{n},p,0)
exp[va({n},p|0)]

X exP [Va ' ( W ’ Pl0 ) ]

where
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(7) Va({n}>P|0 )

^search (a|p, k, 0) +  ^  w i', j ' , /  (̂ 1. j ' )

r ( / ir i \1 if a = move to (i', j')
X lo g  2j  e x P [ u product ( a  | | n i', j ' , /  J  ’ P )J

a' = {j}

Uproduct (a|{n},p) if a = choose j'

Identification and Estimation
The parameters to be estimated in our proposed dynamic 

discrete choice model are 0  = {p, 0, r|}. As with a standard 
CBC analysis, the partworths, p, are identified at the indi-
vidual level through the choices consumers make between 
various alternatives. The parameters 0O, 0,, 02, and 03 cap-
ture search-related utility. Given the value of the partworths, 
the intercept 0O is identified because we observe consumers 
who choose either to continue the search or to stop the 
search and select one of the alternatives. The parameter 0j 
captures the effects of fatigue (through the question num-
ber) and is identified because we observe multiple questions 
per consumer. The parameters 02 and 03 capture the effect 
of distance on search utility and are identified because the 
information in each cell varies randomly across questions. 
We estimate both P and 0 at the individual level. Finally, q 
is a parameter that captures the amount of information 
extracted per fixation (i.e., it may be interpreted as captur-
ing the speed with which consumers learn the content of a 
cell). This parameter is identified primarily through the 
common occurrence of revisits to cells that the same con-
sumer previously visited in the same question. Although this 
parameter is parametrically identified in theory, we find that 
it is only weakly identified in practice. Intuitively, it is diffi-
cult to disentangle at the level of each consumer the extent 
to which revisits are driven by slow learning (low value of 
q) versus strong preferences (i.e., cells that are revisited fre-
quently tend to correspond to more important attributes). 
Our experience, based on real and simulated data, suggests 
that this problem is not specific to any particular data set. 
However, we have found that this parameter is adequately 
identified at the aggregate level. Therefore, we estimate it at 
the aggregate level using a grid search. In particular, we fix 
the parameter q and estimate all the other parameters given 
that value of q for multiple values of q . We keep the value 
of q that gives rise to the lowest deviance information crite-
ria (DICs).4

We estimate our model using a hierarchical Bayes 
method (Atchade and Rosenthal 2005). The first-stage prior 
for (0n, |3n} (where n indexes consumers) is normal with 
(0n, pn} ~ N (q0, A). The second-stage priors are u.() ~ N(0, 
1,000 x I) and A-1 ~ Wishart(I, 23 + 3), where 23 is the 
number of heterogeneous parameters in the model. A total 
of 150,000 Markov chain Monte Carlo (MCMC) iterations 
are performed using the first 100,000 as burn-in. We apply a 
grid search method for the learning parameter q; we esti-

4The DIC is defined as -4E 0 [log P({a}|{n}, {p}, 0)] + 2 log P({a}|{n}, 
{p}, 0 ), where P({a}|{n}, {p}, 0 )  is the likelihood function and 0  = arg 
max0 [P ({a}|{n}, {p}, 0)] (Celeux et al. 2006).

mate the model with q = 0-5 with a step of 1 and select the 
best-fitting model on the basis of the DICs. The Web 
Appendix provides details of our estimation procedure.

We confirmed the identification of our model and tested 
our estimation approach using a simulation study. Appendix 
B provides the details of our simulation study. We generated 
a synthetic data set using a set of parameters inspired by the 
estimates from our study reported in the “Estimation 
Results” subsection. We found that the parameters were 
recovered adequately.

Comparison with Gabaix et al. (2006)
We used Gabaix et al.’s (2006) DC model as a basic 

framework for our model, but our model differs significantly 
in several important ways. First, Gabaix et al.’s model was 
applied to a context in which each cell contained a monetary 
amount, and the payoff from the chosen alternative was the 
sum of the monetary values of its cells. Product-related util-
ity in Gabaix et al.’s model was simply the amount of 
money earned in the game. We apply our model to a context 
in which each cell contains an attribute level and product- 
related utility is parameterized by a set of partworths. Sec-
ond, Gabaix et al. assumed that the value in each cell was 
drawn from a continuous normal distribution, whereas in 
our case, the values are drawn from a discrete uniform dis-
tribution. As a result, Gabaix et al. were able to derive a 
closed-form expression for the expected benefit from each 
possible action (see Equation 3 in Gabaix et al. [2006]), 
whereas we use the general Bellman equation. Third, 
Gabaix et al. assumed that search-related utility is constant 
(the opportunity cost of time), whereas we allow search- 
related utility to be affected by fatigue and proximity effects 
(i.e., consumers may search less over time and may be more 
likely to move their eyes to nearby cells). Fourth, Gabaix et 
al. assumed perfect memory encoding (i.e., a consumer 
learns the content of a cell perfectly after one visit), whereas 
we allow for imperfect memory encoding. Fifth, Gabaix et 
al. calibrated the one parameter in their model (opportunity 
cost of time) by fitting moments of the data (average 
amount of search in the game); we develop a likelihood- 
based hierarchical Bayesian framework. Sixth, Gabaix et al. 
calibrated their model at the aggregate level; we allow for 
heterogeneity across consumers.

DATA
Setup

We collected CBC data in the context of Dell laptop com-
puters and used six attributes (I = 6) with four levels each 
( L -  4): processor speed (1.6 GHz, 1.9 GHz, 2.7 GHz, and 
3.2 GHz), screen size (26 cm, 35.6 cm, 40 cm, and 43 cm), 
hard drive capacity (160 GB, 320 GB, 500 GB, and 750 
GB), Dell support subscription (1 year, 2 years, 3 years, and 
4 years), McAfee antivirus subscription (30 days, 1 year, 2 
years, and 3 years), and price (350€, 500€, 650€, and 
800€). In the main task, each participant answered 20 choice 
questions, each offering four alternatives (J = 4). The ques-
tions were generated randomly (once for all participants; 
i.e., all participants saw the same set of questions). Before 
answering the 20 questions, participants completed a train-
ing question designed to familiarize them with the interface. 
Figure 1 provides a screenshot of a choice question.
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In addition to the main task, participants completed an 
externa] validity task. We used a typical setting in which the 
external validity task consisted of a choice task with eight 
alternatives that were chosen randomly (once for all partici-
pants; i.e., all participants saw the same set of alternatives) 
subject to the constraint that each level of each attribute 
would be present in at least one of the alternatives. This task 
also was preceded by a training question to familiarize par-
ticipants with the interface.

We randomized the position of the external validity task 
relative to the main task so that half the participants com-
pleted the external validity task first and the other half com-
pleted the main task first. This difference was our only 
between-subjects variation.

Our study followed an incentive-alignment scheme typi-
cal of CBC studies (Ding 2007; Ding, Grewal, and Liechty 
2005). One participant was selected randomly as a winner 
and received 800€ , which was used to automatically pur-
chase a laptop based on his or her answers to the survey. 
The winner received the alternative chosen in the external 
validity task with probability 50% and the alternative cho-
sen in each question in the main task with probability 2.5%. 
The winner received the preferred laptop along with the dif-
ference between 800€ and the price of the laptop.

Our participants were recruited at a large European uni-
versity. They all participated in the survey in the univer-
sity’s behavioral lab using the online platform developed by 
the authors.

Participants completed the survey while being monitored 
by a free-standing nonintrusive Tobii 2150 eye tracker that 
sampled infrared corneal reflections at 50Hz with a .35- 
degree spatial resolution and an accuracy of .5 degrees. The 
stimuli were presented on a 21-inch LCD monitor with a 
display resolution of 1600 x 1200 pixels. The position of the 
left eye and right eye were recorded separately (Van der 
Lans, Wedel, and Pieters 2011). Fixations and saccades 
were differentiated using Van der Lans, Wedel, and Pieters’s 
(2011) velocity-based algorithm. We defined the region of 
interest for each piece of information as the area within the 
boundary of the cell that contains the information (see Fig-
ure 1).

Descriptive Statistics
We collected complete eye-tracking data for 70 partici-

pants,5 of whom 33 completed the external validity task 
before the main task and 37 completed it after the main task. 
We next provide a descriptive analysis of our eye-tracking 
data for the 20 questions in the main task. The average pro-
portion of cells visited at least once (with at least one fixa-
tion) across all questions and participants was 69.65%. The

5We recruited 120 respondents to participate in our study. From the raw 
eye-fixation data, we identified time stamps without any affiliation of eye- 
fixation position as missing data. The respondents with missing data were 
confirmed through a video of their eye movements mapped onto the choice 
experiment interface. This led us to exclude 50 of the 120 respondents. Our 
large proportion of incomplete respondents was due to the eye tracker 
being near the end of its life (it was decommissioned a few weeks after we 
finished our study). However, we have no reason to believe that data were 
missing nonrandomly or that data were recorded incorrectly for our com-
plete respondents. The large proportion of missing data reduced our statis-
tical power but should not change our results.

proportion differs slightly with the order in which the main 
task and the external validity task were completed: 67.79% 
for the main task first and 71.74% for the external validity 
task first (p = .13). We accommodated this difference by 
adding a parameter to our search-utility specification (see 
the “Proposed Model” subsection). Figure 2 plots the average 
proportion of information visited in each choice question. 
The downward trend in this graph confirms the need to con-
trol for question position in our model and is consistent with 
previous findings (Stuttgen, Boatwright, and Monroe 2012; 
Toubia et al. 2012). Figure 3 shows the distribution of the 
proportion of information visited across all choice questions 
and participants. Figure 4 shows the distribution of the num-

Figure 2
AVERAGE PROPORTION OF INFORMATION VISITED PER 

CHOICE QUESTION VERSUS QUESTION NUMBER

Question Number

Figure 3
DISTRIBUTION OF THE PROPORTION OF INFORMATION 

VISITED PER CHOICE QUESTION (ACROSS ALL 
RESPONDENTS AND CHOICE QUESTIONS)

Proportion of Information Visited
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Figure 4
DISTRIBUTION OF THE NUMBER OF VISITS PER PIECE OF 

INFORMATION (ACROSS ALL PIECES OF INFORMATION, 
RESPONDENTS, AND CHOICE QUESTIONS)

0 1 2 3 4 5 6 7 8 9 10 >10
Number of Visits per Piece of Information

ber of visits per piece of information (each “piece of informa-
tion” consists of the level of one attribute for one alternative) 
for all pieces of information, choice questions, and partici-
pants. This chart shows that information that is processed is 
likely to be visited multiple times by the same consumer in 
the same question, which confirms the need to model mem-
ory encoding as imperfect; it would not be reasonable to 
assume that visiting a cell once is enough for a consumer to 
completely memorize its content. Figure 5 shows the distri-

bution of the distances between two consecutive eye fixa-
tions across all choice questions and participants.6

We observe that consumers are much more likely to move 
their eyes to an adjacent (distance = 1) cell in the 6 x 4 matrix 
containing all choice-relevant information than they are to 
move a more distant cell. This is consistent with previous 
studies (Shi, Wedel, and Pieters 2013; Stiittgen, Boatwright, 
and Monroe 2012) and confirms the need to model search- 
related utility as a function of the distance between cells.

Table 1 shows the proportion (across all questions and 
participants) of eye movements that were to a different 
choice alternative within the same attribute, to a different 
attribute within the same alternative, and to a different 
attribute in a different alternative. Although most move-
ments were either within the same alternative or within the 
same attribute, there is no evidence that either alternative- 
based processing or attribute-based processing dominates. 
To explore the possibility that each type of processing domi-
nates for subsets of consumers, we present a scatterplot of 
the proportion of within-attribute and within-altemative eye 
movements at the participant level in Figure 6 (each dot rep-

6If the respondent moves his or her eyes between cell (i, j) and (i', j '), the 
distance is defined as V (i- i')2 + (j -  j ')2.

Table 1
OVERALL PROPORTION OF DIFFERENT TYPES OF EYE 

MOVEMENTS

Type of Search Proportion

Different alternative within the same attribute .51
Different attribute within the same alternative .34
Different attribute in a different alternative .16

Figure 5
DISTRIBUTION OF THE EUCLIDEAN DISTANCE BETWEEN 

SUCCESSIVE EYE FIXATIONS

Figure 6
SCATTERPLOT OF THE PROPORTION OF EYE MOVEMENTS 

TO A DIFFERENT ALTERNATIVE WITHIN THE SAME 
ATTRIBUTE VERSUS A DIFFERENT ATTRIBUTE WITHIN THE 

SAME ALTERNATIVE
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Notes: If the respondent moves his or her eyes from cell (i, j) to cell ( i\  
j '), the distance is defined as V(i -  i')2 + 0 -  j')2.

Proportion of Eye Movements Within the Same 
Alternative

Notes: Each dot corresponds to one respondent.



of
 O

ci
Information Search and Choice in Preference Measurement 175

resents one participant). We find that most participants use a 
hybrid of attribute-based and alternative-based searches, 
although attribute-based searches were more prevalent, on 
average. To further investigate the existence of attribute- 
based and alternative-based searches, we report the distribu-
tion of the number of attributes visited per alternative 
(across all alternatives, respondents, and choice questions) 
in Figure 7 and the number of alternatives visited per 
attribute (across all attributes, respondents, and choice ques-
tions) in Figure 8. Attribute-based search would lead to 
some attributes not being visited at all, and alternative- 
based search would lead to some alternatives not being vis-

Figure 7
DISTRIBUTION OF THE NUMBER OF ATTRIBUTES VISITED 

PER ALTERNATIVE (ACROSS ALL ALTERNATIVES, 
RESPONDENTS, AND CHOICE QUESTIONS)

0 1 2 3 4 5 6
Number of Attributes Visited per Alternative

Figure 8
DISTRIBUTION OF THE NUMBER OF ALTERNATIVES VISITED 
PER ATTRIBUTE (ACROSS ALL ATTRIBUTES, RESPONDENTS, 

AND CHOICE QUESTIONS)

ited at all. We find that an alternative (attribute) is com-
pletely ignored only 1.13% (4.33%) of the time, which fur-
ther suggests that no evidence exists for purely attribute- 
based or alternative-based searches and confirms the need 
for a model to be flexible enough to allow for any type of 
eye movements.

Finally, we explore how consumers divide their attention 
among the various attributes across choice questions. Figure 
9 plots the distribution of the share of fixations for each 
attribute (i.e., the proportion of fixations in cells containing 
information for that attribute), across choice questions. We 
observe that the shares do not vary much across questions 
but that there are signification variations across attributes. 
On average, processor speed attracts the most fixations 
(27%), followed by screen size (21%), price (18%), hard 
drive capacity (17%), Dell support subscription (9%), and 
McAfee antivirus subscription (8%).

ESTIMATION RESULTS
We use the last 4 questions of the main task as holdouts. 

We vary the number of questions used for estimation 
between the first 8 and 16 to assess the benefits of the pro-
posed model when the number of choice questions is 
increased.

Proposed Model

We estimate the proposed model described previously, 
with one small adjustment to capture the change in position 
of the external validity task and its effect on the propensity 
to search. Thus, we add one term to the search-related utility 
equation:

(8) usearch(a|p,k,0)

J e0 + e n + 012J.(ext val) + 02d(a ,p ,03) if a = move to(i' , j')

0 if a = choose j'

Figure 9
AVERAGE SHARES OF FIXATIONS PER ATTRIBUTE (ACROSS 

RESPONDENTS) VERSUS QUESTION NUMBER

0oc
<D*_3O

<D
n
E
3

3.500

3.000

2.500

2.000

1.500

1,000

500 

0

Number of Attributes Visited per Alternative

</)co

o
<D
roj=

i f )

Eller
Hard drive 
capacity 
Dell support 
subscription
Mc.A/ee antivirus 
subscription

1 2 3 4 5 6 7 8 9 1011 1213141516
Question Number



176

where l(ext val) is an indicator function equal to 1 if the 
participant completed the external validity task before the 
main task. The additional parameter 0 12 captures the effect 
of completing the external validity task before the main task 
on the propensity to search for information in the main task. 
Recall that we omit consumer subscripts for ease of exposi-
tion, but the partworths and search-related utility parameters 
are all estimated at the individual level. In addition, we con-
strain the partworths for price to be monotonic using rejec-
tion sampling (Allenby, Arora, and Ginter 1995).

Benchmark Models
We use several benchmark models to test various compo-

nents of the proposed model. All benchmarks are estimated 
using the same Bayesian approach and the same prior speci-
fications as the proposed model.

Our first set of benchmarks does not model search and 
focuses only on choice. We refer to this set as the “choice- 
only” benchmarks. The first is a standard multinomial logit 
choice model that assumes that participants have full 
knowledge of the alternatives in each choice question (i.e., 
the information in all of the 24 cells in Figure 1 is assumed 
to be known). This benchmark assumes that the utility of 
choosing alternative] is simply the sum of the partworths 
associated with each attribute, plus a random error term that 
is i.i.d. extreme value. The second benchmark is a multi-
nomial logit model that takes into account information on 
the specific cells visited (cells with at least one fixation) by 
each participant in each question but assumes that search is 
exogenous. This benchmark assumes that participants only 
use the information contained in the cells that they visited 
when they evaluate the alternatives. That is, it assumes that 
the utility of choosing alternative j is the sum of the part- 
worths associated with the cells that were visited at least 
once for this alternative, plus a random error term that is 
i.i.d. extreme value. These two benchmarks only model 
choice (i.e., their likelihood functions only capture how well 
they fit the choice data). Therefore, we cannot compare 
them with the proposed model using measures of in-sample 
fit, so we use out-of-sample predictions instead.

Our second set of benchmarks models both the choices 
made by consumers and their eye movements and therefore 
may be compared with our proposed model using in-sample 
fit statistics (DICs). We refer to this set as “search+choice” 
benchmarks. In each search+choice benchmark, the same 
imperfect memory encoding process is assumed as in the 
proposed model (Equation 1), and the same specification is 
used for product-related utility (Equation 3) and search- 
related utility (Equation 4). The only difference is in the 
specification of the forward-looking term in the value func-
tion (Equation 7). The first benchmark in this set (labeled 
“future product-related utility unanticipated”) assumes that 
consumers only take search-related utility into considera-
tion when deciding whether and how to search for informa-
tion and that they ignore future product-related utility. This 
benchmark assumes that the value function from Equation 7 
takes the following form:

“ search (a|p, k, 0) i f  a = move to (i', j')  

“ product (a |{n},p) i f  a = choose j '
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Our second benchmark in this set explores the possibility 
that although consumers may take future utility into account 
when deciding whether and how to search for information, 
they may not take into account how the results of the search 
will affect their future beliefs, which will influence their 
future expected utility. This benchmark assumes that con-
sumers behave on each search occasion as if they will not 
update their beliefs after the search. We label this bench-
mark as “future belief updating unanticipated.” Note that 
this benchmark assumes that participants ignore future 
updating of beliefs at the time of the decision, but beliefs are 
updated after the new information is acquired. The value 
function takes the following form:

(10) Va({n },p |0 )

“ search N P ’ k ' 6 )

+ Iog X e x P [ “ product (a1{“}> P)] if a = move ta ji ',/)  
a' = {j}

“ product (a|{“}’ P) if a = choose j'

The term log2a' = ^  exp[uproduct(a'|{n}, |3)] in Equation 
10 replaces S/W ^y/rpn^jO log2a. = {jj exp[uproduct(a'|{nVj’,/}, 
|3)] from Equation 7. That is, the anticipated product-related 
utility in the next period is based on the current state 
variables {n} instead of being based (probabilistically) on 
the state variables in the next period, {n'y y /}.

We estimate r], the learning parameter, for each benchmark 
separately using a grid search of the same set of values as in 
the proposed model. Table 2 reports the DICs for the proposed 
model and the second set of benchmarks when the number of 
questions used for calibration varies from 8 to 16. We find that 
the proposed model has a better fit than both benchmarks. 
Thus, it seems reasonable to assume that consumers take 
future product utility into account when deciding whether 
and how to search and that they anticipate how searching 
will affect their beliefs about the various alternatives.

Posterior Check
In addition to computing the DICs, we measure in-sample 

fit for the proposed model by evaluating how well it recov-
ers some key statistics of the data (Gelman, Meng, and

Table 2
COMPARISON OF PROPOSED MODEL WITH 

SEARCH+CHOICE BENCHMARKS BASED ON DICs

Number o f 
Questions 
Used for  
Calibration

Proposed
Model

Future
Belief

Updating
Unanticipated

Future
Product-Related

Utility
Unanticipated

8 140,758.52 142,849.95 143,390.12
9 156,895.06 159, 134.89 159,746.14

10 172,595.80 175, 173.67 175,816.28
11 190,780.44 193,607.85 194,222.65
12 207,433.84 210,737.01 211,265.65
13 222,558.98 226,183.09 226 ,766.77
14 236,862.55 240,554.61 241,243.02
15 252,007.35 255 ,871.44 256,665.68
16 267,657.97 271 ,813.86 272,617.37

(9) Va({n },p |0 ) =
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Stern 1996). At each iteration of the Gibbs sampler, we use 
the parameter estimates in that iteration to simulate the 
number of eye fixations for each respondent and for each 
choice question in the calibration set and repeat this analysis 
when the number of questions used for calibration varies 
from 8 to 16. Figure 10 shows the real average number of 
eye fixations across choice questions and respondents 
together with the 95% credible intervals of this statistic 
across iterations of the Gibbs sampler as the number of 
questions used for calibration varies. In all cases, the true 
values fall within the 95% credible interval.

Parameter Estimates
Table 3 shows the posterior means and 95% credible 

intervals of the first-stage prior parameters defined in the 
“Identification and Estimation” subsection—that is, the 
population mean of the partworths and search-utility 
parameters (p0) and the population variance of those 
parameters (diagonal elements of A). The estimates pre-
sented in Table 3 are based on the proposed model using the 
first 16 questions for calibration. (Recall that all parameters 
in Table 3 are estimated at the individual level; we report 
only the population means here.) All results are based on r| = 
3, the value suggested by the grid search for this parameter.7 
As previously mentioned, we used effects coding such that 
the partworths sum to 0 within each attribute.

The signs of 0 n and 0 i2 are consistent with the descrip-
tive statistics reported previously that show that search 
decreases as the questionnaire progresses and that placing 
the external validity first slightly increases the amount of 
attention spent in the main task. The sign of 02 is consistent 
with the finding that consumers tend to move to cells that

7The DIC for the proposed model when calibrating on the first 16 ques-
tions is 274,722.36; 268,874.46; 267,707.81; 267,657.96; 267,906.75; and 
268,204.44 when varying n  from 0 to 5 with a step of 1.

Figure 10
POSTERIOR CHECK OF THE AVERAGE NUMBER OF EYE 

FIXATIONS PER CHOICE QUESTION VERSUS NUMBER OF 
QUESTIONS USED FOR CALIBRATION

Table 3
POPULATION ESTIMATES FROM THE PROPOSED MODEL

Posterior
Population

Mean

95%
Credible
Interval

Posterior
Population

Variance

Search-Related Parameters 
0O 2.33 [2.13, 2.51] 1.05
0n -.01 [-.03, .00] .36
012 .28 [-.07, .61] 1.30
02 -1.07 [-1.08, -1.05] .45
03 .70 [.66, .73] .75

Processor Speed
1.6 GHz -8.80 [-9.11, -8.51] 17.03
1.9 GHz -3.21 [-3.44, -2.97] 6.54
2.7 GHz 3.94 [3.69, 4.15] 5.07

Screen Size
26 cm -.31 [-.54, -.09] 17.06
35.6 cm 1.42 [1.16, 1.77] 4.36
40 cm .31 [-.01, .51] 4.14

Hard Drive
160 GB -3.36 [-3.87, -2.99] 4.27
320 GB -.62 [-1.12, -.28] 2.57
500 GB 1.20 [.98, 1.51] 2.68

Dell Support
1 year -1.51 [-1.75, -1.27] 1.93
2 years .90 [.69, 1.11] 1.81
3 years .16 [-.07, .41] 1.55

Antivirus
30 days -.83 [-1.03, -.57] 4.37
1 year .05 [-.23, .39] 1.44
2 years .58 [.31, .82] 2.13

Price
350€ 4.98 [4.68, 5.28] 14.18
500€ 1.49 [1.34, 1.66] 1.97
650€ .04 [-.13, .17] 1.29

Notes: The first 16 questions are used for calibration. We used effects 
coding, so the partworth for the last level of each attribute is equal to minus 
the sum of the other three partworths.

are close to the one they are currently visiting. The fact that 
03 is less than 1 is consistent with Table 1, which shows that 
horizontal eye movements within the same attribute are 
more frequent than vertical ones within the same alterna-
tive. The positive sign of 0O suggests that search-related 
utility may be positive in certain situations.

Table 4 presents the posterior means of the importance of 
each attribute based on the proposed model and the set of 
choice-only benchmarks. The proposed model extracts 
more information about each attribute from each choice 
question. Therefore, we expect this model to give rise to 
more discrimination across attributes; for each consumer, 
there should be more variance in attribute importance across 
attributes. Moreover, attribute importances should be corre-
lated with the number of fixations in each attribute, with 
consumers spending more attention on more important 
attributes. Table 4 reports posterior means and credible 
intervals of the averages (across consumers) of the variance 
(across attributes) of the partworth importances. That is, at 
each iteration of the MCMC, we compute the variance of 
the attribute importances for each consumer and calculate 
the average of this variance across consumers. As we pre-
dicted, the proposed model gives rise to much more varia-
tion across attributes than the benchmarks (the 95% credible



Table 4
AVERAGE ATTRIBUTE IMPORTANCE AND VARIANCE OF 

ATTRIBUTE IMPORTANCE
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Choice-Only Benchmarks
Assume Use 

Consumers Knowledge 
Proposed Fully of Which 

Model Informed Cells Visited

Average attribute importance 
Processor speed .335 .281 .232
Screen size .145 .140 .140
Hard drive capacity .140 .199 .189
Dell support subscription .076 .091 .125
McAfee antivirus subscription .081 .090 .108
Price .222 .200 .206

Average variance of attribute .010 006 .003
importance 

95% credible interval [009,011] [004, 007] [002, .003]

Notes: The first 16 questions are used for calibration.

intervals do not overlap with the benchmarks). We also 
observe a positive correlation between attention and impor-
tance: the rank order correlation between the average shares 
of fixations reported in Figure 9 and the average attribute 
importances reported in Table 4 is .89. This correlation may 
also be computed for each question for each respondent. 
The average is .67 (SD = .31) and the median is .76 across 
all choice questions and respondents. In other words, com-
plementing choice data with search data and modeling the 
information acquisition process as the result of forward- 
looking utility maximization increases discrimination 
across attributes, and attributes that receive more attention 
tend to have larger estimated importances.

Out-of-Sample Predictions
We compare out-of-sample prediction performance 

between the proposed model and the two sets of bench-
marks (search+choice and choice-only) using the hit rate on 
both the holdout questions (the last four questions in the 
main task) and the external validity task. For each consumer 
and out-of-sample question, we measure the hit rate by 
computing the estimated choice probability of the chosen 
alternative at each MCMC iteration and then compute the 
average across MCMC iterations.8 We plot how the average 
performance of each model evolves as the number of ques-
tions used for calibration varies between 8 and 16. Figures 
11-14 report the results.

We observe in Figure 11 that the hit rate on the holdout 
questions is systematically higher in the proposed model 
than in the choice-only benchmarks and that the difference 
becomes less pronounced as the number of questions

8We computed the utility of each alternative in each out-of-sample 
choice question by multiplying the characteristics of the alternatives by the 
consumer’s partworths. This standard approach implicitly assumes that 
consumers take into account the full description of all the alternatives in 
the choice set. We also tried making out-of-sample predictions for the 
search+choice models based on counterfactual simulations. In particular, 
we could simulate the consumer’s search process in the out-of-sample 
questions and estimate the resulting choice probabilities. Predictive per-
formance was slightly worse using this approach. Details are available 
from the authors.
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Figure 11
PROPOSED MODEL VERSUS CHOICE-ONLY BENCHMARKS: 

AVERAGE HOLDOUT HIT RATE VERSUS NUMBER OF 
QUESTIONS USED FOR CALIBRATION

increases. To compare the performance of the proposed 
model and each set of the benchmarks statistically, we run a 
set of ordinary least squares regressions with the logit of the 
hit rate as the dependent variable. Tables Cl and C2 in 
Appendix C present the results. We find that the main 
effects that correspond to the two choice-only benchmarks 
are significantly negative; the proposed model, on average, 
performs significantly better than either benchmark. This is 
consistent with the fact that the proposed model is able to 
extract more information from each choice question. There-
fore, it is able to achieve greater predictive performance 
with fewer questions. It takes approximately 12 choice 
questions for the best choice-only benchmark to reach the 
performance achieved by the proposed model after 8 choice 
questions, and the performance of the best choice-only 
benchmark after 16 questions is similar to the performance 
of the proposed model after only 12 questions. In addition, 
the choice-only benchmark that uses eye-tracking data to 
account for which cells were visited in each question per-
forms worse than the standard choice-only benchmark that 
assumes that all cells are visited. Thus, to extract valuable 
information from eye-tracking data, it is not enough to 
merely capture which information the consumer processed; 
it is better to endogenize the information search process. 
Indeed, simply taking into account the fact that an attribute 
was ignored in a question without modeling why it was 
ignored results in no information being collected about this 
attribute in that question (i.e., the partworths for this attribute 
do not appear in the likelihood function for that question).

Figure 12 compares the proposed model with the 
search+choice benchmarks. Again, the proposed model per-
forms significantly better than either of the benchmarks. 
The worst-performing benchmark is the one that assumes 
that consumers ignore future product-related utility when 
deciding whether and how to acquire information. The 
benchmark that assumes that consumers take future prod-
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Figure 12
PROPOSED MODEL VERSUS SEARCH+CHOICE 

BENCHMARKS: AVERAGE HOLDOUT HIT RATE VERSUS 
NUMBER OF QUESTIONS USED FOR CALIBRATION

uct-related utility into account but ignore how their beliefs 
will be updated performs better but still not as well as the 
proposed model. This finding suggests that the gain from 
the proposed model comes from assuming that consumers 
take into account both future utility and the impact that 
additional search will have on their future decisions.

Figures 13 and 14 compare the models’ performance on 
the external validity task. Although the proposed model still 
performs better than the benchmarks, and the average dif-
ference remains significant (see Tables Cl and C2 in 
Appendix C), the comparisons are a little noisier for at least 
two reasons. First, the external validity task was a single 
choice question, whereas the holdout comparisons are based 
on the last four questions, which reduces the variance in 
performance across consumers. Second, the choice shares 
of the eight alternatives in the external validity question 
were very unevenly distributed; 95.0% of the respondents 
chose the three most-popular alternatives (with respective 
shares of 55.7%, 28.6%, and 11.4%).

CONCLUSIONS
In this article, we develop a joint model of information 

processing and choice that explicitly captures the dynamic 
trade-off between search-related utility and product-related 
utility. We find that the proposed model offers better out-of- 
sample predictions than benchmarks that either do not lever-
age data on the information search process or do so without 
endogenizing search as the outcome of forward-looking 
utility maximization. Our model also allows for greater dis-
crimination between various attributes than the benchmarks 
that only model choice and not search. Our results suggest 
that the gains in predictive performance come from model-
ing consumers as being forward looking both in terms of 
taking future utility into account when deciding whether 
and how to search and in terms of anticipating how search

Figure 13
PROPOSED MODEL VERSUS CHOICE-ONLY BENCHMARKS: 
AVERAGE EXTERNAL VALIDITY HIT RATE VERSUS NUMBER 

OF QUESTIONS USED FOR CALIBRATION

Figure 14
PROPOSED MODEL VERSUS SEARCH+CHOICE 

BENCHMARKS: AVERAGE EXTERNAL VALIDITY HIT RATE 
VERSUS NUMBER OF QUESTIONS USED FOR CALIBRATION

will affect their future beliefs and, therefore, future expected 
utility.

Our contribution is both methodological and managerial. 
Methodologically, our model extends Gabaix et al.’s (2006) 
DC model in several important ways. That model had a 
single parameter (opportunity cost of time) that was esti-
mated at the aggregate level by matching moments of the 
data. In contrast, our model specifies a rich search-related 
utility function that captures fatigue and proximity effects 
and a product-related utility function parameterized by a set 
of partworths. Moreover, our model allows consumers to 
have imperfect memory encoding. We estimate our model
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within a likelihood-based hierarchical Bayesian framework 
that allows for heterogeneity across consumers.

Managerially, as we discussed previously, there are com-
mercial solutions available today that allow for collection of 
eye-tracking data in an online environment using the con-
sum er’s webcam. We expect such solutions to be increas-
ingly common as large companies such as Facebook acquire 
such capabilities (in 2012, Facebook acquired GazeHawk, a 
startup that provides webcam eye-tracking services [Protal- 
inski 2012]) and with the development of open-source solu-
tions. Therefore, we believe that the approach developed in 
this article will be increasingly accessible to market 
researchers. We show that complementing choice data with 
eye-tracking data and modeling eye movements as the out-
come of forward-looking utility maximization improve out- 
of-sample performance, enable practitioners and researchers 
to use shorter questionnaires, and allow greater discrimina-
tion between attributes. We envision eye-tracking data being 
collected systematically in online market research to aug-
ment and improve the responses given by consumers.9

Finally, we believe that the present research offers several 
directions for future studies. First, our model can be 
extended to account for risk aversion, loss aversion, regrets, 
and other behavioral phenomena (Hauser, Urban, and Wein-
berg 1993). Second, our model could provide a framework 
for developing and testing new theories related to informa-
tion search and choice. Third, additional physiological 
measures could be collected during preference measure-
ment tasks, such as facial expressions (Teixeira, Wedel, and 
Pieters 2012). These additional measures could be incorpo-
rated into preference measurement models to further 
improve predictive performance and reduce the required 
length of questionnaires. Fourth, our bounded rationality 
framework may be used to shed new light on the impact of 
incentives in preference measurement. In our framework, 
consumers trade off the cognitive costs related to informa-
tion processing with the benefits derived from their choices. 
Varying the incentives (e.g., the likelihood of each choice 
being realized) would affect the expected benefits derived 
from each choice, which should then influence how much 
information (and possibly which information) consumers 
process during the task.

APPENDIX A: ILLUSTRATIVE EXAMPLE
We illustrate our state variables and the computation of 

product-related utility using a simple example. We assume 
one attribute (1 = 1 ) with three levels (L = 3) and two alter-
natives per choice question (J = 2). We assume that alterna-
tive 1 has attribute 1 at level 1 and alternative 2 has attribute 
1 at level 2.

We have

I? =
0
1 ,

-1

and the partworths for the first attribute may be represented 
as

9A11 code used in this article is available upon request.

P i t

P l2

P i t

P l2

“ P i t  _  P i 2

Before the first fixation, the state variables have the fol-
lowing values:

•p = 0 ,  and 
*n l , l  =  n l , 2  =  ° -

In addition, we have the following:

•wlt i = w12 = [A, A, A],
•The expected product-related utility of alternative 1 is Wj jPj = 
0, and

•The expected product-related utility of alternative 2 is w12Pi = 
0.

Suppose that the first fixation is to cell (1 ,1) corresponding 
to attribute 1 of alternative 1. Then, the state variables 
evolve to

•P = (L 1),
•n] ! = 1 ,and
•n1 2 = 0.

Thus, we have the following:

•Wj , = [exp(r])/{2 + exp(r|)}, l/{2 + exp(q)}, l/{2 + expOq)}], 
•w 12=[A,A,A],
•The expected product-related utility of alternative 1 is now 
W|t ,Pi = [exp(ri)- l/{2 + exp(ri)]pn ,and 

•The expected product-related utility of alternative 2 is now
Wi,2Pi =0.

Suppose that after t = 15, ten fixations have been made to 
cell (1, 1), five fixations have been made to cell (1 ,2 ), and 
the last fixation was on cell (1,2). Then, we have

•p = (1,2),
•n| ! = 10, and
1*1,2  =  5-

We also have the following:

•wl t ! = [exp(10r|)/{2 + exp(lOri)}, l/{2 + exp(lOri)}, l/{2 + 
exp(lOri)}],

•W| 2 = [ 1 /{2 + exp(5ri)}, exp(5r))/{2 + exp(5r|)}, l/{2 + 
exp(5r|)}],

•The expected product-related utility of alternative 1 is now 
w, ,p, = {[exp(10q) —1 ]/[2 + exp(10ri)]}p11, and 

•The expected product-related utility of alternative 2 is now 
Wi,2Pi = {[exp(5ri) -l]/[2 + exp(5ri)]}P12.

APPENDIX B: SIMULATION 
Data Generation

We simulated a situation similar to our experiment. We 
used the same number of attributes and levels and the same 
experimental design. We simulated 70 participants complet-
ing the first 16 choice questions from the main task. For 
each participant and each choice question, we simulated the 
eye movements and the choice on the basis of the learning 
parameter r), a set of individual-level search-related utility 
parameters 0n = [0On, 0 ln, 02n, 03n] defined as in Equation 4, 
and 18 individual-level partworths pn.
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The learning parameter was set to iq = 3. All individual- Table B1
level parameters were drawn from a multivariate normal SIMULATION RESULTS
distribution:

r
[en,P n ]~ N [e0.M , 0

where A0 was a diagonal matrix with diag(Ae) = [.1, .01, .1, 
.1], and Ap was the identity matrix. Table B1 reports the 
average values of 0n and |3n.

Results
We calibrated our proposed model on the simulated data 

set using the estimation procedure described in the “Identi-
fication and Estimation” subsection. We performed a grid 
search on the parameter r| by calibrating the model with iq = 
0 to 5 with increments of 1. The true value rq = 3 was accu-
rately selected on the basis of the DIC.

Table B1 reports the average estimates of the relevant 
parameters and the 95% credible intervals. We observe that 
all the search-related parameters as well as 16 of 18 part- 
worths are contained within the 95% credible intervals. The 
two partworths that fall outside the 95% credible interval 
(1.9 GHz and one year of Dell support) are still reasonably 
well recovered.

APPENDIX C: COMPARISONS BETWEEN PROPOSED 
MODEL AND BENCHMARKS

To compare the performance of the various models statis-
tically, we run ordinary least squares regressions with the

True Estimated 95%
Average Average Credible

Value Value Interval

Search-Related Parameters
9o 1.99 1.94 [1.79, 2.06]
0i -.07 -.07 [-.09, -.06]
02 -.97 -.99 [-1.02, -.97]
03 .70 .74 [.70, .79]

Processor Speed
1.6 GHz -2.98 -3.28 [-3.87, -2.65]
1.9 GHz -1.03 -.63 [-99 , -.33]
2.7 GHz 1.08 .80 [.30, 1.29]

Screen Size
26 cm -3.05 -2.95 [-3.41, -2.63]
35.6 cm -1.14 -1.44 [-1.79, -1.04]
40 cm .80 1.06 [.65, 1.45]

Hard Drive
160 GB -2.83 -3.09 [-3.47, -2.78]
320 GB -1.02 -.67 [-1.09, -.32]
500 GB 1.02 1.20 [.90, 1.43]

Dell Support
1 year -2.85 -3.28 [-3.65, -2.94]
2 years -.97 -1.03 [-1.23, -.80]
3 years 1.06 1.10 [.79, 1.36]

Antivirus
30 days -3.03 -3.05 [-3.44, -2.69]
1 year -1.12 -1.06 [-1.33, -.73]
2 years 1.08 1.01 [■60, 1.57]

Price
350€ -3.10 -2.86 [-3.39, -2.32]
500€ -.96 -1.34 [-1.82, -.86]
650€ 1.12 1.33 [1.07, 1.56]

Table C1
PROPOSED MODEL VERSUS CHOICE-ONLY BENCHMARKS: REGRESSION RESULTS

Holdout Questions External Validity

Coefficient p- Value Coefficient p-Value
Intercept .918 .000 .618 .000
Choice only—assume consumers fully informed dummy -.187 .000 -.518 .002
Choice only—use knowledge of which cells visited dummy -.426 .000 -.679 .000
q .040 .000 .006 .843
q2 .001 .728 -.017 .184
Choice only—assume consumers fully informed dummy x q .098 .000 -.027 .521
Choice only—use knowledge of which cells visited dummy x q .088 .000 .048 .259
Choice only—assume consumers fully informed dummy x q2 -.025 .000 .018 .342
Choice only—use knowledge of which cells visited dummy x q2 -.018 .001 .009 .645

Notes: The variable q is the (mean-centered) number of questions used for calibration.

Table C2
PROPOSED MODEL VERSUS SEARCH+CHOICE BENCHMARKS: REGRESSION RESULTS

Holdout Questions External Validity

Coefficient p -Value Coefficient p-Value
Intercept .918 .000 .618 .000
Search+choice—future belief updating unanticipated dummy -.456 .000 -.731 .000
Search+choice—future product-related utility unanticipated dummy -.716 .000 -1.342 .000
q .040 .000 .006 .835
q2 .001 .728 -.017 .162
Search+choice—future belief updating unanticipated dummy x q .054 .000 .012 .762
Search+choice—future product-related utility unanticipated dummy x q .024 .053 -.007 .861
Search+choice—future belief updating unanticipated dummy x q2 -.020 .000 .011 .551
Search+choice—future product-related utility unanticipated dummy x q2 -.010 .076 -.002 .888

Notes: The variable q is the (mean-centered) number of questions used for calibration.



182 JOURNAL OF MARKETING RESEARCH, APRIL 2015

logit of the hit rate as the dependent variable.10 The number 
of observations in each regression is the number of respon-
dents x 9 (number of questions used for calibration varies 
from 8 to 16) x 3 (number of models being compared). We 
include respondent fixed effects to capture the panel struc-
ture of the data. We use the proposed model as baseline and 
include dummy variables for benchmark models. We also 
include covariates that capture the increasing trend in per-
formance as the number of questions increases. The bench-
marks in Table Cl (Table C2) are the choice-only (search+ 
choice) models. We run one set of regressions for the hold-
out questions and one set for the external validity task. We 
find that all main effects corresponding to the benchmarks 
are significantly negative; the proposed model on average 
performs significantly better than all benchmarks.
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