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Motivated by practices in customer contact centers, we consider a system that offers two modes of service: real-time and
postponed with a delay guarantee. Customers are informed of anticipated delays and select their preferred option of service.
The resulting system is a multiclass, multiserver queueing system with state-dependent arrival rates. We propose an esti-
mation scheme for the anticipated real-time delay that is asymptotically correct, and a routing policy that is asymptotically
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1. Introduction
Many organizations use customer contact centers as an
important channel of communication with their customers.
Such centers have limited resources and face highly
unpredictable demand that often result in long waits for
their customers. To improve the customer service levels
and alleviate congestion, contact centers have recently
started experimenting by: (a) informing arriving customers
(callers) about anticipated delays, and (b) adding alternate
service modes. The most common example of such a sys-
tem is a telephone call center that, in addition to regular
service, also offers a call-back option, whereby customers
may register a request and the system will call them back
within a prespecified amount of time. In such systems,
callers use the announced information and their personal
preferences to decide whether to wait for real-time service,
leave a service request, or simply balk.
While such initiatives are not surprising, they do raise

some theoretical and practical questions. Specifically, how
can the system accurately estimate the anticipated delay for
real-time service? What is the routing rule that optimizes
system behavior subject to the quality-of-service guarantee
offered to the “call-back” customers? In terms of perfor-
mance, one would expect that these initiatives will lead to
some form of load balancing by shifting service requests
from one channel to the other when the system is con-
gested. How much benefit (if any) can be obtained by
announcing this state-dependent information to the cus-
tomers? What is the value of the call-back option?

We make some initial progress in addressing these ques-
tions by focusing on a model for a contact center with
two service modes: real-time and postponed with a delay
guarantee. We propose a scheme that allows the call center
to provide accurate delay estimates and an accompanying
routing rule that guarantees that the postponed service is
offered within the prespecified deadline. We justify these
choices through an asymptotic analysis that also provides
an approximation for the closed-loop behavior of the sys-
tem. Finally, we compare this system’s performance with
that of a system that announces the steady-state expected
waiting-time information to the arriving customers. In this
context, we show that the use of state-dependent information
increases the overall system utilization while providing bet-
ter quality of service to the real-time customers, and main-
taining the same level of service for the call-back customers.
The system under consideration can be modeled as a

two-class M/M/N queueing system, where customers are
informed upon arrival of their (state-dependent) waiting
time for real-time service (class 1) and the delay bound
for the call-back service (class 2), and make decisions by
maximizing the relative utility associated with these two
options or with balking. Because customers’ decisions are
based on state-dependent information, the resulting arrival
rates to each class are also state dependent. This leads to
a major challenge in estimating the anticipated delay for
real-time service. Although such an estimation is trivial
in a single-class system operating under a FIFO policy,
it becomes quite complex in multiclass systems where,
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depending on the routing policy, future arrivals may affect
the waiting time of customers already in queue. This is also
the case in our system, where the delay constraint for call-
back customers entangles the operation of the two service
modes, and the anticipated delay for a class 1 customer may
indeed depend on future arrivals to class 2. Delay estima-
tion in systems where the waiting or service time depends
on future arrivals tends to be a difficult task (see, for exam-
ple, Whitt 1999b, Ward and Whitt 2000, Hassin and Haviv
1997, Bitran and Caldentey 2002).
In addition, even with an accurate estimate of the

anticipated delay for real-time service, the performance
analysis of a two-dimensional birth-death model with state-
dependent transition rates is both analytically and numeri-
cally complex. Instead, the analysis in this paper focuses on
the so-called many-server, heavy-traffic regime, first stud-
ied by Halfin and Whitt (1981). This extends previous work
by the authors (Armony and Maglaras 2004) that analyzed
customer contact centers with a call-back option but where
customers make their service choice based on steady-state
delay information, which they gain from experience or from
published delay performance. The key contributions of this
paper are the following:
(1) In terms of solution methodology, we first show that

if the system is not significantly over- or under-capacitated,
then rational customer choice behavior based on anticipated
delay information will place the system in heavy traffic.
Second, we propose a delay estimation rule that is asymp-
totically consistent, and an asymptotically optimal routing
rule that guarantees the delay constraint for the call-back
customers. The former implies that the actual delay experi-
enced by class 1 customers asymptotically agrees with what
was announced to them upon their arrival. The proposed
estimator is simple to implement and is derived based on
insights extracted from the asymptotic behavior of multi-
server systems in the Halfin-Whitt regime.
The criterion of an asymptotically consistent estima-

tor is interesting in its own right, and may have broader
applicability, for example, in multiclass queueing systems
with leadtime quotation that leads to state-dependent arrival
streams.
(2) In terms of analysis, we use a nontrivial appli-

cation of a classical result on diffusion approximations,
Stone’s criterion, to establish a limit theorem for the one-
dimensional total queue-length process, and then derive
the class level queue length and waiting time behavior by
establishing the appropriate state-space collapse property.
(3) These analytical results lead to closed form perfor-

mance approximations that, in turn, yield several insights
about the operation and design of such systems. (i) The
state of the system evolves in a much slower time scale
than the waiting times experienced by the customers. This
implies that the state of the system stays constant within
the time that callers spend in queue, making the estima-
tion of their anticipated delay relatively simple and robust.
(ii) Announcing state-dependent information improves

performance. In particular, it increases overall resource
utilization while simultaneously improving the quality of
service experienced by customers selecting the real-time
service mode. A similar insight was derived by Whitt
(1999a) for a single-class model of a call center. (iii) The
closed form performance approximations allow one to
study the value of the call-back option, and lead to simple
numerical recipes for optimizing system behavior by intro-
ducing a call-back channel with a suitable delay guarantee.
(iv) The commonly used “square-root” staffing rule is
shown to apply in our system with two service channels
and delay guarantees, and a closed-form characterization of
the appropriate staffing level is provided.
The remainder of this paper is structured as follows.

We conclude this section with a short literature survey.
Section 2 describes the basic model. Section 3 provides
some background results on asymptotic analysis of systems
with stationary (state independent) arrival rates. Section 4
analyzes the system of interest, and §5 compares its perfor-
mance to one that announces steady-state delay informa-
tion. Section 6 provides some concluding remarks.
The literature related to our work spans three main areas.

The first is concerned with the analysis of multiserver sys-
tems motivated by call center applications. The majority
of this work focuses on single-class systems. For example,
see Kolesar and Green (1998) and the references therein.
The papers by Brandt and Brandt (1999) and Gans and
Zhou (2003) analyzed two-class models with static param-
eters, but with routing issues that are close to ours. The first
paper analyzed a given policy using Markov chain methods,
while the second used an MDP formulation to characterize
the optimal routing rule.
The second area of literature that is close to our work

is related to the asymptotic analysis of multiserver systems
pioneered by Halfin and Whitt (1981). Recent work along
these lines include Jennings et al. (1996), Garnett et al.
(2002), Puhalskii and Reiman (2002), Borst et al. (2004),
Armony and Maglaras (2004), and Whitt (2003). The diffu-
sion analysis with state-dependent parameters uses Stone’s
criterion (1963) (see, for example, Iglehart 1965), related
to which is Mandelbaum and Pats (1995).
The third body of literature is on leadtime quotation

in production systems that is related to the problem of
announcing waiting times. Close references are Duenyas
and Hopp (1995), Duenyas (1995), Plambeck (2001), and
Dobson and Pinker (2002). In some of these papers the
issue of “optimal” leadtime quotation is considered, where
the benefits of both overestimating and underestimating the
leadtimes are explicitly investigated. Although we recog-
nize the importance of this trade-off, we focus in this paper
on quoting waiting times as accurately as possible, leaving
the question of “optimal” quotation to future research. As
it will turn out, our estimate will be asymptotically exact.
Finally, we comment briefly on the results obtained by

Whitt (1999a) that studied the effect of announcing state-
dependent delay information in a single-class, multiserver
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system by comparing it to a model where customers first
join the system but later abandon it if their service does not
start within a specified time (that is customer specific). In
contrast, our model has two service classes, customers are
assumed to make joining decisions based on either state-
dependent or steady-state delay information, and there is
no abandonment. The system that announces steady-state
information, which is used as a benchmark, is a stochastic
equilibrium model that incorporates the customers’ reaction
to delay.

2. The Model
The service system (depicted in Figure 1) has N statisti-
cally identical servers. It provides two types of service: (a)
real-time service, where users join a first-in-first-out (FIFO)
queue (queue 1, here), and (b) postponed (call-back) ser-
vice, where users leave a message and the system calls
them back within D2 time units (this is queue 2). The upper
bound on the waiting time for class 2 service requests is not
meaningful in a conventional sense, because the latter are
unbounded random variables. However, as we will show,
this constraint can be guaranteed in an appropriate asymp-
totic regime as the number of servers increases and system
utilization goes to 1. Both classes have identical processing
requirements, and service times are independent, exponen-
tial random variables with mean m (and service rate � =
1/m). The system parameters N and D2 are assumed to be
fixed.
We denote by Qi	t� and Zi	t� the number of class i cus-

tomers waiting in queue and in the system at time t, respec-
tively. Let s	t�= 	Q1	t��Q2	t��Z1	t�+Z2	t�� be the state
of the system at time t, and set S	t�= �s	�� � � � t� be the
history of the process up to time t. (Note that 	Q1�Q2� are
insufficient as state descriptors because when Q1 +Q2 = 0
the transition probabilities depend on the value of Z1+Z2.)

Customer Characteristics

Customers arrive according to a Poisson process with
rate �. Upon arrival they have three choices: (i) join
queue 1 and wait to be processed, (ii) leave a message for
postponed service in queue 2, or (iii) balk and do not join
the system. (We assume that customers who decide to balk
do not retry later, or, if they do, the corresponding retrial
rate is negligible.) Arriving customers are informed of
(a) the state-dependent anticipated waiting time in class 1,
w1	S�, and (b) the delay D2 within which they will receive
a call-back should they select option (ii). Based on this
information they decide whether to join the system and

Figure 1. A system with two service channels.

?Λ N
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what type of service to request. The key trade-off they face
between real-time and postponed-but-guaranteed service
is analogous to the trade-off between “best-effort” and
“guaranteed” type of service in communication networks.
It is related to the cost of waiting that each customer
associates with each of these service modes. We denote
by �1	S���2	S�, and �0	S� the state-dependent rates at
which customers join class 1, class 2, or balk, respectively.
Clearly, �= �1	S�+�2	S�+�0	S�.

Customer Choice Model

We assume that there is a continuum of customer types,
indexed by � , that are differentiated by their preferences.
User preferences are determined as follows:
(a) The utility for real-time service with anticipated

delay w1 is u1	w1� ��.
(b) The utility for leaving a request for a call-back

within D2 time units is u2	D2� ��.
We assume that u1	w1� �� and u2	D2� �� are nonincreas-

ing with respect to the first variables, continuously differ-
entiable with respect to both variables, and ui	�� �� < 0,
i.e., the utility is negative if w1 or D2 are sufficiently
large, because in such cases the cost of waiting exceeds the
value obtained by receiving service, making such choices
undesirable. For i = 1�2, ui	0� �� represents the utility for
receiving immediate service (no wait), which depreciates
as the customer has to wait either on-line 	i = 1� or off-line
to be called back 	i = 2�. Without loss of generality, we
assume that the utility of not joining is zero; that is, u0 = 0.
Customers choose the type of service that maximizes
their own utility according to max�0� u1	w1� ��� u2	D2� ���;
that is, a type � customer will join queue 1 if u1	w1� ���
u2	D2� �� and u1	w1� �� � 0, leave a service request in
queue 2 if u2	D2� �� > u1	w1� �� and u2	D2� �� � 0, and
balk if u1	w1� ��� u2	D2� �� < 0.
Finally, the customer type is a random variable. Let P�

be the probability distribution over the set of customer
types. We assume that the type distribution has a contin-
uous density function on its support and that for all finite
x � 0, P� 	ui	x� �� � 0� > 0; for any set A, P� 	A� denotes
the probability of that set under the distribution P� . The
type of each customer is chosen according to P� and is
independent of all other customer types. Given this setup,

�1	S���1	w1	S��D2�

=�P� 	u1	w1	S�����u2	D2��� and

u1	w1	S�����0�� (1)

�2	S���2	w1	S��D2�

=�P� 	u2	D2���>u1	w1	S���� and

u2	D2����0�� (2)

and �0	S� � �0	w1	S��D2� = � − �1	w1	S��D2� −
�2	w1	S��D2�. The standing assumptions on � , P� and
ui	·� �� imply that �i	·� ·� is continuously differentiable
with respect to both arguments. Also, we define �eff �=
�1	0�0� + �2	0�0� to be the maximum rate at which
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customers may choose to join the system, which is achieved
when w1 = 0 and D2 = 0. In general, �eff � � represents
the “effective” load for the system. We will assume
that P� 	u1	0� �� > u2	0� ��� > 0 and that P� 	u2	0� �� >
u1	0� ��� > 0. The interpretation for this condition is that
the two service modes are not perfect substitutes of each
other, and this is reflected in their respective utilities.
A simple example, which is used later on for illustra-

tive purposes, is one with linear waiting costs and the
specific structure of the Multinomial Logit Model (MNL)
(see Anderson et al. 1996, §2.6). In this case, for appropri-
ate constants ri and ci, i = 1�2, we have

ū1	S�= r1 − c1w1	S� and ū2	S�= r2 − c2D2�

and the total utility for each choice is given by ui	S� ��=
ūi	S�+ �i, where �i are IID double exponential (Gumbel)
distributed with parameter �; that is, � =  �1� �2! defines
the random portion of the two utility functions that dif-
ferentiates between customer types. With respect to the
parameters of this model, it is natural (but not necessary)
to assume that r1 � r2 and c1 > c2; that is, customers mind
more when they are waiting in queue 1, rather than wait-
ing off-line for their request to be processed. For the MNL
choice model, (1)–(2) simplify to

�i	S�=�
eūi	S�/�

1+∑
j=1�2 eūj 	S�/�

$ (3)

To complete the model description we need to specify
how the system manager estimates the anticipated delay for
real-time service, and what is the routing rule that deter-
mines which type of customer to serve next whenever a
server becomes available; the two are obviously related.

Routing Policy

A natural candidate to consider would give class 2 calls
service priority whenever one of these jobs is about to vio-
late its delay deadline, and the rest of the time give priority
to class 1. The obvious shortcoming of this policy is the
complexity of the state descriptor, which must keep track
of the age of all class 2 jobs in the system, that makes
performance analysis of the system hard. In this paper, we
propose a policy that only uses queue length information,
and gives priority to class 2 when its queue length exceeds
a certain threshold, and to class 1, otherwise. As we argue
in the sequel, the queue length will act as an effective and
accurate proxy for the age of the jobs in queue, thus imi-
tating the age-based policy described above.
Let Ai	t� be the number of customers that have arrived

into queue i in  0� t!. Using an observation made in
Maglaras and Van Mieghem (2004), we have that

W2	t��D2 ∀t ⇔ Q2	t��A2	t�−A2	t −D2� ∀t�

i.e., no class 2 customer has been waiting for more than
D2 if and only if all the customers currently in queue 2

arrived within the last D2 time units. Hence, the appropriate
threshold to use is

&	t�=A2	t�−A2	t −D2��

and the corresponding policy is specified as follows:

If Q2	t�� &	t�� give priority to class 2�
else give priority to class 1$

Note that it is easy to implement policies that keep track
of &	t�; this is particularly true for call centers, where such
information is readily available. This policy cannot guaran-
tee that the delay constraint will be satisfied for all class 2
customers, nor can any alternative policy. This is due to
the stochasticity and unboundedness of the waiting times.
However, as will be shown later, this policy does guarantee
that asymptotically as the size of the system grows large,
the delay guarantee will indeed hold for all class 2 cus-
tomers, with probability 1.

Estimation of Anticipated Delay

The task of estimating the expected delay for real-time ser-
vice conditional on the current state of the system is quite
involved. Indeed, the dependence of the arrival rates on
the state of the system and the structure of the proposed
routing policy make this calculation very complex because
current class 1 delays depend on future class 2 arrivals, and
both are functions of the state that is changing with time.
However, if one focuses on large, heavily loaded systems,
which typify customer contact centers, the situation simpli-
fies dramatically. This is due to the following key obser-
vation which will be explained in detail later on: Large
multiserver systems enjoy a form of statistical economies
of scale; in particular, the waiting times of customers in
the real-time queue decrease to zero, even if the system is
approaching heavy traffic. Moreover, the state of the sys-
tem (number of busy servers, and number of customers in
queue) does not change significantly during each such short
waiting period.
So, assuming optimistically that the state and arrival rates

are indeed constant over the time a customer spends in
queue 1, one can compute the state-dependent anticipated
delay as follows. Given the class 1 queue length, q1, and the
arrival rate, �1, a local version of Little’s law (to be justified
asymptotically later on) shows that the class 1 waiting time
may be approximated by


w1	q�= q1
�1

$

We conclude with some comments about our model.
First, we assume that customers cannot abandon or jockey
once they join the system. This is reasonable provided that
the estimation of their anticipated delay is fairly accurate,
which will turn out to be the case. Second, the total arrival
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rate � is assumed to be time invariant. This is not realistic,
because in most service systems, such as call centers,
there is a very pronounced variation depending on time of
day, day of week, promotional offers, etc.; see Green and
Kolesar (1991). However, the waiting time estimation and
the asymptotic analysis of the next few sections extend very
naturally to the nonstationary setting, because both settings
do not require a steady-state analysis. Third, the assumption
that the service time requirements of the two job classes are
equal is clearly a modeling idealization, and is imposed for
analytic tractability purposes. (The analytical complexity of
multiclass, multiserver systems when the service rates are
different is well known.) While all the structural insights
extracted in this paper apply for the case with different �s,
some of the particular details of the approximating distri-
butions will change; some recent results by Maglaras and
Zeevi (2002) outline how this is done.
Finally, one could consider a system that announces dif-

ferent types of information for the two service options, e.g.,
conditioned on the state, announce the 80th percentile of
the waiting time distribution for class 1 service rather than
its expected value, and assume that the customers have an
appropriate utility function to process this type of infor-
mation. Such alternatives will not be considered for the
reason we explain below. As will be shown in §4, the pro-
posed estimate that the system announces is asymptotically
exact for each customer that goes through the system (this
is pointwise equality and not just in expectation). In our
asymptotic regime, the waiting time distribution degenerates
to this point estimate (this is due to the separation of time
scales briefly mentioned earlier), which, in turn, provides
an appropriate approximation for large capacity systems.
Specifically, in large contact centers, even if the system
was announcing different types of information regarding the
waiting time distribution for class 1, our asymptotic analy-
sis would show that the effect of such different signals on
system performance and customer behavior is negligible.
Moreover, the resulting asymptotic approximations would
end up being the same as under 
w1	q�.

3. Background: Large Capacity
Asymptotics for Multiserver Systems

Typical contact centers are large in size and tend to be
heavily loaded. Our approach uses an asymptotic analysis
motivated by these two observations. This section provides
some background about the asymptotic behavior of multi-
server systems as N grows large and the traffic intensity
approaches one. Both will prove useful in §4.

Operating Regimes

The “physical” modes of operation for the a multiserver
system as N grows large can be classified by focusing on
the probability that a randomly selected customer arriving
to the system will have to wait before getting served.
Following Gans et al. (2003), we consider three modes

of operation:
• Efficiency-Driven Regime: the system is under-capa-

citated and customers almost always wait, P	wait> 0�≈ 1.
• Quality and Efficiency-Driven (QED) Regime: the

system’s capacity is balanced and customers may have to
wait but not always, P	wait> 0�≈ ( ∈ 	0�1�; we also refer
to this as the Halfin-Whitt regime.
• Quality-Driven Regime: the system is over-capaci-

tated and customers almost never wait, P	wait> 0�≈ 0.
The efficiency-driven regime under-emphasizes conges-

tion effects, the quality-driven regime focuses on service
quality, while the QED regime achieves a balance between
operating costs and quality of service. As advocated by
Garnett et al. (2002) this seems to be the natural operating
regime to consider. Furthermore, Borst et al. (2004) and
Maglaras and Zeevi (2003) have shown that this is the eco-
nomically optimal regime in single-class multiserver mod-
els where the system manager optimally selects the capacity
level and/or the price users must pay to gain access to the
system.
The remainder of this section provides some additional

background on the QED or Halfin-Whitt regime, under the
simplifying assumption that the arrival rates are stationary
and exogenously given, i.e., do not depend on W1, D2, or
the state of the system in any way. This summary suggests
natural scaling relationships for the model studied in this
paper, which will be exploited later on.

The Halfin-Whitt Regime

Consider a system with N servers and denote by ZN
i 	t� and

QN
i 	t� the total number of class i jobs present in the sys-

tem or in queue at time t, respectively; a superscript N will
be attached to all relevant quantities to denote their depen-
dence on the size of the system. The class level arrival
rates are �N

1 and �N
2 , and the aggregate arrival rate is given

by �N
a = �N

1 + �N
2 . The first observation that we make is

that the total number of customers in the system, given by
ZN 	t�=ZN

1 	t�+ZN
2 	t�, behaves precisely like an M/M/N

system with arrival rate �N
a . In particular, the total number

of customers in the system is independent of the routing
rule, provided that it is nonidling. The specific routing deci-
sions will affect the class-level queue-length processes.
Following the informal discussion given above, let us

define the probability of congestion as P	wait > 0� =
P	ZN �N�, where the notation ZN

i and QN
i without a time

argument denote these random variables in steady-state. In
their 1981 paper (Proposition 1), Halfin and Whitt estab-
lished that

lim
N→�

P	wait> 0�= ( ∈ 	0�1� iff

*N �= �N
a

N�
= 1− +√

N
+ o

(
1√
N

)
� + > 0 (4)

(i.e.,
√

N	1 − *N � → + as N → �), where ( =  1 +√
2-+.	+�e+2/2!−1 and .	·� is the standard normal

cumulative distribution function. This condition provides a
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precise articulation of the asymptotic parameter setting that
will give rise to the Halfin-Whitt regime. Assume that (4)
holds and define

XN 	t�= 	ZN
1 	t�+ZN

2 	t��−N√
N

$

Halfin and Whitt established that XN ⇒ X̃, where X̃ is
a well-defined diffusion process. (More precisely, Halfin
and Whitt 1981, Theorems 2 and 3 showed the follow-
ing: If XN 	0� ⇒ X̃	0�, then XN 	·� ⇒ X̃	·�, where X̃	t� is
a one-dimensional diffusion with infinitesimal drift m	x�
given by m	x� = −�+ if x � 0, and m	x� = −�	++ x�
if x < 0, and constant infinitesimal variance 2�.) The
steady-state distribution of X̃	·� is given by P	X̃ > 0�= (,
P	X̃ > x � X̃ > 0� = e−x+, x > 0, and P	X̃ � x � X̃ � 0� =
.	++ x�/.	+�, x � 0. The notation ⇒ is used to denote
weak convergence in D 0��� (see, e.g., Billingsley 1968,
§§14–15), or convergence in distribution. (Hereafter, limit-
ing processes will carry a tilde.)
We conclude with a few informal remarks on the behavior

of multiserver systems in the Halfin-Whitt regime. The var-
ious assertions that we make here will be rigorously estab-
lished in §4 where we study the system of original interest.
(1) Scaling behavior. The interpretation of the process

XN 	·� is as follows: when XN 	t� > 0, it is equal to the
scaled total number of jobs in both queues, whereas when
XN 	t� < 0, −XN 	t� is equal to the scaled number of idle
servers in the system. This result highlights that for systems
with balanced capacity (that is, when the system is neither
systematically under-utilized, nor over-utilized) the natural
scale that emerges is of order

√
N . Specifically, the total

number of customers in the system is approximately ZN =
N +√

NX, which implies that both queue lengths and the
total number of idle servers in the system are of order

√
N .

(2) Waiting times. The preceding results imply that the
waiting times encountered by customers in both classes
will be of order 1/

√
N . Intuitively, N busy servers will

take �	1/
√

N� to clear a backlog of �	
√

N� customers.
This observation has an important design implication on the
choice of the upper bound for class 2 delay, DN

2 . Specifi-
cally, it is natural to assume that DN

2 scales according to

DN
2 = D̃2√

N
(5)

for some appropriate value of D̃2 > 0. That is, as the sys-
tem size grows, the delay guarantee can become tighter and
tighter, as prescribed by the natural scaling behavior of the
system. Setting the delay guarantee according to (5) is con-
sistent with the order of magnitude of the actual waiting
times encountered in the system. The value of D̃2 can be
chosen to optimize certain system performance measures;
this will be done numerically in §5.1.
(3) Routing policy. Given (5) and the fact that the arrival

rates into each class are of order N , we conclude that for

large N , the threshold &N 	t� used in our routing policy will
be of the form

&N = &̃
√

N (6)

for some &̃ > 0, to be identified later on. That is, the depen-
dence on t is o	

√
N�. For any &N 	t�, this policy is non-

idling, and thus satisfies the assumptions and properties
mentioned so far.
(4) Queue-length behavior. As mentioned above, X̃	t�+

represents the total number of customers in queue at time t.
(The following conventions are used throughout: x ∧ y =
min�x� y�, x∨ y =max�x� y�, and x+ =max�x�0�.) Under
the threshold routing policy, it is easy to argue that this total
queue length will be split into the two classes as follows
(see Armony and Maglaras 2004, Proposition 3.1):

X̃1	t�= 	X̃	t�− &̃�+ and X̃2	t�= X̃	t�+ ∧ &̃�

where X̃i denotes the limit of the normalized queue-length
process QN

i /
√

N . To see this note that asymptotically
the class 2 queue length cannot exceed &̃. Indeed, when
X̃2	t�= &̃, class 2 gets higher priority. At this time, class 2
jobs are arriving at a rate �N

2 , and servers are becoming
available at a rate N� � �N

2 . In the limit, there is always
an available server for each new class 2 arrival, and hence
the class 2 queue length will always stay below or at the
threshold &̃. It follows that if X̃	t�+ > &̃, the remaining jobs
	X̃	t� − &̃�+ must be held in queue 1. If X̃	t�+ < &̃, then
X̃2	t� < &̃, and an analogous argument would show that
X̃1	t�= 0 and X̃2	t�= X̃	t�+.

4. Analysis of the System That
Announces State-Dependent
Information

This section studies the system of original interest that
announces state-dependent information to customers and
offers them a call-back option. This model introduces two
analytical challenges: (i) the routing policy must take into
account the state-dependent nature of the arrival streams,
and (ii) the system manager needs to be able to compute
the expected waiting time for class 1 jobs conditional on
the state of the system—this depends on the routing policy
employed. This calculation is complex because the cur-
rent estimate may depend on future arrivals that are them-
selves state dependent. These issues add considerably to
the existing complexity of the static model of Armony and
Maglaras (2004). In principle if (i)–(ii) were addressed, one
could proceed with a brute force numerical analysis of the
associated Markov chain model. While this is theoretically
possible, it offers limited insights about the structural prop-
erties of the system and is only achievable for relatively
small systems (tens of agents). Instead we will build on the
results and insights discussed in the previous section and
rely on an asymptotic analysis. The numerical solution of



Armony and Maglaras: Contact Centers with a Call-Back Option and Real-Time Delay Information
Operations Research 52(4), pp. 527–545, © 2004 INFORMS 533

the Markov chain will be used to test the accuracy of our
approximate analysis.
Motivated by the discussion of §3, hereafter we make

the following assumption:

Assumption 1. Balanced capacity: We assume that the
number of servers is selected in a way that “almost
matches” the total potential demand for the system.
Specifically,

�N
eff = �N

1 	0�0� + �N
2 	0�0�=N�− 1

√
N�

for some 1 ∈R$

That is, neglecting the second-order delay in each service
class, 1 measures the nominal distance from heavy traffic—
which may be intentionally negative, making the system
slightly under-capacitated.
The routing policy. Section 2 proposed a threshold pol-

icy with the time-varying threshold &N 	t� = AN
2 	t� −

AN
2 	t −DN

2 �. Given (5) and assuming optimistically that the
class 1 waiting times for a system with state-dependent
information are of order 1/

√
N , as it was for the system

of §3, we get that

lim
N→�

&N 	t�√
N

= lim
N→�

AN
2 	t�−AN

2 	t −DN
2 �√

N
= �̃2D̃2 ∀t�

where �̃2 = limN→� �N
2 	0�DN

2 �/N . That is, in large sys-
tems the time-varying threshold can be replaced by a static
threshold

&N = �N
2 	0�DN

2 �DN
2 $ (7)

For large N , &N ≈ &̃
√

N as in (6) for &̃ = �̃2D̃2.
Estimating the expected waiting time for class 1 arrivals.

Given the complexity of computing the actual expected
waiting time for class 1 service conditioned on the current
state of the system S	t�, we will proceed to define a pair of
approximate estimators for that quantity. The first approx-
imate estimator follows from the discussion of §2 and is
given by


wN
1 	S	t�� �= QN

1 	t�

�N
1 	0�DN

2 �
$ (8)

Note that we have used �N
1 	0�DN

2 � as a proxy for the asso-
ciated state-dependent arrival rate. The second estimator is
a simplification of (8) that exploits some of the insights
given in §3. Specifically, under the threshold routing policy,
the class 1 queue length can be approximated by 	QN

1 	t�+
QN

2 	t� − &N �+, which leads to the following estimate for
the class 1 waiting time:

w̌N
1 	S	t�� �= 	QN

1 	t�+QN
2 	t�− &N �+

�N
1 	0�DN

2 �
$ (9)

Note that this can be rewritten as

w̌N
1 	S	t�� �= 	ZN

1 	t�+ZN
2 	t�−N − &N �+

�N
1 	0�DN

2 �
�

which, in contrast to (8), is only a function of the total num-
ber of customers in the system process. This will essentially
reduce our study to a one-dimensional analysis.
In the sequel we will analyze the asymptotic behavior

of the two-class service system under the threshold rout-
ing policy defined through (6) and (7) and the waiting time
estimator w̌N

1 	S	t��. We will show that the two estimates

wN and w̌N are asymptotically the same, and that the time-
varying threshold &N 	t�/

√
N indeed converges to the time

invariant limit &̃. Finally, we will justify the choices for the
threshold parameter and the waiting time estimator through
two appropriate asymptotic criteria, and prove that the rout-
ing policy is asymptotically optimal in the sense that it min-
imizes the waiting time for class 1 customers subject to the
constraint that all class 2 customers get served within D̃2

time units. Section 4.2 will provide some numerical results
illustrating the relative accuracy of the various estimators,
as well as the overall accuracy of the asymptotic approx-
imation by comparing it with an exact numerical analysis
of the underlying Markov chain.

4.1. Asymptotic Analysis

Recall that the total number of customers in the system pro-
cess behaves like an M/M/N queue with a state-dependent
arrival rate that is equal to the aggregate arrival rate into
both classes. Under the estimator w̌N

1 	S� that depends on
the state of the system only through the total queue-length
process, the analysis of the total number of customers in
the system process becomes a one-dimensional problem.
This can be addressed through a straightforward application
of Stone’s theorem (Stone 1963). The class-level behavior
will be derived by rigorously establishing the state-space
collapse foreshadowed in §3. Recall the definition XN 	t�=
	ZN

1 	t�+ZN
2 	t�−N�/

√
N .

Proposition 1. Suppose that Assumption 1 holds, the
delay bound DN

2 scales according to (5), and that the
system manager announces the waiting time estimate w̌N

defined in (9) and routes customers according to the
threshold policy with &N defined in (7). If XN 	0�⇒ X̃	0�,
then XN ⇒ X̃, where X̃ is the unique (strong) solution of
the following stochastic differential equation:

dX̃	t�=  −1̃+ f 	X̃	t��!�dt +√
2�dB	t�� (10)

where B is a standard Brownian motion, 1̃= 1− 5D̃2/6,

f 	x�=




7

6

	x− &̃�+

�̃1	0�0�
� x � 0�

−x� x < 0�

(11)

6 �= P� 	u1	0� ��∪ u2	0� ��� 0��

7 �= 8P� 	u1	w� ��∪ u2	0� ��� 0�
8w

∣∣∣∣
w=0

� and

5 �= 8P� 	u1	0� ��∪ u2	d� ��� 0�
8d

∣∣∣∣
d=0

$
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The proofs are given in the appendix. This result con-
firms that, for the system where customers react to state-
dependent information, the rationalized or Halfin-Whitt
limiting regime emerges as a result of rational customer
choice behavior (see Corollary 1), and the natural scale for
the number of customers in queue and the number of idle
servers is again

√
N .

Corollary 1. Under the assumptions of Proposition 1,
when the state is SN = 	QN

1 �QN
2 �ZN

1 +ZN
2 �,

*N 	SN �= 1−  1̃− f 	XN �!√
N

+ o

(
1√
N

)
$

In particular, limN→� *N 	S� = 1, whenever XN converges
to a finite limit.

The drift of the limiting diffusion, given in (10) and (11),
admits a simple interpretation. First, the constant term 1̃
measures how far is the system from the heavy traffic
regime in the absence of congestion for class 1 service,
i.e., the aggregate arrival rate into the system when w1 = 0
would be �N

a 	0�DN
2 � = N� − 1̃

√
N� + o	

√
N�. (Note

that the term 5D̃2/6 may be equal to 0 depending on the
specifics of the choice model; in fact, this is logical if
class 2 corresponds to call-back service. On the other hand,
if class 2 represents e-mail service, then it is conceivable
that 5 �= 0 representing the fact that there are some cus-
tomers that will always choose e-mail over real-time ser-
vice even if w1 = 0. Our choice model allows for both
cases. Also, note that 6 may be �=1 (as in the MNL model),
but its actual value just serves as an appropriate normal-
ization constant and is not essential to subsequent analy-
sis.) For the state-dependent drift term f 	X̃	t�� we identify
three regions of interest: (a) X̃	t� > &̃: the waiting time
quoted to arriving customers is positive, and this discour-
ages some customers from joining as reflected in the term
	7/6�	x− &̃�+/�̃1	0�0� (note that 7 < 0). (b) 0� X̃	t�� &̃:
the waiting time quoted for class 1 service is 0, all servers
are busy, and the resulting drift is simply 1̃. (c) X̃	t� < 0:
there are −X̃	t� idle servers which result in a positive drift
contribution −�X̃	t� to reflect that the departure rate out
of the system is less than N�.
The next result focuses on the behavior of the individual

queue-length processes and of the associated waiting times
for class 1 and 2 service. In the sequel, W N

i 	t� denotes the
virtual waiting time at time t (i.e., this is the time that a
virtual class i customer would have to wait if he/she joined
class i at time t).

Proposition 2. Under the assumptions of Proposition 1
and that 	QN

1 	0�/
√

N�QN
2 	0�/

√
N� → 		X̃	0� − &̃�+,

X̃	0�+ ∧ &̃� in probability, for every t � 0, as N →�,

QN
1 	t�√
N

⇒ 	X̃	t�− &̃�+ =� X̃1	t��

QN
2 	t�√
N

⇒ X̃	t�+ ∧ &̃ =� X̃2	t��

(12)

and
√

N	W N
1 	t��W N

2 	t��⇒ 	W̃1	t�� W̃2	t��, where

W̃1	t� �= 	X̃	t�− &̃�+

�̃1

= X̃1	t�

�̃1

and

W̃2	t� �= X̃	t�+ ∧ &̃

�̃2

= X̃2	t�

�̃2

$

(13)

Given that w̌N
1 and DN

2 are of order 1/
√

N , and using the
continuity and differentiability assumptions of the choice
model, a simple Taylor expansion for �N

2 	wN
1 �DN

2 � gives
that �N

2 	wN
1 �DN

2 �=N�̃2 +
√

N	· · ·�+ o	
√

N�. It now eas-
ily follows that &N 	t� = ∫ t

t−DN
2

dAN
2 	s� = √

N &̃ + o	
√

N�.
This validates the use of a constant threshold in the routing
policy.
Note that (12) establishes that indeed the two waiting

time estimators 
w and w̌ are asymptotically equivalent.
Specifically, the appropriately scaled terms for QN

1 and
	QN

1 +QN
2 −&N �+ both converge to the common limit X̃1 =

	X̃ − &̃�+.
The remainder of this subsection examines the properties

of the proposed waiting time estimator and threshold rout-
ing policy. First, we define a pair of appropriate asymptotic
performance criteria.

Definition 1. Suppose that for every N , wN
1 	S� is the esti-

mated waiting time for a class 1 customer when the state
of the system is S. The sequence of estimators wN

1 	·� is
called asymptotically consistent for a routing policy -, if
for all t,

√
N W N�-

1 	t�−wN
1 	S	t��! ⇒ 0 as N →�� (14)

where W N�-
1 	t� is the actual waiting time experienced by a

class 1 customer, who arrives at time t, when the state of
the system is S	t�.

Roughly speaking an asymptotically consistent estima-
tor is one that becomes accurate as the number of servers
grows large. The blow-up factor of

√
N compensates for

the fact that the waiting times are decaying to zero like
1/
√

N . The second criterion, which was first introduced in
Plambeck et al. (2001), addresses the issue of delay con-
straint qualification for class 2 customers.

Definition 2. A policy - is said to be asymptotically
compliant if[√

NW N�-
2 	t�− D̃2

]+ ⇒ 0�

where the superscript - denotes the dependence of W N
2 on

the policy.

That is, a policy - is asymptotically compliant, if the
limit of the appropriately scaled class 2 waiting time always
satisfies its delay constraint. The next proposition summa-
rizes the basic properties of the proposed estimator and
routing policy.
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Proposition 3. Under the assumptions of Propositions 1
and 2:
(1) The estimator w̌N

1 	·� is asymptotically consistent.
(2) The threshold routing policy is asymptotically

compliant.
(3) Fix the waiting time estimator w̌N

1 and consider any
nonidling, nonpreemptive, asymptotically compliant routing
policy - for which the (weak) limit queue-length and wait-
ing time processes, X̃-

i , W̃
-
i , exist. Let -∗ denote the thresh-

old policy with &̃ = �̃2D̃2. Then, -∗ is asymptotically
optimal in the sense that W̃ -∗

1 	t�� W̃ -
1 	t� ∀t � 0 w.p.1.

In relation to the last point above, we note that the
information signal w̌1 will not be asymptotically consis-
tent under arbitrary routing policies -. Thus, the inter-
pretation of point 3 is as follows: Assuming that the
system announces w̌ as its information signal, then -∗

is optimal over the set of asymptotically compliant rout-
ing policies - in the sense explained above. Ideally, one
would like to strengthen the result and allow the system to
announce 
w1 = Q-

1 /�1 as its waiting time estimate, which
would turn out to be asymptotically consistent for -, and
then establish the requisite optimality of -∗ in that set-
ting. This result, however, would require a much more
involved asymptotic analysis which will not be pursued
in this paper. (The complexity is due to the fact that the
essentially one-dimensional analysis that suffices under w̌1

breaks down under 
w1.) To close the loop, we remind the
reader that the (scaled) difference between w̌1 and 
w1 is
asymptotically negligible under -∗, making this distinction
insignificant.
Finally, we derive the steady-state distribution of the

limit process X̃. This is simple because X̃ is a combination
of three well-studied processes: an O-U process for x � &̃,
a Brownian motion for x ∈  0� &̃!, and another O-U process
for x < 0.

Corollary 2. Let b = 	−7/6�	1/�̃1� and 1̃= 1−5D̃2/6.
If 1̃ �= 0, the p.d.f. of X̃ is

:X̃	x�=




	1−(1�
;	1̃+ x�

.	1̃�
� x � 0�

(21̃e−1̃x� x ∈  0� &̃!�

(3

√
b
;	

√
b	x− &̃�+ 1̃/

√
b�

.	−1̃/
√

b�
� x � &̃�

where the constants (1�(2�(3 ∈  0�1! and are given by

(2 =
[
1̃
.	1̃�

;	1̃�
+ 1− e−1̃&̃ + 1̃√

b
e−1̃&̃ .	−1̃/

√
b�

;	1̃/
√

b�

]−1
�

(1 = 1−(21̃
.	1̃�

;	1̃�
� and (3 =

(21̃√
b

e−1̃&̃ .	−1̃/
√

b�

;	1̃/
√

b�
$

If 1̃ = 0, :X̃	x� = (2 for all x ∈  0� &̃!, and the new
(1�(2�(3 are given in (27).

4.2. Performance Approximations

This section first demonstrates the accuracy of the various
waiting time estimators through a numerical example and
then develops a sequence of performance approximations
using the steady-state distribution given in Corollary 2. The
goal here is to use the limit theory derived above to approx-
imate the performance of an actual system, say with N = 50
servers, an MNL choice model with specific parameters, etc.

Quality of the Waiting Time Estimators. Figure 2
compares the “true” expected waiting time for class 1 ser-
vice as a function of the state (obtained via simulation)
with the one predicted using (8) and (9). The parameters
of the two systems were selected so that the effective load
*eff	D

N
2 � ≈ 0$95. Note that this places the two systems at

different operating regimes when measured in the Halfin-
Whitt scale expressed in the form *eff	D

N
2 � = 1− 1̃/

√
N ,

but this is not that essential at this stage where the goal was
to provide some “numerical verification” of the asymptotic
consistency of the two estimators. We make a few addi-
tional observations about these plots.
(a) The accuracy of the estimators increases with N and

the waiting times decrease as N grows larger, which is
consistent with the theory. (Note the difference in the scales
of the two plots.) Also, N = 50 servers is still very modest
in the context of modern-day contact centers.
(b) The estimator 
w = Q1/�1 is more accurate than

the one derived using the state-space collapse result w̌ =
	Q1 +Q2 − &�+/�1. The difference is in the region where
the total queue length Q =Q1+Q2 is below the threshold &
and class 1 gets higher priority. For these states, the asymp-
totic analysis predicts that queue 1 will be empty. In the
actual system, however, class 1 jobs will still have to wait
for a server to become available, which will translate into a
small queue buildup and an associated wait. For example,
in the flat part of the curves for N = 50 that corresponds
to states where Q � &, the average class 1 queue length
was 2 jobs, which resulted in a small offset from the zero
waiting time predicted via the asymptotic analysis. This is
not surprising because the appropriate interpretation of the
asymptotic result is that the class 1 queue length will be
“negligible” in the

√
N scale of the total queue-length pro-

cess. This is, indeed, the case and this error disappears as
N grows.
(c) The piecewise linear form of the waiting time profile

as a function of the total queue length is consistent with
the functional form of w̌ = 	Q− &�+/�1.
(d) Actual waiting times experienced by customers will

vary around the expected values reported in these plots.
A rough calculation shows that when the expected waiting
time for large N is close to Q1/�1, the associated standard
deviation will be

√
Q1/�1 (this is the standard deviation of

the sum of Q1 exponential random variables with rate �1),
which is of order N−3/4.

Accuracy of the Steady-State Distribution Approxi-
mation. Figure 3 compares the steady-state distribution
given in Corollary 2 with the one computed by exact
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Figure 2. Comparison of W1 estimators under the MNL
choice model.
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in both plots.

analysis of the associated Markov chain when the system
announces 
w1	S� = Q1/�1	0�D

N
2 � to arriving customers.

The latter was evaluated numerically. To keep the complex-
ity of this calculation low, we studied a system with few
	N = 10� servers. Even in this small system, the diffusion
approximation was quite accurate. Also, it is easy to notice
the three different regions identified in the corollary, where

Figure 3. Comparison of steady-state distribution for
the total queue-length process for a two-class
system with state dependent delay informa-
tion.
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the total queue-length distribution is normal, exponential,
and then normal again. The accuracy of these approxima-
tions increases as N grows.
Finally, we use the steady-state distribution of X̃ to

approximate the system performance.

Approximations for the Waiting Time for Real-Time
Service in Steady-State.

EW N
1 ≈

√
NE	X̃ − &̃�+

�N
1 	0�DN

2 �

= (3

√
N

�N
1 	0�DN

2 �

∫ �

&
	x− &̃�

√
b
;	

√
b	x− &̃�+ 1̃/

√
b�

.	−1̃/
√

b�
dx

= (3

√
N

�N
1 	0�DN

2 �

(
− 1̃

b
+ 1√

b

;	1̃/
√

b�

.	−1̃/
√

b�

)
� (15)

and for any x > 0, P	W N
1 > x� ≈ P	W̃1 >

√
Nx�, which

implies that

P	W N
1 > x�

≈ P	X̃ > &̃+�1	0�D
N
2 �

√
Nx�

= (3

.	−1̃/
√

b�

∫ �

&̃+�1	0�D
N
2 �

√
Nx

√
b;

(√
b	x− &̃�+ 1̃√

b

)
dx

= (3

.	−1̃/
√

b−√
b�1	0�D

N
2 �

√
Nx�

.	−1̃/
√

b�
$ (16)

Similarly, one can show that

Var	W N
1 �≈ (3N

b�N
1 	0�DN

2 �2
− 1̃

√
NEW N

1

b�N
1 	0�DN

2 �
− 	EW N

1 �2$

The constants b and (3 are given in Corollary 2.
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Total Expected Arrival Rate. This can also be ap-
proximated using our asymptotic results. From Proposi-
tion 1 we know that the waiting time estimate w̌N

1 	s� is
of order �	1/

√
N�. Also, from the definition of 1̃ and

�N
eff	D

N
2 � = N� − 1̃

√
N�, it follows that �N = 	N� −

1̃
√

N��/6. Putting these two together, the aggregate arrival
rate can be approximated by

�N
1 	w̌N

1 	s��DN
2 �+�N

2 	w̌N
1 	s��DN

2 �

=�N P� 	u�
1	w̌

N
1 	s��∪ u�

2	D
N
2 � > 0�

≈�N 	6 +7w̌N
1 	s��

≈N�−√
N�

(
1̃− 7

6

√
Nw̌N

1 	s�

)
$

Taking expectations with respect to the steady-state distri-
bution given in Corollary 2 we may approximate the total
expected arrival rate into the system by

E �N
1 	w̌N

1 	s��DN
2 �+�N

2 	w̌N
1 	s��DN

2 �!

≈N�−√
N�

(
1̃− 7

6

√
NEw̌N

1

)

≈N�−√
N�

(
1̃− 7

6

√
NEW N

1

)
$ (17)

Also, the asymptotic loss in throughput due to conges-
tion is

�N
eff	D

N
2 �−E�N

a 	DN
2 �=√

N�
7

6
EW̃1$ (18)

Similarly, EW N
2 ≈ 	

√
NEX̃+ ∧ &̃�/	�N

2 	0�DN
2 ��, which,

after some simple manipulations using the distribution in
Corollary 2, gives

EW N
2 ≈ (2

√
N

�N
2 	0�DN

2 �

[
1

1̃
− e−1̃&̃

(
&̃+ 1

1̃

)]
$ (19)

Related expressions can be obtained for the correspond-
ing variance and other quantities of interest. Using these
closed-form characterizations, §5.1 will study the depen-
dence of the system behavior on important model
parameters.

5. Performance Improvements and
Staffing Rules

This section uses the closed form performance charac-
terizations derived above to study three practical ques-
tions: (a) Does announcing state-dependent information
help? (b) What is the value of the call-back option, and
how should the system manager select the delay guar-
antee to optimize performance? (c) How many servers
should the system have to satisfy the typical operational
specifications imposed in call centers (e.g., average waiting
time � 10 seconds, 80% of calls answered within 20 sec-
onds, etc.)?

5.1. The Value of Announcing State-Dependent
Information

First, we compare the performance of the system analyzed
so far to the one that announces the steady-state expected
waiting time for class 1 service instead, and illustrate how
providing the state-dependent information improves over-
all system performance. This “static” case was studied in
Armony and Maglaras (2004), the main results of which
are summarized below.

5.1.1. Background: Analysis of the System That
Announces Steady-State Delay Information. In this
case, customers are assumed to make decisions based on
the steady-state expected waiting time for class 1 ser-
vice and the call-back deadline. This information is either
announced or is assumed to be known by the customers
after repeated visits to the system. This model requires a
statistical equilibrium analysis: one needs to find the wait-
ing time estimate whose announcement results in arrival
rates that are consistent with the steady-state expected wait-
ing time quoted in the first place.
In the sequel a superscript “s” will mark all processes

associated with this “static” system. To start with, the
structural insights of §3 are still in force, the system
still operates under a threshold routing policy with &N =
�N
2 	0�DN

2 �DN
2 (same as before), but announces Ew̌s�N

1 in
place of w̌N

1 	S	t��. This results in a change in the infinites-
imal drift of the limit of the scaled total number of cus-
tomers in the system process, which is now governed by
the following stochastic differential equation:

dX̃s	t�=
[
1̃− 7

6

E	X̃s − &�+

�̃1

+min	X̃s	t��0�
]
�dt

+√
2�dB	t��

where EW̃ s
1 = 	E	X̃s − &�+�/�̃1. This equation makes the

change from (10) transparent. This is the same as the
Halfin-Whitt diffusion (described in §3), where the constant
part of the drift, denoted here by +	EW̃ s

1 � D̃2�, is given by

+	EW̃ s
1 � D̃2�= 1̃− 7

6
EW̃ s

1 � (20)

where 6, 7, and 1̃ are the same constants defined in §4.
Using the steady-state distribution associated with X̃s that
was given in §3, we conclude that the system will be in
statistical equilibrium if and only if

EW̃ s
1 =

1

�̃1

(	+	EW̃ s
1 � D̃2��

+	EW̃ s
1 � D̃2�

e−+	EW̃ s
1 � D̃2�&̃� (21)

where (	+� = P	X̃ � 0� =  1 + √
2-+.	+�e+2/2!−1

(defined in §3). Expressions (20) and (21) define a fixed
point equation for EW̃ s

1 . Proposition 4.1 in Armony and
Maglaras (2004) established that this equation admits a
unique solution EW̃ s

1 that characterizes the unique and sta-
ble equilibrium point of the limiting system.
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Performance approximations. Let +∗ denote this equi-
librium parameter, and set (∗ = (	+∗�. Then, using the
steady-state distribution of X̃s and an appropriate variant
of Proposition 2 (Armony and Maglaras 2004, Proposi-
tions 3.2–3.3), we can derive closed form expressions for
several quantities of interest. First, note that �s�N

a = N�−
+∗√N�+ o	

√
N�. As further examples,

EW s�N
1 ≈ 1

�s�N
1

(∗√N

+∗ e−+∗ &̃ (22)

and

P	W s�N
1 > y�≈ P	W̃ s

1 > y
√

N�= (∗e−+∗	&̃+�̃1
√

Ny�$

5.1.2. Numerical Comparisons. In this section, the
dynamic and the static systems are compared by analyzing
their asymptotic performance. The next proposition shows
that, for the same delay bound DN

2 , the asymptotic per-
formance of the dynamic system dominates that of the
static one.
Let X̃d, W̃ d

1 , X̃s , and W̃ s
1 be the limits for the total

queue-length and class 1 waiting time processes in the
dynamic and static systems defined in Proposition 1 and
§5.1.1, respectively. To simplify calculations, the next result
focuses on the case 1̃= 1− 5D̃2/6 = 0.

Proposition 4. If 1̃= 0, then

EW̃ d
1 �EW̃ s

1 $

Figure 4. Comparison of EW N
1 , P	W N

1 > 20 sec.), Std	W N
1 �, and * under steady-state (static) and state-dependent

(dynamic) information.
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Note. System: N = 50, �= 1, MNL choice model with r1 = r2 = 1, c1 = 0$5, c2 = 0$05, � = 0$3, and *eff	0�= 0$98.

Assuming that for each N the static system has a unique
equilibrium point characterized by its steady-state expected
waiting time EW s�N

1 , then

lim
N→�

1√
N

 E�N�d
a 	W d�N

1 �DN
2 �−�N�s

a 	EW s�N
1 �DN

2 �!� 0$

That is, dynamic information reduces the expected wait-
ing time for class 1 service, while increasing the aggregate
traffic that gets served by the system! Whitt (1999a) derived
a similar result for a single class M/M/N system with
reneging. (We suspect the same line of proof will work for
the case 1̃ �= 0. However, due to the more complex nature
of the steady-state distribution of X̃d in Corollary 2 the
algebraic manipulations become messier and we have not
been able to resolve this issue. The key difference is in the
constant (3 defined in the corollary if 1̃ �= 0 or in (27) if
1̃ = 0. The results presented in this section will provide
numerical evidence in support of the claim for the general
case when 1̃ �= 0.)
Figure 4 compares the performance of the static and

dynamic systems for a scenario where the total effective
traffic into the system is slightly below capacity (*eff	0��
�eff	0�/	N�� = 0$98). The figures are computed using
our asymptotic approximations. In all four comparisons
the dynamic system outperforms the static one. For any
fixed value of D2, the expected waiting time for class 1
service was reduced by 20%–50%. The probability that the
waiting time in class 1 exceeds 20 seconds (a typical spec-
ification for call centers) is decreased by 0.015 to 0.04.
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Table 1. Sensitivity w.r.t. the maximum offered load *eff	0�.

*eff	0� 	EW s
1 �P	W s

1 > 20s$�� 	EW d
1 �P	W d

1 > 20s$�� 	Ds
2�EW s

2 � 	Dd
2 �EW d

2 � *s *d

0$95 (0.002, 0.002) (0.001, 0.001) (8, 0.87) (9, 0.98) 0$940 0$940
0$975 (0.024, 0.022) (0.011, 0.013) (10, 1.89) (10, 1.95) 0$963 0$963
1$00 (0.185, 0.132) (0.080, 0.094) (13, 3.13) (12, 3.50) 0$978 0$983
1$025 (0.502, 0.313) (0.307, 0.349) (18, 3.52) (17, 3.79) 0$983 0$994

Note. System: N = 50, � = 1, MNL choice model with r1 = r2 = 1, c1 = 0�5, c2 = 0�05, and � = 0�3.
Waiting times reported in minutes.

The performance improvement with respect to the aggre-
gate traffic into the system is very small, but this is
expected because both systems are operating very effi-
ciently (i.e., with small expected waiting times in class 1),
while being close to the heavy traffic regime.
In the sequel, we perform a sequence of numerical exper-

iments that investigate the relative performance of the two
systems as we vary some of the model parameters. The base
case is a system with N = 50 servers and � = 1, and the
MNL choice model with r1 = r2 = 1, c1 = 0$5, c2 = 0$05,
and � = 0$3. For each set of model parameters we will only
report results that correspond to the (optimal) delay bound
for class 2 service that minimizes the expected waiting time
for class 1. (This is selected numerically after first evaluat-
ing the system performance at different values of D2 using
the asymptotic approximations.) While the numerical val-
ues reported below depend strongly on the nature of the
choice model, the sensitivity results are more robust and
illustrate the effect of state-dependent information as well
as the value of the call-back channel.
(i) Dependence on the extent to which capacity is bal-

anced 	1�. Our first test examines the comparative advan-
tage of state-dependent over steady-state information as we
vary the effective load into the system as measured by
*eff	0�. Recall that *eff	0� is equal to the maximum possi-
ble load for the system that corresponds to the case where
W1 =D2 = 0. So, the quantity 1− *eff measures the nomi-
nal excess capacity of the system.
The results of Table 1 illustrate that the performance

gains due to state-dependent information are significant for
a wide range of load factors. As expected, when the offered
load increases, the waiting times also increase. While the
difference in throughput rate is small, as both systems are
very efficient, the dynamic one maintains a small advan-
tage. These results lend credibility to the result of Propo-
sition 4 in the case where 1̃ �= 0. (The value of 1̃ in these

Table 2. Sensitivity w.r.t. delay sensitivity parameters c1, c2.

	c1� c2� EW s
1 EW d

1 	Ds
2�EW s

2 � 	Dd
2 �EW d

2 � 	�s
1��

s
2� 	�d

1 ��
d
2 �

(0.5, 0.1) 0$271 0$153 (7, 1.34) (7, 1.54) (42.1, 6.4) (43.5, 5.4)
(0.5, 0.025) 0$093 0$027 (24, 5.86) (23, 6.66) (42.4, 6.7) (42.7, 6.6)
(0.5, 0.05) 0$185 0$080 (13, 3.13) (12, 3.50) (42.3, 6.6) (42.6, 6.6)
(0.25, 0.05) 0$255 0$128 (13, 3.13) (12, 3.34) (42.9, 6.1) (42.8, 6.4)
(1, 0.05) 0$127 0$048 (13, 3.07) (12, 3.64) (41.4, 7.2) (42.4, 6.7)

Note. System: N = 50, � = 1, �eff�0	 = 1, MNL choice model with r1 = r2 = 1, and � = 0�3. Waiting
times reported in minutes.

experiments was ranging from 0$43 to −0$05 as the load
was increasing.) The performance under state-dependent
information seems a lot more robust when the system is
more heavily loaded (*eff	0�� 1), because the “active” load
balancing when queue 1 grows large is much more effi-
cient. Also, note that while dynamic information leads to
significant improvements of class 1’s performance, it may
degrade class 2’s service. However, in the dynamic sys-
tem class 2’s expected delay is still significantly lower than
its performance guarantee, and the impact of the class 2
service degradation on overall utility is small because cus-
tomers tend to be less sensitive to class 2 delay. Finally,
we note that the static system dominates the dynamic one
in terms of P	W1 > 20s$� when *eff	0�= 1$025, but this is
due to the fact that in this highly congested case the target
value of 20 seconds was comparable to the actual expected
waiting times in class 1. In practice, this probabilistic con-
straint is meant to bound the tail behavior of the system
(i.e., the target value is well above the expected waiting
time), and in this parameter regime the dynamic system
was observed to be better.
(ii) Dependence on the delay sensitivity parameters. In

the experiments reported in Table 2 we studied the behav-
ior of the two systems for different values of the delay
sensitivity parameters for the two service options c1, c2
that appear in the MNL model. The dynamic system con-
sistently outperforms the static one. As expected, as the
delay sensitivity to the class 2 deadline increases (c2 grows
from 0.025 to 0.1), the optimal delay bound D2 and the
expected waiting time for class 2 customers decrease. Sim-
ilar observations hold true when the delay sensitivity to
class 1 service (c1) is allowed to change.
(iii) Load balancing and the value of the call-back

option. It is evident from Figure 4 that the addition of the
call-back (or e-mail) option, together with careful selection
of the promised delay bound D2, can lead to significant



Armony and Maglaras: Contact Centers with a Call-Back Option and Real-Time Delay Information
540 Operations Research 52(4), pp. 527–545, © 2004 INFORMS

Figure 5. Load balancing via the call-back option and
state-dependent waiting-time information.
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performance improvements. In the sequel, we provide some
additional results comparing the performance of the opti-
mized two-class system with a single-class system, which
in our setting corresponds to the case D2 →�.
Overall, the introduction of the call-back option with an

optimized deadline D2 resulted in significant performance
improvements. The expected waiting time in class 1 gets
reduced by a factor of 4 to 10, the probability that the
waiting time in class 1 will exceed the target of 20 sec-
onds is reduced by 0.1 to 0.25, while the total throughput
rate increased by 1%–2.5%! The margin of improvement
reduces as the nominal load increases. The performance
improvements, especially in the dynamic system, are due to
the efficient load balancing that is achieved through the cus-
tomers’ reaction to the state-dependent information when
the system is congested. Figure 5 illustrates this point by
contrasting the state-dependent arrival rates for the two-
class system with the ones that correspond to the system
with static information with or without the call-back option.
First, we note that the addition of the call-back option has
the effect of shifting some demand from the real-time to
the call-back option, in a way that increases the aggregate
throughput rate. Second, the system with state-dependent
information has a higher aggregate throughput rate in most

Table 3. The value of the call-back option.

Single class (D2 =�) Two classes (opt. Ds
2) Single class (D2 =�) Two classes (opt. Dd

2 )
*eff	0� 	EW s

1 �P	W s
1 > 20���s

1� 	EW s
1 �P	W s

1 > 20���s
1��

s
2� 	EW d

1 �P	W d
1 > 20���d

1 � 	EW d
1 �P	W d

1 > 20���d
1 ��

d
2 �

0$95 (0.13, 0.14, 46.3) (0.002, 0.002, 37.2, 9.8) (0.11, 0.11, 46.4) (0.001, 0.001, 38.4, 8.6)
0$975 (0.22, 0.24, 47.3) (0.02, 0.02, 40.2, 7.9) (0.17, 0.20, 47.4) (0.01, 0.01, 40.4, 7.8)
1$00 (0.37, 0.37, 48.1) (0.19, 0.13, 42.3, 6.6) (0.27, 0.34, 48.4) (0.08, 0.09, 42.6, 6.6)

Note. This table contrasts the results reported in Table 1 with the behavior of the associated single-class systems (D2 =�). System: N = 50,
�= 1, MNL choice model with r1 = r2 = 1, c1 = 0�5, c2 = 0�05, � = 0�3, and �eff�0	 ∈ �0�95�1�0.

possible states (i.e., provided that the total number of cus-
tomers is � N + &N = 130), and actively controls con-
gestion by shifting demand to the call-back channel as
the waiting time in class 1 increases. Note that using the
steady-state distribution of Corollary 2 we conclude that
P	 �W d

1 = 0� = P	total # customers � N + &N � = 0$83, and
that P	�d

1 	S	t��+�d
2 	S	t��� �s

1 +�s
2�= 0$88.

5.2. Staffing Rules

A dual point of view on the results of Table 3 is in the
context of server staffing. Specifically, consider the prob-
lem (see Armony and Maglaras 2004, §5.2) that involves
choosing the minimum number of servers to satisfy a set of
performance specifications that are typically encountered in
contact centers such as:
• the expected waiting time for real-time calls �

10 seconds,
• 80% of all calls are answered within 20 seconds,
• �1% balking probability.
For example, the results of Table 3 illustrate that the

two-class service system with state-dependent information
and N = 50 servers provides a similar quality of service as
the single-class system that announces steady-state waiting-
time information, while processing 6.5% higher demand.
Conversely, numerical experiments show that the two-class
system with dynamic information requires about 5% less
capacity to provide similar quality of service to that of
a single-class static system, and about 1%–2% less than
the two-class static system. Because staffing costs are a
dominant consideration in call centers, these performance
improvements can be rather significant.
In the sequel we provide a detailed mathematical inves-

tigation of the staffing problem. Consider the following
problem formulation:

min�N � EW N
1 �we� P	W N

1 � y�� <1� P	balking�� <b��

(23)

with typical values for these specifications given above. For
a fixed D2, let R=�eff	D2�/�. The remainder of this sec-
tion outlines a procedure that culminates in a simple numer-
ical recipe that provides a solution to the staffing problem
of the form N =R+x

√
R. This reenforces the well-known

square-root staffing rule (e.g., Borst et al. 2004), that, to the
best of our knowledge, is validated here for the first time
(together with Armony and Maglaras 2004) in a multiclass
setting.
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Bounds on expected waiting time of the form EW N
1 �we

can be approximated by the specification EW̃1 �
√

Rwe.
Note that, given the parameters of the choice model and D2,
the value of EW̃1 is only a function of 1̃ (see (15)). Hence,

EW̃1 �
√

Rwe ⇒ 1̃� 1̃e	we��min�1̃ � EW̃1 �
√

Rwe�$

Probabilistic constraints on waiting time of the form
P	W N

1 � y� � <1 (typical parameters are y = 20 sec. and
<1 = 0$2) are approximated as follows:

P	W N
1 � y�≈ P	W̃1 � y

√
R�� <1

⇒ 1̃� 1̃p	y� <1��min�1̃ � P	W̃1 � y
√

R�� <1��

where the last step follows again from the fact that
P	W̃1 � y

√
R� is a function of 1̃ alone (see (16)).

Bounds on balking of the form P	balking�� <b are incor-
porated using (17) and (18) by noting that

P	balking�= 1− E�N
a

�eff	D2�

≈−7

6
EW N

1 � <b ⇒ EW N
1 �−6

7
<b�

which implies that the constraint P	balking� � <b can be
replaced by

1̃� 1̃e

(
−6

7
<b

)
$

Putting it all together, to satisfy the specifications
EW N

1 � we, P	W N
1 � y� � <1, and P	balking� � <b, one

must set N =R+ x∗√R, where

x∗ =max
(

1̃e	we�� 1̃p	y� <1�� 1̃e

(
−6

7
<b

))
�

and its value is computed numerically using the steady-
state distribution given in Corollary 2 and the expressions
given in §4.2.

6. Concluding Remarks
This paper analyzed a two-channel service system, where
one channel offers real-time service, and the other offers
service within a guaranteed upper bound on delay—such
as a call-back or e-mail option. Customer behavior was
captured through a probabilistic choice model. An asymp-
totic analysis was used to develop a near-optimal routing
rule, a consistent waiting time estimator, and to obtain ana-
lytic approximations for the system’s steady-state behavior.
This mode of analysis is accurate for systems with many
servers that are not significantly over- or under-capacitated,
which is arguably the canonical operating regime for such
systems.
The key findings are that service systems can improve

their performance substantially by (a) offering such call-
back or e-mail options with performance guarantees, and

(b) by informing their customers of state information upon
their arrival. These two initiatives encourage active conges-
tion control and load balancing between the two service
options.
Several interesting areas of future research arise. One

important extension from a practical viewpoint is to allow
for nonstationary arrivals. Other interesting directions lie
in the management of the delay bounds for the call-back
or e-mail options. For example, the system manager could
dynamically vary the promised guarantee depending on the
current level of congestion, or allow the customers to make
“appointments” in future times where they wish to receive
their call-back. In addition, one would want to extend the
results of this paper to the case where the service rates for
the two classes are not equal (see Maglaras and Zeevi 2004
for the analytical tools required for this extension). Also,
from a practical viewpoint, it is often the case that separate
pools of servers handle inbound calls or initiate outbound
(call-back) calls or reply to e-mails. This paper provides
a deeper understanding into the benefits of cross-training
agents to perform these tasks.
On the methodological level, two concepts were intro-

duced here that we believe to be general enough to apply to
other situations. The first is the notion of asymptotic con-
sistency. This may prove useful in formulation and analysis
of similar dynamic estimation problems where the random
quantity of interest depends on future events, which them-
selves depend on the value of this quantity in the future.
The second useful result is that the state-space of our lim-
iting system collapses to one dimension. We use this result
to find estimates of the waiting times in a system with
state-dependent arrival rates, for a direct derivation of the
waiting times may be impossible. This may be used in other
problems in operations management, such as the issue of
dynamic pricing of congestion sensitive services.

Appendix. Proofs

Proof of Proposition 1. The proof is based on Stone’s
theorem (Stone 1963). To see that we first set up our sys-
tem in the terminology of Iglehart (1965). Specifically, let
ZN

a 	t� = ZN
1 	t�+ZN

2 	t� be the total number of jobs in the
N th system at time t, and let XN 	t�= 	ZN

a 	t�−N�/
√

N be
the scaled state. XN 	t� is a birth-death process with state-
space

EN =
{
0−N√

N
�
1−N√

N
� $ $ $ �

N −N√
N

�
N + 1−N√

N
� $ $ $

}
�

birth rates

�N

(
z−N√

N

)
=�N P�

(
u1	w̌

N
1 	z�� ��∨ u2	D

N
2 � ��� 0

)
=�N P�

(
u1

(
 z−N − &N !+

N�̃1

� �

)
∨ u2	D

N
2 � ��� 0

)
�
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and death rates

�N

(
z−N√

N

)
= 	z∧N��$

For any number y, −√
N < y < �, define zN 	y� to be

the largest integer such that 	zN 	y�−N�/
√

N is less than
or equal to y. Namely,

zN 	y�=max
{
z
∣∣∣ z−N√

N
�y and

z−N√
N

∈EN

}
=�y√N �+N�

where �x� is the largest integer that is less than or equal
to x. Given this setup, we can now define the infinitesimal
mean of the process XN 	t� to be

mN 	y�= 1√
N

[
�N

(
zN 	y�−N√

N

)
−�N

(
zN 	y�−N√

N

)]

= 1√
N

[
�N

(�y√N �√
N

)
−�N

(�y√N �√
N

)]
$ (24)

Similarly, the infinitesimal variance is

	A2�N 	y�= 1
N

[
�N

(
zN 	y�−N√

N

)
+�N

(
zN 	y�−N√

N

)]

= 1
N

[
�N

(�y√N �√
N

)
+�N

(�y√N �√
N

)]
$ (25)

Define the function g	x1� x2� � P� 	u1	x1� �� ∨
u2	x2� ��� 0�, and recall that the effective total arrival rate
into the system satisfies �N

eff =�N P� 	u1	0� ��∨u2	0� ���
0� = �N − �

√
N1. Hence, the total potential arrival

rate �N may be written as �N = 	�N −�
√

N1�/g	0�0�.
For i = 1�2, denote by g′

xi
	·� ·�= 8g	·� ·�/8xi.

Now let

m0	y�=−1�+ g′
x2

	0�0�

g	0�0�
D̃2�

+




�
g′

x1
	0� 0�

g	0� 0�
	y− &̃�+

�̃1

� y � 0�

−�y� y < 0�

and

	A2�0	y�= 2�$

To prove the proposition, we need to show that Stone’s
criteria hold. Specifically, we need to verify that
(1) EN becomes dense in 	−���� as N →�.
(2) m0	·� and 	A2�0	·� are continuous and 	A2�0	·� > 0.
(3) mN 	y� → m0	y� and 	A2�N 	y� → 	A2�0 uniformly

on compact intervals (u.o.c), as N →�.

Showing (1) and (2) is straightforward. We show that (3)
holds for all y > &̃. The proof for y � &̃ is similar (and
simpler) and is essentially identical to the proof of the result
of Halfin and Whitt, which was presented in §3 (and was
proved in Halfin and Whitt 1981).
Let y > &̃, then for N large enough �y√N �> &N = &̃

√
N

and �y√N �+N > N . Hence,

�N

(�y√N �√
N

)

=�N P�

(
u1

(�y√N �− &N

N �̃1

� �

)
∨ u2	D

N
2 � ��� 0

)

= �N −�
√

N1

g	0�0�
g

(�y√N �− &̃
√

N

N�̃1

�DN
2

)

and �N 	�y√N �/√N�=�N . Therefore,

mN 	y�

= 1√
N

[
�N

(�y√N �√
N

)
−�N

(�y√N �√
N

)]

= 1√
N

[
�N −�

√
N1

g	0�0�
g

(�y√N �− &̃
√

N

N�̃1

�DN
2

)
−�N

]

=−1�+
√

N�− 1�

g	0�0�

·
[
g

(
1√
N

�y√N �/√N − &̃

�̃1

�DN
2

)
− g	0�0�

]

→m0	y� u.o.c as N →�$

Similarly,

	A2�N 	y�

= 1
N

[
�N

(�y√N �√
N

)
+�N

(�y√N �√
N

)]

= 1
N

[
�N −�

√
N1

g	0�0�
g

(�y√N �− &̃
√

N

N�̃1

�DN
2

)
+�N

]

→ 	A2�0	y� u.o.c. as N →�$

This completes the proof. �

Proof of Proposition 2. The state-space collapse con-
dition of (12) is established by imitating the proof of
Propositions 3.1–3.2 in Armony and Maglaras (2004). The
main part of that proof analyzes appropriately defined
fluid-scaled processes, derives the corresponding limit, and
shows that starting from any initial state—not necessarily
satisfying (12)—the system reaches the “target state” given
in (12) in finite time. By the construction of these fluid-
scaled processes, this movement in finite time will appear
instantaneous in the natural time scale of the system, and
thus asymptotically the system will always be at the appro-
priate configuration given by (12); this argument is along
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the lines of Bramson’s state-space collapse result (Bramson
1998).
More specifically, let AN 	t� be the cumulative num-

ber of arrivals in both classes up to time t. Note that
AN 	t/

√
N�/

√
N → �̃1 + �̃2 = �t. Hence, the fluid equa-

tion derived in the proof of Proposition 3.1 (Armony and
Maglaras 2004) for the total queue-length process remains
unchanged. Given the definition of w̌N

1 in terms of the total
queue-length process, this implies that in fluid scale the
limiting �s are constant. As a result, the queue-length equa-
tions for each class also remain the same, and the proof
follows the exact same steps. Finally, the proof of Proposi-
tion 3.2 (Armony and Maglaras 2004) is still valid for the
state dependent case, and (13) is immediately established.
The last assertion is true because in proving (13) one only
uses the first-order term for the arrival rates given by N�̃i,
which is again constant. This completes the proof. �

Proof of Proposition 3. (1) The proof of the asymptotic
consistency follows immediately from the continuous map-
ping theorem, (12), and (13).
(2) From (12) and (13) it follows that

√
NW N

2 	t� ⇒ W̃2	t�=
X̃	t�+ ∧ &̃

�̃2

�
&̃

�̃2

= D̃2$

(3) To establish the asymptotic optimality, consider an
arbitrary nonidling nonpreemptive policy -, and denote the
threshold policy by -∗. The superscript - will be added to
all terms involved to denote their dependence on the pol-
icy. If the information announced to customers is w̌N

1 	·�
and DN

2 , then the resulting total arrival rate into the system
given any total number of customers in the system is the
same as in the threshold policy. This is due to the fact that
the class 1 waiting time estimator w̌N

1 	·� depends on the
state of the system only through the total number of cus-
tomers, and not on the individual queue lengths. Hence, the
terms of the infinitesimal drift and variance are the same
as mN 	·� and 	A2�N 	·� (defined in the proof of Proposi-
tion 1), respectively. Consequently, XN�- ⇒ X̃, where X̃
is the diffusion limit of XN�-∗

(as specified in the state-
ment of Proposition 1) given that the threshold policy is
used. Let X̃-

i be the associated limit queue-length pro-
cesses that are assumed to exist. Lemma A.2 of Puhalskii
and Reiman (2000) is still valid and, as in Proposition 2,
W̃ -

i 	t� = X̃-
i 	t�/�̃i for i = 1�2. Because - is asymptoti-

cally compliant (i.e.,  
√

NW N�-
2 	t�− D̃2!

+ ⇒ 0), it follows
that

W̃ -
2 	t�� D̃2 ∀t � 0 ⇔ X̃-

2 	t�� �̃2D̃2 ∀t � 0$

It is easy to show that the proposed threshold policy
is pointwise optimal. For every sample path C, let X̃+	t�C�
denote the total queue-length trajectory. This is the same
for all nonidling policies. Note that for all C, all t � 0, and
for all - such that X̃-

2 	t�� �̃2D̃2,

X̃-∗
1 	t�C�= argmin�X1 � X1 +X2 = X̃+	t�C�� X2 � �̃2D̃2�

� X̃-
1 	t�C�$ (26)

Because W̃ -
1 = X̃-

1 /�̃1, this completes the proof. Given that
(26) holds w.p.1 for all t � 0, it follows that the threshold
policy -∗ also minimizes (the weaker objective) EW̃1 sub-
ject to W̃2	t�� D̃2 for all t. This completes the proof. �

Proof of Corollary 2. Recall that

b =−7

6

1

�̃1	0�0�
and 1̃= 1− 5

6
D̃2$

Note that X̃ changes behavior in three different regions as
follows.
(i) X̃ � 0: X̃ behaves like an O-U process. From Halfin

and Whitt (1981), P	X̃ � x � X̃ � 0�=.	1̃+ x�/.	1̃�.
(ii) X̃ ∈  0� &̃!: X̃ behaves like a Brownian motion with

drift −1̃� and variance 2�. If 1̃ > 0, the steady-state dis-
tribution in  0� &̃! is exponential with rate 1̃. If 1̃ < 0,
then &̃ − X̃ is distributed exponentially with rate −1̃ > 0;
see Browne and Whitt (1995, §18.4.3). If 1̃= 0, X̃ is uni-
form in  0� &̃!; see Browne and Whitt (1995, §18.4.2).
(iii) X̃ � &̃: In this interval X̃ satisfies the follow-

ing s.d.e. dX̃t =− 1̃�+ b�	X̃t − &̃�!dt +√
2�dBt , where

Bt is a standard Brownian motion. Define Yt such that
b�Y = b�X̃ − b�&̃ + 1̃� ⇒ Y = X̃ − &̃ + 1̃/b. In this
case, dYt = dX̃t = 	−1̃�+b�&̃−b�X̃t�dt+√

2�dB	t�=
−b�Ytdt +√

2�dB	t�. Hence, Y is an O-U process with
drift −b�Y 	t� and variance 2�. It is well known that the
associated steady-state distribution is normal with mean
zero and variance 1/b. It now follows that for X̃ � &̃,
X̃ ∼N	−1̃/b+ &̃�1/b�. That is,

P	X̃ � x � X̃ � &̃�= .	−1̃/
√

b−√
b	x− &̃��

.	−1̃/
√

b�
$

Hence, when 1̃ �= 0, the p.d.f. of X̃ is given by

:X̃	x�=




	1−(1�
;	1̃+ x�

.	1̃�
� x < 0�

(21̃e−1̃x� x ∈  0� &̃!�

(3

√
b
;	

√
b	x− &̃�+ 1̃/

√
b�

.	−1̃/
√

b�
� x � &̃�

where (1�(2�(3 ∈  0�1! and satisfy the following continu-
ity and normalization conditions:

	1−(1�
;	1̃�

.	1̃�
= (21̃�

(21̃e−1̃&̃ = (3

√
b

;	1̃/
√

b�

.	−1̃/
√

b�
� and

	1−(1�+(2	1− e−1̃&̃�+(3 = 1$

Solving for these constants we get

(2 =
[
1̃
.	1̃�

;	1̃�
+ 1− e−1̃&̃ + 1̃√

b
e−1̃&̃ .	−1̃/

√
b�

;	1̃/
√

b�

]−1
�

(1 = 1−(21̃
.	1̃�

;	1̃�
� and (3 =

(21̃√
b

e−1̃&̃ .	−1̃/
√

b�

;	1̃/
√

b�
$
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Note that as &̃ → �, the above result reduces to that of
Halfin and Whitt (1981) (presented in §3).
When 1̃= 0, :Xd	x�= (2 for all x ∈  0� &̃!,

2	1−(1�;	0�= (2� 2(3

√
b;	0�= (2� and

	1−(1�+(2&̃+(3 = 1�

which implies that

(2 =
[√

-

2
+ &̃+

√
-

2b

]−1
� (1 = 1−

√
-

2
(2� and

(3 =
√

-

2b
(2$

(27)

This completes the proof. �

Proof of Proposition 4. We start by giving a skeleton of
the proof. (i) We evaluate E	X̃d − &̃�+. (ii) We define a new
static system that replaces the state-dependent drift term
b	X̃d − &̃�+ (see Corollary 2) by the constant bE	X̃d − &̃�+.
This static system is governed by the behavior of the sys-
tem studied by Halfin and Whitt (1981) (described in §3)
where the crucial parameter + is given by +	EW̃ d

1 � D̃2�.
(Note that this is similar but not equal to the static sys-
tem defined in §5.1.1.) Denote by X̃ ′ the corresponding
total queue-length process and by W̃ ′

1 the corresponding
waiting time process for class 1 service given by W̃ ′

1 =
	X̃ ′ − &̃�+/�1. (iii) We show that E	X̃ ′ − &̃�+ �E	X̃d − &̃�+.
This implies that EW̃ ′

1 � EW̃ d
1 . (iv) Now define the func-

tion h	w� = w−E steady-state class 1 waiting time when
system announces to all customers w]. That is, in our ficti-
tious system the manager announces EW̃ d

1 , which results in
a pair of arrival rates that induces a steady-state expected
waiting time for class 1 given by EW̃ ′

1. Now, as was shown
in the proof of Proposition 4.1 in Armony and Maglaras
(2004), the unique equilibrium of the static system that
announces the steady-state expected waiting time informa-
tion corresponds to the unique solution of the equation
h	w� = 0. Let us denote this solution as w∗ and recog-
nize that w∗ = EW̃ s

1 . From Proposition 4.1 in Armony and
Maglaras (2004) we know that 8h	w�/8w > 0. Given the
result in part (iii) above, h	EW̃ d

1 � < 0, which by the mono-
tonicity property of h	·� implies that EW̃ d

1 � w∗ = EW̃ s
1 .

This completes the proof of the first assertion. The second
assertion follows immediately.
(i) Compute E	X̃d − &̃�+. Using the distribution in

Corollary 2 along with (27) we find that

E	X̃d − &̃�+ = 2

√
-

2b
(2

∫ �

&̃
	x− &̃�

√
b;	

√
b	x− &̃��dx

= (2

√
2-

b

∫ �

0
y;	y�dy

= 1

b
[√

-/2+ &̃+√
-/2b

] $

(ii) Define the static system where we replace the
linear drift term b	X̃d − &̃�+ by its steady-state value
bE	X̃d − &̃�+. This corresponds to a system similar to the
one analyzed in Halfin and Whitt (1981) described in §3
with +′ = +	EW̃ d

1 � D̃2� = bE	X̃d − &̃�+ (recall that 1̃ = 0),
for which

E	X̃ ′ − &̃�+ = (	+′�
+′ e−+′ &̃ $

(iii) Hence,

E	X̃ ′ − &̃�+

E	X̃d − &̃�+
= (	+′�

+′ e−+′ &̃b

[√
-

2
+ &̃+

√
-

2b

]

= (	+′�e−+′ &̃b

[√
-

2
+ &̃+

√
-

2b

]2
� g	b�F

that is, given D̃2, this ratio is just a function of b > 0 that
depends on the choice model. We will show that for all
b > 0, g	b� > 1 by establishing that (a) limb→0 g	b� > 1
and (b) 8g	b�/8b � 0. Note that as b → 0, +′ → 0 and
(	+′�e−+′ &̃ → 1. Hence,

lim
b→0

g	b�= lim
b→0

b

[√
-

2
+ &̃+

√
-

2b

]2

= lim
b→0

b

[(√
-

2
+ &̃

)2

+ -

2b
+ 2

√
-

2b

(√
-

2
+ &̃

)]

= 2
-

> 1$

Also,

8g	b�

8b
= (	+′�

+′2 e−+′ &
[
1+ b

8+′

8b

(
8(	+′�

8+′ − 2
+′ − &̃

)]
> 0�

where the last inequality follows for +′ = −bE	X̃d − &̃�+,
8+′/8b < 0, and (see Armony and Maglaras 2004,
Proposition 4.1) 8(	+′�/8+′ < 0. Hence, E	X̃d − &̃�+ <

E	X̃ ′ − &̃�+.
(iv) From the argument outlined above, it now follows

that EW̃ d
1 �EW̃ s

1 .
From EW̃ d

1 �EW̃ s
1 , it follows that

E
[
−7

6

	X̃d − &̃�+

�̃1	0�0�

]
= +	EW̃ d

1 � D̃2�� +	EW̃ s
1 � D̃2�$

Proposition 1 and Proposition 4.3 in Armony and Maglaras
(2004) imply that the asymptotic comparison of the aggre-
gate arrival rates amounts to a comparison of the lost
throughput as measured by the +s given above. The desired
result follows immediately. (Note that the last step does
not require the restriction to 1̃ = 0.) This completes the
proof. �
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