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Summary. Pricing American options requires solving an optimal stopping problem
and therefore presents a challenge for simulation. This article investigates connec-
tions between a weighted Monte Carlo technique and regression-based methods for
this problem. The weighted Monte Carlo technique is shown to be equivalent to a
least-squares method in which option values are regressed at a later time than in
other regression-based methods. This “regression later” technique is shown to have
two attractive features: under appropriate conditions, (i) it results in less-dispersed
estimates, and (ii) it provides a dual estimate (an upper bound) with modest addi-
tional effort. These features result, more generally, from using martingale regressors.

1 Introduction

At the MCQMC 2002 conference in Singapore we presented work on weighted
Monte Carlo estimators reported in Glasserman and Yu [9]. That work was
motivated by applications in finance, including the model calibration tech-
nique of Avellaneda et al. [2, 3] and a method for pricing American options
proposed by Broadie, Glasserman, and Ha (BGH) [5]. The method of BGH [5]
uses weights in approximating the dynamic programming problem involved in
the calculation of American option prices. The weights are chosen to minimize
a convex objective subject to linear constraints.

One of the implications of the general analysis of weighted Monte Carlo
estimators presented at the conference and in [9] is an equivalence between
such estimators and regression-based estimators when the convex objective
used is quadratic. This, then, raises a question about the connection between
the weighted method of BGH [5] and regression-based methods for pricing
American options proposed in Carrière [6], Longstaff and Schwartz [11], and
Tsitsiklis and Van Roy [13]. The purpose of this article is to develop this
connection. Several presentations at the Singapore conference addressed other
aspects of these methods.

When reformulated using least-squares regression, the weighted Monte
Carlo method of BGH [5] differs from other methods in how it combines
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regression with the backward induction required for American options. In
particular, we contrast methods that, at time i, regress option values from
time i+ 1 against basis function values at time i (regression now) with meth-
ods that regress against basis function values at time i+ 1 (regression later).
We show that “regression later” requires some stronger conditions but has two
benefits: it produces less-dispersed estimates, and it provides a dual estimate
(an upper bound on the option price) with modest additional computational
effort.

2 Optimal Stopping Problem

We consider the following class of problems. An <d-valued Markov chain
X0, X1, . . . , Xm (with X0 fixed) records all relevant financial information, in-
cluding the prices of underlying assets and any variables affecting the dynam-
ics of the underlying assets. If exercised at time i, i = 0, 1, . . .,m, the option
pays hi(Xi), for some known functions h0, h1, . . . , hm mapping <d into [0,∞).
Let Ti denote the set of randomized stopping times (as defined below) taking
values in {i, i+ 1, . . . ,m} and define

V ∗
i (x) = sup

τ∈Ti

E[hτ (Xτ )|Xi = x], x ∈ <d, (1)

for i = 0, 1, . . . ,m. Then V ∗
i (x) is the value of the option at date i in state x,

given that the option was not exercised at 0, 1, . . . , i− 1. It is also the value
of a new option issued at date i in state x. Our objective is to find V ∗

0 (X0).
Restricting τ to be an ordinary stopping time would mean requiring that

each event {τ = i} be determined by X1, . . . , Xi. In allowing randomized
stopping times we are allowing such an event to depend also on other random
variables independent of Xi+1, . . . , Xm. This extension is needed to accom-
modate stopping rules estimated by simulation.

The option values satisfy the dynamic programming equations

V ∗
m(x) = hm(x) (2)
V ∗

i (x) = max{hi(x),E[V ∗
i+1(Xi+1)|Xi = x]}, (3)

i = 0, 1, . . .,m − 1. Most methods for estimating V ∗
0 (X0) by simulation rely

on approximating this recursion in some way. We have not included discount
factors in (1) and (2)–(3), but this formulation is sufficiently general to en-
compass discounted payoffs through appropriate definition of the Xi and hi,
as explained in Section 8.1 of Glasserman [8]. Also, the dynamic programming
equations can be written in terms of continuation values

C∗
i (x) = E[V ∗

i+1(Xi+1)|Xi = x], i = 0, 1, . . . ,m− 1,

as
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C∗
m(x) = 0 (4)
C∗

i (x) = E[max{hi+1(Xi+1), C∗
i+1(Xi+1)}|Xi = x], (5)

i = 0, 1, . . . ,m− 1. The option values satisfy

V ∗
i (x) = max{hi(x), C∗

i (x)},

so these can be calculated from the continuation values.

3 Approximate Dynamic Programming

The methods we consider apply approximate versions of the dynamic pro-
gramming recursions (2)–(3) or (4)–(5). These methods approximate the op-
tion values V ∗

i or the continuation values C∗
i as linear combinations of basis

functions. For each i = 1, . . . ,m, let ψik, k = 0, . . . ,K, be functions from <d

to < and consider approximations of the form

V ∗
i (x) ≈

K∑

k=0

βikψik(x)

and

C∗
i (x) ≈

K∑

k=0

γikψik(x),

for some constants βik and γik. Working with approximations of this type
reduces the problem of finding the functions V ∗

i or C∗
i to one of finding the

coefficients βik or γik.
These approximations can be made precise through the least-squares pro-

jection onto the span of ψik(Xi), k = 0, 1, . . . ,K. Set ψi = (ψi0, . . . , ψiK)>.
For any square-integrable random variable Y define the projection

ΠiY = E[Y ψi(Xi)>]
(
E[ψi(Xi)ψi(Xi)>]

)−1
ψi(Xi).

Thus,

ΠiY =
K∑

k=0

akψik(Xi) (6)

with
(a0, . . . , aK) = E[Y ψi(Xi)>]

(
E[ψi(Xi)ψi(Xi)>]

)−1
(7)

and the residual Y − ΠiY is uncorrelated with ψi0(Xi), . . . , ψiK(Xi). In a
slight abuse of notation, we also write

(ΠiY )(x) =
K∑

k=0

akψik(x)
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for the function defined by the coefficients (7). These definitions require that
the matrix E[ψi(Xi)ψi(Xi)>] be finite and nonsingular, which we assume
throughout. In fact, we impose the following condition:

(C1). For each i = 1, . . . ,m, ψi0 ≡ 1, E[ψik(Xi)] = 0, k = 1, . . . ,K, and

E[ψi(Xi)ψi(Xi)>] =




1
σ2

i1

σ2
i2

. . .
σ2

iK



,

with 0 < σ2
ik <∞ for all i, k.

The important point is that the basis variables have finite variance and
are linearly independent. The further requirement that they be uncorrelated
can then always be arranged through a linear transformation.

3.1 Regression Now

Define an approximation to (4)–(5) as follows:

Cm(x) = 0 (8)
Ci(x) = (Πi max{hi+1(Xi+1), Ci+1(Xi+1)}) (x). (9)

As in (6), the application of the projection Πi results in a linear combination
of the basis functions, so

Ci(x) =
K∑

k=0

βikψik(x) (10)

with β>
i = (βi0, . . . , βiK) defined as in (7) with Y replaced by

Vi+1(Xi+1) ≡ max{hi+1(Xi+1), Ci+1(Xi+1)}.

Write

Vi+1(Xi+1) =
K∑

k=0

βikψik(Xi) + εi+1 (11)

by defining the residual εi+1 so that this holds. A sufficient condition for the
approximation (8)–(9) to be exact is

(C2). For all i = 0, . . . ,m − 1, E[εi+1|Xi] = 0.

Proposition 1. If (C2) holds, then Vi = V ∗
i for all i = 0, 1, . . .,m.
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Proof. Observe that Cm = C∗
m so Vm = V ∗

m. Now suppose that Ci+1 = C∗
i+1

for some i. Then Vi+1 = V ∗
i+1 and (C2) implies that

C∗
i (x) = E[V ∗

i+1(Xi+1)|Xi = x] = E[Vi+1(Xi+1)|Xi = x]

=
K∑

k=0

βikψik(x) = Ci(x).

The result now follows by induction. 2

If (C2) fails to hold, (9) may still provide a useful approximation. Comput-
ing (9) is difficult but lends itself to further approximation through simulation.
For j = 1, . . . , b let (X1j , . . . , Xmj) be independent replications of the underly-
ing Markov chain. From these paths define a sample version of the projection
Πi through ordinary least-squares regression. In particular, set Ĉm = 0,

Ĉi(x) =
K∑

k=0

β̂ikψik(x) (12)

with β̂>
i = (β̂i0, . . . , β̂iK) the vector of regression coefficients

(β̂i0, . . . , β̂iK) =




b∑

j=1

V̂i+1(Xi+1,j)ψi(Xij)>







b∑

j=1

ψi(Xij)ψi(Xij)>




−1

(13)
and

V̂i+1 = max{hi+1, Ĉi+1},

i = 0, 1, . . . ,m− 1. Because the initial state X0 is fixed, we set

Ĉ0(X0) =
1
b

b∑

j=1

V̂1(X1j) (14)

and V̂0(X0) = max{h0(X0), Ĉ0(X0)}. Tsitisklis and Van Roy [13] prove con-
vergence of the Ĉi to the Ci as the number of paths b increases. Glasserman [8,
§8.6.2] shows that this method corresponds to using a particular set of weights
in the stochastic mesh method of Broadie and Glasserman [4]. Clément et al.
[7] prove convergence of a related method in Longstaff and Schwartz [11].

3.2 Regression Later

Broadie, Glasserman, and Ha [5] develop a method for pricing American op-
tions by simulation in which the conditional expectations in the dynamic pro-
gramming recursion are approximated using weighted averages of simulated
downstream option values. The weights are chosen to minimize a separable
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convex objective function subject to constraints. The constraints ensure that
the weights correctly compute certain known conditional expectations.

To translate that method to the notation of this article, define

ψ̄i(x) = E[ψi+1(Xi+1)|Xi = x].

As before, let (X1j , . . . , Xmj), j = 1, . . . , b, denote independent replications of
the underlying Markov chain. For each j = 1, . . . , b consider the optimization
problem

min
wj1,...,wjb

b∑

`=1

w2
j` (15)

subject to
b∑

`=1

wj`ψi+1(Xi+1,`) = ψ̄i(Xij). (16)

The constraint (16) ensures that the weighted average of the basis function
values one step ahead equals their conditional expectation evaluated at Xij .
(Because ψ0,i+1 ≡ 1, it also implies that the weights sum to 1.) The objective
in (15) may be viewed as choosing a maximally uniform set of weights from the
feasible set. BGH [5] also consider a maximum entropy objective for choosing
the weights. Given optimal weights wj1, . . . , wjb, the continuation value at Xij

is estimated as

Ĉ+
i (Xij) =

b∑

`=1

wj`V̂
+

i+1(Xi+1,`), i = 1, . . . ,m− 1, (17)

with Ĉ+
m ≡ 0,

V̂ +
i+1 = max{hi+1, Ĉ

+
i+1}, i = 0, 1, . . . ,m− 1,

and Ĉ+
0 (X0) computed as in (14).

It follows from a general analysis of weighted Monte Carlo estimators in
Glasserman and Yu [9] that (17) has a regression interpretation. Let γ̂i =
(γ̂i0, . . . , γ̂iK) denote the vector of regression coefficients

(γ̂i0, . . . , γ̂iK) =



b∑

j=1

V̂ +
i+1(Xi+1,j)ψi+1(Xi+1,j)>







b∑

j=1

ψi+1(Xi+1,j)ψi+1(Xi+1,j)>




−1

(18)

and note that these are defined by regression against ψi+1(Xi+1,j), j =
1, . . . , b, whereas (13) uses ψi(Xij), j = 1, . . . , b. Thus, (13) uses current basis
functions and (18) uses later basis functions.
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Proposition 2. The BGH [5] estimator (17) admits the representation

Ĉ+
i (Xij) =

K∑

k=0

γ̂ikψ̄ik(Xij), (19)

i = 1, . . . ,m− 1.

Proof. Proposition 1 and Theorem 2 of Glasserman and Yu [9] apply to pairs
(Zj, Yj), j = 1, . . . , b, with (row vectors) Zj ∈ <n and Yj ∈ <. They show
that if w1, . . . , wb are chosen to minimize w2

1 + · · ·+w2
b subject to constraints

b∑

j=1

wj = 1,
b∑

j=1

wjZj = z,

for some (row vector) z ∈ <n, then

b∑

j=1

wjYj = (1, z)α̂,

with α̂ the (column) vector of coefficients obtained by least-squares regression
of Y1, . . . , Yb against (1, Z1), . . . , (1, Zb). Equation (19) follows once we identify
Zj with (ψi+1,1(Xi+1,j), . . . , ψi+1,K(Xi+1,j)), Yj with V̂ +

i+1(Xi+1,j), and z with
(ψ̄i1(Xij), . . . , ψ̄iK(Xij)). 2

To further develop the connection between the weighted estimator (17) and
regression, we impose the following stronger condition on the basis functions:

(C3). Martingale property: E[ψi+1(Xi+1)|Xi] = ψi(Xi), i = 0, 1, . . . ,m− 1.

By the Markov property, E[ψi+1(Xi+1)|Xi] = E[ψi+1(Xi+1)|X1, . . . , Xi].
Condition (C3) implies that ψ̄i = ψi and comparison of (12) and (19) then
shows that Ĉi and Ĉ+

i are linear combinations of the same basis functions.
They differ only in the estimates of the coefficients they use.

To clarify what is being estimated by Ĉ+
i , define C+

m = 0 and

C+
i (x) =

K∑

k=0

γikψik(x) = E

[
K∑

k=0

γikψi+1,k(Xi+1)|Xi = x

]
(20)

= E
[(

Πi+1V
+
i+1(Xi+1)

)
(Xi+1)|Xi = x

]
(21)

=
(
ΠiΠi+1V

+
i+1(Xi+1)

)
(x) (22)

with V +
i+1 = max{hi+1, C

+
i+1}, i = 0, . . . ,m−1. That the projection Πi in (22)

has the same effect as the conditional expectation in (21) is a consequence of
(C3). Also, write
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V +
i+1(Xi+1) =

K∑

k=0

γikψi+1,k(Xi+1) + ε+i+1 (23)

with ε+i+1 = V +
i+1(Xi+1)−Πi+1V

+
i+1(Xi+1) uncorrelated with the components

of ψi+1(Xi+1). The usual regression estimate of the coefficient vector γi in
(20), computed from b simulated paths, is exactly the γ̂i in (18), so Ĉ+

i is
indeed a simulation estimate of C+

i ; the two stand in the same relation to
each other as Ĉi and Ci. We use the superscript “+” to emphasize that the
coefficients in C+

i are obtained by regression against ψi+1(Xi+1) rather than
ψi(Xi). The step back to i is taken by the conditional expectation, via (C3).

We consider two conditions on the residuals ε+i+1:

(C4). For all i = 0, . . . ,m − 1 and k = 0, . . . ,K, E[ε+i+1(ψi+1,k(Xi+1) −
ψik(Xi))] = 0.

(C4’). For all i = 0, . . . ,m− 1, E[ε+i+1|Xi] = 0.

Under (C3), the first of these states that the residuals are uncorrelated
with the martingale differences. The second of these parallels (C2). Because
ε+i+1 in (23) is uncorrelated with ψi+1,k(Xi+1), (C4’) implies (C4) if (C3) holds.

Proposition 3. If (C3) and (C4) hold, then C+
i = Ci for all i. If (C3) and

(C4’) hold then in addition C+
i = C∗

i for all i.

Proof. Geometrically, the first part says that ΠiΠi+1V
+

i+1 = ΠiV
+
i+1 when

V +
i+1 − Πi+1V

+
i+1 is orthogonal to the space onto which Πi projects. More ex-

plicitly, observe that (C+
m, V

+
m ) = (Cm, Vm) and to argue by induction suppose

that V +
i+1 = Vi+1. From (23) we get

V +
i+1(Xi+1) =

K∑

k=0

γikψik(Xi) +

{
K∑

k=0

γik[ψi+1,k(Xi+1) − ψik(Xi)] + ε+i+1

}

and if (C3)–(C4) hold then this decomposes V +
i+1(Xi+1) as a linear combina-

tion of ψi(Xi) and a term uncorrelated with ψi(Xi). But since (11) does the
same thing, we must have γi = βi and

εi+1 =

{
K∑

k=0

γik[ψi+1,k(Xi+1) − ψik(Xi)] + ε+i+1

}
. (24)

Equality of the coefficients implies that C+
i = Ci and then V +

i = Vi, conclud-
ing the induction. For the second assertion, apply (C3) and (C4’) to (24) to
see that (C2) holds so Proposition 1 applies. 2
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4 Comparison

We now turn to a comparison of the methods in Sections 3.1 and 3.2. Propo-
sition 3 gives conditions under which the approximations C+

i and Ci are the
same. But even when these conditions hold the simulation estimates Ĉ+

i and
Ĉi are different, and it is natural to compare properties of these estimates.

The key difference is that Ĉ+
i uses the estimates γ̂i in (18) obtained by

regressing against ψi+1(Xi+1) (regression later) whereas Ĉi uses the estimates
β̂i in (13) obtained by regressing against ψi(Xi) (regression now).

Intuitively, we expect “regression later” to give better results than “re-
gression now” because the option values at time i + 1 should be more highly
correlated with the basis functions at time i + 1 than with the basis func-
tions at time i. Also, Ĉ+

i takes advantage of the martingale property (C3) to
compute the conditional expectation in (20) exactly , using simulation only to
approximate Πi+1. In contrast, with Ĉi simulation is implicitly used for both
steps when it is used to approximate Πi. We now formulate a precise result.

Observe that (13) and (18) involve regressing different estimates of the
option values at time i + 1: in (13) we have V̂i+1 whereas in (18) we have
V̂ +

i+1. In order to compare the two different ways of estimating coefficients,
for the rest of this section we will suppose that the two methods regress the
same values, and to be concrete we take these to be values of Vi+1. In effect,
we are comparing two algorithms that proceed identically and exactly (as in
(8)–(9)) backwards from time m to i+1, and then use two different simulation
estimates from i + 1 to i. We continue to use the same notation as before,
despite this modification.

We use stronger conditions on the residuals:

(C5a). E[ε+i+1|ψi+1(Xi+1)] = 0 and E[(ε+i+1)
2|ψi+1(Xi+1)] = Var[ε+i+1].

(C5b). E[εi+1|ψi(Xi)] = 0 and E[(εi+1)2|ψi(Xi)] = Var[εi+1].

As measures of regression precision, define the coefficients of determination

R2
β = Var[β>

i ψi(Xi)]/Var[Vi+1(Xi+1)]

R2
γ = Var[γ>i ψi+1(Xi+1)]/Var[Vi+1(Xi+1)].

Write Cov[β̂] for the covariance matrix of β̂ and let Σβ = limb→∞ bCov[β̂]
whenever the limit exists. Let Σγ similarly denote the limiting covariance
matrix of γ̂. The existence of these limits is implied by the following uni-
form integrability conditions on the reciprocal sums of squares of the basis
functions:

(C6). As b → ∞,

bE




b∑

j=1

ψi(Xij)ψi(Xij)>




−1

→
(
E[ψi(Xi)ψi(Xi)>]

)−1
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and

bE




b∑

j=1

ψi+1(Xi+1,j)ψi+1(Xi+1,j)>




−1

→
(
E[ψi+1(Xi+1)ψi+1(Xi+1)>]

)−1
.

Theorem 1. If (C1) and (C3)–(C4) hold, then R2
β ≤ R2

γ . If also (C5)–(C6)
hold then Σγ ≤ Σβ.

This says that, in a single-period problem, “regression later” yields a better
fit (as measured by the coefficient of determination) and less variable estimates
of coefficients than “regression now.” The matrix inequality is in the sense that
A ≤ B ifB−A is positive semidefinite. It should be noted that once we impose
(C3), the diagonalization condition in (C1) may be difficult to satisfy. We do
not know if the comparison in this theorem continues to hold without it.

Proof. If (C3)–(C4) hold, we know from Proposition 3 that βi = γi so it
suffices to show Var[ε+i+1] ≤ Var[εi+1]. From (24) we see that εi+1 is the sum
of ε+i+1 and a term uncorrelated (in view of (C4)) with ε+i+1. It follows that
the variance of εi+1 is at least as large as that of ε+i+1.

From standard properties of least-squares regression (or by direct calcula-
tion) using (C5b), we know that

E[β̂|ψi(Xi1), . . . , ψi(Xib)] = β

and

Cov[β̂|ψi(Xi1), . . . , ψi(Xib)] =




b∑

j=1

ψi(Xij)ψi(Xij)>




−1

Var[εi+1].

Because the conditional expectation is constant, the unconditional covariance
matrix is obtained by taking the expectation of the conditional covariance
matrix, which gives (using (C6))

bCov[β̂] = bE




b∑

j=1

ψi(Xij)ψi(Xij)>




−1

Var[εi+1]

→
(
E[ψi(Xi)ψi(Xi)>]

)−1
Var[εi+1] ≡ Σβ .

Similarly, using (C5a),

E[γ̂|ψi+1(Xi+1,1), . . . , ψi+1(Xi+1,b)] = β

and
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Cov[γ̂|ψi+1(Xi+1,1), . . . , ψi+1(Xi+1,b)] =



b∑

j=1

ψi+1(Xi+1,j)ψi+1(Xi+1,j)>




−1

Var[ε+i+1]

→
(
E[ψi+1(Xi+1)ψi+1(Xi+1)>]

)−1
Var[ε+i+1] ≡ Σγ .

Using (C1), we get

Σβ =




1
σ−2

i1

σ−2
i2

. . .
σ−2

iK




Var[εi+1]

and

Σγ =




1
σ−2

i+1,1

σ−2
i+1,2

. . .
σ−2

i+1,K




Var[ε+i+1].

The proof of the first part of the theorem shows that Var[ε+i+1] ≤ Var[εi+1].
The martingale property (C3) and Jensen’s inequality together ensure that
σ2

ik ≤ σ2
i+1,k, for all k = 1, . . . ,K, so this establishes the second part of the

theorem. 2

It should be stressed that, as formulated, this result holds only over a single
period because the comparison in the theorem assumes V̂i+1 = V̂ +

i+1 and this
property would not be preserved by backward induction using the two sets of
coefficients. Also, the practical scope of conditions (C4) and (C5) is unclear.
We expect, however, that the comparison in the theorem will often hold even
if the conditions are not met precisely. For example, the first inequality in the
theorem would continue to hold if the two terms on the right side of (24) were
positively correlated rather than uncorrelated.

5 Duality

Recent results of Haugh and Kogan [10] and Rogers [12] show that dual for-
mulations of the dynamic programming equations (4)–(5) can be combined
with simulation to produce upper bounds on American option prices. Upper
bounds can be combined with lower bounds to produce interval estimates for
prices. We now show that with “regression later” a dual estimate can be com-
puted with minimal additional effort. A different approach to computing dual
values by simulation is developed in Andersen and Broadie [1].



12 Paul Glasserman and Bin Yu

Fix the original b paths (X1j , . . . , Xmj), j = 1, . . . , b, used to estimate
regression coefficients γ̂i, i = 1, . . . ,m−1, and simulate a new pathX1, . . . , Xm

independent of the other paths. Think of the coefficients γ̂1, . . . , γ̂m−1 as fixed,
meaning that we now proceed conditional on the original set of paths. Set
γ̂m ≡ 0. Conditional on the coefficients, we view

Ĉ+
i (·) =

K∑

k=0

γ̂ikψik(·), i = 1, 2, . . .,m− 1,

and

Ṽ +
i+1(·)

4
=

K∑

k=0

γ̂ikψi+1,k(·), i = 0, 1, . . . ,m− 1,

as deterministic functions on <d.
Define

τ̂ = min{i = 0, 1, . . . ,m : hi(Xi) ≥ Ĉ+
i (Xi)}; (25)

this is the first time i at which the payoff from exercise hi(Xi) exceeds the
continuation value estimated by regression. Further define M0 = 0 and

Mn =
n−1∑

i=0

[Ṽi+1(Xi+1) − Ĉi(Xi)], n = 1, . . . ,m. (26)

Each summand is simply

Ṽi+1(Xi+1) − Ĉi(Xi) =
K∑

k=0

γ̂ik[ψi+1,k(Xi+1) − ψik(Xi)]. (27)

Theorem 2. If (C3) holds then

E[hτ̂ (Xτ̂ )] ≤ V ∗
0 (X0) ≤ E[ max

n=0,1,...,m
(hn(Xn) −Mn)].

Thus, the true value V ∗
0 (X0) is bounded above and below by terms that

can be estimated through simulation. The lower bound can be estimated by
simulating independent paths each stopping according to the rule defining τ̂ .
The upper bound can be estimated from these same independent paths by
computing the differences (27) at each step, summing them to get Mn, and
then taking the maximum of hn(Xn) −Mn along the path.

Proof. The lower bound follows from the fact that V ∗
0 (X0) is defined as a supre-

mum in (1). The stopping rule τ̂ in (25) is not a stopping time with respect to
the history of X1, . . . , Xi because it depends on the estimated coefficients γ̂i.
But it is a randomized stopping time because the event {τ = i} is contained
in the sigma-algebra generated by X1, . . . , Xi and γ̂ = {γ̂1, . . . , γ̂m−1}.

For the upper bound, the key observation is that 0 = M0,M1, . . . ,Mm is
a martingale, conditional on γ̂; i.e.,
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E[Mi+1|X1, . . . , Xi, γ̂] = Mi.

This is evident from the fact that (27) has conditional expectation 0. The
bound then follows along the lines in Haugh and Kogan [10] and Rogers [12].
In more detail, the conditional martingale property implies that for any τ ∈ T0,

E[hτ (Xτ )|γ̂] = E[hτ (Xτ ) −Mτ |γ̂]
≤ E[ max

n=0,1,...,m
(hn(Xn) −Mn)|γ̂],

and then
E[hτ (Xτ )] ≤ E[ max

n=0,1,...,m
(hn(Xn) −Mn)].

Because this inequality holds for all τ ∈ T0, it also holds for V ∗
0 (X0). 2

The key point is that using “regression later” under (C3), the martin-
gale terms (27) are available at almost no cost. In contrast, as explained in
Glasserman [8] the superficially similar expression

n−1∑

i=0

[V̂i+1(Xi+1) − Ĉi(Xi)]

resulting from “regression now” is not in general a martingale (even condi-
tional on the coefficients) and therefore does not result in a valid upper bound.
With V̂i+1, one needs to use an expression of the form

n−1∑

i=0

[V̂i+1(Xi+1) − E[V̂i+1(Xi+1)|Xi]].

Computing the ith conditional expectation in this sum typically requires sim-
ulating a large number of subpaths, each starting at Xi and advancing one
time step. This use of subpaths to estimate conditional expectations involves
a heavier computational burden than (27), which merely involves evaluating
linear combinations of basis functions at each step. The savings results from
taking advantage of the known conditional expectations provided by (C3).

While any martingale would provide an upper bound in Theorem 2, the
one in (26) is close to optimal. The martingale

M∗
n =

n−1∑

i=0

[V ∗
i+1(Xi+1) − C∗

i (Xi)] (28)

constructed from the true value and continuation functions turns the upper
bound in the theorem into an equality; see the derivation in Section 8.7 of
Glasserman [8]. Thus, the martingale in (26) is in a sense a best approxima-
tion to the optimal martingale (28), given the choice of basis functions. The
drawback to (27) is that it places more restrictive conditions on the avail-
able basis functions through (C3). The quality of the upper bound provided
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by (26) compared with other bounds based on duality remains a topic for
investigation.
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