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1. Introduction
Organizations worldwide use contact centers as an impor-
tant channel of communication and transaction with their
customers. The most prevalent form of communication is
the telephone, but, with the proliferation of the Internet,
other channels such as e-mail or online real-time support
are becoming widespread. Corporate contact centers range
in size from a few agents in one office to several hundred or
even thousands that are located in geographically dispersed
locations spread out around the world. Their socioeconomic
importance in today’s business landscape cannot be over-
stated: “There are approximately 7,000,000 agents now
working in 70,000 call centers in the United States, with an
annual growth rate of up to 20% in agent positions,” “70%
of all customer interaction occurs in the call center,” “per-
sonnel (staffing) costs account for over 65% of the running
costs of a call center,” etc.; see Call center statistics (2001)
for many interesting statistics. From a modeling point of
view, contact centers can be viewed as large systems, oper-
ating in a stochastic environment, at very high agent uti-
lization rates. Due to their inherent complexity, common
practice is to either use simplified formulas and simulation
to predict system performance, or to employ some form of
approximate analysis that leads to good, closed-form char-
acterizations of their behavior. Our work falls into the latter
category.

This paper studies a contact center with many identi-
cal agents (or servers) and two service modes: (1) tra-
ditional (real-time) telephone service, and (2) postponed
(call-back) service. To make the call-back option attractive
to callers, it is coupled with a quality-of-service guarantee
on the maximum delay before receiving a reply. Arriving
customers are informed (or know from prior experience)
of the expected waiting time for real-time service. Based
on this information and the delay guarantee for the call-
back option, they decide whether to join the queue, leave
their number to be called back later, or balk. In turn, the
actual waiting time depends on the customer’s decisions.
Hence, we are interested in an equilibrium operating mode
in which the customers’ reactions to the announced infor-
mation results in a pair of arrival rates into each class
that induce a steady-state regime that is consistent with the
information announced. The control decision faced by the
system manager is the routing of the jobs; namely, upon
service completion, should the agent take an online call or
call a customer back. We study the system performance
under a general customer choice mechanism and an appro-
priately designed routing rule.
There are four goals of this paper. First, at the lowest

level, we address the operational issue of routing service
requests originating in the two channels in a way that max-
imizes the quality of service experienced by the real-time
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customers subject to the delay constraint on the postponed
service. Second, at the system level, we characterize the
equilibrium operating regime, if it exists, analyze perfor-
mance measures of interest, and gain insights on their
dependence on system and choice model parameters. Third,
from an economic viewpoint, we design the most cost-
effective system that achieves a desired level of quality of
service with the minimum number of agents. Finally, from
a managerial perspective, we demonstrate the performance
improvements realized by introducing the call-back option.
The call center under investigation is modeled in this

paper as a two-class M/M/N system. We refer to the real-
time customers as class 1 customers, whereas customers
who choose to be called back are referred to as class 2. The
two types of service are assumed to have equal mean pro-
cessing times. The arrival rates of the two classes are deter-
mined through the customers’ decisions. These decisions
are made according to a probabilistic choice model that
captures the trade-off between the value of receiving ser-
vice and the cost of waiting associated with the two options.
The interplay between the arrival rates and the steady-state
expected waiting time may be described as a game in strate-
gic form. In this context, a Nash equilibrium describes the
situation in which the steady-state expected waiting time
resulting from certain arrival rates, will induce the same
arrival rates if used as the waiting time announced to cus-
tomers. A schematic of this system is shown in Figure 1.
To motivate the integration of a call-back option into a

call center we illustrate its effect on performance using an
example summarized in Table 1. The table compares via
simulation a system without the call-back option with one
that offers this option with a delay guarantee of 10 minutes.
The latter employs a threshold routing rule outlined later
on. Note that the steady-state expected waiting time in equi-
librium is reduced by almost a factor of three, the probabil-
ity of waiting more than 20 seconds (a typical measure in
call centers) is reduced by a factor of six, while more traffic
is being served by the system. Intuitively, this is happening
because the customer group is segmented into two classes,
one in which workload can be stored or delayed for future
processing. This flexibility improves system performance.
Finally, the total arrival rate into both systems is very close
to the total service capacity of 50 calls/min., which numer-
ically demonstrates that rational customer choice behavior
“brings” the system into heavy traffic.

Figure 1. Schematic of a contact center.
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Note. Class 1 corresponds to telephone service, and class 2 is for the
call-back option. � is the aggregate arrival rate, �i is the arrival rate into
class i.

Table 1. Performance comparisons.

Call-Back with
No Call-Back Delay� 10 Minutes

E(waiting time 14�0 5�4
of class 1) (sec.)

Std(waiting time 21�04 11�68
of class 1) (sec.)

Total actual arrival 47�38 48�23
rate (arrivals/min.)

Fraction of customers who — 18%
choose call-back

P(waiting in class 1 0�25 0�04
> 20 sec.)

P(balking) 0�033 0�016
P(“late” response to — 0�013
class 2 customers)

E(waiting time for “late” — 10�68
call-backs) (min.)

Std(waiting time for — 0�55
“late” call-backs) (min.)

Note. N = 50 servers, overall potential arrival rate = 49 requests/
min., 1 min. mean service time, 2 min. average patience time for
telephone service, 20 min. average patience time for a call-back.

Our analysis throughout this paper is based on the many-
server, heavy traffic asymptotic regime of Halfin and Whitt
(1981). This limiting regime (i.e., the system approaching
heavy traffic as the number of servers grows large) can be
rigorously justified under very general assumptions on the
customer choice behavior (§4). This asymptotic mode of
analysis allows us to devise an asymptotically optimal rout-
ing policy, analytically characterize the unique equilibrium
operating regime along with the system’s performance, and
propose an analytic expression for the appropriate staffing
level for this system. In more detail, the limiting regime is
used in the following three areas:
1. Delay Specifications and Optimal Routing. Due to the

randomness of the service system, the delay constraint for
class 2 customers cannot always be satisfied. In the limiting
regime, however, the system manager can indeed guarantee
that the waiting time encountered by class 2 customers
never exceeds its upper bound. Analysis of the associated
control problem yields a simple characterization of the opti-
mal policy that minimizes the limiting expected waiting
time experienced by class 1 customers among all policies
that asymptotically guarantee the delay bound for class 2;
these are the so-called asymptotically compliant policies
(see §3 or Plambeck et al. 2001). This is a threshold rule
that gives priority to class 1 as long as the class 2 queue
length is below an appropriately chosen threshold that is
easy to specify; beyond this threshold class 2 gets priority.
2. Equilibrium Analysis. It is common to use diffusion

approximations for performance analysis of queueing sys-
tems. In this paper, we extend this idea and use the lim-
iting regime to study the system’s equilibrium behavior.
Specifically, we establish that the limit system has a unique,
stable equilibrium, which is characterized as the solution
of a nonlinear equation. The limiting equilibrium is used
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to approximate the equilibrium in the original system. This
use of the limit system is novel and seems to provide struc-
tural insights and accurate numerical results. In contrast,
direct analysis of the Markov chain model is very hard, and
one has to rely on extensive simulation to estimate the sys-
tem’s equilibrium behavior—this is only feasible for small
systems.
3. System Design. We focus on the staffing problem of

choosing the minimum number of servers for this two-class
system that guarantees a certain set of performance speci-
fications; typical examples involve bounds on the expected
waiting time for class 1 customers, bounds on the probabil-
ity that the waiting time exceeds some threshold, etc. The
asymptotic analysis provides a simple characterization of
the number of servers needed to meet these specifications,
and validates the familiar “square-root” staffing rule that
has been advocated in the literature in the context of sim-
pler service systems; see, for example, Kolesar and Green
(1998) and Borst et al. (2004). This rule suggests that the
number of servers should be of the form N ∗ = R+ x∗√R,
where R is the total load into the system, and x∗ is an
appropriate multiple that is directly computable from the
specifications and the choice model parameters.
Methodologically, the novelty in this paper is in address-

ing these three points (control, equilibrium analysis, design)
within this limiting regime, and appropriately translating its
solutions into simple rules that may be used in the original
system.
The remainder of this paper is structured as follows. We

conclude this section with a literature survey. Section 2
describes the model. Section 3 provides an asymptotic anal-
ysis for the system as the number of agents grows to infin-
ity and the traffic intensity grows to one; we call this the
“rationalized” regime, which is typical of large call centers.
Section 3 also gives basic results about the limiting system
and derives the optimal scheduling policy. Section 4 ana-
lyzes the equilibrium behavior of the system, and justifies
that the “rationalized” regime of §3 is indeed the natural
equilibrium regime for the system under rational customer
choice behavior. Section 5 exploits these asymptotic results
to approximate system performance and proposes near-
optimal staffing rules. Section 6 gives concluding remarks.
The literature on call centers is quite extensive. It starts

with a plethora of results on the structure and performance
of the M/M/N system that can be found in most text-
books on stochastic models. A significant fraction of recent
work has been on developing good staffing rules for large
call centers (see Kolesar and Green 1998 and references
therein) with particular emphasis on nonstationary arrival
streams and the development of practical solutions that
can be implementable in a true system with eight-hour
shifts, breaks, etc. Typically, these papers assume a single
class of customers, do not explicitly model customer choice
behavior, and use direct analysis of the Markov chain to
derive their results. While for the single-class model such

an approach is feasible; it does not scale to multiclass sys-
tems, or, more so, to networks, and it often gives numer-
ical rather than analytic characterizations of quantities of
interest. Also within the nonstationary arrivals framework,
Whitt (1999) demonstrates how postponing the service of
less urgent jobs to off-peak hours can smooth out the load
of the system.
Two-class M/M/N systems related to ours have been

studied in the following two papers. Brandt and Brandt
(1999) analyze the Markov chain associated with a two-
class system with impatient customers, fixed arrival rates,
no service level guarantees, and a static priority policy that
prioritizes the real-time channel (class 1). They characterize
the steady-state distribution for the number of high prior-
ity customers in the system via a set of integral equations,
and give a similar approximation for the low priority class.
Gans and Zhou (2003) study a two-class system, where
one class has a fixed arrival rate and is subject to a prob-
abilistic service level guarantee, and the other class is an
infinitely backlogged queue that awaits to be processed.
They develop a routing policy that gives priority to the
class with the service level guarantee and only serves the
other class when the number of idle servers is above a cer-
tain threshold. This policy maximizes the throughput of the
infinite backlogged class subject to the quality-of-service
constraint of the incoming call channel. This model is prob-
ably the closest to ours. The main difference in assumptions
lies in the fact that in their model it is assumed that arrival
rates are exogenous (with one infinitely backlogged queue);
in contrast, we assume endogenous arrival rates, which are
the result of system equilibrium.
A paper that has motivated a lot of recent work on

asymptotic methods for the analysis of multiserver systems
is due to Halfin and Whitt (1981). In their paper, they per-
form an asymptotic analysis for M/M/N systems in the
form of a simple diffusion process. It also provides use-
ful insights about the scaling phenomena in these systems.
This work has been extended in several ways: Jennings et
al. (1996) seem to be the first to have used the Halfin-
Whitt regime in the context of call centers; they use this
asymptotic regime to characterize staffing levels with time-
varying demand. Fleming et al. (1994) and Garnett et al.
(2002) have added the notion of abandonment (that is,
customers renege after having waited in the queue for
some time). Puhalskii and Reiman (2000) have analyzed
multiclass systems with renewal arrival and phase-type
processing time distributions with and without priorities.
A detailed asymptotic analysis of dimensioning rules for
single-class call centers has been done by Borst et al.
(2004). Finally, in a recent paper, Whitt (2003) stud-
ies single-class multiserver systems in which arrival rates
depend on system performance, including the scenario that
leads to the limiting regime proposed by Halfin and Whitt
(1981) that is also used here.
Customer behavior has been analyzed by Hassin and

Haviv (1995), Mandelbaum and Shimkin (2000), and
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recently by Zohar et al. (2002) in the context of modeling
rational abandonment. In Hassin and Haviv (1995) rational
abandonments are considered in an M/M/1 queue, and it
is shown that the only rational abandonments are the trivial
ones, that is, those that occur upon a customer’s arrival,
or once the service is no longer needed by him or her.
Mandelbaum and Shimkin (2000) extend this result to a
call center (modeled as an M/M/N queue), and propose a
realistic modeling framework under which nontrivial aban-
donments occur in equilibrium. Zohar et al. (2002) ana-
lyze a model of rational abandonments in which customers’
patience depends on specific performance measures such
as the expected waiting time, rather than the whole waiting
time distribution. It also addresses the learning process of
the customers and how the system evolves into equilibrium.
Our work combines rational decision making with an

asymptotic analysis in the Halfin-Whitt regime. Similar to
Mandelbaum and Shimkin (2000), customer behavior is
explained through a probabilistic choice model and the
equilibrium regime is analyzed. The control problem solved
in this paper is related to that of Brandt and Brandt (1999)
and Gans and Zhou (2003). In contrast to these papers,
our asymptotic mode of analysis yields simple but accu-
rate closed-form characterizations of the system equilib-
rium and performance, that are then used in the economic
analysis of the system. In common with Puhalskii and
Reiman (2000) we analyze a two-class system, under con-
siderably different policies, however, and establish a state
space collapse result (see Proposition 3.1). The issue of
abandonment is not addressed in this paper. Another paper
by the authors (Armony and Maglaras 2004) studies a
related problem of a contact center with a call-back option
in which customers are informed of their state-dependent
anticipated delay.

2. The Model and the Routing Problem
The service system has N identical servers and provides
two types of service: (1) real-time service, where users join
a FIFO queue (queue 1, here); and (2) postponed (call-
back) service, where users leave a message and the system
calls them back within D2 time units (this is queue 2). We
assume that once a class 2 customer leaves a service request
he/she is available until he/she gets called back. Clearly, the
upper bound on the waiting time for class 2 service requests
is not meaningful in a conventional sense, because the
waiting times are unbounded random variables. However,
as we will show later on, this constraint can be guaran-
teed in an appropriate asymptotic regime that characterizes
the equilibrium behavior of the system as the number of
servers grows large. Both classes have identical processing
requirements, and service times are independent, exponen-
tial random variables with mean m (and rate  = 1/m).1

The system parameters N and D2 are assumed to be fixed;
§5.2 will address the service provider’s problem of system
design to optimize a profitability criterion.

Customer Behavior. Customers arrive according to a
Poisson process with rate �. Upon arrival they have three
choices: (1) join queue 1 and wait to be processed, (2) leave
a message for postponed service in queue 2, or (3) balk and
do not join the system. We denote by �1, �2, �0 the rates at
which customers join class 1, class 2, or balk, respectively.
Clearly, �= �1 +�2 +�0.
Given �1, �2, let Wi denote the steady-state waiting time

for class i jobs (this does not include their service time),
and let EWi denote the respective expected values. Arriving
customers are informed of (a) the steady state expected
waiting time in class 1, EW1, and (b) the delay D2 within
which they will receive a call-back should they select
option (2).2 Based on their knowledge of �EW1�D2�, they
decide whether to join the system and what type of service
to request. That is, customers use long-run average infor-
mation to assess their utility for real-time service (class 1),
and the guaranteed upper bound on anticipated delay for
postponed (call-back) service for the latter.
The key trade-off callers are faced with choosing

between the real-time service and the postponed one is
analogous to the trade-off between “best effort” and “guar-
anteed” type of service. In particular, it is to be expected
that some customers may choose to get a call-back to free
their time (as well as their phone line) to attend to other
matters. This may be true even if EW1 �D2. The call-back
option may be even more attractive if customers are reliably
being called back within the promised deadline. Finally, the
call-back option can also be perceived as an e-mail option
in contact centers that offer both types of services (phone
and e-mail); in such cases, some customers may naturally
prefer the e-mail service, even though the corresponding
response time is significantly longer.

A Mathematical Model of Choice Behavior. We as-
sume that there is a continuum of customer types, indexed
by � , that are differentiated by their preferences; hereafter,
a superscript � will denote dependence on user type. User
preferences are determined as follows:
(a) The utility for real-time service (i.e., choose (1) and

join queue 1) is u�1�EW1�.
(b) The utility for leaving a request for a call-back

within D2 time units is u
�
2�D2�.

Both u�1�·�, u�2�·� are continuously differentiable with
respect to � , W1, D2 are nonincreasing in W1, D2, respec-
tively, and u�i ��� < 0; i.e., the utility has negative values if
EW1 or D2 are sufficiently large because in such cases the
cost of waiting exceeds the value obtained by receiving ser-
vice, making such choices undesirable. For i= 1�2, u�i �0�
represents the utility for receiving immediate service (no
wait), which gets depreciated as the customer has to wait
either online �i = 1� or offline to be called back �i = 2�.
Without loss of generality, we assume that the utility of not
joining is zero; that is, u0 = 0. Customers choose the type
of service that maximizes their own utility according to

max�0� u�1� u
�
2�� (1)
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that is, a type � customer will join queue 1 if u�1 � u�2
and u�1 � 0, leave a service request in queue 2 if u�2 >u�1
and u�2 � 0, and balk if u�1� u

�
2 < 0. In principle, the utili-

ties may depend on the entire distributions of W1 and W2,
however, this does not appear to be very realistic (due to
bounded rationality arguments). We will make the sim-
plifying assumption that u�1�·� and u�2�·� are only func-
tions of EW1 and D2, respectively, and that P� �u1�0� �� >
u2�0� ��� > 0 and that P� �u2�0� �� > u1�0� ��� > 0. The
interpretation of the latter condition is that the two service
modes are not perfect substitutes of each other, and this is
reflected in their respective utilities.
Finally, the customer type is a random variable. Let P�

be the probability distribution over the set of customer
types, which for simplicity is assumed to be the posi-
tive real line. We require that the type distribution has a
continuous density function and that for all finite x � 0,
P� �u�i �x� � 0� > 0. The type of each customer is chosen
according to P� and is independent of all other customers’
types. Given this setup,

�1�EW1�D2�

=�P� �u�1�EW1�� u�2�D2� and u�1�EW1�� 0�� (2)

�2�EW1�D2�

=�P� �u�2�D2� > u�1�EW1� and u�2�D2�� 0�� (3)

and �0�EW1�D2� = �− �1�EW1�D2�− �2�EW1�D2�. For
i = 1�2 we assume that �i�·� ·� is continuously dif-
ferentiable with respect to both arguments, and that
�i�0�0� > 0. In addition, we assume that the total aggregate
arrival rate into the system, �a�EW1�D2�= �1�EW1�D2�+
�2�EW1�D2� is strictly decreasing in both arguments.
Finally, we define �eff �= �1�0�0�+�2�0�0� to be the max-
imal overall (effective) arrival rate into the system which is
achieved when both EW1 = 0 and D2 = 0.

Example. The Multinomial Logit Model. A simple
example, which is used later on for illustrative purposes, is
one with linear waiting costs and the specific structure of
the Multinomial Logit Model (MNL) (see Anderson et al.
1996, §2.6). Neither of these two assumptions is necessary
for our analysis, but will be used in numerical examples.
In this case, for appropriate constants ri and ci, we have

u1 = r1 − c1EW1 and u2 = r2 − c2D2�

and the total utility for each choice is given by u�i = ui+�i,
where �i are IID double exponential (Gumbel) distributed
with parameter �; that is, �i is the random part of the utility
that differentiates among customer types. Following earlier
remarks, it is natural (but not necessary) to consider param-
eters such that r1 � r2 and c1 > c2. For the MNL model (2)
and (3) simplify to

�i =�
eui/�∑

j=0�1�2 euj/�
� (4)

Although we do not necessarily advocate the use of the
MNL model for call-center applications, we use it here as
an example due to its simplicity.

The Equilibrium Model. Putting it all together, the
model we analyze is a two-class M/M/N system. The
arrivals into classes 1 and 2 are Poisson with rates
�1�EW1�D2� and �2�EW1�D2�. The service rate for both
classes is . The service manager has control with respect
to routing decisions (i.e., whether to process class 1 or
class 2 customers) at each server. The interplay between
arrival rates and expected waiting times, and the depen-
dence of both on the routing rule employed, may be viewed
as a game in strategic form. In particular, in equilibrium,
the expected waiting time for class 1 when the arrival rates
are �i�EW1�D2�, will be EW1.

3

Stability. We will assume that D2 is sufficiently large
such that �2���D2� = �P��u�2�D2� � 0� < N. In this
case, the system has enough capacity to at least cope
with the arrivals into queue 2 (by giving them preemptive
priority) and is therefore stabilizable. Of course, this con-
dition does not guarantee that the delay constraint for these
customers is met, and in practice �2���D2� should be con-
siderably smaller than N for the waiting time encountered
by class 2 customers to be close to or smaller than D2.

The Queue Length Threshold Control Policy. The
system manager (SM) has discretion as to the routing
of jobs to the various servers. In the model specified
above a routing rule takes the form of an allocation rule
��T1�t�� T2�t��, t � 0�, where Ti�t� is the cumulative time
allocated into processing class i jobs in "0� t�. The pol-
icy should also be nonanticipating; roughly speaking, this
says that decisions made at time t only use information
that becomes available in "0� t#. It is reasonable to expect
(although not required) that a policy will be nonidling in
the sense that servers may idle only when both queues are
empty.
Treating the service network as a profit center, the SM

should choose a policy that maximizes the aggregate arrival
rate into the system, which is positively correlated with
the profit (or value) it generates. Given that the aggregate
arrival rate is decreasing in EW1, a naive problem formula-
tion would be to choose a nonpreemptive routing policy to

minimize EW1

subject to W2 �D2�
(5)

This is, of course, meaningless, because the waiting time
for class 2 customers is a random variable for which the
upper bound constraint cannot be guaranteed. One way
to pose a well-defined control problem is to replace the
upper bound constraint by a probabilistic one of the form
P�W2 >D2�� $ for some small $ > 0. Instead, we take a
different approach. Our analysis in §3 focuses on an asymp-
totic regime that corresponds to systems with many servers
operating close to the heavy traffic regime; that is, where
the aggregate arrival rate is close to the system’s process-
ing capacity N. In this regime, the problem formulation
in (5) becomes meaningful, and the constraint W2 �D2 can
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be guaranteed almost surely. This is related to the idea of
asymptotic compliance that ensures that as N grows large,
class 2 tardiness becomes negligible; details are given in §3.
Let Qi�t� be the number of class i jobs in queue (but not

in service) at time t. The solution of (5) in this asymptotic
regime suggests the use of the following nonpreemptive,
head-of-line policy:

Threshold Rule. If Q2�t� � �2D2, give priority to
class 2, otherwise give priority to class 1.

The intuition behind this policy is as follows. Note that
the average number of class 2 customers that arrive into
queue 2 in D2 time units is �2D2. Our threshold routing rule
attempts to keep the class 2 queue length less than or equal
to �2D2. This, in turn, implies that on average queue 2 will
comprise of customers that have arrived in the past D2 time
units, and hence the delay constraint will tend to be satis-
fied. This connection between the queue length and delay
experienced by jobs in the queue is based on an observa-
tion made in Maglaras and Van Mieghem (2004). In §3 we
prove that in an appropriate asymptotic regime (where the
number of servers grows large) this policy always satisfies
the delay constraints and is optimal for the problem in (5).
Many other policies could also be considered, including

ones that make routing decisions using the age information
of the jobs in the system. However, given the asymptotic
optimality and simplicity of threshold policies, other alter-
natives will not be pursued here.
We conclude our model description with two remarks.

First, the total arrival rate � is assumed to be fixed. This
is not realistic, because in most service systems, such as
call centers, there is a very pronounced variation depend-
ing on time-of-day, day-of-week, promotional offers, etc.
If the nonstationarity is slowly varying relative to the sys-
tem dynamics, then such systems have been typically ana-
lyzed using a pointwise stationary approximation, where
the performance at time t is approximated by the steady-
state performance of the stationary system with constant
arrival rates given by ��t�; see Green and Kolesar (1991)
and Jennings et al. (1996). Also, the approach taken by
Whitt (1999) of differentiating between calls according to
their level of urgency, and postponing the less pressing calls
to off-peak hours to alleviate the load during busier times,
may be adapted to our framework. Here, class 2 calls will
naturally be considered the less urgent ones. This extension
will not be pursued here.
Second, the primitive data for this model are the total

arrival rate �, the service rate , the distribution of
types P� , and the utility functions u�i . It is relatively sim-
ple to estimate � and . An interesting problem that
will not be broached here is the estimation of customer
preferences using observed data. For the general model
described above, this estimation procedure is very diffi-
cult. In practice, one should use a family of parameter-
ized choice models that are validated through experimen-
tal evidence and for which efficient estimation procedures

can be constructed. For example, the parameters of the
MNL choice model are simple to estimate (see Talluri and
van Ryzin 2004 and the references therein). On the posi-
tive side, as the number of agents increases and the traffic
intensity approaches one, the actual waiting times encoun-
tered by both classes of customers will decrease to zero,
and thus the customer choice behavior can be approximated
(through a Taylor expansion that is derived in §4) by a lin-
ear model of the form �1�EW1� = �1�0� − &EW1, whose
parameters can easily be estimated using real data.

3. Asymptotic Analysis for Systems
with Many Servers and Exogenously
Given Demand

Despite the fairly simple model described above, explicit
analysis of the Markov chain is very involved, and the
equilibrium regime can only be computed via exhaustive
simulation. Instead, focusing on large systems (i.e., sys-
tems with many agents), which are typical in the context of
modern contact centers, we pursue an “appropriate” asymp-
totic analysis that is tractable and becomes accurate as the
number of agents grows large. This section motivates and
develops an approximating model for the original system
with a large number of servers for the simple case where
the arrival rates are exogenously given (i.e., do not depend
on EW1, D2). We also highlight the natural scaling relations
that prevail in such systems and provide the basic building
block for the analysis of the system’s equilibrium behavior,
undertaken in the next section.

Operating Regimes. To motivate the subsequent anal-
ysis we start by identifying the “physical” modes of oper-
ation for the system. The quantity that we focus on is the
probability that a randomly selected customer arriving to
the system will have to wait before getting served. Fol-
lowing the taxonomy given in Garnett et al. (2002), we
consider three modes of operation.
• Cost-driven regime: The system is undercapacitated

and customers almost always wait, P�wait> 0�≈ 1.
• “Rationalized” regime: The system’s capacity is

balanced and customers may have to wait but not always,
P�wait > 0� ≈ ' ∈ �0�1�. We also refer to this as the
Halfin-Whitt regime.
• Quality-driven regime: The system is overcapaci-

tated and customers almost never wait, P�wait> 0�≈ 0.
The cost-driven regime underemphasizes congestion

effects, the quality-driven regime focuses on service quality,
while the “rationalized” regime achieves a balance between
operating costs and quality of service. As advocated in
Garnett et al. (2002) this seems to be the natural operat-
ing regime to consider. Borst et al. (2004) have shown in
the context of a single-class model that the economically
optimal capacity level, trading off congestion and staffing
costs, puts the system in this regime. Finally, recent work
by Maglaras and Zeevi (2003) has shown that for a related
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model with pricing decisions this is the revenue maximiz-
ing and socially optimal regime.
The remainder of this section analyzes the system of

interest in the rationalized regime, and under the simpli-
fying assumption that the arrival rates into each class are
exogenously given, i.e., do not depend on EW1, D2. This
will build the required background to address the equilib-
rium analysis in §4, where we also prove that the natural
system equilibrium places the system in the rationalized
regime.

The Halfin-Whitt Regime. Consider a system with
N servers. Let QN

i �t� denote the number of jobs in queue i
at time t, and let ZN

i �t� be the total number of class i
jobs present in the system (i.e., in queue or in service) at
time t; superscript N will be attached to all relevant quan-
tities to denote their dependence on the size of the sys-
tem. The arrival rates are �N

1 and �N
2 . Define the aggregate

arrival rate by �N
a = �N

1 + �N
2 . It is easy to see that the

evolution of the total number of customers in the system,
given by ZN

1 �t�+ZN
2 �t�, behaves precisely like that of an

M/M/N system with arrival rate �N
a . This is independent

of the specific details of the routing rule, provided that it
is nonidling. Hereafter, the notation ZN

i and QN
i without

time argument will denote the steady-state random variable.
Also, the notation “⇒” is used to denote weak convergence
in D"0��� (see, e.g., Billingsley 1968, §§14 and 15), or
convergence in distribution, and a tilde denotes that the rel-
evant quantity is associated with the limiting system. Halfin
and Whitt established the following results (see Halfin and
Whitt 1981, Proposition 1, Theorems 2 and 3).

Theorem 3.1. As N →�,

lim
N→�

P�wait>0�= lim
N→�

P�ZN
1 +ZN

2 >N�='∈�0�1�� (6)

if and only if

)N �= �N
a

N
= 1− *√

N
+ o

(
1√
N

)
� * > 0 (7)

(i.e.,
√
N�1 − )N � → * as N → �) where ' = "1 +√

2,*-�*�e*
2/2#−1 and -�·� is the standard normal cumu-

lative distribution function. Assume that (6) or (7) hold
and define

XN�t�= �ZN
1 �t�+ZN

2 �t��−N√
N

�

Then, if XN�0� ⇒ X̃�0�, XN�·� ⇒ X̃�·�, where X̃�·� is a
one-dimensional diffusion process with infinitesimal drift
m�x� given by

m�x�=
{
−*� x� 0�

−�x+*�� x < 0�

and constant infinitesimal variance 2. For * > 0, the
steady-state distribution of X̃�·� is given by P�X̃ > 0�= ',
P�X̃ > x � X̃ > 0� = e−x*, x > 0, and P�X̃ � x � X̃ � 0� =
-�*+ x�/-�*�, x� 0.

The interpretation of the process XN�·� is as follows:
when XN�t� > 0, it is equal to the scaled total number of
jobs in both queues, whereas when XN�t� < 0, it is equal
to the scaled number of idle servers in the system. This
result highlights the natural scaling relations that prevail in
this many-server asymptotic regime. Namely, for systems
with balanced capacity (that is, when the system is nei-
ther systematically underutilized nor overutilized) the nat-
ural scale that emerges is of order

√
N . Specifically, the

total number of customers in the system is approximately
ZN = N + √

NX, which implies that both queue lengths
or the total number of idle servers in the system are of
order

√
N . In addition, it implies that the waiting times

encountered in the system are of order 1/
√
N ; N servers

take ��1/
√
N� to clear a backlog of ��

√
N� jobs. This has

an important design implication on the choice of the upper
bound for class 2 delay DN

2 ; in particular, it is plausible to
assume that it scales according to

DN
2 = D̃2√

N
(8)

for some appropriate value of D̃2 > 0. This choice makes
the delay guarantee to be of the right order of magni-
tude relative to the actual waiting times encountered in the
system.
Finally, these scaling relations highlight the fact that

large systems that operate close to heavy traffic can still
offer a high-quality service; the waiting times go to zero
even as the traffic intensity grows to one. This provides
some explanation about the “optimality” of the rationalized
regime; see Borst et al. (2004) and Maglaras and Zeevi
(2003) for details of related results in various settings.

Analysis of the Two-Class System in the Halfin-Whitt
Regime. Next, we study the asymptotic class-level behav-
ior of the two-class system, as it approaches the Halfin-
Whitt regime. In particular, consider a sequence of systems
indexed by the number of servers N with aggregate arrival
rate �N

a of the form

�N
a =N−*

√
N� (9)

In addition, we assume that the arrival rates for each cus-
tomer class is exogenously given, according to �N

1 = /�N
a

and �N
2 = �1−/��N

a for some / ∈ �0�1�. For example, con-
sider the system simulated in Table 1 that has 50 servers,
= 1 (per min.), D2 = 10 min., and arrival rates �1 = 39�5
and �2 = 8�7 (in requests/min.). This makes �a = 48�2,
* �= �50 − �a�/

√
50 = 0�25, / �= �1/�a = 0�82, and

D̃2 �=D2

√
N = 10

√
50= 70�7.

The following results describe the asymptotic behavior
of the two-class system as N → �, DN

2 and �N
a scale

according to (8) and (9) respectively, and * and / stay
constant. (This implies that

√
N�1− )N �→ *, as required

in (7).) The limiting service capacity is N/N =  and
the limiting arrival rates are �̃1 �= limN→� �N

1 /N = /
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and �̃2 �= limN→� �N
2 /N = �1 − /�. Recall that routing

decisions are made according to the queue-length threshold
policy defined earlier: if QN

2 < 0N , the high priority class
is 1; otherwise, it is class 2. Given the scalings outlined
above, one can see that the appropriate size of the threshold
0N is also of order

√
N . Specifically, we consider threshold

parameters of the form

0N = 0̃
√
N (10)

for some 0̃ > 0. It is worth noting that the threshold does
not vanish in the limit system. Indeed, 0̃ is integral in the
description of the limiting policy that specifies when the
system manager should switch priorities. Its value will be
selected later on to ensure that in the limit system all class 2
customers commence service within D̃2 time units. Our
use of the term “threshold policy” is different from that
appearing in, for example, Bell and Williams (2001), where
thresholds are synonymous for safety stocks (see also Kelly
and Laws 1993, Harrison 1996, Maglaras 2000, Teh and
Ward 2002) that are asymptotically negligible and are used
to prevent the system from incurring undesirable idleness
when some of the queue lengths get depleted.
Irrespective of the choice of 0N , this policy is nonidling,

and thus satisfies the assumptions and properties of the
Halfin-Whitt result (Theorem 3.1 above). Our first proposi-
tion focuses on the behavior of the queue lengths for class 1
and class 2 customers.

Proposition 3.1 (State Space Collapse). Assume that(
QN

1 �0�√
N

�
QN

2 �0�√
N

)
→ ��X̃�0�− 0̃�+� X̃�0�+ ∧ 0̃�

in probability. Then, for every t � 0, as N →�,

XN
1 �t� �=

QN
1 �t�√
N

⇒ �X̃�t�− 0̃�+ and

XN
2 �t� �=

QN
2 �t�√
N

⇒ X̃�t�+ ∧ 0̃�

(All proofs are given in the Appendix.) The limit queue-
length processes will be denoted by X̃1�·� and X̃2�·�.
The first observation is that the class-level queue lengths
can be expressed solely in terms of the limit of the
one-dimensional total queue-length process, which is well
defined (see Theorem 3.1); the name “state space collapse”
reflects this dimension reduction. Intuitively, this result
hinges on the observation that asymptotically the class 2
queue length cannot exceed 0̃. Indeed, when QN

2 �t�= 0N ,
class 2 gets higher priority, while class 2 jobs are arriving
at a rate �N

2 and servers are becoming available at a rate
of N (because all of them are busy). In the limit, servers
become available much faster than the rate at which class 2
customers arrive into the system, and hence the limiting
class 2 queue length always stays below the threshold 0̃. It
follows that if X̃�t�+ > 0̃, the remaining jobs �X̃�t�− 0̃�+

must be held in queue 1. If X̃�t�+ < 0̃, then X̃2�t� < 0̃, and
by an analogous argument one could show that X̃1�t�= 0
and X̃2�t�= X̃�t�+.
Let WN

i �t� denote the virtual waiting time for class i jobs
at time t (this is the time a virtual class i customer would
have to wait if he/she arrived at time t). Given that queue
lengths are of order ��

√
N� and there are N servers pro-

cessing customers, the waiting times are of order ��1/
√
N�

and in the limit they appear instantaneous. Hence, X̃+�·�
and X̃i�·� stay constant over this infinitesimal time—this is
the so-called snapshot principle, first derived by Reiman
(1984)—and similarly to Little’s law the following holds:

Proposition 3.2. For every t � 0, as N →�,

√
NWN

1 �t� ⇒ W̃1�t�=
�X̃�t�− 0̃�+

�̃1

and

√
NWN

2 �t� ⇒ W̃2�t�=
X̃�t�+ ∧ 0̃

�̃2

�

(11)

A direct consequence of this proposition is that in steady
state,

EW̃1 =
1

�̃1

E�X̃− 0̃�+ = 1

�̃1

'
∫ �

0̃
�x− 0̃�*e−*x dx

= 1

�̃1

'

*
e−*0̃� (12)

Because we are interested in approximating the steady-
state behavior of the original N -server system using the
steady-state behavior of the limiting diffusion, we need to
establish a limiting relationship between the two. While
typically weak convergence results of the underlying pro-
cesses (as in Propositions 3.1 and 3.2) need not imply con-
vergence of associated steady-state quantities, similarly to
Halfin and Whitt (1981), such a result can be established
for our model; see Whitt (1974) for a discussion of this
issue.

Proposition 3.3. For i = 1�2, let WN
i denote the class i

steady-state waiting time associated with the N -server sys-
tem, and let W̃i be the steady state of class i limiting wait-
ing time process, W̃i�·�. Then,
√
NWN

i ⇒ W̃i as N →� for i= 1�2� (13)

and

√
NEWN

i →EW̃i as N →� for i= 1�2� (14)

The scaling behavior of WN
2 is consistent with that of DN

2

in (8). In the limiting regime where N →�, the require-
ment of delay compliance is strengthened to one where
all class 2 requests receive service within D̃2 time units;
i.e., W̃2�t� � D̃2 for all t � 0. The following definition is
adapted from Plambeck et al. (2001).
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Definition 3.1. A policy , is said to be asymptotically
compliant if[√

NWN�,
2 �t�− D̃2

]+ ⇒ 0�

where the superscript , denotes the dependence of WN
2 �·�

on the policy.

We now turn to the problem of choosing the right thresh-
old 0̃ that will guarantee the delay constraint in the limiting
system; that is, we look for a value of 0̃ that will make the
threshold policy asymptotically compliant. Let AN

i �t� be the
number of customers that have arrived into queue i in "0� t#.
Using an observation made in Maglaras and Van Mieghem
(2004) we get

WN
2 �t��DN

2 ∀t ⇔ QN
2 �t��AN

2 �t�−AN
2 �t−DN

2 � ∀t�
i.e., no class 2 customer has been waiting for more than
DN

2 if all the customers currently in queue 2 arrived within
the last DN

2 time units. Scaling both sides appropriately and
taking the limit as N →�, we obtain

W̃2�t�� D̃2 ∀t

⇔ X̃2�t�� lim
N→�

AN
2 �t�−AN

2 �t−DN
2 �√

N
= �̃2D̃2 ∀t�

Given that X̃2�t� � 0̃ for all t � 0, and that this upper
bound is achieved in the limiting system with probability
one, we need to set

0̃= �̃2D̃2� (15)

Note that this is consistent with the scaling relations in
place, because 0N = �N

2 D
N
2 ≈√

N�̃2D̃2.

Proposition 3.4. Consider any nonidling, nonpreemptive,
asymptotically compliant policy ,, and assume that the
limit queue-length and waiting time processes, X̃,

i �·�,
W̃ ,

i �·�, exist. Let ,∗ denote the threshold policy with 0̃ =
�̃2D̃2. Then we have

W̃ ,∗
1 �t�� W̃ ,

1 �t� ∀t � 0 w.p. 1.

That is, the threshold rule defined through (15) is point-
wise optimal among all nonidling policies that converge
to some well-defined limit, and satisfy the delay constraint
W̃2�·� � D̃2. Clearly, the threshold policy also minimizes
EW̃1 subject to W̃2�t�� D̃2 for all t. A few comments are
in place regarding the restriction of Proposition 3.4 to non-
idling policies. In the N -server system, intentional idling
may be desirable—or even optimal—to reserve capacity
for the call-back customers that need to satisfy a quality-
of-service constraint (e.g., see the policy derived by Gans
and Zhou 2003). In contrast, in the limiting system, this
quality-of-service constraint can be satisfied without incur-
ring any idleness, which motivated the restriction to non-
idling policies. The optimality of the threshold policy in the
limiting model could be established in a richer setting that
allows for intentional idling. This would make the analysis
significantly more complex without generating additional
practical insights, and will not be pursued here.

4. Equilibrium Analysis in the
Many-Server Regime

This section studies the original system of interest, where
customer choices depend on system performance. This will
involve an equilibrium analysis. While a direct analysis of
the system equilibrium using the associated Markov chain
is theoretically possible, the expressions one gets are so
complicated that it is hard to proceed either analytically or
numerically.
Our approach uses the asymptotic results described

above to analyze the system’s equilibrium behavior. Given
a system with N servers, the first step is to derive the
appropriate limiting model. Assuming for now the validity
of the rationalized regime, this amounts to finding the right
parameters for the limiting system, much like the calcula-
tion of *, / done earlier. The second step is to study this
limit system and show that it has a unique and stable equi-
librium operating point that is simple to characterize and
to evaluate numerically. Finally, to justify this analysis, we
prove that the rationalized regime emerges as the natural
equilibrium point in large contact centers. In §5 we use
this characterization of equilibrium behavior to get analytic
performance approximations for the N -server system, and
to propose simple rules for dimensioning such systems.
We use the notation ≈ to denote an equality to within

a quantity that is o�
√
N�. Let EWN

1 and EW̃1 (or in short-
hand notation wN

1 and w̃1) denote the steady-state expected
waiting time for class 1 customers in equilibrium in the
N -server and the limiting system, respectively. Proposi-
tion 3.3 implies that under the rationalized regime and for
large N , wN

1 = w̃1/
√
N + o�1/

√
N�. Using this and (8) we

first approximate the asymptotic arrival rates into each ser-
vice class by invoking a Taylor expansion as follows:

�N
1 �w

N
1 �D

N
2 � = �NP� �u�1�w

N
1 �� u�2�D

N
2 �

+�

= �NP�

(
u�1

(
0+ w̃1√

N
+ o

(
1√
N

))
� u�2

(
D̃2√
N

)+)
(16)

≈ �N

[
P� �u�1�0�� u�2�0�

+�

+ w̃1√
N

4P� �u�1�w�� u�2�0�
+�

4w

∣∣∣∣
w=0

+ D̃2√
N

4P� �u�1�0�� u�2�d�
+�

4d

∣∣∣∣
d=0

]

�=�N

(
51 +&1

w̃1√
N

+ 61
D̃2√
N

)
� (17)

for the obvious choice of 51, &1, and 61.
4 Similarly,

�N
2 �w

N
1 �D

N
2 �

=�NP� �u�2�D
N
2 �� u�1�w

N
1 �

+�
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=�NP�

(
u�2

(
D̃2√
N

)
� u�1

(
0+ w̃1√

N
+ o

(
1√
N

))+)
≈�N

[
P� �u�2�0�� u�1�0�

+�

+ w̃1√
N

4P� �u�2�0�� u�1�w�
+�

4w

∣∣∣∣
w=0

+ D̃2√
N

4P� �u�2�d�� u�1�0�
+�

4d

∣∣∣∣
d=0

]

�=�N

(
52 +&2

w̃1√
N

+ 62
D̃2√
N

)
� (18)

Note that &1� 62 � 0, 0� &2 �−&1, and 0� 61 �−62. The
effective arrival rate into the system (that is achieved as wN

1 ,
DN

2 → 0) is given by �N
eff =�N�51 + 52�. For any �N , we

can rewrite �N
eff in the form N−7

√
N for the appropri-

ate choice of 7. Then, the appropriate value for the param-
eter * is derived by

�N
1 �w

N
1 �D

N
2 �+�N

2 �w
N
1 �D

N
2 �

≈�N�51 +52�+�N�&1 +&2�
w̃1√
N

+�N�61 + 62�
D̃2√
N

= �N− 7
√
N�

(
1+ &1 +&2

51 +52

w̃1√
N

+ 61 + 62
51 +52

D̃2√
N

)
≈N−√

N

(
7− &1 +&2

51 +52
w̃1 −

61 + 62
51 +52

D̃2

)
� (19)

Let 5 = 51 +52, &= &1 + &2, 6 = 61 + 62, and note that &,
6 � 0. In the notation of §3,

�N
a �w

N
1 �D

N
2 �≈N−*�w̃1� D̃2�

√
N�

where

*�w̃1� D̃2�= 7− &

5
w̃1 −

6

5
D̃2� (20)

The limiting arrival rates into the system are given by

1
N
�N
1 �w

N
1 �D

N
2 �→

51
51 +52

 �= �̃1�0�0� and

1
N
�N
2 �w

N
1 �D

N
2 �→

52
51 +52

 �= �̃2�0�0��

(21)

Hence, the proposed approximation is to replace the
N -server system with the diffusion model derived in the
previous section with limiting arrival rates given in (21)
and *�w̃1� D̃2� given in (20). For a steady-state distribution
and an equilibrium operating regime to exist, *�w̃1� D̃2�
must be positive when w̃1 is the expected waiting time for
class 1 service in equilibrium. In this case, (12) implies
that in equilibrium, the expected waiting time for class 1
service is

w̃1 =
1

�̃1�0�0�

'�*�w̃1� D̃2��

*�w̃1� D̃2�
e−*�w̃1� D̃2�0̃� (22)

where 0̃= �̃2�0�0�D̃2.

Proposition 4.1. The limit system specified through
Theorem 3.1, Propositions 3.1 and 3.2, with limiting arrival
rates specified in (21), DN

2 satisfying (8), and * given
in (20), has a unique, stable equilibrium point given by the
unique solution, w̃1, of (22) subject to *�w̃1� D̃2� > 0.

The equilibrium w̃1 is characterized implicitly through
Equation (22). The equilibrium is said to be stable in the
sense that the limiting system starting from any initial con-
dition (i.e., any arrival rate vector) will eventually adapt
and reach this unique point. We have not been able to find
an explicit solution for w̃1 even for simple choice models.
It is easy to solve (22) numerically, however (by search-
ing over w̃1), and compute the equilibrium point as a func-
tion of the class 2 delay bound D̃2 =DN

2

√
N , the number

of servers N , the service rate , and the parameters of the
choice model.5 For example, under the MNL model the
relevant parameters are the &is, 6is, and 5is given by

51=
er1/�

1+er1/�+er2/�
� &1=−c1

�
51�1−51�� 61=5152

c2
�
�

52=
er2/�

1+er1/�+er2/�
� &2=

c1
�
5152� 62=−c2

�
52�1−52��

and

�̃1�0�0�=
er1/�

er1/� + er2/�
� �̃2�0�0�=− �̃1�0�0��

Justification of the Rationalized Regime Systems with
Many Servers. Thus far we have assumed that the sys-
tem operates in the rationalized regime. Next, we estab-
lish that if customers make decisions according to a choice
model that satisfies the assumptions outlined in §2, then
the equilibrium arrival rates will indeed satisfy the defining
assumption of the rationalized regime. We prove this result
under two assumptions:

Assumption 1. Balanced capacity: We assume that the
number of servers is selected in a way that “almost
matches” the total potential demand for the system. Specif-
ically,

�N
eff =�N

1 �0�0�+�N
2 �0�0�=N−7

√
N for some 7∈R�

Assumption 2. Uniqueness of equilibrium: We assume
that for any N , there exists a unique equilibrium point
characterized by the steady-state expected waiting time in
queue 1, denoted by wN

1 .

Assumption 1 is not very restrictive. One way to explain
what it means it to consider again an example that one may
want to analyze. Specifically, for the system with N = 50
and �eff = 49 that was analyzed in Table 1, one would
proceed by rewriting �eff in the form 50− 7

√
50= 49⇒

7= 0�14. In trying to approximate the 50-server system via
the asymptotic analysis of the last two sections, one would
scale �eff as a function of N in a way that keeps 7 always
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equal to 0.14. This assumes that the system manager does
not intentionally under- or overcapacitate the system; this
staffing guideline has been shown to be economically opti-
mal in various settings in Borst et al. (2004) and Maglaras
and Zeevi (2003). It remains to show that under the cus-
tomer choice model described in §2, the waiting times
manifest themselves in a way that the resulting equilibrium
point satisfies the assumptions of the “rationalized” regime.
As an alternative to Assumption 1, one could potentially

write �N
eff in the form �N

eff =N�1+7�, and scale demand
according to this relation. This would keep the system
either intentionally under- or overutilized. This approach
has been pursued by Whitt (2003) in recent work, where
(among other results) he derives the limiting equilibrium
for a single-class M/M/N queue under the assumption
that 7 > 0. His results imply that the system operates in
the cost-driven regime and the limiting equilibrium anal-
ysis becomes substantially simpler. Given the economic
optimality of the “rationalized” regime, we advocate that
this regime may be more suitable for call centers operating
in steady state. On the other hand, the regime studied by
Whitt is suitable for system analysis when there is a sudden
increase in the total demand that is not followed by a corre-
sponding surge in staffing, which leads to a systematically
undercapacitated system.
Assumption 2 seems plausible. All numerical results sug-

gest that there always exists a unique equilibrium point.
This is certainly correct asymptotically (Proposition 4.1).
We have been unable, however, to prove this fact in
a straightforward manner, mainly because there are no
closed-form expressions of the two-class system behavior
for a finite number of servers.
To prove that the rationalized regime is the appropri-

ate operating regime for the system in equilibrium, one
needs to establish (according to Theorem 3.1) that under
Assumptions 1 and 2, either condition (6) or (7) is satisfied.
We prove this result in two steps. The first step (Proposi-
tion 4.2) shows that the equilibrium traffic intensity goes
to one (i.e., the system goes to heavy traffic). The sec-
ond (Proposition 4.3) establishes that the traffic intensity
satisfies (7).

Proposition 4.2. Suppose that Assumptions 1 and 2 hold,
DN

2 scales according to (8), and that for all N suffi-
ciently large, the system is stabilizable (i.e., �N

1 ���0� +
�N
2 ���0� < N). Then, if wN

1 is the steady-state expected
waiting time for class 1 in equilibrium,

lim
N→�

)N �wN
1 �D

N
2 �

= lim
N→�

�N
1 �w

N
1 �D

N
2 �+�N

2 �w
N
1 �D

N
2 �

N
= 1� (23)

The next proposition shows that the rate at which the
traffic intensity approaches one is the one required by (7).
In addition to Assumptions 1 and 2 we require that in the
limit the system does not become degenerate in the sense

that almost all customers join only queue 1. This roughly
says that the system retains its multiclass nature even in the
asymptotic regime. The associated technical condition is
that 5i > 0, i= 1�2; recall the definitions of 5i through (17)
and (18).

Proposition 4.3. Under the assumptions of Proposi-
tion 4.2 and the additional condition that the constants 51,
52 defined through (17), (18) are strictly positive,

lim
N→�

√
N�1−)N �wN

1 �D
N
2 ��= * for some *> 0� (24)

That is, the equilibrium point of the system converges to
a limiting model that satisfies the defining assumption of
the “rationalized” regime. This validates the model approxi-
mations proposed so far, as well as the ones that are derived
in the next section.

5. Approximations and System Design
The previous sections proposed a model approximation
for the N -server system. Here, the steady-state distribu-
tion of this asymptotic approximation is used to derive
estimates for quantities of interest in the original system.
Their accuracy is checked numerically. Finally, the sys-
tem design problem of choosing the minimum number of
servers needed to satisfy a set of performance specifications
is addressed.

5.1. Performance Approximations

The steady-state performance of the N -server system
can be approximated using the limiting diffusion process
derived in §§3 and 4. The approximations are summarized
in Table 2. For illustrative purposes, the derivation for two
of these entries are included next. A numerical example is
used to compare these approximations with results obtained
via exhaustive simulation.
For the purposes of this section one should think of

N and DN
2 as fixed parameters. Let *∗ = *�w̃1� D̃2� and

' = "1 +√
2,*∗-�*∗�e*∗2/2#−1, where D̃2 =

√
NDN

2 , w̃1

is the unique solution of (22), and *�w̃1� D̃2� is given

Table 2. Approximations of performance measures of
the N -server system.

P�WN
1 > y�

for y � 0 'e−�1−)N ���N2 DN
2 +�N1 y�

EWN
1

1

�N
1

'

1−)N
e−�1−)N ��N2 DN

2

Var"WN
1 #

2EWN
1

�N
1 �1−)N �

− �EWN
1 �2

EWN
2

1

�N
2

'

1−)N

(
1− e−�1−)N ��N2 DN

2 "1+ �1−)N ��N
2 D

N
2 #
)

Var"WN
2 #

2EWN
2 �1+*∗0�

�N
2 �1−)N �

− �EWN
2 �2
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in (20). Also, let �̃i = �̃i�0�0�, i = 1�2; see (21).6 We
first approximate the steady-state expected value of class 1
waiting time. This can be done by observing that due to
Proposition 3.3, WN

1 ≈ W̃1/
√
N . Hence,

EWN
1 ≈ w̃1√

N
= 1

�̃1

√
N

'

*∗ e
−*∗ 0̃ �

Recall that *∗ ≈ √
N�1− )N �, 0̃ = 0N /

√
N = �N

2 D
N
2 /

√
N ,

and �̃1 ≈ �N
1 /N . Then,

EWN
1 ≈ 1

�N
1

'

1−)N
e−�1−)N ��N2 D

N
2 � (25)

where the equilibrium arrival rates are given by

�N
i = �N

i �EW
N
1 �D

N
2 �≈ �N

i

(
w̃1√
N
�DN

2

)
� i= 1�2�

Similarly, to calculate P�WN
1 > y�, observe that the dis-

tribution of WN
1 may be approximated by that of W̃1/

√
N

(again, due to Proposition 3.3). For 0̃ = �̃2D̃2 and for any
y > 0,

P�WN
1 > y�≈ P�W̃1 > y

√
N�

= P�X̃ > 0̃+ �̃1y
√
N�

= 'e−*∗�0̃+�̃1
√
Ny�

≈ 'e−�1−)N ���N2 D
N
2 +�N1 y��

Figure 2. Comparison of equilibrium behavior computed via (a) simulation and (b) asymptotic approximations for
N = 50, = 1, )eff = 0�98, r1 = r2 = 1, c1 = 0�5, c2 = 0�05, � = 0�3.
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In particular, the probability that a class 1 customer will
have to wait is given by

P�WN
1 > 0�≈ 'e−�1−)N ��N2 D

N
2 �

The remaining entries of Table 2 are derived along the
same lines. It is worth noting that the diffusion analysis
does not provide a meaningful approximation of the prob-
ability of a call-back violating its delay specification (that
is, P�WN

2 > x� for some x�DN
2 ). The reason is that in the

diffusion model the waiting time distribution for class 2
calls is bounded above by D̃2, and thus the probability
of violating this upper bound is always zero. Such esti-
mates can be obtained through a more detailed analysis—
potentially using large deviations arguments—that studies
how the queue-length and waiting time processes converge
to their limits.
We conclude this section with the numerical example

of Figure 2 that studies a 50-server system and compares
the equilibrium performance computed through extensive
simulation with the one approximated using the asymptotic
analysis. To find the equilibrium regime using simulation
we proceeded as follows: (1) hypothesize a value for the
steady-state expected waiting time for class 1, EWN

1 , com-
pute the corresponding arrival rates using the choice model,
and simulate to estimate the actual steady-state expected
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waiting time for this set of arrival rates; and (2) repeat
until the hypothesized value for EWN

1 agrees with the one
estimated via simulation.7

It is important to note that the numerical results depicted
in Figure 2 depend strongly on the choice parameters of
the MNL model. On the other hand, the overall nature of
these results, and in particular the list of observations given
below, are consistent with all the examples we examined
using different sets of the MNL choice parameters. Also,
the accuracy of the heavy traffic approximation improves
as N grows. This is important from a practical viewpoint,
because contact centers can have several hundred or thou-
sands of servers, and cannot be analyzed efficiently using
simulation. In such cases the approximate analysis is par-
ticularly useful. The key observations are:
(a) The system operates close to heavy traffic; this veri-

fies Propositions 4.2 and 4.3.
(b) The introduction of the call-back option improves

overall performance. For example, in the system analyzed
in Figure 2, when DN

2 = 10 min., EWN
1 is reduced by 60%

in comparison with a single-class system (no call-back),
while the traffic intensity is increased by 1.5%. Similar
performance improvements are observed in the variance
of the waiting time for class 1, and in the probability
that WN

1 exceeds some acceptable upper bound (typically
20 sec.); these results were reported in Table 1. The simula-
tion results also show that in equilibrium and for all choices
of DN

2 , the proportion of late call-backs (i.e., P�W
N
2 >DN

2 �)
is between 0.03 and 0.01, and on average late calls violate
their respective upper bounds by 3%–8%. To improve the
probability of meeting the delay specification for class 2
customers, the SM should add a safety margin and switch
priorities at �N

2 D
N
2 − $ for some $ > 0 that can be selected

experimentally.
(c) In equilibrium, EWN

1 is a decreasing function of DN
2

for small values of DN
2 , and it approaches a constant value

as DN
2 grows large that corresponds to a system without the

call-back option. This dependence was consistent among
all examples that we studied, and it can be justified through
an analysis of the limiting model. This suggests that we
can always choose an optimal DN

2 that lies between these
two extreme cases.

5.2. Choosing Staffing Levels

An important application of the analytical results of §§3
and 4 is the design of contact centers with multiple chan-
nels of communication that offer quality-of-service (delay)
guarantees. We focus on the staffing problem that involves
choosing the minimum number of servers to satisfy a set of
performance specifications that are typically encountered in
contact centers, such as
• The expected waiting time for real time calls

�10 seconds,
• 80% of all calls are answered within 20 seconds,
• �1% balking probability.

The mathematical formulation is as follows:

min
{
N � EWN

1 �we�P�W
N
1 �y��$1�P�balking��$b

}
�

(26)

with typical values for these specifications given above.
With no analytic characterization of performance, the

design problem in (26) must be addressed via simulation.
Following our previous comments on this approach, opti-
mizing over the number of servers in this way is quite
involved: one has to find the equilibrium regime for dif-
ferent values of N and then optimize, which can be quite
expensive for large systems. In contrast, we again proceed
by using the analytic performance approximations given
above. This is computationally simple, accurate, and pro-
vides useful insights about the appropriate structure of the
optimal solution.
The previous section has analyzed the asymptotic system

behavior when the total arrival rate into the system is of
the form �N

a = N − *
√
N. Denote by Ra the offered

load into the system Ra = �N
a /; this is a unitless quantity,

which is often expressed in Erlangs. We can rewrite the
number of servers in terms of Ra as follows:

N =Ra +*
√
Ra + o�

√
Ra��

The analysis in §§3 and 4 suggests that the appropriate
solution to the staffing problem should also take a form
of this nature. This agrees with the “square-root” laws that
have been proposed for single-class systems by Kolesar and
Green (1998) and Garnett et al. (2002), and rigorously jus-
tified by Borst et al. (2004).
For the purposes of this section, let DN

2 = d2 denote the
delay bound on the call-back option, and let �eff�d2� =
�N
1 �0�d2�+ �N

2 �0�d2� be the effective arrival rate into the
system given this delay bound. Both are assumed to be
fixed and superscripts are dropped from �eff�d2 to indi-
cate that these quantities are exogenously given and do not
scale with N .8 The goal is to find the minimum staffing
level of the form N = R+ x

√
R that satisfies (26), where

R=�eff�d2�/ and x is the design parameter.

Bounds on the Expected Waiting Time for Class 1
of the Form EWN

1 � we. Because
√
NWN

1 ≈ W̃1, this
constraint can be approximated by EW̃1 �

√
Nwe. Follow-

ing (22) this is equivalent to

1

�̃1

'�*�

*
e−*0̃

�
√
Nwe�

where the notation '�*� underlines the explicit dependence
of ' on *, and 0̃ = �̃2d2

√
N . In the sequel, we rewrite

this as a constraint on *, and subsequently on x. First,
note that �̃1 is independent of EW̃1, and it is constant in
the above expression. Because N = R+ x

√
R, when R is

large,
√
N ≈ √

R. So, the bound
√
Nwe can be replaced

by w̃e �=
√
Rwe, and 0̃ can be approximated by �̃2d2

√
R.
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Hence, the constraint on EW̃1 can be approximated by a
constraint on the equilibrium parameter * as follows:

1

�̃1

'�*�

*
e−*0̃

� w̃e ⇔ *� *w̃e
�

where *w̃e
= inf

{
*> 0 �

1

�̃1

'�*�

*
e−*0̃

� w̃e

}
�

The value of *w̃e
can easily be computed numerically.

Second, as in (20), * can be rewritten in the form * =
7d2 − �&/5�EW̃1, where 7d2 is the appropriate constant for
which �eff�d2� �= �1�0�d2�+ �2�0�d2� = N− 7d2

√
N;

i.e., 7d2 represents the slack capacity of the system. Indeed,
using the fact that R = �eff/, the above expression can
be rewritten as R = N − 7d2

√
N , which implies that N =

R + 7d2
√
R + o�

√
R�. Hence, 7d2 is equal to the design

parameter x. Using the fact that EW̃1 � w̃e, the constraint
on * is implied by the following constraint on 7d2 :

7d2 � *w̃e
+ &

5
w̃e�

which is simply a lower bound on the design parameter x;
i.e., x� *w̃e

+ �&/5�w̃e.

Probabilistic Constraints on Waiting Time WN
1 of the

Form P�WN
1 � y�� $1. Typical parameters in call centers

are y = 20 seconds and $1 = 0�2. This constraint can be
approximated by

P�WN
1 � y�≈ P�W̃1 �

√
Ry�

= '�*�e−*�0̃+�̃1
√
Ry�

� $1 ⇒ *� *�y� $1�
�

where *�y� $1�
= inf�* > 0 � '�*�e−*�0̃+�̃1

√
Ry� � $1�. This

implies an upper bound on EW̃1:

*� *�y� $1�
⇒ EW̃1 � w̃�y� $1�

�= 1

�̃1

'�*�y� $1�
�

*�y� $1�

e−*�y� $1�
0̃ �

Using the same reasoning as above, we have that *� *�y� $1�

and EW̃1 � w̃�y� $1�
is implied by the following condition

on 7d2 :

7d2 ≈ x� *�y� $1�
+ &

5
w̃�y� $1�

�

Bounds on the Balking Rate of the Form P�balking�
� $b. Using (19),

P�balking�= 1− �N
1 �EW

N
1 �d2�+�N

2 �EW
N
1 �d2�

�eff�d2�

≈−&

5
EWN

1 �

Hence, the constraint P�balking� � $b is equivalent to an
upper bound constraint on EWN

1 ,

EWN
1 �−5

&
$b �=wb

(recall that 5/&< 0). This is of the same form of the con-
straint EWN

1 �we studied above, and results in the follow-
ing condition:

7d2 ≈ x� *w̃b
+ &

5
w̃b ⇔ 7d2 ≈ x� *w̃b

− $b
√
R�

where w̃b �=wb

√
R.

Hence, the staffing problem of (26) is solved by N =
R+ x∗√R, where

x∗ =max
(
*w̃e

+ &

5
w̃e�*�y� $1�

+ &

5
w̃�y� $1�

�*w̃b
− $b

√
R

)
�

(27)

and all of the quantities involved in this expression can
be evaluated using one-dimensional parameter searches and
Equation (22).
An alternative formulation of the staffing problem would

be in terms of a profitability criterion of the form ,�N�=
��N

1 + �N
2 �p − �balk · q − cN , where $p is the profit per

served customer, $q is the penalty (lost goodwill, etc.)
incurred per customer that decides not to join because
he/she found the system too congested, �balk =�eff�d2�−
��N

1 + �N
2 � is the fraction of customers that choose not to

join the system, and $c is the operating cost per unit time
per server (see Borst et al. 2004 for a detailed analysis in
this direction).
We conclude with a numerical example. Suppose that

customers make decisions according to the MNL model
with parameters r1 = r2 = 1, c1 = 0�5, c2 = 0�02, � = 0�3.
The server speed is  = 1 service request/min., the load
is R= 100 service requests/min., and the delay bound for
class 2 service is d2 = 90 min. The specifications are

EWN
1 � 10 sec.� P�WN

1 > 20 sec.�� 0�2� and

P�balking�� 0�01�

Using the asymptotic expressions of the previous subsec-
tion we can plot these specifications as a function of the
number of servers N . The results are shown in Figure 3.
The required number of servers is N = 102. We call this
the “analytic” solution. In contrast, using (27), we have that
in the limit system d̃2 ≈ 90

√
R= 900,

�̃1�0�90�=
er1/�

er1/� + e�r2−c2·90�/� �

�̃2�0�90�=− �̃1�0�90��

and 0̃= d̃2�̃2�0�90�. Then,

*w̃e
+ &

5
w̃e = 0�1558� *�y� $1�

+ &

5
w̃�y� $1�

= 0�1305�

*w̃b
− $b

√
R= 0�1440�

which implies that x∗ = 0�1558 and N ∗ = �R +
0�1558

√
R� = 102 servers. Throughout the examples we
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examined, we found that the staffing rule of (27) is always
within one server of the “analytic” result obtained by
plotting the specifications for all N (using the asymp-
totic approximations) and picking the minimum number of
servers that leads to an acceptable design. It is also close to
the results obtained via simulation; this was only checked
for smaller systems because it is computationally tedious.
Overall, the rule proposed in (27) is intuitive and simple to
compute given specific parameters for the choice model.

6. Concluding Remarks
This paper analyzed a contact center that offers two ser-
vice modes: real-time telephone service and postponed
(call-back) service with a guarantee on the maximum
delay until a reply is received. Customers choose which
channel to use based on a probabilistic choice model.
An asymptotic analysis was used to develop a near-
optimal scheduling rule, analytic approximations for the
system’s equilibrium behavior, performance measures, and
the appropriate staffing criteria. This mode of analysis is
accurate for systems with many servers that operate close
to heavy traffic—this is the canonical operating regime for
such systems.
The key findings of this paper are: (1) service systems

can improve their performance substantially by offering
multiple channels of service (such as the call-back option),
even when these are accompanied by performance guar-
antees, (2) the scheduling policy needed to guarantee the
delay specification for the call-back service is a simple
threshold rule, (3) the system equilibrium and perfor-
mance measures are easy to characterize and compute via a
tractable asymptotic analysis, and (4) “square-root” staffing
rules are still near optimal. The main methodological
contribution is to illustrate how one can formulate an appro-
priate, tractable asymptotic model that captures in a non-
trivial way the equilibrium behavior of the system.
Several interesting areas of future research arise. First,

one could consider the problem where the system manager
announces state-dependent information about the antici-
pated delay in the real-time queue. This model is analyzed
in another paper by the authors (Armony and Maglaras
2004). The main obstacles there are to come up with
the right state-dependent estimate for the waiting time for
class 1 customers, and to analyze the multiclass system
with state-dependent arrival rates into both classes. In con-
trast with the current paper, this does not involve an equi-
librium analysis. The results of the current paper provide
some useful background in addressing the first issue raised
above.
Other extensions would be to allow for customers select-

ing the call-back option to be able to schedule a time win-
dow where the call-back will be placed (much like in a
reservation system). Another one is to allow for nonsta-
tionary arrivals. Finally, one needs to consider how these
results change in a multiclass setting with specialized and
cross-trained agents.

Appendix. Proofs

Proof of Proposition 3.1

We start with an outline of the proof.
1. Sufficient Conditions for State Space Collapse. First,

we establish that to prove the statement of the proposition
it suffices to show that for an appropriate sequence �bN �
such that bN → 0 as N →�,

P
(
sup
0�t�T

∣∣XN
1 �t+ bN �− �XN �t�− 0̃�+

∣∣> $

)
→ 0�

P
(
sup
0�t�T

∣∣XN
2 �t+ bN �−XN�t�+ ∧ 0̃

∣∣> $

)
→ 0�

(28)

We focus on how to establish the second part of (28).
The other statement follows similarly. Let XN

2 �s� x� y� be
the scaled class 2 queue length at time s starting from
XN�0�= x and XN

2 �0�= y; this descriptor assumes that ser-
vice and interarrival times start afresh at time 0. As in
Puhalskii and Reiman (2000, Lemma 3),

P
(
sup
0�t�T

�XN
2 �t+ bN �−XN�t�+ ∧ 0̃�> $

)
� P

(
sup
t�T

XN �t� > C

)
+P

(
sup

x�C�0�y�x+
�XN

2 �b
N � x� y�− x+ ∧ 0̃�> $

)
� (29)

where C is an arbitrary upper bound for XN�t�. From
Puhalskii and Reiman (2000, Equation (3.39)),

lim
C→�

lim sup
N→�

P
(
sup
t�T

XN �t� > C

)
= 0�

It remains to show that the second term in (29) also goes
to zero as N →�. This is done by analyzing a set of fluid
scaled processes.
2. Convergence of the Fluid Scale Process. This part

mimics the framework proposed by Bramson (1998), but
does not make explicit use of his results. Specifically, we
will analyze the limits of the scaled queue-length processes
defined according to

�QN� · � x� y� �= QN� ·/√N�x� y�√
N

�

This process has a deterministic “fluid” limit that describes
the state evolution over time periods of ��1/

√
N� over

which the queues can change by ��
√
N�; that is, N servers

working for ��1/
√
N� time. We will first derive this fluid

limit, and then show that starting from any initial condi-
tion, the fluid limit processes converge in finite time to the
appropriate limits �x− 0̃�+, x+ ∧ 0̃, where x is the initial
condition for the total queue-length process. Moreover, if
x < C for any C > 0, then the time it takes to reach this
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Figure 3. Staffing example.
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Note. R= 100 calls/min., = 1/min., and d2 = 90 min. Choice model parameters are r1 = r2 = 1, c1 = 0�5, c2 = 0�02, � = 0�3. The design specifications
are EW1 � 10 sec., P�W1 > 20 sec.�� 0�2, and P�balking�� 0�01. The optimal number of servers is 102.

target is less than or equal to s∗ = �C ∨ 0̃�/��̃1 ∧ �̃2�. By
the definition of the fluid scaled process, this implies that∣∣∣∣XN

2

(
s∗√
N
�x� y

)
− x+ ∧ 0̃

∣∣∣∣→ 0 w.p. 1� (30)

Set bN = s∗/
√
N and note that bN → 0 as N →�.

3. Uniform Convergence of the Fluid Scale Processes.
To complete the proof of (29), we show that the conver-
gence in (30) is uniform in x, y.
We next give the details of the proof.
1. Sufficient Conditions for State Space Collapse. The

sufficiency of (28) follows from known results on weak
convergence theory. Specifically, by Proposition 7 in Glynn
(1990), convergence in probability in the sup norm implies
weak convergence; that is, (28) implies that �XN

1 �t + bN �,
XN
2 �t + bN �� ⇒ ��X̃�t� − 0̃�+� X̃�t�+ ∧ 0̃�. Because

t+ bN → t, an application of a random time change argu-
ment (see Glynn 1990, Proposition 5) establishes the state-
ment of the proposition.
The next step is to show that the second term in (29)

converges to 0 as N →�. This is done in two steps. First,
we establish (30), and second, show that this is uniform
in x, y.
2. Convergence of the Fluid Scale Process. To prove

(30), consider the sequence of initial conditions XN�0�= x
and XN

2 �0� = y, x � C, 0 � y � x+. Define fluid scaled
processes under our threshold policy as follows:

��QN�·� x� y�� �XN�·� x� y�� �T N �·� x� y��

�=
(
QN�·/√N�x� y�√

N
�XN

( ·√
N
�x� y

)
�
T N �·/√N�x� y�√

N

)
�

The notation T N
i �t� refers to the total time devoted by all

servers to class i jobs up to time t; that is, T N
i �0� = 0,

0� Ṫ N
i �t��N , and Ṫ N

1 �t�+ Ṫ N
2 �t��N . Here, QN�·� x� y�,

XN�·� x� y�, and T N �·� x� y� denote the respective processes
given that XN�0�= x and XN

2 �0�= y.
We will show that the fluid limit processes starting from

an arbitrary initial condition �x� y� reach the desired target
positions ��x− 0̃�+� x+ ∧ 0̃� in finite time.
First, we analyze the limit of �XN . For the N -server sys-

tem, recall that AN
i �t� denotes the number of class i arrivals

up to time t, and let S�t� be the number of service com-
pletions when the one server has allocated t time units pro-
cessing jobs, and let EN

i �t� be the number of class i service
completions up to time t. For any vector process Y , �Y � =∑

i Yi. Clearly, ��Z�N � �T �N � describe an M/M/N queue
for which �Z�N �t� = zN + �A�N �t� − S��T �N �t��, which
implies that

�XN�s� x� y�= x+ �A�N �s/√N�√
N

− S��T �N �s/√N�x� y��√
N

�

Note that �T �N is uniformly Lipschitz with constant N , and
thus ��T �N �·� x� y� is Lipschitz with unit constant and the
family ���T �N � is relatively compact. Hence, there exists a
converging subsequence �Nj� for which ��T �Nj �·� x� y� →
��T ��·� x� y�, where ��T � is some limit allocation process.
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Using the functional strong law of large numbers, (9), and
the key renewal theorem, we have that

�A�N �s/√N�√
N

→s and

S��T �N �s/√N�x� y��√
N

→��T ��s� x� y��

where the convergence is almost surely (a.s.) uniform on
compact sets in s (u.o.c.). Passing to the fluid limit,

�XN�s� x� y�→ �X�s�x� y�
= x+�s− ��T ��s� x� y�� a.s. u.o.c.

Also note that

��T �N �s� x� y�=
∫ s/

√
N

0

�Z�N ��� x� y�∧N√
N

d�

= s− 1√
N

∫ s

0

�XN���x� y�− d� → s�

where x− = −min�0� x�. Substituting into the differential
equation derived above we get that ∀s � 0, �X�s�x� y�= x,
and in particular, the limit of the total queue-length process
satisfies �X�s�x� y�+ = x+.
Let EN �t� be the departure process from the system. The

queue lengths are given by

QN
1 �t�=QN

1 �0�+AN
1 �t�

−
∫ t

0
1
(
QN

2 �s
−� < 0N and QN

1 �s
−�� 1

)
dEN �s��

QN
2 �t�=QN

2 �0�+AN
2 �t�

−
∫ t

0
1
(
QN

2 �s
−�� 0N or{

QN
1 �s

−�= 0 and QN
2 �s

−�� 1
})
dEN �s��

To take the fluid limits of the queue lengths, note that the
class level cumulative allocations are uniformly Lipschitz
with constant N , and thus �T N

i �·� x� y� are Lipschitz with
unit constant and the family ��T N � is relatively com-
pact. Hence, for every subsequence �Nj� for which
�T Nj

i �·� x� y� → �Ti�·� x� y�, �Ti is some limit allocation pro-
cess, and the convergence is with probability one (w.p.
1) and is u.o.c. Thus, for such a subsequence �Nj�,
for almost all sample paths ��QNj

1 �·� x� y�� �QNj

2 �·� x� y�� →
��Q1�·� x� y�� �Q2�·� x� y��. If x � 0, then �Q1�s� x� y� +
�Q2�s� x� y� = X+�s� = 0 for all s � 0. If x > 0, then
from the analysis of the ��XN � ��T �N � processes we have
that ENj �s�→ ��T ��s�= s, and using Dai and Williams
(1995, Lemma 2.4) we get that

�Q1�s� x� y�

= �x− y�+ + �̃1s−
∫ s

0
1
(�Q2�s� x� y� < 0̃ and

�Q1�s� x� y� > 0
)
ds�

�Q2�s� x� y�

= y+ �̃2s−
∫ s

0
1
(�Q2�s� x� y�� 0̃ or

{�Q1�s� x� y�= 0 and

�Q2�s� x� y� > 0
})
ds�

It now follows that for all x � C and 0 � y � x+,
�Q1�s� x� y�= �x− 0̃�+, and �Q2�s� x� y�= x+ ∧ 0̃, for all

s �max
( �Q1�0� x� y�

�̃2

�
�0̃− �Q2�0� x� y��

+

�̃2

�
�Q2�0� x� y�

�̃1

)

�
C+ ∨ 0̃

�̃1 ∧ �̃2

�= s∗�

That is,∣∣�QNj

2 �s∗� x� y�− x+ ∧ 0̃
∣∣→ 0 (31)

with probability one. Thus, we have shown that (31) holds

for every subsequence �Nj� such that limj→� �QNj

2 �s∗� x� y�
exists. It is left to show that (31) holds when the
subsequence �Nj� is replaced by the whole sequence
�N�. It suffices to show that lim infN→� �QN

2 �·� x� y� =
lim supN→� �QN

2 �·� x� y�, w.p. 1. By contradiction, and with-
out loss of generality, suppose that with positive proba-
bility, lim supN→� �QN

2 �·� x� y� > x+ ∧ 0̃. In particular, this
implies that there exists a subsequence �Nl�, such that
liml→� �QNl

2 �s
∗� x� y� ∈ �x+ ∧ 0̃��#, with positive probabil-

ity. By the relative compactness of �T Nl

2 , there exists a fur-

ther subsequence �Nlj
� such that �T Nlj

2 �·� x� y�→ �T2�·� x� y�.
Hence, (31) holds for the subsequence �Nlj

�, which is a
contradiction. That is, (31) implies (30).
3. Uniform Convergence of the Fluid Scale Processes.

Set bN = s∗/
√
N and note that bN → 0 as N → �. It

remains to show that (30) is uniform in �x� y�; that is, it is
true with the supremum in front of the expression on the
left-hand side of (30). This will prove that the second term
in (29) goes to 0 as N →�, and completes the proof.
We follow Dai (1995, Lemma 4.1). Suppose that the con-

vergence is not uniform in x, y. Then, there exists an $ > 0
and a sequence ��xNl � yNl �� with xNl � C and yNl � xNl

+

for all Nl, and∣∣∣∣XNl

2

(
s∗√
Nl

� xNl � yNl

)
− xNl

+ ∧ 0̃

∣∣∣∣� $ ∀ Nl�

Because �xNl � yNl � is bounded, it has a converging subse-
quence with limit �x0� y0� with x0 � C and y0 � x+

0 . With-
out loss of generality, assume that the original sequence
converges to �x0� y0�. By an argument analogous to the one
above, it follows that there exists N1 large enough such that
for all Nl > N1,∣∣∣∣XNl

2

(
s∗√
Nl

� xNl � yNl

)
− x0

+ ∧ 0̃

∣∣∣∣< $

2
w.p. 1�



Armony and Maglaras: Customer Contact Centers with a Call-Back Option
288 Operations Research 52(2), pp. 271–292, © 2004 INFORMS

and similarly, there exists N2 large enough such that for all
Nl > N2,∣∣xNl − x0

∣∣< $

2
�

This leads to a contradiction. Hence, (30) is true uniformly
in x, y. This establishes (28) (through (29)) and completes
the proof. �

Proof of Proposition 3.2

The result follows from Puhalskii’s (1994) invariance prin-
ciple. We prove it by a direct application of Lemma A.2 of
Puhalskii and Reiman (2000) for i = 1�2. In the notation
of Puhalskii and Reiman, KN

i is equal to QN
i , the limits of

process LN
i �t� follow from the FCLT for the arrival pro-

cesses, and DN
i �t�/N → �̃i in probability. The remainder

of their lemma goes through unchanged. �

Proof of Proposition 3.3

First, we show that the steady-state queue lengths con-
verge to the right limit. That is, we show that for i= 1�2,
QN

i /
√
N ⇒ X̃i, where QN

i corresponds to class i steady-
state queue length, and X̃i is the steady state of the limiting
process X̃i�·�. This is established via a slight modification
of Proposition 3.1. Specifically, assume that the steady-
state distributions of the class level queue lengths for the
N -server system exist. Start the system at time t = 0 with
an initial queue length vector drawn from the steady-state
joint distribution. The results of Proposition 3.1 show that
for all t > 0 (not t � 0 as in Proposition 3.1 because the
initial condition is arbitrary),

QN
1 �t�√
N

⇒ �X̃�t�− 0̃�+ = X̃�t�1�

QN
2 �t�√
N

⇒ X̃�t�+ ∧ 0̃= X̃�t�2�

(32)

where X̃�·� is the diffusion process obtained as the weak
limit of the process �ZN

1 �·�+ZN
2 �·�−N�/

√
N , initialized by

its steady-state distribution. Theorem 1 of Halfin and Whitt
(1981) then implies that X̃�t� is distributed according to the
steady-state distribution of the diffusion process character-
ized in Theorem 3.1. Hence, the steady-state queue-length
distributions converge to the corresponding steady state of
their diffusion limits.
Next, observe that by Little’s Law, in steady state

√
NEWN

i =E
[√

NQN
i

�N
i

]
�

Hence, to prove (14), it suffices to show that in steady state,

E
[√

NQN
i

�N
i

]
⇒ EW̃i =E

[
X̃i

�̃i

]
�

Because (32) has already been established, it remains to
show that the family of random variables �QN

i /
√
N� is uni-

formly integrable (U.I.). This follows from the fact that
the class level queue lengths are bounded above by the
total queue length of the M/M/N queue given by ��QN

1 +
QN

2 �/
√
N�, which is itself U.I. (see Halfin and Whitt 1981,

Corollary 1 and Lemma 1).
Finally, (13) follows from (32) and Proposition 3.2. �

Proof of Proposition 3.4

For any nonidling policy ,, the total queue length of the
two-class system is equal to that of an M/M/N queue,
and thus XN�, ⇒ X̃. Let X̃,

i be the associated limit queue-
length processes that are assumed to exist. Lemma A.2 of
Puhalskii and Reiman (2000) is still valid and, as in Propo-
sition 3.2, W̃ ,

i �t� = X̃,
i �t�/�̃i for i = 1�2. Because , is

asymptotically compliant (i.e., "
√
NWN�,

2 �t�− D̃2#
+ ⇒ 0),

it follows that

W̃ ,
2 �t�� D̃2 ∀t � 0 ⇔ X̃,

2 �t�� �̃2D̃2 ∀t � 0�

Note that ,∗ is asymptotically compliant. From Proposi-
tion 3.2,

√
NWN�,∗

2 �t�− D̃2 ⇒ X̃,∗
�t�+ ∧ �̃2D̃2

�̃2

− D̃2 � 0 ∀ t � 0�

The limiting control problem is the following:

min EW̃1

subject to W̃2�t�� D̃2 ∀t � 0�

W̃i�t�=
X̃i�t�

�̃i

�

X̃1�t�+ X̃2�t�= X̃�t�+�

where X̃ was defined in Theorem 3.1�

It is easy to show that the proposed threshold policy,
denoted by ,∗, is pointwise optimal. For every sample
path E, let X̃+�t�E� denote the total queue-length trajec-
tory. This is the same for all nonidling policies. Note that
for all E, all t � 0, and for all , such that X̃,

2 �t�� �̃2D̃2,

X̃,∗
1 �t�E�= argmin�X1 � X1 +X2 = X̃+�t�E�� X2 � �̃2D̃2�

� X̃,
1 �t�E�� (33)

Because W̃ ,
1 = X̃,

1 /�̃1, this completes the proof. Given that
(33) holds w.p. 1 for all t � 0, it follows that the thresh-
old policy ,∗ also minimizes (the weaker objective) EW̃1

subject to W̃2�t�� D̃2, for all t. �
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Proof of Proposition 4.1

We need to prove that (22) has a unique and stable solu-
tion. We start with existence and uniqueness. We abbreviate
�̃i�0�0� by �̃i, i= 1�2, and *�w̃1� D̃2� by *�w�. Let

h�w�=w− 1

�̃1

'�*�w��

*�w�
e−*�w�0̃�

It suffices to show that the equation h�w�= 0 has a unique
root, denoted by w̃1.
Note that

*�w� > 0 ⇔ w >w �=
(
7
5

&
− D̃2

6

&

)+
�

We show that the equation h�w�= 0 has a unique solution
in �w���.
From (20) and the expression for ' given in Theo-

rem 3.1, it follows that h is continuous in w in �w���.
Hence, we can choose $ > 0 sufficiently small such that
h�w+ $� < 0. Direct calculation verifies that

4h�w�

4w
= 1− 1

�̃1

1
*�w�

e−*�w�0̃ 4*

4w

[
4'

4*
− '

*�w�
−'0̃

]
� 1�

where the last inequality follows from the fact that
4'/4* < 0 and 4*/4w = −&/5 > 0. It follows that there
exists a unique solution to Equation (22), denoted by w∗

1 ,
that satisfies w∗

1 >w. As a side comment, note that in addi-
tion, if w= 0,

w̃1 �
1

�̃1

'�*�0��
*�0�

e−*�0�0̃�

and a similar bound can be obtained if w > 0 by careful
selection of $ above.
To prove stability, we perturb the system from its equi-

librium w̃1 and show that the expected waiting time will
eventually return to w̃1. We assume that at time t, the
steady-state expected waiting time for class 1 service is
w̃1�t�. The corresponding arrival rates are given by �̃�t�,
while *�t� will denote the appropriately scaled distance
from heavy traffic. In the limit system, changes in w̃1�t�
only affect *�t� and not �̃�t�. This follows from (21). As
a result, fluctuations in the arrival rates are only captured
in *�t�.
Let

EW̃1�t�=
1

�̃1

'�*�t��

*�t�
e−*�t�0̃�

and define x�t�=EW̃1�t�− w̃1,

dx�t�

dt
= dEW̃1�t�

dt
= dEW̃1�t�

d*�t�

d*�t�

dt
�

It is easy to see that dEW̃1�t�/d*�t� < 0. Let *�t−� denote
the * value at time t− that induced the expected waiting
time EW̃1�t�. If EW̃1�t� < w̃1, then

*�t−�>*�w� and *�t+�=7−D̃2

6

5
− &

5
EW̃1�t�<*�w��

This implies that

d*�t�

dt


>0� EW̃1�t�>w̃1�

<0� EW̃1�t�<w̃1�

=0� EW̃1�t�= w̃1�

and

dx�t�

dt


>0� x�t�<0 ⇒ EW̃1�t�<w̃1�

<0� x�t�>0 ⇒ EW̃1�t�>w̃1�

=0� x�t�=0 ⇒ EW̃1�t�= w̃1�

which proves that x�t�→0, and equivalently, EW̃1�t�→ w̃1

as t→�. �

Proof of Proposition 4.2

Let )N =)N �wN
1 �D

N
2 �. First, we prove that liminfN→�)N

�1. By contradiction, suppose that there is a subsequence
�Nj� of �N� such that limj→�)Nj =1−G<1. We will show
that this implies that limj→�w

Nj

1 =0. Let QN�t� be the
total queue length (jobs in the system but not in ser-
vice) of system N at time t. Let QN be the steady-state
total system queue length, and let ZN be the steady-state
total number of jobs in the system (i.e., in queue and
in service). Let 'N �=P�ZN �N�. Then, one can show
that EQN =)N �1−)N �−1'N (this follows from Halfin
and Whitt 1981, Lemma 1) and the fact that EQN =∑�

k=N k�P�Z
N =k�−N'N ). The following lemma shows

that limj→�EQNj =0.

Lemma A.1 Suppose that limj→�)Nj =1−G<1. Then,
limj→�'Nj =0.

Proof. As in Halfin and Whitt (1981, Proposition 1), one
can show that 'N = "1+5N/IN #−1, where

5N =
N−1∑
k=0

1
k! �N)

N �ke−N)N and IN = �N)N �N e−N)N

N !�1−)N �
�

Now, 5N can be thought of as P�SN �N−1�, where SN is
a Poisson random variable with parameter N)N , and thus,

5N =P�SN
�N−1�

=P�Y N �=�N)N �−1/2"sN −N)N #��N ��

where

�N =�1−)N �N 1/2)N−1/2−�N)N �−1/2�

Because Y N converges weakly to a standard normal
random variable (see Halfin and Whitt 1981, p. 574),
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and limj→��Nj =�, we have limj→�5Nj =1. Now, using
Stirling’s formula, we obtain

IN ≈ exp�N "1−)N +log)N #�√
2,N�1−)N �

�

which implies that limj→�INj =0 (note that 1−)Nj +
log)Nj <0 for all j such that )Nj <1). Therefore,
limj→�'Nj =0. �

To complete the proof of the first part of the proposition,
note that 0�QN

1 �t��QN�t� for all t and N . Therefore,
limj→�EQ

Nj

1 =0. From Little’s law it follows that
limj→�w

Nj

1 =0. This implies that for every $>0, there
exists j�$� such that for all j >j�$�, w

Nj

1 <$. On the other
hand, Assumption 1 implies that for all $>0, there exists
j ′�$� such that )

Nj

eff�1−$ for all j >j ′�$�. The continu-
ity of the demand function for all N then leads to a con-
tradiction. The second part of the proof is to show that
limsupN→�)

N �1. This is true, because if for any N ,
)N >1, it would imply that wN

1 =�, which is a contradic-
tion because the system is stabilizable. �

Proof of Proposition 4.3

Let wN
1 be the steady-state expected class 1 waiting time

in equilibrium, and denote by �N
i �=�N

i �w
N
1 �D

N
2 �, i=1�2,

and )N �=)N �wN
1 �D

N
2 �. We start by observing that the

arrival rates into each class may be written as �N
i =fi�w

N
1 ,

DN
2 ��

N
eff , where fi�0�0�>0, and f �=f1+f2 is strictly

decreasing and f �0�0�=1. Hence, from Assumption 1 the
traffic intensity into the system can be expressed as

)N =f �wN
1 �D

N
2 �

(
1− 7√

N

)
� (34)

From Proposition 4.2, limN→�)N =1. This implies that
limN→�wN

1 =0, which in turn implies that limN→���N
i /N �

=fi�0�0�, where �
N
i is the arrival rate into class i in equi-

librium.
Let QN

i be the steady-state queue length of class i
�i=1�2� in equilibrium, and let ZN be the steady-state total
number of jobs in the system in equilibrium. Following
Theorem 3.1, it is sufficient (and necessary) to show that

lim
N→�

P�ZN
�N�=' (35)

for some '∈�0�1�. We will first rule out the cases '=0 and
'=1. Then, we will show that this limit is unique by con-
sidering two converging subsequences �Nj�

�
j=1 and �Nk�

�
k=1,

such that limj→�P�ZNj �Nj�='1 and limk→�P�ZNk �Nk�
='2, and proving that '1='2.
Note that from (34) we get that

liminf
N→�

√
N�1−)N ��7� (36)

Consider a subsequence �Nj�
�
j=1 for which limj→�P�ZNj �

Nj� exists and is equal to some '∈ "0�1#. From Halfin and

Whitt (1981, Proposition 1) it follows that if '=0, then
limj→�

√
Nj�1−)Nj �=�. Using standard formulas for the

single-class M/M/N system we get that the total queue
length satisfies

E"QN
1 +QN

2 #=
P�ZN �N�)NN

N�1−)N �
�

hence, '=0 implies that

lim
j→�

E"Q
Nj

1 +Q
Nj

2 #√
Nj

=0�

Specifically,

lim
j→�

E"Q
Nj

1 #√
Nj

=0�

which together with Little’s law implies that

lim
j→�

√
Njw

Nj

1 = lim
j→�

E"Q
Nj

1 #/
√
Nj

�
Nj

1 /Nj

=0�

Now, from the Taylor expansion of (19) applied to the sub-
sequence �Nj�

�
j=1 with w̃=0, we get that

lim
j→�

√
Nj�1−)Nj �=7− 6

5
<��

This is a contradiction.
To rule out the possibility that '=1, note that if

indeed '=1, then limj→�
√
Nj�1−)Nj �=0. That is, *=0,

which implies that
√
Njw

Nj

1 →�. At the same time,
as has been observed in the beginning of this proof,
limj→�w

Nj

1 =0. Rederiving (19) in this case where w
Nj

1 =
0+o�1� yields

√
Nj�1−)Nj �→�, which is a contradiction.

Now, suppose that '1�'2∈�0�1� are limits of two dif-
ferent subsequences, and '1 �='2. Theorem 3.1 applied to
the two subsequences implies that limj→�

√
Nj�1−)Nj �=

*1 and limk→�
√
Nk�1−)Nk�=*2 for some *1�*2∈�0���

with *1 �=*2. Now, consider two subsequences of systems
with arrival rates �

Nj

i and �
Nk
i , respectively. Proposition 3.2

applied to these two subsequences implies that (11) holds
when N is replaced by Nj or Nk, respectively.
Next, we use the equilibrium analysis associated with

Proposition 4.1 with N replaced by Nj or Nk. This implies
that (22) will apply with two different values of ' and *,
which is a contradiction to the uniqueness of the solution
of (22). �

Endnotes
1. The assumption that the service times for the two
classes are exponentially distributed with equal means are
modeling idealizations that make the analysis of the limit-
ing diffusions tractable. Some results that allow for phase-
type distributions can be found in Puhalskii and Reiman
(2000). A new approach that leads to a tractable analysis
for systems with different service rates has been recently
developed in Maglaras and Zeevi (2004).
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2. Alternatively, one can assume that customers have
formed an accurate estimate of EW1 from prior experience.
3. To be precise, we say that the system admits a unique
equilibrium if there exists a unique steady-state probabil-
ity distribution of the underlying continuous time Markov
chain, such that the expected waiting time for class 1
users when taken w.r.t. this distribution, EW1, induces time
homogenous arrival rates �i through (2) and (3) that, in
turn, are consistent with the aforementioned steady-state
distribution.
4. That is, for large N , customer choice behavior can be
approximated by a linear demand model.
5. Note, however, that these results do not show that the
N -server system itself has a unique and stable equilib-
rium, as this would have to involve explicit analysis of the
M/M/N model. Numerical evidence in §5 confirms that
the actual behavior of the N -server queue is close to what
the asymptotic analysis predicts, making the existence and
uniqueness of an equilibrium regime plausible.
6. In computing the various quantities of interest for a
system with finite N and a given DN

2 , we only need to take
a Taylor expansion with respect to wN

1 (and not DN
2 ). For

example, the equivalent of (16) would be �N
1 �w

N
1 �D

N
2 �≈

�NP� �u�1�0+w̃1/
√
N+o�1/

√
N���u�2�D

N
2 �

+�.
7. Another example where simulation was used for per-
formance analysis of a call center can be found in Saltzman
and Mehrotra (2001), where they study a system with two
classes of jobs, with static priorities.
8. In principle, d2 is also a design parameter, but its
selection is often influenced by what is acceptable and/or
expected by the customers for the specific service that is
being offered.
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