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Abstract

Both noncooperative and cooperative game theory have been applied to business

strategy. We propose a hybrid noncooperative-cooperative game model, which we

call a biform game. This is designed to formalize the notion of business strategy

as making moves to try to shape the competitive environment in a favorable way.

(The noncooperative component of a biform game models the strategic moves. The

cooperative component models the resulting competitive environment.) We give biform

models of various well-known business strategies. We prove general results on when a

business strategy, modelled as a biform game, will be efficient. We also suggest some

connections to the area of corporate (multibusiness) strategy.
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1 Introduction

There have been a number of applications of game theory to the field of business strategy

in recent years. Reflecting the two branches of game theory itself—the so-called noncooper-

ative and cooperative branches—these applications have taken two forms. Noncooperative

applications, which are the more numerous, use the more familiar language of game matrices

and trees. A leading recent example of this approach is Ghemawat [11, 1997]. Cooper-

ative applications use the less familiar characteristic-function language, and to date have

been much fewer in number. For this approach, see Brandenburger and Stuart [7, 1996],

Lippman and Rumelt [19, 2003b] (also their [18, 2003a]), MacDonald and Ryall [21, 2002],

[22, 2003], Oster [27, 1999], Spulber [36, 2004], and Stuart [38, 2001].

The two approaches address different questions. The noncooperative model is useful for

analyzing strategic moves in business—say the decision whether to enter a market, where to

position a product, how much capacity to build, how much money to devote to R&D, etc.

The cooperative model is useful for addressing the basic question of how much power the

different players—firms, suppliers, customers, etc.—have in a given setting, and therefore, for

saying how much value each player will capture.

Both models clearly have a role to play in understanding business strategy. Going back

at least to the Five Forces framework (Porter [30, 1980]), the idea of talking about the power

of the different players in the marketplace has been basic to the business-strategy field. A

little more precisely, one can see the Five Forces (and other related frameworks) as a tool for

assessing how much value is created in a certain environment, and how that ‘pie’ is divided

up among the players. Cooperative game theory offers a theory of exactly this.1

But this analysis is only the starting point. The next step is to find ways to shape the

environment in a favorable way. A good strategic move is one that brings about favorable

economics to a player—one that enables the player to capture more value. This is where the

noncooperative theory is important, since it gives us a formal language in which to write

down such strategic moves (and countermoves).

In this paper, we put the twomodels together to create a hybrid noncooperative-cooperative

1We remind the reader that, though standard, the terms “non-cooperative” and “cooperative” game
theory are perhaps unfortunate. In particular, cooperative theory can indeed be used to analyze the
implications of competition among the players. See also Section 4 below.
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model which we call the biform2 game model. A biform game is a two-stage game. The

first stage is noncooperative and is designed to describe the strategic moves of the players

(entry, position, capacity, R&D, etc. as above). But the consequences of these moves aren’t

payoffs (at least not directly). Instead, each profile of strategic choices at the first stage

leads to a second-stage, cooperative game. This gives the competitive environment created

by the choices that the players made in the first stage. Analysis of the second stage then

tells us how much value each player will capture (i.e., gives us the payoffs of the players).

In this way, the biform model is precisely a formalization of the idea that business strategies

shape the competitive environment—and thereby the fortunes of the players.3 See Figure 1.1

for a schematic of a biform game.4
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Cooperative 
Game #1

up

down

Cooperative 
Game #2

Cooperative 
Game #3

Cooperative 
Game #4

Figure 1.1

We note that at the colloquial level, phrases such as “changing the game” or “choosing

the game” are often used when conveying the idea of business strategy. The biform model

fits with this language: In the first stage, the players are each trying to choose the best game

for themselves, where by “game” is meant the subsequent (second-stage) game of value.

Equally, they are trying to change the game, if we define one of the second-stage games as

the status quo.

2Having, or partaking of, two distinct forms (OED, 2nd edition).
3Interestingly, Porter’s original article on the Five Forces (Porter [29, 1979]) is titled “How Competitive

Forces Shape Strategy.” But there is no conflict with what we’re saying. In our model, it is the players’
anticipation of the resulting competitive environment that feeds back—in the usual game-theoretic way—to
the strategic choices they make.

4Naturally, one can imagine more elaborate models, with a further stage of strategic choice after the
second stage of our model, and so on. Our two-stage model is a first step in this direction.
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2 Examples

We now give some examples of biform games. (More examples can be found in Section 6.)

Example 2.1 (A Branded Ingredient Game) We start with a biform analysis of the

idea of a ‘branded-ingredient’ strategy.5 In the game, there are two firms each able to produce

a single unit of a certain product. There is one supplier, which can supply the necessary input

to at most one firm, at a cost of $1. There are numerous buyers, each interested in buying

a single unit of the product from one of the two firms. Every buyer has a willingness-to-pay

of $9 for firm 1’s product, and a willingness-to-pay of $3 for firm 2’s product.

The supplier has the option of incurring an upfront cost of $1 to increase the buyers’

willingness-to-pay for firm 2’s product to $7. This is the branded-ingredient strategy, under

which the supplier puts its logo on its customers’ products. (To make our point most clearly,

we assume that this does not affect the buyers’ willingness-to-pay for firm 1, the stronger

firm.)

Status quo

Branded-
ingredient 
strategy

$1
Firm 1

Supplier

$9

$1

$3

Firm 2

$1
Firm 1

$9

$1

$7

Firm 2

Figure 2.1

The game is depicted in Figure 2.1. Here, there is a simple game tree, in which only

one player (the supplier) gets to move. The endpoints of the tree are the cooperative games

induced by the supplier’s choices. The two vertical bars at the upper endpoint summarize

the cooperative game that results if the supplier chooses the ‘status-quo’ strategy. The left

bar shows the valued created if the supplier supplies firm 1 (and therefore not firm 2), and

5This example is taken from teaching materials written by Adam Brandenburger and Ken Corts. A
well-known instance of a branded-ingredient strategy is the Intel Inside campaign. See Botticelli, Collis,
and Pisano [5, 1997] for an account; also Footnote 7 below.
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vice versa for the right bar. The interpretation of the bars at the lower endpoint is similar.

(We don’t show the upfront cost here, but it’s included in the calculations below.)

How will this game be played? To see, we start by analyzing each of the cooperative

games, and then work back to find the optimal strategy for the supplier. Formally, we’ll

analyze cooperative games using the Core, a solution concept that embodies competition

among the players (see Section 5 below). It is straightforward to find the Cores in the

current example. (See Appendix A for the calculations for this and the next example.)

The answer for the status-quo game is that $9− $1 = $8 of value will be created. Firm
2 and the buyers won’t capture any value. The supplier will receive between $2 and $8,

and firm 1 will receive between $0 and $6 (where the sum of what the supplier and firm

2 get must be $8). This is, of course, the intuitive answer: Competition among buyers

ensures that the firms can get their full willingness-to-pay. Firm 2 can then bid up to $3 for

the input from the supplier. Firm 1 has an advantage over firm 2 (since it commands the

higher willingness-to-pay) and so will be the one to secure the input. But because of the

presence of firm 2, it will have to pay at least $3 for it. Thus the supplier gets a minimum

of $3− $1 = $2 of value, and the remaining $9− $3 = $6 is subject to negotiation between
the supplier and firm 1, and this could be split in any way.

The analysis of the branded-ingredient game is very similar: $8 of value will be created

gross of the $1 upfront cost, or $7 net. Again, firm 2 and the buyers won’t capture any

value. This time, the supplier is guaranteed $5, and the remaining $2 of value will be split

somehow between the supplier and firm 1.

We see that paying $1 to play the branded-ingredient strategy may well be worthwhile

for the supplier. For example, if the supplier anticipates splitting the ‘residual pies’ equally

with firm 1, then it anticipates getting $2 + $3 = $5 in the top game, and $5 + $1 = $6 in

the bottom game.

The ‘aha’ of the strategy is that it wouldn’t be worthwhile for firm 2 to pay $1 to

increase willingness-to-pay for its product from $3 to $7. It would still be at a competitive

disadvantage. But it is worthwhile for the supplier to pay the $1 to increase this willingness-

to-pay and thereby level the playing field. It gains by creating more ‘equal’ competition
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among the firms.6 This may be at least one effect of a branded-ingredient strategy in

practice.7

The next example involves strategic moves by more than one player.

Example 2.2 (An Innovation Game) Consider the following game of innovation between

two firms. Each firm has a capacity of two units, and (for simplicity) zero unit cost. There

are three buyers, each interested in one unit of product. A buyer has a willingness-to-pay

of $4 for the current-generation product, and $7 for the new-generation product. Each firm

has to decide whether to spend $5 to bring out the new product. The biform game is depicted

in Figure 2.2. (Each vertical bar represents one unit. Again, upfront costs aren’t shown.)
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Firm 1

$0

$4

$0

$4

Firm 2

$0

$4

$0

$7

Firm 2

$0

$7

$0

$7

Firm 1

$0

$7

$0

$7

Firm 1

$0

$7

Figure 2.2

6In Porter terminology, we might say that the supplier’s strategy has reduced buyer power. (Its buyers
are the firms, of course.) The example is indeed one of strategy shaping the competitive environment.

7Some facts on Intel (taken from Botticelli, Collis, and Pisano [5, 1997]): In 1990, Intel created its Intel
Inside campaign, which reimbursed PC makers for some portion of ad spending in return for their using

the Intel Inside logo on PCs and in their ads. By 1993, Intel had spent $500 million cumulatively on the
campaign. In 1994, IBM and Compaq both opted out of Intel Inside. IBM said: “There is one brand,
and it’s IBM as far as IBM is concerned. We want to focus on what makes IBM computers different, not
what makes them the same” (quoted from “IBM, Compaq Tire of the ‘Intel Inside’ Track,” by B. Johnson,
Advertising Age, 09/19/94, p.52). Compaq rejoined the campaign in 1996, IBM in 1997. (If we take IBM to
be like firm 1 in our example, then we can interpret IBM’s leaving the campaign as an attempt to undermine
its effectiveness.)
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The Cores of the four cooperative games are as follows: In the top-left game, each firm

gets $0 and each buyer gets $4.8 (This is intuitive, since supply exceeds demand.) In the

bottom-left game, firm 1 gets $6 gross (and $1 net of its upfront cost), firm 2 gets $0, and

each buyer gets $4. The same answer—with firms 1 and 2 reversed—holds in the upper-right

game. These two cases are a bit more subtle. The Core effectively says that what the two

firms offer in common is competed away by them to the buyers, but what firm 1 (resp.firm 2)

uniquely offers is competed away to it by the buyers. Finally, in the bottom-right game, each

firm gets $0 gross (and thus −$5 net of its upfront cost) and each buyer gets $7. (Supply

again exceeds demand.)

We see that analysis of the second-stage, cooperative games yields an induced nonco-

operative game, which is the Battle of the Sexes (Figure 2.3). Here then, unlike Example

2.1, finding the best strategy reduces to a game problem, not a decision problem. If firm 1

thinks that firm 2 will innovate, then its best strategy is not to (and vice versa). Also, both

firms may innovate, and lose overall, if each thinks the other won’t. Buyers will win in this

case.

Current 
product

Firm 1

New 
product

Firm 2

0, 0 0, 1

1, 0 -5, -5

Current 
product

New 
product

Figure 2.3

3 Organization of the Paper

The preceding two examples of biform games illustrate some of the issues that we shall take

up formally in the following sections. In Section 5 we give a general definition of a biform

game, and also lay out the general analysis of a biform game. In doing so, we explain how

we deal both with the case that the Core gives a unique payoff to each player, as in Example

2.2, and with the case that the Core gives a range of payoffs to a player, as in Example 2.1.

8The structure of this cooperative game comes from Postlewaite and Rosenthal [31, 1974].
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That is, we cover both determinate and indeterminate competition, since business strategies

can give rise to either situation.

Note another difference between Examples 2.1 and 2.2. The efficient outcome in Example

2.2 is when one firm innovates and the other doesn’t. The (net) value created is then

$7 + $7 + $4 − $5 = $13, as opposed to $12 when neither innovates and $11 when both

innovate. The efficient outcome can therefore arise in this game, at least if we look at the

two (pure-strategy) Nash equilibria. By contrast, in Example 2.1 we saw that the supplier

will optimally choose the branded-ingredient strategy. This is inefficient—it costs $1 and does

not increase the total (gross) value. In Section 6, we give a general result on the efficiency

or inefficiency of strategies. We prove that three conditions on a biform game—Adding Up,

No Externalities, and No Coordination—are sufficient for the outcome to be efficient. (In

building up to this result, we also give some additional specific examples of biform games.)

This analysis gives a general way of doing a kind of ‘audit’ of business strategies—if modelled

as biform games—to investigate their efficiency properties. In Section 7, we apply the same

analysis to the area of corporate (multibusiness) strategy, and use it to suggest a possible

taxonomy of corporate strategies. Section 8 discusses some conceptual aspects of the biform

model, and concludes. Additional technical material is contained in the appendices.

Before we begin the formal development of the biform model (in Section 5), we discuss

some related models.

4 Related Models

The biform model is related to the two-stage models that are common in the game-theoretic

industrial organization (IO) literature. These models are purely noncooperative. In a

typical such model, firms first make strategic choices that define a resulting noncooperative

subgame, in which they then set prices and thereby compete for customers. Shapiro [33,

1989] uses this set-up to give a taxonomy of a wide range of IO models. A similar formulation

is also central to Sutton’s [39, 1991] theory of market structure.

Clearly, the difference between these models and the biform model is in the treatment of

the second stage. We have cooperative, rather than noncooperative, second-stage games,

for two related reasons. First, as we said in the Introduction, the cooperative model ad-
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dresses directly the question of the power of the different players (implied by the first-

stage strategic choices). This is the central question of a number of frameworks in the

business-strategy literature. (We’ve already mentioned Porter [30, 1980], and can add the

Imitation-Substitution-Holdup-Slack framework of Ghemawat [10, 1991], and the framework

in Spulber [36, 2004, Chapter 7], among others.) Second, the cooperative model embodies

an ‘institution-free’ concept of competition. No player is given any price-setting power. No

player can make a take-it-or-leave-it offer. Instead, every player is an active negotiator over

price. In short, the cooperative model is one of buyers competing for sellers and sellers

competing for buyers, without any specific ‘protocol.’9 This is clear in Examples 2.1 and

2.2 above. In Example 2.1, we didn’t say whether the firms set prices that buyers must

take or leave, or whether the buyers name prices. Nor did we specify how the supplier and

the firms interact. The prices we mentioned were the consequences of free-form competition

among the players. The same was true of Example 2.2—both the firms and the buyers were

free to negotiate.

Of course, these two features of the cooperative approach—the direct analysis of power and

the free-form modelling—are related. The free-form modelling ensures that the power of a

player comes solely from the structure of the second-stage game, and not from any procedural

assumptions. A good (first-stage) strategy is then one that creates a favorable (second-stage)

structure for that player, in accordance with our conception of business strategy.

Finally, we believe that the cooperative model is empirically useful. In business-to-

business relationships—such as supplier to firm, and firm to distributor—prices (and other

terms) are often negotiated rather than posted by one or another party. This is not to

deny that there are also posted-price settings. But the biform model makes negotiation the

baseline case which, to repeat, does fit with the focus of a number of strategy frameworks.

Two-stage models are used in the economics of organizations; see, in particular, Grossman

and Hart [13, 1986] and Hart and Moore [15, 1990]. Both these papers have a noncooperative

first stage and a cooperative second stage, just as we have.10 But then the approaches

diverge, reflecting the different contexts being studied. Grossman-Hart (resp.Hart-Moore)

9The term is from Kreps [17, 1990, pp.92-95]. Aumann [3, 1985, p.53] writes that “the core expresses
the idea of unbridled competition.”
10To be quite precise, Grossman-Hart start with a noncooperative second-stage game, from which they

then define an associated cooperative game.

9



use the Shapley Value (resp. the Nash Bargaining Solution) to say how players who jointly

create some value might agree to divide it. We use the Core to capture free-form competition

over the value created.11

Next, we mention briefly other work that applies cooperative game theory to business

strategy.12 In an earlier paper (Brandenburger and Stuart [7, 1996]), we proposed using

cooperative theory—the Core in particular—to give foundations for business-strategy concepts.

In effect, we proposed the second stage of the biform model developed in the current paper.

Stuart [38, 2001] summarizes some applications different from the ones we present here.

MacDonald and Ryall [21, 2002], [22, 2003] generate results based on the minimum and

maximum values a player can get in the Core, and relate these results to business strategy.

Lippman and Rumelt [19, 2003b] examine differences between cooperative game theory and

general- or partial-equilibrium price theory, and discuss the benefits of the first as a basis for

business-strategy research. (They consider several cooperative solution concepts apart from

the Core—the Shapley Value, the Nash Bargaining Solution, and the Nucleolus.) Two recent

textbooks on strategy (Oster [27, 1999] and Spulber [36, 2004]) use ideas from cooperative

theory. Finally, we should mention work by Makowski and Ostroy ([23, 1994], [24, 1995]),

which, while formally in the general-equilibrium setting, was a very important influence on

this and our earlier paper ([7, 1996]). We say more about this connection in Section 6.

5 General Formulation

We now give the general definition of a biform game. Some notation: Given a set X, let

P(X) denote the power set of X, i.e., the set of all subsets of X. Also, write N = {1, . . . , n}.

Definition 5.1 An n-player biform game is a collection

(S1, . . . , Sn;V ;α1, . . . , αn),

11The difference is more than a ‘technical’ one. In a separate note (Brandenburger and Stuart [8, 2004]),
we consider a two-stage analysis of monopoly, in which the first stage is choice of capacity by the seller, and
the second stage is a cooperative game between seller and buyers. We show that the Core and Shapley
Value can give very different predictions in this game.
12For an application to the field of operations management, see Anupindi, Bassok, and Zemel [1, 2001],

who employ a hybrid noncooperative-cooperative model similar to a biform game.
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where:

(a) for each i = 1, . . . , n, Si is a finite set;

(b) V is a map from S1 × · · · × Sn to the set of maps from P(N) to the reals, with
V (s1, . . . , sn)(∅) = 0 for every s1, . . . , sn ∈ S1 × · · · × Sn; and

(c) for each i = 1, . . . , n, 0 ≤ αi ≤ 1.

The setN is the set of players. Each player i chooses a strategy si from strategy set Si.

The resulting profile of strategies s1, . . . , sn ∈ S1×· · ·×Sn defines aTU (transferable util-

ity) cooperative game with characteristic function V (s1, . . . , sn) : P(N) → R. That
is, for each A ⊆ N , V (s1, . . . , sn)(A) is the value created by the subset A of players, given

that the players chose the strategies s1, . . . , sn. (As usual, we require V (s1, . . . , sn)(∅) = 0.)
Finally, the number αi is player i’s confidence index. Roughly speaking, it indicates how

well player i anticipates doing in the resulting cooperative games. The precise way the

indices αi are used is explained below.

We note that the strategy sets S1, . . . , Sn can, of course, come from a general extensive-

form game, so that the definition of a biform game is certainly not restricted to a simultaneous-

move first-stage game. (It covers the simple tree in Figure 2.1, and much more.) The

analysis, too, can reflect a general extensive-form structure; see below, especially Footnote

16.

Write S = S1 × · · · × Sn, with typical element s.

Definition 5.2 Call a biform game (S1, . . . , Sn;V ;α1, . . . , αn) inessential (resp. super-

additive) if for each s ∈ S, the cooperative game V (s) is inessential (resp. superadditive).13

The biformmodel is a strict generalization of both the strategic-form noncooperative, and

TU cooperative, game models. Formally, write an n-player strategic-form noncooperative

game as a collection (S1, . . . , Sn;π1, . . . , πn), where the sets Si are as above and, for each

i, player i’s payoff function πi maps S to the reals. The following two remarks are then

immediate:
13See, e.g., Owen [28, 1995, pp.145-147] for definitions of inessential and superadditive games.
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Remark 5.1 Fix confidence indices α1, . . . , αn. There is a natural bijection between the sub-

class of n-player biform games (S1, . . . , Sn;V ;α1, . . . , αn) that are inessential and superaddi-

tive, and the class of n-player strategic-form noncooperative games (S1, . . . , Sn;π1, . . . , πn).

Remark 5.2 Fix confidence indices α1, . . . , αn. There is a natural bijection between the

subclass of n-player biform games (S1, . . . , Sn;V ;α1, . . . , αn) in which the sets Si are single-

tons, and the class of n-player TU cooperative games.

We now turn to the analysis of a biform game (S1, . . . , Sn;V ;α1, . . . , αn), and adopt the

following procedure:

(5.1) For every profile s ∈ S of strategic choices and resulting cooperative game V (s),

(5.1.1) compute the Core of V (s),14

and, for each player i = 1, . . . , n,

(5.1.2) calculate the projection of the Core onto the ith coordinate axis,

and

(5.1.3) calculate the αi : (1 − αi) weighted average of the upper and lower endpoints of

the projection.15

(5.2) For every profile s ∈ S of strategic choices, and each player i = 1, . . . , n,

(5.2.1) assign to i a payoff equal to i’s weighted average as in (5.1.3) above,

and

(5.2.2) analyze the resulting strategic-form noncooperative game.

14We assume that for each s ∈ S, the Core of V (s) is nonempty. See Section 8a.
15Note that the projection is a closed, bounded interval of the real line.
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Given a profile of strategic choices s ∈ S, the first step is to restrict attention to Core

allocations in the resulting cooperative game V (s) (Step 5.1.1). Second, we calculate the

implied range of payoffs to each player i (Step 5.1.2). Third, each player i uses confidence

index αi to evaluate the given cooperative game V (s) as a weighted average of the largest and

smallest amounts of value that i can receive in the Core (Step 5.1.3). Use of the confidence

indices reduces a biform game to a strategic-form noncooperative game (Step 5.2.1). This

game may now be analyzed in standard fashion—say, by computing Nash equilibria, or by

iteratively eliminating dominated strategies, or by some other method (Step 5.2.2).

Conceptually, this method of analysis starts by using the Core to calculate the effect

of competition among the players at the second stage of the game—i.e., given the strategic

choices made in the first stage. This determines how much value each player can capture.

The Core might be a single point (as in Example 2.2). If so, competition fully determines

the division of value. But there can also be a range of values in the Core, so that competi-

tion alone is not fully determinate, and (at least some) players face a ‘residual’ bargaining

problem. (In Example 2.1, competition narrowed down the outcomes, but left a range of

value to be negotiated between the supplier and firm 1. In the status-quo game, the range

for the supplier was [$2, $8]; in the branded-ingredient game it was [$5, $7].) A confidence

index αi close to 1 then indicates that player i anticipates capturing most of the value to

be divided in the residual bargaining. If αi is close to 0, player i anticipates getting little

of this residual value. We can say that player i has an optimistic or pessimistic view of the

game according to whether αi is large or small. (In Example 2.1, the supplier would choose

the branded-ingredient strategy if α7 + (1− α)5 > α8 + (1− α)2, or α < 3/4. Unless the

supplier is very optimistic, it pays it to follow this strategy.)

Use of the confidence indices gives us an induced noncooperative game among the players.

Analysis of this game indicates which strategies the players will choose. Let us repeat that

we don’t insist on a particular solution concept here. We can use Nash equilibrium, or some

other concept.16

16For example, if the underlying first-stage game is one of perfect information, we might want the backward-
induction solution (BI), which we could get by performing iterated weak dominance (IWD) on the matrix.
(See Brandenburger-Friedenberg [6, 2003] for an exact relationship between IWD and BI, and references to
related results.)
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A final comment on the formulation: Appendix B shows how the confidence index can

be derived from axioms on a player’s preferences over intervals of outcome. The axioms are

Order, Dominance, Continuity, and Positive Affinity. The first three axioms are standard.

The fourth is what accounts for the specific weighted-average representation. But we argue

in Appendix B that this axiom is immediately implied by our cooperative game context, so

that the structure of a biform game (S1, . . . , Sn;V ;α1, . . . , αn) is a consistent whole.17

Section 8 has some additional comments on conceptual aspects of the biform model.

6 Efficiency and Business Strategy

We now give some more examples of biform games, beyond those in Section 2. The examples,

like the earlier ones, show how to analyze business-strategy ideas using a biform game. They

also lead to a general analysis of the efficiency and inefficiency of business strategies, as will

be seen.

We start with some notation and a definition. Write N\{i} for the set {1, . . . , i− 1, i+
1, . . . , n} of all players except i.

Definition 6.1 Fix a biform game (S1, . . . , Sn;V ;α1, . . . , αn), and a strategy profile s ∈ S.

Then the number

V (s)(N)− V (s)(N\{i})
is called player i’s added value in the cooperative game V (s).

In words, player i’s added value is the difference, in the given cooperative game, between

the overall value created by all the players, and the overall value created by all the players

except i. It is, in this sense, what player i adds to the value of the game. This is the

standard cooperative concept of marginal contribution. Here we use the “added value”

terminology from Brandenburger and Stuart [7, 1996].18

The following observation is immediate, and will be used below.
17That said, note the assumption in our formulation that a player doesn’t distinguish between two Cores

that yield the same projections for that player. One could imagine an alternative approach, where players
have preferences over (entire) polytopes rather than intervals, that would allow this distinction. This could
be an interesting extension.
18We do so for the same reason as there: One frequently sees the term “added value” in business-strategy

writing, and the usage fits with the formal definition above.
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Proposition 6.1 Fix a biform game (S1, . . . , Sn;V ;α1, . . . , αn), a strategy profile s ∈ S,

and suppose that the Core of V (s) is nonempty. Then if

nX
i=1

[V (s)(N)− V (s)(N\{i})] = V (s)(N),

the Core of V (s) consists of a single point, in which each player i receives V (s)(N) −
V (s)(N\{i}).

Proof. Given an allocation x ∈ Rn and T ⊆ N , write x(T ) =
P

j∈T x
j. Fix some i,

and note that the Core conditions x(N) = V (s)(N) and x(N\{i}) ≥ V (s)(N\{i}) imply
that xi ≤ V (s)(N) − V (s)(N\{i}). Summing over i yields x(N) ≤ P

i∈N [V (s)(N) −
V (s)(N\{i})], with strict inequality if xi < V (s)(N) − V (s)(N\{i}) for some i. But the
right side is equal to V (s)(N) by assumption. So strict inequality implies x(N) < V (s)(N),

a contradiction.

Example 6.1 (A Negative-Advertising Game) Here we look at a “generic” strategy

(Porter [30, 1980]), with a difference. Consider the biform game depicted in Figure 6.1.19

There are three firms, each with one unit to sell at $0 cost. There are two buyers, each

interested in one unit of product from some firm. Firm 1 alone has a strategic choice, which

is whether or not to engage in negative advertising. If it doesn’t, then each buyer has a

willingness-to-pay of $2 for each firm’s product. If it does, then willingness-to-pay for its

own product is unchanged, but that for firm 2’s and 3’s products falls to $1. (The negative

advertising has hurt the image of firms 2 and 3 in the eyes of the buyers.)

Status quo

Negative-
advertising 
strategy

$0
Firm 1

$2

$0

$1

Firm 1

Firm 2

$0

$2

Firm 2
$0

$2

Firm 3

$0

$1

Firm 3
$0

$2

Firm 1

Figure 6.1

19Different formalisms aside, the example is essentially the same as Example 1 in Makowski-Ostroy [23,
1994], which they kindly say was prompted by discussions with one of us.
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Along the status-quo branch, the overall value is $4. Each firm’s added value is $0; each

buyer’s added value is $2. (See Appendix A for the calculations for the examples in this

section.) By Proposition 6.1, each firm will get $0 in the Core, and each buyer will get

$2. (This is the intuitive answer, since the firms are identical, and supply exceeds demand.)

Along the negative-advertising branch, the overall value is $3. Firm 1’s added value is $1,

firm 2’s and 3’s added values are $0, and each buyer’s added value is $1. Again using

Proposition 6.1, firms 2 and 3 will get $0 in the Core, and firm 1 and each of the buyers will

get $1. (Similar to Example 2.2, the Core says that what the three firms offer in common

is competed away to the buyers, while what firm 1 uniquely offers is competed away to it by

the two buyers.)

Firm 1 will optimally choose the negative-advertising example, thereby capturing $1 vs. $0.

This is the opposite of a differentiation strategy, where a firm creates added value for itself by

raising willingness-to-pay for its product (perhaps at some cost to it). Here, firm 1 creates

added value by lowering willingness-to-pay for its rivals’ products. Notice that the strategy

is inefficient: it shrinks the overall value created from $4 to $3.

Example 6.2 (A Coordination Game) There are three players, each with two strategies,

labelled No and Yes. Player 1 chooses the row, player 2 chooses the column, and player 3

chooses the matrix. Figure 6.2 depicts the cooperative game associated with each strategy

profile, where the value of all one-player subsets is taken to be 0.20 This example can be

thought of as a model of switching from an existing technology standard (the strategy No)

to a new standard (the strategy Yes). The new technology costs $1 more per player, and is

worth $2 more per player, provided at least two players adopt it.21

20Properly, we should write V (No, No, No)(N) = 6, V (No, No, No)({1, 2}) = 4, etc. But the cell
identifies the strategy profile, so we use the simpler notation in the matrix.
21In more detail, the characteristic functions shown can be built up from the following scenario. There

are three firms, each with unit capacity, and numerous buyers, each interested in buying from one firm.
(Only the firms have strategic choices, as shown.) Buyers value the current-generation technology at $2,
and the new generation at $4. There is a ‘network effect,’ in that at least two buyers must purchase, for

value to be created. The new technology costs a firm $1 to operate, the current technology is costless. The
choice that the majority of the firms make determines which technology is available to the buyers. Finally,
the technology is backward, but not forward, compatible. Thus, if a firm is the only one choosing the new
technology, it can sell to buyers, but not if it is the only one choosing the old technology. We can induce
the three-player game in the text from this setup.
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v(N) = 6
v(1, 2) = 4
v(2, 3) = 4
v(3, 1) = 4

No

Yes

No Yes

No

v(N) = 5
v(1, 2) = 3
v(2, 3) = 3
v(3, 1) = 4

v(N) = 5
v(1, 2) = 3
v(2, 3) = 4
v(3, 1) = 3

v(N) = 6
v(1, 2) = 6
v(2, 3) = 3
v(3, 1) = 3

v(N) = 5
v(1, 2) = 4
v(2, 3) = 3
v(3, 1) = 3

No

Yes

No Yes

Yes

v(N) = 6
v(1, 2) = 3
v(2, 3) = 6
v(3, 1) = 3

v(N) = 6
v(1, 2) = 3
v(2, 3) = 3
v(3, 1) = 6

v(N) = 9
v(1, 2) = 6
v(2, 3) = 6
v(3, 1) = 6

Figure 6.2

Using Proposition 6.1, it is easy to check that in each of the four cooperative games, the

Core will give the players exactly their added values. We get the induced noncooperative

game in Figure 6.3, which is a kind of coordination game. There are two (pure-strategy)

Nash equilibria: (No, No, No) and (Yes, Yes, Yes). The first is inefficient (the total value

is $6), while the second is efficient (the total value is $9).

2, 2, 2No

Yes

No Yes

No

2, 1, 2

1, 2, 2 3, 3, 0

2, 2, 1No

Yes

No Yes

Yes

0, 3, 3

3, 0, 3 3, 3, 3

Figure 6.3

We now show that Examples 6.1 and 6.2, together with Example 2.1, actually give a

complete picture, within the biform model, of how strategies can cause inefficiencies. (Ex-

ample 2.2 will also fit in, as we’ll see.) We start with some definitions. As usual, we write

S−i for S1 × · · · × Si−1 × Si−1 × · · · × Sn.

Definition 6.2 A biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfies Adding Up (AU) if

for each s ∈ S,
nX
i=1

[V (s)(N)− V (s)(N\{i})] = V (s)(N).

The game satisfies No Externalities (NE) if for each i = 1, . . . , n; ri, si ∈ Si; and s−i ∈
S−i,

V (ri, s−i)(N\{i}) = V (si, s−i)(N\{i}).
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The game satisfies No Coordination (NC) if for each i = 1, . . . , n; ri, si ∈ Si; and

r−i, s−i ∈ S−i,

V (ri, r−i)(N) > V (si, r−i)(N) if and only if V (ri, s−i)(N) > V (si, s−i)(N).

The Adding Up condition says that in each second-stage cooperative game, the sum of

the players’ added values is equal to the overall value created in that game. (This is just

the condition of Definition 6.1 applied to each second-stage game.) The No Externalities

condition says that each player’s strategic choice does not affect the value that the remaining

players can create (without that player). The No Coordination condition says that when

one player switches strategy, the sign of the effect on the overall value created is independent

of the other players’ strategic choices.

We need two additional (obvious) definitions: A profile of strategies s ∈ S in a biform

game will be called a (pure-strategy) Nash equilibrium if it is a (pure-strategy) Nash

equilibrium of the induced noncooperative game. (This is the noncooperative game induced

as in Section 5. That is, given a profile r ∈ S, we assign each player i a payoff equal to the

αi : (1 − αi) weighted average of the upper and lower endpoints of the projection onto the

ith coordinate axis of the Core of the cooperative game V (r).) A strategy profile s ∈ S will

be called efficient if it solves maxr∈S V (r)(N).22

We can now state and prove two results on efficiency in biform games.

Lemma 6.1 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU and NE, and

that for each r ∈ S, the game V (r) has a nonempty Core. Then a strategy profile s ∈ S is

a Nash equilibrium if and only if

V (s)(N) ≥ V (ri, s−i)(N) (6.1)

for every ri ∈ Si.

Proof. By Proposition 6.1, AU implies that for each r ∈ S, the Core of V (r) consists of

a single point, in which each player i receives V (r)(N)− V (r)(N\{i}). Therefore, a profile
s is a Nash equilibrium iff for each i,

V (s)(N)− V (s)(N\{i}) ≥ V (ri, s−i)(N)− V (ri, s−i)(N\{i}) (6.2)

22An efficient profile always exists, since we’re assuming the strategy sets Si are finite.
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for every ri ∈ Si. But NE implies that

V (s)(N\{i}) = V (ri, s−i)(N\{i})

for every ri ∈ Si. Thus, inequality (6.2) holds if and only if inequality (6.1) holds.

Proposition 6.2 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU, NE,

and NC, and that for each r ∈ S, the game V (r) has a nonempty Core. Then if a strategy

profile s ∈ S is a Nash equilibrium, it is efficient.

Proof. Write

V (s)(N)− V (r)(N) =

V (s1, r2, . . . , rn)(N)− V (r)(N)+

V (s1, s2, r3, . . . , rn)(N)− V (s1, r2, r3, . . . , rn)(N)+

. . .+

V (s)(N)− V (s1, . . . , sn−1, rn)(N).

NC and inequality (6.1) in Lemma 6.1 together imply that each pair of terms on the right-

hand side of this equation is non-negative, from which V (s)(N) ≥ V (r)(N).

Proposition 6.3 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU and NE,

and that for each r ∈ S, the game V (r) has a nonempty Core. Then if a strategy profile

s ∈ S is efficient, it is a Nash equilibrium.

Proof. We are given that V (s)(N) ≥ V (r)(N) for every r ∈ S, so certainly inequality

(6.1) in Lemma 6.1 holds. Thus the profile s is a Nash equilibrium.

Propositions 6.2 and 6.3 provide, respectively, conditions for any Nash-equilibrium profile

of strategies to be efficient and for any efficient profile of strategies to be a Nash equilibrium.

They can thus be viewed as game-theoretic analogs to the First and SecondWelfare Theorems

of general-equilibrium theory. They are closely related to results in Makowski-Ostroy ([23,

1994], [24, 1995]), as we’ll discuss below. First, though, we tie these general results back to

our earlier examples of business strategies.
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Table 6.1 summarizes which of the conditions—AU, NE, and NC—are satisfied in Examples

2.1, 6.1, and 6.3.

Negative-
advertising 
game

Coordination 
game

Branded-
ingredient 
game

Adding Up
No 

Coordination
No 

Externalities

Table 6.1
Start with Example 2.1 (the branded-ingredient game). In the status-quo second-stage

game, the supplier has an added value of $8, and firm 1 has an added value of $6 (firm 2 and

the buyers have zero added value). The overall value is $8, so AU fails. (We could equally

have looked at the branded-ingredient second-stage game.) NE holds: Only the supplier has

a strategic choice, and the value created without the supplier is constant—at $0—regardless

of which strategy the supplier follows. Finally, it is easy to see that NC is automatically

satisfied in any game where only one player has a strategic choice.23 We conclude that the

likely inefficiency in this game (which we already noted in Section 3) comes from the failure

of AU. In plain terms, there is a bargaining problem between the supplier and firm 1 over

the $6 of value that must be divided between them. To do better in this bargaining, the

supplier may well adopt a strategy (the branded-ingredient strategy) that decreases the pie.

In Example 6.1 (the negative-advertising game), it is immediate from our earlier analysis

that AU is satisfied. NC is satisfied for the same reason as in Example 2.1 (only firm 1 has

a strategic choice). But NE fails: The value created by firm 2, firm 3, and the two buyers is

$4 when firm 1 chooses the status-quo strategy, but changes to $2 when firm 1 chooses the

negative-advertising strategy. Again, the outcome is inefficient.

Finally, in Example 6.2 (the coordination game), AU is satisfied. So is NE, as the reader

can check from Figure 6.2. But NC fails: For example, when player 1 changes strategy

23This is what we would want, of course. The possibility of inefficiency due to coordination issues should

arise only when at least two players have (non-trivial) choices.

20



from No to Yes, the overall value falls from $6 to $5 when players 2 and 3 are both playing

No, but rises from $6 to $9 when players 2 and 3 are both playing Yes. Notice that in this

example, there is indeed an inefficient Nash equilibrium (No, No, No). But the efficient

profile (Yes, Yes, Yes) is also a Nash equilibrium, as Proposition 6.3 says it must be.

We see how the general results enable us to identify the source of the inefficiency of the

business strategy in each of our examples. We also know that if a biform model of a business

strategy satisfies our three conditions, then we’ll get efficiency. Of course, our examples are

meant only to be suggestive of how one might model many other business strategies as biform

games. But we now have a general way of doing a kind of ‘audit’ of any business strategy—if

modelled as a biform game—to discover its efficiency properties.

Here is one more example, just to ‘redress the balance,’ since we’ve only given one example

of efficiency so far (Example 2.2). This time, AU, NE, and NC will all hold.

Example 6.3 (A Repositioning Game) Consider the biform game depicted in Figure

6.4. There are three firms, each with one unit to sell. There are two identical buyers,

each interested in one unit of product from some firm. Under the status quo, the firms

have the costs, and the buyers have the willingness-to-pay numbers, on the upper branch.

Firm 2 has the possibility of repositioning as shown by its vertical bar on the lower branch.

Specifically, it can spend $1 to raise ‘quality’ (willingness-to-pay) and lower cost as shown.

Status quo

Repositioning 
strategy

$1

Firm 2

$8

Firm 1

$4

$11

Firm 2

$7

$14

Firm 3

$1

$8

Firm 1

$3

$12

Firm 2

$7

$14

Firm 3

Figure 6.4

Along the status-quo branch, the overall value is $14. Each firm’s added value is $0;

each buyer’s added value is $7. Along the repositioning branch, the overall value is $15 ( $16

minus the $1 repositioning cost). Firm 2’s added value is $1; firm 1’s and 3’s added values
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are $0; each buyer’s added value is $7. AU is satisfied, as clearly are NE and NC. By

Proposition 6.2, we know that firm 2 must optimally make the efficient choice of the lower

branch, as indeed it will, to net $1.

This is a simple biform model of a (re)positioning strategy. Note that on the lower

branch, firm 2 still doesn’t have either the lowest cost or the highest quality among the three

firms. But it does command the largest gap between quality and cost. This is the source of

its added value.

Apart from giving us information on the efficiency properties of a business strategy, the

results of this section also give a way to frame some of the ideas in the corporate-strategy

literature. We pick up on this in the next section, but, before that, we make some further

comments on the results themselves.

First, note that Table 6.1 establishes the independence of the AU, NE, and NC conditions.

It is possible for any two to hold, but not the third.24

Next, the efficiency conditions in Proposition 6.2 are sufficient, but not necessary. In

Example 2.2, the (pure) Nash equilibria were efficient (as we noted in Section 3). But it is

easily checked that AU and NC fail (NE holds).25 This said, the conditions do seem ‘tight.’

None of them can be left out in Proposition 6.2, as our examples showed, and we do not see

how they could be weakened in an interesting way.

Finally, we note the considerable debt we owe to Makowski-Ostroy ([23, 1994], [24, 1995]).

Makowski-Ostroy (henceforth M-O) present welfare theorems to which our Propositions 6.2

and 6.3 are closely related. The M-O model is a reformulation of general-equilibrium theory,

in which the agents make choices (“occupational” choices in their terminology) that define

the subsequent economy in which they then produce and trade. It therefore has a two-

stage structure, just as our purely game-theoretic model does. There are some differences.

We define added value (marginal contribution) in the standard game-theoretic way, while

M-O’s definition effectively assumes that NE holds. Our NC condition is weaker than the

corresponding condition in M-O (they call it No Complementarities) ruling out coordination

issues.
24It is easy to prove that if in a two-player game AU and NE are satisfied, then so is NC. This is why we

needed three players to get a failure of NC alone (Example 6.2).
25The same example shows that it’s also true that the conditions of Proposition 6.3 aren’t necessary. Both

efficient profiles are Nash equilibria, despite the failure of AU.
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Appendix C contains more details on the relationship to M-O, and some other remarks

on this section.

7 A Connection to Corporate Strategy

Corporate (multibusiness) strategy is the study of when ‘the whole is worth more than the

sum of the parts.’ Alternatively put, corporate strategy is about the opportunities that

arise because individual entities (divisions of a corporation, potential alliance partners, etc.)

may each be maximizing the value they can capture, but appropriate joint action by the

entities could capture more value in total.

The literature usually distinguishes two kinds of corporate strategy. The “market power”

route involves joint action that leads to capturing a greater slice of the existing pie. A good

example is when different divisions (or businesses) engage in joint purchasing of an input,

and thereby negotiate a lower unit cost. The “efficiency” route involves joint action that

leads to creating a larger pie, and capturing at least a part of the increase. The focus of the

literature is on the second kind of corporate strategy, and we follow that here.

Our observation is that the previous section gives us a way to classify different kinds of

efficiency-oriented corporate strategies. Think of a corporate strategy as a way of addressing

an inefficiency. Then, by the previous section, we can then break this down into addressing a

failure of Adding Up, or No Externalities, or No Coordination. (Of course, a given strategy

could address more than one failure.) Here is a sketch of how this scheme works.

a. No Adding Up A big question in corporate strategy is that of the appropriate

vertical scope of the firm. Within this topic, the Holdup problem has, of course, been

central (e.g., Collis and Montgomery [9, 1998, pp.108-111]). Here is a simple biform model

of Holdup. There are two players—call them the upstream firm U and the downstream firm

D. If U makes an upfront investment of $4, then U and D can transact and together create

$7 of (gross) value. Calculate added values: The overall pie is $3, D creates $0 on its own,

U creates −$4 on its own.26 The added value of D is thus $7, the added value of U is

$3. In the Core, the $3 pie will be divided so that D gets between $0 and $7, and U gets

26As in earlier examples (see Appendix A), this is the correct treatment of U ’s upfront cost—viz., to

subtract it from the value of any subset of players that includes U.
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between −$4 and $3. (Of course, these calculations simply reflect the fact that the game

is a bilateral monopoly between U and D.) Will U make the efficient decision to invest?

Not necessarily—which is the Holdup problem. (In our formalism, it will if and only if its

confidence index is greater than 4/7.)

Our analysis says that one way to understand the source of potential inefficiency in

Holdup is as a failure of AU. (NE and NC are clearly satisfied.) Solutions to Holdup can

be understood similarly. Vertical integration, bringing in a downstream competitor, etc.

are ways of getting AU or closer to it. (For example, in its ideal form, vertical integration

creates a one-player game, in which AU is automatically satisfied. A second downstream

competitor would reduce the gap between the sum of the added values and the pie, ensuring

the upstream firm more value.) But we are not suggesting any new solutions to Holdup,

only pointing out that Holdup can be classified in our scheme.

Another area of corporate strategy where failures of AU come up is in horizontal re-

lationships, e.g., in strategic alliances. Here, again, there may be inefficiency—usually,

underinvestment—if a party isn’t assured its added value.

b. Externalities Typical corporate-strategy issues that fit in here are the problem of

transferring knowledge across divisions of a corporation and managing a corporate brand.

The externality is that one division could take an action to share its knowledge with another

division that would increase the value created by the second division (together with its

customers and suppliers). Or, it is that one division might make an investment in a common

brand that is suitable for that division’s ‘image’ but unsuitable for another division’s image—

i.e., lowers willingness-to-pay for the second division’s product, and so decreases the value

created by that division, its customers, and its suppliers. In both cases, NE might fail,

and inefficiency could result. Corporate-level knowledge and brand management are often

discussed as appropriate strategies to overcome such potential inefficiencies.

c. Coordination Ideas around scale and scope would fit here. Consider two divisions

where each has to decide which of two suppliers to source from. This could be analyzed as a

(two-player) biform game, similar to Example 6.2, where the No andYes labels correspond to

choosing one or other supplier. The efficient profile of choices would be when both divisions

choose the supplier corresponding to the Yes label. But both choosing the other supplier
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(the No label) would also be a Nash equilibrium. We would again have a coordination

game, and a failure of NC. The gains from coordination would come from the usual reasons

of scale and scope—opportunities to share in defraying the fixed costs of the Yes supplier,

to speed this supplier’s movement down the learning curve, etc. But with a failure of NC,

there is no guarantee that the divisions, acting on their own, will make the efficient choice.

Solutions to this kind of potential inefficiency are discussed in the literature under precisely

the heading of coordination of the multibusiness firm (Collis-Montgomery [9, 1998, p.156]).

This is obviously not meant to be an exhaustive discussion of corporate strategy. Its

purpose is simply to suggest that the efficiency framework of AU, NE, and NC may be a

useful way to classify and unify some of the corporate-strategy literature. It does also sug-

gest a ‘problem-driven’ approach to crafting corporate strategies: Try to spot inefficiencies

in the organization (or across organizations) and then find ways of correcting them. Also,

David Collis (private communication) has asked whether it might be possible to find a corre-

spondence between the AU-NE-NC classification of inefficiencies and different organizational

structures. Could it be argued that each type of inefficiency is best addressed via a particu-

lar organizational structure (hierarchy, incentive system, etc.)? We don’t know, but, again,

perhaps this efficiency perspective on corporate strategy will prove fruitful.

8 Discussion of the Model

The goal of this paper was to combine the virtues of both branches of game theory—the

noncooperative and the cooperative—into a hybrid model that could be used to analyze

business strategies. We also made some connections to corporate strategy.

Here, we comment further on some conceptual aspects of the biform model we proposed.

a. Emptiness of the Core We’ve used the Core to analyze the various cooperative

games that result from the players’ strategic choices. We did this because we wanted to

capture the idea of free-form competition among the players. What if the Core is empty?

First, note that there are various important classes of TU cooperative games known to

have nonempty Cores. Examples of such classes that are of economic interest include the

“market games” and “assignment games” of Shapley and Shubik ([34, 1969], [35, 1971]). Of

particular relevance to business-strategy applications, Stuart [37, 1997] proves nonemptiness
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of the Core for a class of three-way assignment games (think of suppliers, firms, and buyers)

that satisfy a local additivity condition.27

Next, we observe that a biform model can restore nonemptiness to at least one scenario

that is known to produce an empty Core when modelled purely cooperatively. The point

is essentially made by Example 2.2. Consider the following cooperative game: There are

two firms, each with capacity of two units, and zero unit (marginal) cost. There are three

buyers, each interested in one unit of product, and each with a willingness-to-pay of $4. If

a firm is ‘active,’ then it incurs a fixed cost of $ε, for some small ε > 0. (Formally, the value

of any subset containing that firm and one or more buyers is reduced by $ε.) This game has

an empty Core.28 But there is a natural biform model of the scenario with nonempty Cores:

Make paying the $ε cost a first-stage strategic choice for each firm, and write down the

resulting second-stage cooperative games. (If a firm doesn’t pay $ε in the first stage, then

it doesn’t increase the value of any subset at the second stage.) Very similar to Example

2.2, the Cores of the second-stage games will be singletons (in particular, nonempty!), and

we’ll get an induced noncooperative game that is the Battle of the Sexes (Figure 8.1).

Arguably, finding an empty Core in a model is a ‘positive’ finding, telling us something

important about the instability of the situation being studied. This seems true of the exam-

ple of nonemptiness above, though we also showed a way to avoid emptiness. Interestingly,

a kind of instability is still present in our biform resolution: Each firm will want to be the

one to pay $ε, hoping the other won’t and thereby netting $(8 − ε). But both might end

up losing overall.

Summing up, there are important classes of TU games that have nonempty Cores. The

biform model may enable us to circumvent the emptiness of the Core in at least some other

cases. (We just gave one example of this.) Finally, emptiness of the Core may be a valuable

insight, in any case. This last possibility does raise the interesting question of how players,

at the first-stage of a biform game, might evaluate a second-stage game with an empty Core.

We don’t have an answer at present, and believe this question merits further study.

27Example 2.1 is a three-way assignment game, and Examples 6.1 and 6.3 are two-way assignment games.
28Telser [40, 1994] contains other examples of empty Cores.
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Don’t pay

Firm 1

Pay $ε

Firm 2

0, 0 0, 8 - ε

8 - ε, 0 - ε, - ε

Don’t pay Pay $ε

Figure 8.1

b. Efficiency An objection that is sometimes made of cooperative game theory is

that it presumes efficiency. All potential value is created. This criticism is moot if the

biform model is used. The biform model does incorporate what might be called conditional

efficiency: Given a profile s ∈ S of strategic choices, use of the Core says that all of the value

V (s)(N) that can then be created will, in fact, be created. But overall efficiency would

require that the strategy profile s that the players actually choose maximize V (s)(N), i.e.,

that the profile be efficient as defined in Section 6. We’ve seen several times in the paper

that this need not be so. The biform model permits inefficiency.

c. Externalities Another long-standing issue in cooperative game theory is how to deal

with situations where the value created by a subset A of players—call it v(A)—may depend on

what players outside A do. Prima facie, v(A) does not depend on what the players outside A

do, for the simple reason that a cooperative model has no concept of action or strategy in it.

The approach in von Neumann andMorgenstern [41, 1944] was to start with a noncooperative

game, which does have actions, of course, and to define an induced cooperative game from

it. They then had to make a specific assumption about how the players outside A would

behave. (They assumed minimax behavior.29) The biform model avoids this difficulty by

simply positing that each strategy profile in the first-stage noncooperative game leads to a

different, and independently specified, second-stage cooperative game. The quantity v(A) is

then a function of the first-stage strategic choices of all the players—including, in particular,

the choices of players outside A. But this dependence is without prejudice, so to speak.

29Define v(A) to be the maximin payoff of A in the two-person zero-sum game in which the players are A
and the complement of A, and the payoff to A from a pair of strategies is the sum of the payoffs to the players
in A from those strategies. In effect, von Neumann-Morgenstern imagine that the players in A ‘assume the
worst’ about the players outside A.
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There is no built-in assumption of minimax or any other kind of behavior.30 Of course, the

biform model also allows for the special case in which v(A) does not depend on what the

players outside A do. This is precisely the situation of No Externalities, as in Definition

6.2.31

d. Indeterminacy of the Core The Core can be a single point (Examples 2.2, 6.1, 6.2,

6.3) or it can be indeterminate (Example 2.1). In the latter case, competition doesn’t fully

determine the division of value, and the Core reflects this. There is a residual bargaining

problem—that depends presumably on ‘intangibles’ such as how skilled different players are

at persuasion, bluffing, holding out, etc. (In Example 2.1, the supplier and firm 1 had to

bargain over $6 in the upper game of Figure 2.1, and $2 in the lower game.) If one can

make specific assumptions on how the residual bargaining proceeds, then it may be possible

to reach a definite answer as to the division of value. But absent such specificity, the

potential indeterminacy of the Core seems reasonable. Of course, we did assume that a

player forms a definite view of a game’s worth, even if the game involves residual bargaining.

This was the role of the players’ confidence indices, to be discussed next.

e. Interpretation of the Confidence Index The biform model makes no prediction

about how the value created at the second stage will be divided, beyond saying it must be

in accordance with the Core. It does say that players form views, as represented by their

confidence indices, as to howmuch value they will get. We can think of these indices as giving

the players’ views on how good they think they are at dealing with the above ‘intangibles’

(persuasion, bluffing, holding out, etc.). Thus, returning again to Example 2.1, we noted (in

Section 5) that the supplier would choose the branded-ingredient strategy if its confidence

index α < 3/4. A supplier who thought it could do very well (α > 3/4) in bargaining

with firm 1 in the status-quo game would not spend the $1 to play the branded-ingredient

strategy.

The confidences indices are purely subjective. (They can be considered a representation

30Zhao [42, 1992] and Ray and Vohra [32, 1997] have interesting alternative proposals for how to make
what the players in subset A can achieve depend in a ‘neutral’ way on what the complementary players do.
Unlike us, they derive cooperative games from noncooperative games. Also, their models are one-stage not

two-stage.
31That definition was restricted to subsets A = N\{i}, but generalizes in the obvious way to other subsets:

Simply require that V (s)(A) be independent of any sj for j /∈ A.
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of preference, as Appendix B shows.) The actual outcome of the game might be quite

different from what a player anticipates. (In Example 2.1, the supplier might forego the

branded-ingredient strategy, expecting to do very well in the bargaining with firm 1, and

then even end up with less than $5, the minimum it would get under the branded-ingredient

strategy.)

We also stress that the confidence indices may or may not be mutually consistent, in

the following sense. Fix a second-stage game. We assign to each player i an αi : (1− αi)

weighted average of the upper and lower endpoints of the corresponding Core projection.

Of course, the resulting tuple of points may or may not itself lie in the Core. If it does

for each second-stage game, we can say that the players’ confidence indices are “mutually

consistent.” If not, they are “mutually inconsistent,” and in at least one second-stage game,

one or more players would definitely end up with an outcome different from that anticipated.

We emphasize that there is no logical or conceptual difficulty with the inconsistent case, only

a ‘disagreement’ among the players, which seems quite natural given the subjectivity of the

confidence indices.32

f. Epistemic Assumptions33 As in all game models, the question arises as to what

we are assuming in this paper about the players’ knowledge or beliefs about the model

(including their knowledge or beliefs about one another’s knowledge or beliefs, and so on).

In particular, can we make the usual ‘benchmark’ assumption that the game in question is

(informally) common knowledge among the players?

The answer is that the game can indeed be commonly known. True, the players’ confi-

dence indices might be mutually inconsistent (as above). But this is similar to a situation

where the players in a game have different priors, and these priors are commonly known.

(This is exactly what Harsanyi [14, 1967-8] called the “inconsistent” case.) There is no diffi-

culty in such situations, just an ‘agreement to disagree.’ Or the game may not be commonly

known; this is fine, too.

A related question is: How should we think about a Nash equilibrium of the game, given

again that the αi are subjective, possibly even mutually inconsistent? The answer is that to

32But there is also a natural question of whether mutual consistency is possible. See Appendix B.
33Pierpaolo Battigalli (private communication) posed the questions that we discuss in this section. We

have borrowed freely from what he wrote to us.
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get (pure-strategy) Nash equilibrium, it is sufficient that each player is rational and assigns

probability one to the actual strategy choices of the other players.34 So, in our set-up, a

player doesn’t actually need to be correct about the other players’ confidence indices, just

about the strategies they choose. There isn’t any conceptual difficulty in talking about

Nash equilibria.

We would like to give a formal treatment of the kinds of knowledge and belief (“epis-

temic”) assumptions we are discussing here, but this isn’t possible yet. Existing epis-

temic techniques apply only to noncooperative games, not to the hybrid noncooperative-

cooperative structure of a biform game. We believe that these techniques can be adapted

to the biform context, but this must wait for future work.

34Aumann and Brandenburger [4, 1995, Preliminary Observation].
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Appendix A: Core Calculations

Example 2.1. It suffices to consider two buyers, so write the player set as N =

{s, f1, f2, b1, b2}, where s is the supplier, f1, f2 are the firms, and b1, b2 are the buyers. Write
the strategy set of the supplier as S = {σ, τ}, where σ is the status-quo strategy and τ is the
branded-ingredient strategy. (We suppress the singleton strategy sets of the other players.)

We now build up the characteristic functions. Fix the indicator function χ{τ} on S (i.e.

χ{τ}(σ) = 0 and χ{τ}(τ) = 1) and define, for ρ ∈ S,

W (ρ)({s, f1, b1}) = W (ρ)({s, f1, b2}) = 8,
W (ρ)({s, f2, b1}) = W (ρ)({s, f2, b2}) = 2 + 4χ{τ}(ρ).

Next, for T ⊆ N , let χT be the indicator function on N . Let M = {{s, f1, b1}, {s, f1, b2},
{s, f2, b1}, {s, f2, b2}}. Then for T ⊆ N , set

V (ρ)(T ) =

 −χ{τ}(ρ)χT (s) + max
{m∈M :m⊆T}

W (ρ)(m) if {m ∈M : m ⊆ T} 6= ∅,
−χ{τ}(ρ)χT (s) otherwise.

Note that since 8 > 2 + 4χ{τ}(ρ) for all ρ, we have V (ρ)(N) = 8− χ{τ}(ρ). Further,

V (ρ)(N)− V (ρ)(N\{s}) = 8− χ{τ}(ρ),

V (ρ)(N)− V (ρ)(N\{f1}) = 6− 4χ{τ}(ρ),
V (ρ)(N)− V (ρ)(N\{f2}) = 0,

V (ρ)(N)− V (ρ)(N\{b1}) = 0,

V (ρ)(N)− V (ρ)(N\{b2}) = 0.

Write x(ρ) = (xs(ρ), xf1(ρ), xf2(ρ), xb1(ρ), xb2(ρ)) for a typical allocation, in the coopera-

tive game corresponding to ρ. Consider the allocations x(ρ) = (z − χ{τ}(ρ), 8 − z, 0, 0, 0),

where 2 + 4χ{τ}(ρ) ≤ z ≤ 8. Note that

x(ρ)({s, f2, b1}) = xs(ρ) ≥ 2 + 3χ{τ}(ρ) = V (ρ)({s, f2, b1}).

It is then straightforward to show that these allocations satisfy x(ρ)(T ) ≥ V (ρ)(T ) for all

T ⊆ N , and also x(ρ)(N) = V (ρ)(N). But player i cannot receive more than V (ρ)(N) −
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V (ρ)(N\{i}) in the Core, so it follows that these are all the allocations in the Core, as
required.

Example 2.2. Let N = {f1, f2, b1, b2, b3}, where f1, f2 are the firms and b1, b2, b3 are

the buyers. Write the strategy sets of the firms as Sf1 = Sf2 = {σ, τ}, where σ is the choice
of the current product, and τ is the choice of the new product. Set S = Sf1 × Sf2 , with

typical element ρ. (We suppress the singleton strategy sets of the buyers.)

Write ψf1 (resp.ψf2) for the indicator function χ{τ}×Sf2 (resp.χSf1×{τ}) on S. Also, for

T ⊆ N, let rT = min{2× |{f1, f2} ∩ T | , |{b1, b2, b3} ∩ T |}, where |X| denotes the cardinality
of X. Then the characteristic functions are given by

V (ρ)(T ) = 4rT +3min{2[ψf1(ρ)χT (f1)+ψf2(ρ)χT (f2)], rT}−5ψf1(ρ)χT (f1)−5ψf2(ρ)χT (f2).

Note that

V (ρ)(N) = 12 + 3min{2[ψf1(ρ) + ψf2(ρ)], 3}− 5ψf1(ρ)− 5ψf2(ρ),

V (ρ)({f1, b1, b2}) = 8 + 6ψf1(ρ)− 5ψf1(ρ) = 8 + ψf1(ρ), (A1)

V (ρ)({f2, b1, b3}) = 8 + ψf2(ρ), (A2)

and, for i = b1, b2, b3,

V (ρ)(N\{i}) = 8 + 6max{ψf1(ρ), ψf2(ρ)}− 5ψf1(ρ)− 5ψf2(ρ).

Also, if ρ 6= (τ , τ), then

V (ρ)(N) = 12 + ψf1(ρ) + ψf2(ρ), (A3)

and, for i = b1, b2, b3,

V (ρ)(N)− V (ρ)(N\{i}) = 4. (A4)

Consider the allocation x(ρ) = (ψf1(ρ), ψf2(ρ), 4, 4, 4). It is straightforward to verify

that x(ρ)(T ) ≥ V (ρ)(T ) for all T ⊆ N . We now show that this is the only Core allocation.

Adding A1 and A2 gives

xb1(ρ) + x(ρ)(N) = x(ρ)({f1, b1, b2}) + x(ρ)({f2, b1, b3}) ≥
V (ρ)({f1, b1, b2}) + V (ρ)({f2, b1, b3}) = 8 + ψf1(ρ) + 8 + ψf2(ρ) = 4 + V (ρ)(N),

32



using A3. Thus xb1(ρ) ≥ 4, so that xb1(ρ) = 4, using A4. A similar argument applies to

xb2(ρ). The condition x(ρ)({f1, b1, b2}) ≥ V (ρ)({f1, b1, b2}), together with A1, then implies
xf1(ρ) ≥ ψf1(ρ). A similar argument yields xf2(ρ) ≥ ψf2(ρ). Thus xf1(ρ) = ψf1(ρ) and

xf2(ρ) = ψf2(ρ), using A3 again.

The remaining case uses

V (τ , τ)(N) = 11, (A5)

and, for i = b1, b2, b3,

V (τ , τ)(N)− V (τ , τ)(N\{i}) = 7. (A6)

Consider the allocation x(τ , τ) = (−5,−5, 7, 7, 7). As before, it is straightforward to

verify that x(τ , τ)(T ) ≥ V (τ , τ)(T ) for all T ⊆ N . This is also the only Core allocation.

Adding A1 and A2 gives

xb1(τ , τ) + x(τ , τ)(N) = x(τ , τ)({f1, b1, b2}) + x(τ , τ)({f2, b1, b3}) ≥
V (τ , τ)({f1, b1, b2}) + V (τ , τ)({f2, b1, b3}) = 18 = 7 + V (τ , τ)(N),

using A5. Thus xb1(τ , τ) ≥ 7, so that xb1(τ , τ) = 7, using A6. A similar argument applies
to xb2(τ , τ). The condition x(τ , τ)({f1, b1, b2}) ≥ V (τ , τ)({f1, b1, b2}), together with A1,
implies xf1(τ , τ) ≥ −5. A similar argument yields xf2(τ , τ) ≥ −5. Thus xf1(τ , τ) = −5
and xf2(ρ) = −5, using A5 again.
Example 6.1. Let N = {f1, f2, f3, b1, b2}, where f1, f2, f3 are the firms and b1, b2 are

the buyers. Write the strategy set of f1 as S = {σ, τ}, where σ is the status-quo strategy
and τ is the negative-advertising strategy. (We suppress the singleton strategy sets of the

other players.)

Fix the indicator function χ{τ} on S. For T ⊆ N, let rT = min{|{f1, f2, f3} ∩ T | , |{b1, b2} ∩ T |}.
Then the characteristic functions are given by

V (ρ)(T ) =


rT (2− χ{τ}(ρ)) if f1 /∈ T ,

2 + (rT − 1)(2− χ{τ}(ρ)) if f1 ∈ T and rT ≥ 1,
0 otherwise.

Now

V (ρ)(N) = 4− χ{τ}(ρ),

V (ρ)(N\{f1}) = 4− 2χ{τ}(ρ),
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and, for i = f2, f3, and j = b1, b2,

V (ρ)(N\{i}) = 4− χ{τ}(ρ),

V (ρ)(N\{j}) = 2.

Thus

V (ρ)(N)− V (ρ)(N\{f1}) = χ{τ}(ρ),

and, for i = f2, f3, and j = b1, b2,

V (ρ)(N)− V (ρ)(N\{i}) = 0,

V (ρ)(N)− V (ρ)(N\{j}) = 2− χ{τ}(ρ),

from which AU is satisfied. By Proposition 6.1, if the Core is nonempty, each player k ∈ N

gets exactly xk(ρ) = V (ρ)(N) − V (ρ)(N\{k}). But it is straightforward to verify that

x(ρ)(T ) ≥ V (ρ)(T ) for all T ⊆ N .

Example 6.2. Let N = {1, 2, 3}, and let ρ be a strategy profile. AU is satisfied in

each cooperative game. So, by Proposition 6.1, if the Core is nonempty, each player k ∈ N

gets exactly xk(ρ) = V (ρ)(N) − V (ρ)(N\{k}). Now AU gives that for any i, j ∈ N , with

i 6= j,

V (ρ)({i, j}) = [V (ρ)(N)− V (ρ)(N\{i})] + [V (ρ)(N)− V (ρ)(N\{j})].

It follows that x(ρ)(T ) = V (ρ)(T ) if |T | = 2. Also, since V (ρ)({k}) = 0, we certainly have
x(ρ)(T ) > V (ρ)(T ) if |T | = 1. Finally, x(ρ)(N) = V (ρ)(N), by AU again.

Example 6.3. Let N = {f1, f2, f3, b1, b2}, where f1, f2, f3 are the firms and b1, b2 are

the buyers. Write the strategy set of f2 as S = {σ, τ}, where σ is the status-quo strategy
and τ is the repositioning strategy. (We suppress the singleton strategy sets of the other

players.)

Fix the indicator function χ{τ} on S and the indicator χT on N . For T ⊆ N, let

rT = min{|{f1, f2, f3} ∩ T | , |{b1, b2} ∩ T |}. Then the characteristic functions are given by

V (ρ)(T ) =


7rT if f2 /∈ T ,

7rT + χ{τ}(ρ) if f2 ∈ T and rT ≥ 1,
−χ{τ}(ρ)χT (f2) otherwise.
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Now

V (ρ)(N) = 14 + χ{τ}(ρ),

V (ρ)(N\{f2}) = 14,

and, for i = f1, f3, and j = b1, b2,

V (ρ)(N\{i}) = 14 + χ{τ}(ρ),

V (ρ)(N\{j}) = 7 + χ{τ}(ρ).

Thus

V (ρ)(N)− V (ρ)(N\{f2}) = χ{τ}(ρ),

and, for i = f1, f3, and j = b1, b2,

V (ρ)(N)− V (ρ)(N\{i}) = 0,

V (ρ)(N)− V (ρ)(N\{j}) = 7,

from which AU is satisfied. By Proposition 6.1, if the Core is nonempty, each player k ∈ N

gets exactly xk(ρ) = V (ρ)(N) − V (ρ)(N\{k}). But it is straightforward to verify that

x(ρ)(T ) ≥ V (ρ)(T ) for all T ⊆ N .
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Appendix B: Axiomatization of the Confidence Index

Here we provide an axiomatic justification of the players’ confidence indices. The axioma-

tization is closely related to early work by Hurwicz [16, 1951] and Milnor [25, 1954]. The

main innovation may be in connecting this decision theory to cooperative game theory.

Let the choice set X consist of the closed bounded intervals of the real line, i.e.

X = {[p, q] : p, q ∈ R with p ≤ q},

and let % be a preference relation on X.

(For our application, fix a player i. The intervals are then the projections onto the ith

coordinate axis of the Cores of cooperative games. The assumption is that player i evaluates

these intervals according to the preference relation %.)
Consider the following axioms on %:

A1 (Order): The relation % is complete and transitive.

A2 (Dominance): If p > s, then [p, q] Â [r, s].

A3 (Continuity): If [pm, qm] Â [rm, sm] for all m, where [pm, qm] → [p, q] and [rm, sm] →
[r, s], then [p, q] % [r, s].

A4 (Positive affinity): If [p, q] Â [r, s], then [λp + µ, λq + µ] Â [λr + µ, λs + µ] for any

strictly positive number λ and any number µ.

Proposition B1 A preference relation % on X satisfies Axioms A1 through A4 if and only

if there is a number α, with 0 ≤ α ≤ 1, such that

[p, q] % [r, s] if and only if αq + (1− α)p ≥ αs+ (1− α)r.

Furthermore, the number α is unique.

Proof. Sufficiency and uniqueness are readily checked, so let us establish necessity.

Step 0: Let

A = {α0 : α0 ∈ [0, 1] and [α0, α0] - [0, 1]}.
The set A is well-defined due to Order.
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Step 1: The set A contains the point 0, and so is nonempty. To see this, note that

Dominance implies that [0− 1/n, 0− 1/n] ≺ [0, 1] for every integer n. Thus [0, 0] - [0, 1] by
Continuity.

Step 2: Set α = supA. Then α ∈ A. To prove this, it suffices to show that α ≤ 1. First,
note that Dominance implies that [1 + 1/n, 1 + 1/n] Â [0, 1] for all n. Thus by Continuity,

[1, 1] % [0, 1] . (B1)

Second, note that by definition of α,

[α− 1/n, α− 1/n] - [0, 1] . (B2)

Now suppose α > 1. Then there is an n∗ such that α − 1/n > 1 for n > n∗. Hence by

Dominance,

[α− 1/n, α− 1/n] Â [1, 1] . (B3)

Combining equations (B1), (B2), and (B3), and using Order, yields

[α− 1/n, α− 1/n] Â [1, 1] % [0, 1] % [α− 1/n, α− 1/n]

for n > n∗, a contradiction. Thus α ≤ 1, as was to be shown.
Step 3: The number α satisfies [α, α] ∼ [0, 1]. First suppose that α = 1. Then

[1, 1] - [0, 1] since α ∈ A. Using equation (B1) and Order gives [1, 1] - [0, 1] - [1, 1],

from which [α, α] ∼ [0, 1]. Next suppose that α < 1. Note that [α, α] - [0, 1] since

α ∈ A. Suppose, contra hypothesis, that [α, α] ≺ [0, 1]. By the definition of α, it must

be that [α+ 1/n, α+ 1/n] Â [0, 1] for all n. Using Continuity and Order then yields

[α, α] % [0, 1] Â [α, α], a contradiction.
Step 4: Using Positive Affinity,

[α(q − p) + p, α(q − p) + p] ∼ [0(q − p) + p, 1(q − p) + p] = [p, q] ,

or

[p, q] ∼ [αq + (1− α)p, αq + (1− α)p] ,

as required.

Some comments follow:
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i. Discussion of the Axioms Axioms A1 through A3 are standard, and don’t require

an independent justification in the present context. Axiom A4 is crucial and accounts for the

specific form that the representation of preferences takes. In fact, Axiom A4 is immediately

implied by the context. Consider two cooperative games Γ1 and Γ2. Fix a player i, and

numbers λ > 0 and µ. Let Γ3 be derived from Γ1 by multiplying the value of every coalition

in Γ1 by λ and, if the coalition contains player i, also adding µ. (If you like, we change

the ‘currency’ in which the game is played and give player i some money from outside the

game.) Let Γ4 be derived from Γ2 in similar fashion. In cooperative game theory, the

games Γ1 and Γ3 are considered strategically equivalent; likewise for the games Γ2 and Γ4.35

Now let player i’s Core projection in Γ1 be [p, q], and that in Γ2 be [r, s]. Then player i’s

Core projection in Γ3 will be [λp + µ, λq + µ], and that in Γ4 will be [λr + µ, λs + µ]. If

player i prefers the first interval to the second, then, using strategic equivalence, player i

should prefer the third to the fourth. This is precisely Axiom A4.

ii. Relationship to the Hurwicz Index At a formal level, our axiomatization of the

confidence index is closely related to Milnor’s derivation of the Hurwicz optimism-pessimism

index. (See Milnor [25, 1954]; also Hurwicz [16, 1951], Arrow [2, 1953].36) The contexts are,

however, rather different. Milnor was concerned only with one-person decision problems

and adopted a states-consequences formulation. Our context is multi-person and has no

states; instead, there are just intervals of possible (monetary) consequences.

Luce and Raiffa [20, 1957, pp.282-298] list various criticisms of the Hurwicz decision

criterion. On examination, however, it turns out that these criticisms have force only to

the extent that the decision maker faces a problem with well-defined states. In our present,

state-free context, they lose their bite. For example, the Hurwicz criterion cannot be made

to satisfy admissibility without, at the same time, losing continuity (Milnor [25, 1954, p.55]).

35See Owen [28, 1995, pp.215-216], where the (general) concept is called S-equivalence. Theorem X.3.4
there establishes that if two games are S-equivalent, then there is an isomorphism between their imputation
sets that preserves the domination relation. This is the basis for treating the two games as equivalent.
36Ghirardato [12, 2001] obtains a similar representation. He starts with a state-space formulation, but

then coarsens the decision maker’s perception of the state space. Nehring and Puppe [26, 1996] present
conditions under which preferences over sets depend on the maximal and minimal elements of the sets. The
treatment in this paper is more specific than theirs in two ways. The choice set consists of closed bounded
intervals of the real line, and the representation involves a convex combination of the maximal and minimal

elements.
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But in our set-up, admissibility and continuity do not conflict. To see this, consider the

following extra axiom and proposition.

A5 (Admissibility): If p > r, then [p, q] Â [r, q]; if q > r, then [p, q] Â [p, r].

Proposition B2 A preference relation % on X satisfies Axioms A1 through A5 if and only

if there is a number α, with 0 < α < 1, such that

[p, q] % [r, s] if and only if αq + (1− α)p ≥ s+ (1− α)r.

Furthermore, the number α is unique.

Proof. Again, sufficiency and uniqueness are immediate, so we establish necessity. Using

Proposition B.1, we have only to show that 0 < α < 1. We have [α, α] ∼ [0, 1]. Admissibility
implies [1, 1] Â [0, 1] and [0, 1] Â [0, 0]. Using Order, we find [1, 1] Â [α, α] Â [0, 0].

Dominance yields 0 < α < 1.

iii. Application to Biform Games To apply our axiomatization to a biform game,

we have to decide whether to think of a player i as having one preference relation over all of

the second-stage games, or a potentially different relation for each first-stage strategy profile

s ∈ S. In the definition in the text (Definition 5.1), we assumed the former, to keep things

simple. (The confidence indices played a relatively small role in the body of the paper.

Except in Example 2.1, the Core was a singleton. Of course, in other applications, they

could play a larger role.) In a more general case, a player might have different confidence

indices for different strategy profiles s ∈ S.

This distinction is relevant to the issue of mutual consistency of the indices, discussed in

Section 8e. Consider the biform game in Figure B1. There are three players, each with

two strategies No and Yes. Player 1 chooses the row, player 2 the column, and player 3

the matrix. Figure B1 depicts the cooperative game associated with each strategy profile,

where w > 0 and the values of all subsets not shown are 0. First suppose that each player

has a single confidence index for all the second-stage games—denote these α1, α2, and α3.

Then, considering the second-stage games following (Yes, Yes, No), (No, Yes, Yes), (Yes,
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No, Yes), and (Yes, Yes, Yes) respectively, mutual consistency requires

α1 + α2 = 1,

α2 + α3 = 1,

α3 + α1 = 1,

α1 + α2 + α3 = 1,

a contradiction. On the other hand, if we allow a player different confidence indices for

different second-stage games, then mutual consistency can always be satisfied: For each

second-stage game, take an arbitrary point in the Core, project it onto the players’ axes,

and treat each projected point as a weighted average of the upper and lower endpoints of

the projection of the whole Core onto that axis.

We repeat what we said in Section 8e—that we don’t see mutual consistency as concep-

tually necessary. But if it is wanted, we have now shown how it can be guaranteed.

_No

Yes

No Yes

No

v(1, 2) =
v(N) =
w

No

Yes

No Yes

Yes

v(2, 3) =
v(N) =
w

v(1, 3) =
v(N) =
w

v(N) = w

_

_

_

Figure B1
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Appendix C: Additional Comments on the Efficiency

Results

i. Efficiency and Rationality We start by establishing a further implication of the

AU, NE, and NC conditions.37

Proposition C1 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU, NE,

and NC, and that for each s ∈ S, the game V (s) has a nonempty Core. Then each player

has a (strongly) dominant strategy.

Proof. Fix a player i and two strategies ri, si ∈ Si. Suppose that V (ri, s−i)(N) >

V (si, s−i)(N) for some s−i ∈ S−i. Then NC implies V (ri, r−i)(N) > V (si, r−i)(N) for all

r−i ∈ S−i. Applying NE yields

V (ri, r−i)(N)− V (ri, r−i)(N\{i}) > V (si, r−i)(N)− V (si, r−i)(N\{i})

for all r−i ∈ S−i. By AU, strategy ri strongly dominates strategy si.

The remaining case is that V (ri, s−i)(N) = V (si, s−i)(N) for all s−i ∈ S−i. But then

NE yields

V (ri, s−i)(N)− V (ri, s−i)(N\{i}) = V (si, s−i)(N)− V (si, s−i)(N\{i})

for all s−i ∈ S−i. By AU, strategy ri is payoff-equivalent to strategy si for player i.

Finiteness of the strategy sets then implies that each player has a strongly dominant strategy

(up to repetition of payoff-equivalent strategies).

Since a profile of dominant strategies is a Nash equilibrium, we know by Proposition 6.2

that it is efficient. Indeed, we can put Propositions 6.2, 6.3, and C1 together in the following

way. In a noncooperative game, a player is rational if he chooses a strategy that maximizes

his expected payoff, under some probability measure on (the product of) the strategy sets of

the other players. In a biform game, each player still associates a single number with each

strategy profile (equal to a weighted average of the Core projection), and so we can define

the rational strategic choices of a player correspondingly. With this terminology, we have

the following equivalence statement:
37John Sutton prompted us to prove this result.
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Assume AU, NE, and NC (and nonemptiness of the Core for each strategy profile). Then,

a profile consists of rational strategies if and only if the profile is efficient.

The proof is immediate. By Proposition 7.1, under AU, NE, and NC, each player has

a strongly dominant strategy (or strategies). This is then the only rational strategy (or

strategies) for that player, and we just said that a profile of dominant strategies is efficient.

Conversely, Proposition 6.3 says that under AU and NE (even without NC), an efficient

profile is a Nash equilibrium. And a Nash-equilibrium strategy is rational—when the player

assigns probability one to the other players’ strategies that make up the equilibrium.

Viewed this way, our results provide an answer to the question: “When is rationality

equivalent to efficiency?” When are these two basic concepts, one from game theory and

the other from welfare theory, equivalent? Our answer is that a sufficient condition for this

is that AU, NE, and NC hold.

ii. Weak No Coordination Next, we note a possible weakening of the NC condition,

and a corresponding counterpart to Proposition C1 (the proof mirrors the one above).

Definition C1 A biform game (S1, . . . , Sn;V ;α1, . . . , αn) is said to satisfyWeak No Co-

ordination (WNC) if for each i = 1, . . . , n; ri, si ∈ Si; and r−i, s−i ∈ S−i,

V (ri, r−i)(N) ≥ V (si, r−i)(N) if and only if V (ri, s−i)(N) ≥ V (si, s−i)(N).

Proposition C2 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU, NE,

and WNC, and that for each s ∈ S, the game V (s) has a nonempty Core. Then each player

has a weakly dominant strategy.

iii. Lack of Necessity Continued. In Section 6, we already mentioned the lack of

necessity of the conditions of Propositions 6.2 and 6.3. To see that the lack of necessity

in Proposition C1, consider the Prisoner’s Dilemma (Figure C1), viewed as a biform game

satisfying AU. (To see the game this way, note that AU in a two-player game implies that

the game is inessential, so that the unique Core allocation gives the players their individually

rational payoffs. These are the payoffs shown.) Here, NC holds but NE fails. Yet each

player has a dominant strategy.
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3, 3 0, 4

4, 0 1, 1

Figure C1

To see the lack of necessity in the equivalence statement in i. above, consider Matching

Pennies (Figure C2), viewed as a biform game satisfying AU. Here, as in Figure C1, NC

holds but NE fails. Yet each strategy of either player is rational and all profiles are efficient.

1, -1 -1, 1

-1, 1 1, -1

Figure C2

iv. Relationship to Makowski-Ostroy Continued. First, we explain the difference

mentioned in Section 6 between our definition of added value (marginal contribution) and

the definition in Makowski-Ostroy ([23, 1994], [24, 1995]). We talk about player i’s marginal

contribution (defined in the standard game-theoretic way) in each of the cooperative games

V (s) induced by different first-stage strategy profiles s ∈ S. Let us now cast the M-O

definition in the biform model (recognizing that their model is different). M-O would select

a particular strategy si0 ∈ Si of player i, to be thought of as the strategy of “not participating

in the game.” They would then say that player i receives his marginal contribution if his

payoff from choosing any strategy si, when the other players choose strategies s−i, is equal

to V (s)(N)− V (si0, s
−i)(N\{i}). That is, player i receives the difference between the value

created when i is “in the game” (and playing si) and the value created by the remaining

players when i is “out of the game” (playing si0). By contrast, we say that i receives his

marginal contribution if the payoff is V (s)(N)− V (s)(N\{i}). Note that if NE is assumed,
then V (s)(N\{i}) = V (si0, s

−i)(N\{i}), so that the two definitions then coincide. Thus,

seen from the perspective of our formalism, M-O effectively assume NE from the beginning,
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while we distinguish games that do or do not satisfy NE.38

Another difference between M-O and us is in the treatment of coordination. M-O use a

condition (“No Complementarities”) which, in the formalism of the biform model, says: For

each r, s ∈ S,

V (s)(N)− V (r)(N) ≤
nX
i=1

£
V (si, r−i)(N)− V (r)(N)

¤
.

In words, the change in the value of the game when the players switch from strategy profile r

to strategy profile s is no more than the sum of the changes caused by the players’ switching

one at a time. It can be shown that this condition holds if and only if we have: For each

i = 1, . . . , n; ri, si ∈ Si; and r−i, s−i ∈ S−i,

V (ri, r−i)(N)− V (si, r−i)(N) = V (ri, s−i)(N)− V (si, s−i)(N).

By standard arguments, this latter condition holds if and only if the value of the game is

additively separable as a function of the players’ strategy choices. Our No Coordination

condition (Definition 6.2) is weaker than the M-O condition, and, in particular, does not

impose additive separability.

38As a consequence, M-O would classify some examples differently from us. Thus, we attributed the
inefficiency in Example 6.1 to a failure of NE. M-O would attribute it to firm 1’s receiving $1 from negative
advertising, different from the marginal contribution of advertising, which M-O would calculate as −$1.
(Take the strategy of “not participating in the game” for firm 1 to be what we called the “status-quo”
strategy.) We are grateful to Louis Makowski for much help on the difference between our formalisms.
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