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ABSTRACT

Simulation is widely used to estimate losses due to de-
fault and other credit events in financial portfolios. The
challenge in doing this efficiently results from (i) rare-
event aspects of large losses and (ii) complex depen-
dence between defaults of multiple obligors. We discuss
importance sampling techniques to address this prob-
lem in two portfolio credit risk models developed in the
financial industry, with particular emphasis on a mixed
Poisson model. We give conditions for asymptotic op-
timality of the estimators as the portfolio size grows.

1 INTRODUCTION

Developments in risk management have led financial in-
stitutions to make greater use of probabilistic models to
quantify their risks. Two main components of financial
risk are market risk and credit risk. Whereas market
risk results from changes in prices, credit risk refers to
losses resulting from the failure of an obligor (a party
under a legal obligation) to make a contractual pay-
ment. Credit risk includes, for example, the possibility
that a company will fail to repay a loan or a bond is-
suer will miss a coupon payment. Increased interest in
the modeling and management of credit risk has led to
the development of various commercial models, now in
widespread use. These include CreditMetrics, originally
developed by JP Morgan, and CreditRisk+, developed
by Credit Suisse Financial Products. For an overview,
see Crouhy, Galai, and Mark (2001). These models are
designed for the credit risk banks face from other com-
panies and differ from those used for consumer credit.

Given a credit risk model, the rapid and accurate
construction of the portfolio loss distribution is at the
heart of credit risk management. Monte Carlo simu-
lation is frequently used to estimate this distribution.
Each replication of such a simulation usually consists
of determining which obligors default and the losses
given default. For high-quality portfolios, most replica-
tions produce few if any defaults, so the computational

cost required to obtain accurate credit risk estimates
can be very large. This is particularly true for accu-
rate estimation of small but important probabilities of
large losses, which are usually the focus of risk measure-
ment. Importance sampling (IS) is a natural technique
to consider for rare event simulation; however, com-
plex dependence between defaults of multiple obligors
complicates the application IS. Capturing dependence
between defaults is at the heart of a portfolio view of
credit risk, so this issue is fundamental.

In most models of credit risk, dependence is intro-
duced through a set of “risk factors” and defaults be-
come independent conditional on the risk factors. This
suggests a general approach to IS based on applying
a change of distribution to the factors and a change
of distribution to the default indicators conditional on
the factors. This is the approach we follow. We have
used this approach in Glasserman and Li (2003) for the
“normal copula” model of Gupton et al. (1997). Here
we show that a similar strategy can be used very con-
veniently in the mixed Poisson model of CreditRisk+

(CSFP 1997). Indeed, the mixed Poisson model is suf-
ficiently tractable that it is usually solved through nu-
merical transform inversion, without simulation. Nev-
ertheless, it provides an interesting illustration of a
more general approach to IS for credit risk.

Section 2 reviews the normal copula and mixed Pois-
son models. In Section 3, we discuss IS for the normal
copula model, based on Glasserman and Li (2003). In
Section 4, we propose an IS method for the mixed Pois-
son model. We establish the asymptotic optimality of
this method under alternative limiting regimes. Numer-
ical examples illustrate the effectiveness of the method.
Section 5 concludes the paper.

2 CREDIT RISK MODELS

We consider a portfolio with m obligors. Let Yi de-
note the default indicator of the ith obligor for some
fixed time horizon (e.g., one year). Thus, Yi = 1 if this
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obligor defaults within the horizon and Yi = 0 other-
wise. Let ci denote the loss resulting from default of the
ith obligor. These are sometimes modeled as random
variables, but for simplicity we take them to be (posi-
tive) constants. The portfolio loss over the horizon is

L =
m∑
i=1

ciYi. (1)

Our goal is to measure the tail of the loss distribution
P (L > x), particularly at large values of x.

The marginal default probabilities pi = P (Yi = 1)
are usually assumed known (e.g., from published credit
ratings). Different credit risk models differ in the mech-
anisms they use to capture dependence among the Yi.
Here we give a brief description of two models.

2.1 Normal Copula Model

In the CreditMetrics model of Gupton et al. (1997) (see
also Li (2000)) the default indicators are modeled as

Yi = 1{Xi > xi}, i = 1, . . . ,m, (2)

where (X1, . . . , Xm) are correlatedN(0, 1) random vari-
ables. Each threshold xi is chosen to match the mar-
ginal default probability pi for the ith obligor; thus,
xi = Φ−1(1− pi), with Φ the cumulative normal distri-
bution. This construction transfers correlations among
the Xi to dependence among the Yi. This is an instance
of a normal copula construction of dependent random
variables, or what Cario and Nelson (1997) call “nor-
mal to anything.” In the credit risk context, the Xi are
often given a financial interpretation.

Correlations among the Xi are usually specified
through a factor model of the form

Xi = ai0εi + ai1Z1 + · · · + aidZd, i = 1, . . . ,m, (3)

with εi and Z1, . . . , Zd independent N(0, 1) random
variables and a2

i1+· · ·+a2
id+a

2
i0 = 1. Each εi represents

risk affecting only the ith obligor, whereas the Zj rep-
resent common risk factors affecting multiple obligors.
For example, each Zj may be associated with an indus-
try, a geographic region, or a market-wide risk factor.

Normal copula models rely on simulation for the cal-
culation of the portfolio loss distribution. In each repli-
cation, every Xi is generated from independent N(0, 1)
random variables εi and Z1, . . . , Zd according to the
model specification (3), and the portfolio loss is evalu-
ated from (2) and (1).

2.2 Mixed Poisson Model

An alternative way of introducing dependence uses a
mixed Poisson model, as in CSFP’s (1997) CreditRisk+.

In this setting, each Yi is (conditionally) Poisson distrib-
uted. This may be viewed as a Poisson approximation
to a Bernoulli random variable (based on the fact that
a Poisson random variable with a very small mean has
a very small probability of taking a value other than 0
or 1); alternatively, it can be viewed as a reinterpreta-
tion of (1) in which i indexes groups of obligors with
roughly equal exposure ci, rather than individual oblig-
ors. In this reinterpretation, values of Yi greater than
1 are meaningful.

The common risk factors in this model are indepen-
dent gamma random variables Γ1, . . . ,Γd. Conditional
on these random variables, each Yi has a Poisson dis-
tribution with mean Ri,

Ri = ai0 + ai1Γ1 + · · · + aidΓd, (4)

for some positive coefficients ai0, . . . , aid. Thus, each
Yi may be viewed as a Poisson random variable with
a random mean — a mixed Poisson random variable.
We normalize Γ1, . . . ,Γd to have mean 1 and variances
σ2

1 , . . . , σ
2
d.

Mixed Poisson models have long been used in many
applications; see Section 3.2 of Johnson et al. (1993).
Using gamma random variables for the mixing vari-
ables leads to some tractability and allows calculation of
the distribution of L through numerical inversion of its
probability generating function (see CSFP 1997). The
model nevertheless provides an interesting setting for
rare event simulation. Also, for the IS method we de-
velop the gamma random variables could be replaced
with any other positive random variables having rea-
sonably well-behaved moment generating functions.

Simulation without IS is straightforward. In each
replication, we first generate the common risk factors Γj
independently from the distributions Gamma(αj , βj),
j = 1, . . . , d, with

αj =
1
σ2
j

, βj = σ2
j , j = 1, . . . , d.

This gives Γj mean 1 and variance σ2
j . Then we gen-

erate Yi from Poisson(Ri) with the Ri calculated as in
(4). From the Yi we evaluate the portfolio loss (1).

3 IS FOR THE NORMAL COPULA MODEL

3.1 IS Estimator

In this section, we review an IS technique proposed
in Glasserman and Li (2003) for the normal copula
model. We begin by considering the simpler case of in-
dependent obligors in which Y1, . . . , Ym are independent
Bernoulli random variables with parameters p1, . . . , pm.

In order to generate large losses more often, it is nat-
ural to consider IS based on increasing each default
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probability pi to some larger value qi. The associated
estimator of P (L > x) is the product of the indicator
1{L > x} and the likelihood ratio

m∏
i=1

(
pi
qi

)Yi
(

1 − pi
1 − qi

)1−Yi

.

For the new probabilities, it turns out to be convenient
to restrict attention to a one-parameter family of the
form

pi(θ) =
pie

θci

pieθci + (1 − pi)
.

By choosing θ > 0, we increase each default probability
and we do so in a way that takes account of the original
pi and also the loss magnitudes ci.

With this choice of default probabilities, some alge-
bra shows that the likelihood ratio can be rewritten as
exp(−θL+ ψL(θ)), where

ψL(θ) = logE[exp(θL)] =
m∑
i=1

log(1 + pi(eciθ − 1))

is the cumulant generating function of L. Thus, us-
ing the probabilities pi(θ) is equivalent to exponentially
twisting L, a standard technique in IS. To sample under
the twisted distribution, we simply replace the original
default probability pi with pi(θ).

It remains to choose the parameter θ. For this we
look at the second moment of the estimator, which is
given by

M2(x, θ) ≡ Eθ[e−2θL+2ψL(θ)1{L > x}]
≤ exp(−2θx+ 2ψL(θ)). (5)

The subscript on the expectation indicates that it is
calculated under the IS distribution for parameter θ.
While finding the value of θ minimizing M2(x, θ) is dif-
ficult, it is a simple matter to minimize the upper bound
in (5). The minimizer θx is the unique solution to

ψ′
L(θx) = x. (6)

The expectation of L under this changed measure is

Eθx [L] = Eθx

[
m∑
i=1

ciYi

]
= ψ′

L(θx) = x.

Thus, to estimate P (L > x) for large values of x, we
increase the individual default probabilities to make x
the expected loss.

We now turn to the more interesting case in which the
Yi are dependent. We consider dependence introduced
through a normal copula as discussed in Section 2.1.
We apply IS as in the independent case, but we do so
conditional on the common factors Z = (Z1, . . . , Zd)�.

Observe that, given Z, the Yi are indeed independent
with conditional default probabilities

p̃i = P (Yi = 1|Z) = Φ
(
ai1Z1 + · · · + aidZd − xi

ai0

)
.

From these we can calculate the conditional cumulant
generating function

ψL|Z(θ) = logE[eθL|Z] =
m∑
i=1

log(1 + p̃i(eθci − 1))

and solve for the parameter θ̃x,

ψ′
L|Z(θ̃x) = x.

We can then define new conditional default probabilities

p̃i(θ̃x) =
p̃ie

θ̃xci

p̃ieθ̃xci + 1 − p̃i
, i = 1, . . . ,m.

The IS procedure now generates default indicators
Y1, . . . , Ym independently (given Z) with Yi taking the
value 1 with probability p̃i(θ̃x).

Setting L equal to the sum of the Yici yields the one-
step IS estimator

e−θ̃xL+ψL|Z(θ̃x)1{L > x}; (7)

this is the conditional counterpart of the IS estimator
in the independent case. Its conditional expectation is
P (L > x|Z) and its unconditional expectation is there-
fore P (L > x).

To further reduce variance, we can apply a second
step of importance sampling to Z, viewing P (L > x|Z)
as a function of Z and the calculation of P (L > x) as a
problem of integrating over the distribution of Z. For
this we consider shifting the mean of Z from the origin
to some point µ. The likelihood ratio for this change of
measure is

exp
(
−µ�Z +

1
2
µ�µ

)
.

When multiplied by (7) this yields the two-step IS es-
timator

exp
(
−µ�Z +

1
2
µ�µ− θ̃xL+ ψL|Z(θ̃x)

)
1{L > x}

in which Z is sampled from N(µ, 1) and then L is sam-
pled from the θ̃x-twisted distribution conditional on Z.

It remains to specify the new mean µ for the common
factors Z. The approach of Glasserman, Heidelberger,
and Shahabuddin (1999) suggests choosing µ by solving

µ = argmax
z

P (L > x|Z = z)e−
1
2 z

�z.
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The product on the right is (proportional to) the opti-
mal IS density, so this approach chooses the new mean
at the mode of the optimal density. This approach is
investigated in Glasserman and Li (2003).

3.2 Asymptotic Optimality of the One-Step IS
Estimator

In rare event simulation, one often tries to measure the
effectiveness of an estimator of a small probability by
investigating its performance as the probability of the
event vanishes. An estimator is said to be asymptot-
ically optimal if its second moment decreases at twice
the rate of the probability itself. By Jensen’s inequal-
ity, this is the fastest possible rate of decrease for any
unbiased estimator.

To see what type of asymptotic optimality we might
look for in the credit risk setting, we again consider
the independent case. Because the credit portfolios of
financial institutions can be very large, it is natural
to consider asymptotics as m → ∞. In the indepen-
dent case, the key condition we need is convergence
of the functions ψL/m to a finite, convex function ψ;
this holds, for example, if the (pi, ci) approach a limit
as i increases. In this case, asymptotic optimality can
be established through the argument in Sadowsky and
Bucklew (1990). In more detail, for all sufficiently large
q, we have

lim
m→∞

1
m

logP (L > mq) = γq

and
lim
m→∞

1
m

logM2(mq, θmq) = 2γq,

for some γq < 0. Thus, the second moment decreases
at twice the exponential rate as the first moment.

It turns out that we generally cannot hope to have a
result of quite this form once we introduce dependence
through either a normal copula or mixed Poisson model.
Indeed, once we introduce dependence, L/m will often
converge to a random limit and P (L > mq) may not
vanish as m → ∞: there is too much dependence for
this formulation to lead to asymptotic optimality.

We therefore consider a limit in which the dependence
weakens as m increases. Whether or not we achieve as-
ymptotic optimality depends on how quickly it weakens.
The practical implication of this formulation is that the
one-step IS estimator is effective only if the underlying
correlations are not too large. At larger correlations,
it becomes essential to apply IS to the common risk
factors as well.

To state a precise result, we limit ourselves to the
case ci ≡ 1, pi ≡ p, and a single common factor Z, and
all Xi of the form

Xi = ρZ +
√

1 − ρ2εi.

We take ρ to be of the form a/mα, for some a, α > 0,
and find different behavior depending on the value of
α; i.e., depending on the speed at which ρ decreases.

Define

G(p) =
{

log(1−p
1−q )

1−q(pq )
q p < q,

0 p ≥ q;

mG(p) is the likelihood ratio at L = mq for the indepen-
dent case with marginal individual default probability
p. Also define

F (a, z) = G(Φ(az + Φ−1(p))).

The following theorem is proved in Glasserman and Li
(2003):

Theorem 1 If ρ = a/mα, a > 0, then
(a) For α > 1/2,

lim
m→∞m−1 logP (L > mq) = F (0, 0)

lim
m→∞m−1 logM2(mq, θmq) = 2F (0, 0).

(b) For α = 1/2,

lim
m→∞m−1 logP (L > mq)= max

z
{F (a, z) − z2/2}

lim
m→∞m−1 logM2(mq, θmq)= max

z
{2F (a, z)− z2/2}.

(c) For 0 < α < 1/2,

lim
m→∞m−2α logP (L > mq)

= lim
m→∞m−2α logM2(mq, θmq)

= −z2
a/2,

with za = (Φ−1(q) − Φ−1(p))/a.

This result shows that we achieve asymptotic opti-
mality only in the case α > 1/2 (in which the corre-
lations vanish quite quickly), because only in this case
does the second moment vanish at twice the rate of
the first moment. At α = 1/2, the second moment de-
creases faster than the first moment, but not twice as
fast, so this is an intermediate case. With α < 1/2,
the two decrease at the same rate, which implies that
one-step IS is (asymptotically) no more effective than
ordinary simulation in this case. The failure of asymp-
totic optimality in (b) and (c) results from the impact
of the common risk factor Z in the occurrence of a large
number of defaults: at moderate or large values of ρ,
large losses occur primarily because of large moves in
Z. Capturing this effect requires applying IS to Z itself,
rather than just to the Yi conditional on Z.
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4 IS FOR THE MIXED POISSON MODEL

4.1 IS Estimator

We next consider the simulation problem for the mixed
Poisson model. As in the normal copula model, we can
think of applying IS in two steps — one step changes
the default probabilities conditional on the common fac-
tors, the other applies a change of distribution to the
factors themselves. Because of the special structure of
the mixed Poisson model, these two steps can be com-
bined in a convenient and effective way.

In analogy with the discussion for the normal cop-
ula model, we first assume the values of the common
risk factors Γ1, . . . ,Γd are given, so that the Yi are in-
dependent Poisson random variables with parameters
Ri. Consider the effect of exponentially twisting ciYi
by some θ ∈ �; this defines a change of distribution
through the likelihood ratio

exp(−θciYi +Ri(eciθ − 1)).

Here, Ri(eciθ−1) is the conditional cumulant generating
function of ciYi, given Ri. The conditional mean of
Yi under the distribution defined by θ is Rieciθ. By
choosing θ > 0 we thus increase the mean of Yi.

Now apply this exponential twist to all the ciYi. Since
L is the sum of (conditionally) independent random
variables ciYi, the likelihood ratio has the form

m∏
i=1

exp(−θciYi +Ri(eciθ − 1))

= exp(−θL+
m∑
i=1

Ri(eciθ − 1)), (8)

and
∑m
i=1 Ri(e

ciθ − 1) is the conditional cumulant gen-
erating function of L given the risk factors Γ1, . . . ,Γd.

To further reduce variance, we apply a second im-
portance sampling step to the risk factors. We consider
exponentially twisting each Γj by some τj . This defines
a change of distribution through the likelihood ratio

exp


−

d∑
j=1

{τjΓj + αj log(1 − βjτj)}

 . (9)

Here, −αj log(1−βjτj) is the cumulant generating func-
tion of Γj , which has a Gamma(αj , βj) distribution un-
der the original measure. We see from this that τj must
be less than 1/βj, j = 1, . . . d. Under the distribution
defined by τj , Γj has a Gamma(αj , βj/1−βjτj) distrib-
ution. In other words, exponentially twisting a gamma
distribution produces another gamma distribution with
the same shape parameter and a different scale parame-
ter.

The likelihood ratio for this two-step change of distri-
bution is the product of the individual likelihood ratios
(8) and (9). Since the Ri are determined by Γ1, . . . ,Γd
through (4), simple algebra shows that the likelihood
ratio can be expressed as

exp
(
−θL+ ψ(1)(θ) + ψ(2)(τ) + ψ(3)(θ, τ,Γ)

)
, (10)

where

ψ(1)(θ) =
m∑
i=1

ai0(eciθ − 1),

ψ(2)(τ) = −
d∑
j=1

αj log(1 − βjτj),

ψ(3)(θ, τ,Γ) =
d∑
j=1

(
m∑
i=1

aij(eciθ − 1) − τj)Γj .

It remains to choose the twisting parameters
τ1, . . . , τd and θ. Inspection of the components of (10)
reveals that by linking the choices of these parameters
we can eliminate the Γj from the likelihood ratio, leav-
ing only the dependence on L. Because our goal is to
estimate the tail distribution of L, this will prove to be
an effective choice. Suppose, then, that we choose

τj =
m∑
i=1

aij(eciθ − 1), j = 1, . . . d. (11)

For sufficiently small θ > 0, this will satisfy the con-
straint τj < 1/βj. Substituting (11) in (10) reveals
that the two-step IS likelihood ratio has the form

exp(−θL+ ψL,m(θ)) (12)

where

ψL,m(θ) = ψ
(1)
L,m(θ) + ψ

(2)
L,m(θ) (13)

with ψ
(1)
L,m = ψ(1) as above and

ψ
(2)
L,m(θ) = −

d∑
j=1

αj log

(
1 − βj

m∑
i=1

aij(eciθ − 1)

)
.

In fact, this shows that ψL,m(θ) is the cumulant gener-
ating function of L and (12) is exactly the likelihood ra-
tio for exponentially twisting L itself by θ. (In contrast,
in the normal copula model it does not seem possible
to blend the two IS steps in this way or to find a simple
expression for the cumulant generating function of L.)

For the choice of θ, we use the same idea as in the
independent case, choosing θ = θx with θx solving

ψ′
L,m(θx) = x. (14)
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The two-step IS estimator of P (L > x) for the mixed
Poisson model is then

exp(−θxL+ ψL,m(θx))1{L > x}. (15)

This is easily implemented through the following algo-
rithm:

1. Define ψL,m as in (13) and solve for θx as in (14);
set θx = max{0, θ}.

2. Compute τj , j = 1, . . . , d, from (11).

3. Generate Γj ∼ Gamma(αj ,
βj

1−βjτj
), j = 1, . . . , d.

4. Compute the conditional means Ri, i = 1, . . . ,m,
as in (4).

5. Generate Yi ∼ Poisson(Rieciθx), i = 1, . . . ,m.

6. Calculate loss L = c1Y1 + · · · + cmYm.

7. Return estimator (15).

The condition θx > 0 holds whenever x > E[L] and
thus whenever {L > x} is a rare event. In the less
interesting case that x ≤ E[L] (and θx ≤ 0), IS is un-
necessary. Replacing θx with 0 (as in Step 1) restores
the original sampling distribution.

4.2 Asymptotic Optimality

We now turn to the question of asymptotic optimality
for the IS estimator (15) as m increases. Our first result
takes the loss threshold x to be a fixed multiple of m;
we write mq instead of x. We formulate an asymptotic
optimality result for settings in which the probability
P (L > mq) decays exponentially to 0 as m increases to
∞. As before, asymptotic optimality means that the
second moment

M2(q, θq,m)
= Eθq,m [1{L > mq} exp{−2θq,mL+ 2ψL,m(θq,m)}]

decays at twice the rate of the probability itself. Here,
we have written the twisting parameter θx as θq,m and
written Eθq,m for the expectation under the IS distrib-
ution.

Asymptotic optimality would follow from the exis-
tence of a limiting cumulant generating function

ψL(θ) = lim
m→∞

1
m
ψL,m(θ). (16)

Inspection of ψ(2)
L,m reveals, however, that this limit will

ordinarily be infinite for all θ > 0 if the parameters of

the problem are all O(1). In particular, if the aij and
ci are all O(1) and positive, then

m∑
i=1

aij(eciθ − 1)

will be larger than 1/βj for sufficiently large m, making
ψ

(2)
L,m(θ) infinite for all sufficiently large m.
The source of the problem here (as in the normal

copula setting) is that there is too much dependence
among the Yi. As a result, P (L > mq) may even
have a nonzero limit as m increases. To formulate
an asymptotic optimality result, we consider limiting
regimes in which either the impact of the common fac-
tors Γ1, . . . ,Γd diminishes as m increases, or in which
q itself increases with m. From a practical perspective,
this suggests that the IS estimator may not be very ef-
fective in the presence of strong correlations between
the Yi. Alternatively, this says that q needs to be large
relative to the strength of the dependence on the com-
mon risk factors.

There are many ways one could make the parameters
of the model vary with m that would lead to the con-
vergence required in (16). We give three specifications.
In the first, the coefficients aij are decreasing, so the Yi
become less sensitive to the risk factors; in the second,
the number of risk factors increases and each becomes
less important; in the third, the variability of each risk
factor decreases.

Case (a): ci → c, ai0 → a0, maij → aj, for some
constants c, a0, a1, . . . , ad, and the limit is

ψL(θ) = a0(ecθ − 1).

Case (b): ci → c, ai0 → a0, maij → a, d/m → d0, and
the limit is

ψL(θ) = a0(ceθ − 1) − d0

σ2
j

log(1 − σ2
j a(e

cθ − 1))

Case (c): ci → c, ai0 → a0, aij → aj , m/αj → σ2
j > 0

and mβj → σ2
j , and the limit is

ψL(θ) = a0(ecθ − 1) −
d∑
j=1

1
σ2
j

log(1 − σ2
jaj(e

cθ − 1)).

For any of these possible limits, let θq satisfy

ψ′
L(θq) = q. (17)

Theorem 2 For Cases (a)–(c), we have

lim
m→∞m−1 logP (L > mq) = −θqq + ψL(θq). (18)

and

lim
m→∞m−1 logM2(q, θq,m) = −2θqq + 2ψL(θq). (19)
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Thus, IS using exponential twisting with parameter θq,m
is asymptotically optimal.

Proof. Given the existence of ψL, (18) is a direct
consequence of the Gärtner-Ellis Theorem (as in, e.g.,
Dembo and Zeitouni (1998)).

From the definition of M2(q, θq,m), we have

M2(q, θq,m) ≤ exp{−2m(θq,mq +m−1ψL,m(θq,m))}
≤ exp{−2m(θqq +m−1ψL,m(θq))}
= exp{−2m(θqq + ψL(θq)) + o(m)}.

The second inequality holds because θq,m minimizes
−θq+m−1ψL,m(θ). And since m−1ψL,m(θq) → ψL(θq),
we obtain the last equality. Thus,

lim sup
m→∞

m−1 logM2(q, θq,m) ≤ −2θqq + 2ψL(θq).

Since the second moment must be at least as large as
the square of the first moment, using (18) we get (19).
and asymptotic optimality holds.

Through the argument in Sadowsky and Bucklew
(1990), it follows that we also have asymptotic optimal-
ity if in the IS algorithm we replace θq,m with the fixed
value θq solving ψ′

L(θq) = q. This has some potential
advantage in the sense that ψL may have a simpler form
than ψL,m. In numerical experiments we have found,
however, that using θq,m results in greater variance re-
duction — sometimes much greater.

Now we consider another type of asymptotic optimal-
ity in which q itself increases with m. Suppose q = xmα

for positive constants x and α. Write θm for the solu-
tion to

ψ′
L,m(θm) = xm1+α.

The second moment under the IS distribution with pa-
rameter θm is

M2(m, θm)
= Eθm [1{L > xm1+α} exp{−2θmL+ 2ψL,m(θm)}]

with Eθm the expectation under the IS distribution. We
suppose that for each j = 0, 1, . . . , d, aij → aj for some
constants aj . We assume the indices of Γ1, . . .Γd are
ordered so that a1β1 ≤ · · · ≤ adβd.

Theorem 3 If ci → c, aij → aj, j = 0, 1, . . . d, then

lim
m→∞m−α logP (L > xm1+α) = −x/ca1β1

lim
m→∞m−α logM2(m, θm) = −2x/ca1β1.

Thus, IS using exponential twsisting with parameter θm
is asymptotically optimal.

Proof. First we show that

lim inf
m→∞ m−α logP (L > xm1+α) ≥ − x

ca1β1
. (20)

Since ci → c, aij → aj , for arbitrary ε > 0 there exists
an m1 such that for any m ≥ m1,

c− ε ≤ ci ≤ c+ ε, and aj − ε ≤ aij ≤ aj + ε.

Given Γ1, let N1, N2, . . . be i.i.d. Poisson random vari-
ables with mean (a1 − ε)Γ1. For sufficiently large m,

P (L > xm1+α) (21)

≥ P ((c− ε)
m∑
i=1

Ni > xm1+α)

≥ P (Γ > γm,ε)P ((c− ε)
m∑
i=1

Ni > xm1+α |Γ = γm,ε )

where γm,ε = xmα

(c−ε)(a1−ε) + ε. Using the fact that
∑
iNi

has a Poisson distribution, given Γ1, and applying the
bound (4.49) of Johnson et al. (1993), we find that the
second factor is greater than 1/2 for all sufficiently large
m. Combining this with the fact that the tail of Γ1

decays exponentially at rate 1/β1, for large m we get

P (L > xm1+α) ≥ 1
2
P (Γ1 > γm,ε)

= exp(−γm,ε
β1

+ o(mα)).

Since ε > 0 can be arbitrarily small, (20) follows.
Next we show that

lim sup
m→∞

m−α logM2(m, θm) ≤ − 2x
ca1β1

. (22)

Define

ψL,m,ε(θ) = ψ
(1)
L,m,ε(θ) + ψ

(2)
L,m,ε(θ)

where

ψ
(1)
L,m,ε(θ)= m(a1 + ε)(e(c+ε)θ − 1)

ψ
(2)
L,m,ε(θ)= −

d∑
j=1

αj log(1 − βjm(a1 + ε)(e(c+ε)θ − 1)).

For m ≥ m1 large enough and θ ≥ 0, ψL,m,ε(θ) ≥
ψL,m(θ). Define θm,ε to be the value that solves

ψ′
L,m,ε(θm,ε) = xm1+α

and observe that

ψ
′(1)
L,m,ε(θ) = m(a0 + ε)(c+ ε)e(c+ε)θ

ψ
′(2)
L,m,ε(θ) =

d∑
j=1

m(aj + ε)(c+ ε)e(c+ε)θ

1 − βjm(aj + ε)(e(c+ε)θ − 1)
.
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From the definition of M2(m, θm), we know that

M2(m, θm) ≤ exp
{−2θmxm1+α + 2ψL,m(θm)

}
(23)

≤ exp
{−2θm,εxm1+α + 2ψL,m(θm,ε)

}
≤ exp

{−2θm,εxm1+α + 2ψL,m,ε(θm,ε)
}
.

The second inequality comes from the fact that θm min-
imize the upper bound.

As m → ∞, we have ψ′
L,m,ε(θm,ε) → ∞ and this

requires that θm,ε/zm → 1 where

zm = log
(

1
β1m(a1 + ε)

+ 1
)

/(c+ ε)

is the smallest root of the denominator ψ′(2)
L,m,ε(θ). But

then θm,εm→ 1/(c+ ε)(a1 + ε)β1. So

lim sup
m→∞

−2θm,εxm1+α + 2ψL,m,ε(θm,ε)
mα

(24)

= lim sup
m→∞

−2θm,εxm+
2xψL,m,ε(θm,ε)
ψ′
L,m,ε(θm,ε)

= − 2x
(c+ ε)(a1 + ε)β1

+ lim sup
m→∞

2xψL,m,ε(θm,ε)
ψ′
L,m,ε(θm,ε)

.

Because ψL,m,ε is a convex function passing through the
origin,

2xψL,m,ε(θm,ε)
ψ′
L,m,ε(θm,ε)

≤ 2xψ′
L,m,ε(θm,ε)θm,ε
ψ′
L,m,ε(θm,ε)

= 2xθm,ε → 0.

Since ε > 0 can be arbitrarily small, (22) holds. By
Jensen’s inequality, (20) and (22) together imply the
two limits in the statement of the theorem.

4.3 Numerical Examples

We now illustrate the effectiveness of the IS algorithm
through some numerical examples. For our first exam-
ple, we consider a portfolio with m = 1000 obligors
and exposures ci = 0.04 + 0.00196i increasing linearly
from 0.042 to 2. We set ai0 ≡ 0.002 and aij ≡ 0.0002,
j = 1, . . . , d. There are d = 10 risk factors, each
with variance 9. With these parameters, E[Yi] = 0.004
(think of this as the marginal probability of default over
1 year) and the standard deviation of Yi is 0.002; these
values reflect a high degree of variability in the condi-
tional default probabilities.

Table 1 reports variance ratios (variance reduction
factors) for several values of q in estimating P (L > mq).
Each variance ratio is calculated by estimating the vari-
ance per replication using standard simulation and di-
viding it by the variance per replication using IS. Each
estimate in the table is based on 100,000 replications.
At larger values of q, the variance ratio becomes very

large. The improvement is substantial for probabilities
in the range of 1% to 0.1% which are of particular in-
terest in risk management applications.

We have carried out the same experiments using ci ≡
1 and obtained very similar results. We also obtained
very similar results in estimating

P (
m∑
i=1

min{Yi, 1}ci > qm)

(i.e., dropping the Poisson approximation in the origi-
nal model) using the same IS distribution. We obtained
greater variance reduction in models with smaller val-
ues of σj . However, the main determinant of the vari-
ance ratio seems to be the magnitude of the probability
P (L > mq).

Table 1: Variance Reduction for Increasing q

q P (L > mq) Var Ratio
0.0080 10.27% 3.27
0.0099 4.94% 5.46
0.0138 1.05% 17.30
0.0156 0.51% 30.81
0.0197 0.10% 120.57

Next we illustrate the effect of increasing m while
holding q fixed. For this example, we take ci ≡ 1
and q = 0.009. The resulting probabilities P (L > mq)
and variance ratios for increasing m are reported in Ta-
ble 2, each based on 20,000 replications. As expected,
the probabilities approach a limit as m increases and
the variance ratio also appears to reach a limit. This
contrasts with Table 1 where the variance ratio grows
quickly with q. The results are consistent with The-
orems 2 and 3, which indicate that for large variance
reduction we either need q to grow or the effect of the
underlying gamma risk factors to weaken.

Table 2: Variance Reduction for Increasing m

m P (L > mq) Var Ratio
500 8.28% 4.00

1000 4.45% 5.74
2000 3.52% 6.77
5000 2.95% 7.36

10000 2.83% 7.61
20000 2.68% 7.94

100000 2.57% 8.18

5 CONCLUDING REMARKS

This paper has proposed, analyzed, and tested a two-
step IS method for estimating loss probabilities in a
mixed Poisson model of credit risk. The method ap-
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plies an exponential twist to the default random vari-
ables conditional on the values of common risk factors,
and it applies a second exponential twist to the risk
factors themselves. We have identified limiting regimes
under which this method is asymptotically optimal and
illustrated its effectiveness through numerical examples.

The loss distribution in the mixed Poisson model can
be calculated numerically through transform inversion
(as in CSFP 1997), essentially by using the same cu-
mulant generating function we use in importance sam-
pling. Nevertheless, the strategy we have used here
is applicable more generally. It applies, for example,
to the normal copula model, for which simulation is
the most practical computational tool. In the normal
copula model, applying just a single IS step leads to
asymptotic optimality only if the model’s correlations
decrease as the portfolio size increases; effective vari-
ance reduction usually requires applying IS to the risk
factors as well. The special structure of the mixed Pois-
son model allows the two steps to be combined into a
single exponential change of distribution.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants
DMS007463 and DMI0300044.

REFERENCES

Cario, M.C., and B.L. Nelson. 1997. Modeling and
generating random vectors with arbitrary marginal
distributions and correlation matrix. IEMS Depart-
ment, Northwestern University, Evanston, IL.

Credit Suisse Financial Products. 1997. CreditRisk+:
A CreditRisk Management Framework. London.

Crouhy, M., D. Galai, and R. Mark. 2001. Risk Man-
agement. New York: McGraw-Hill.

Dembo A. and O. Zeitouni. 1998. Large Deviations
Techniques and Applications, 2nd ed. New York:
Springer.

Glasserman P., P. Heidelberger, P. Shahabuddin. 1999.
Asymptotically optimal importance sampling and
stratification for pricing path-dependent options.
Mathematical Finance 9:117–152.

Glasserman, P., and J. Li. (2003). In preparation.
Gupton, G., C. Finger, M. Bhatia. 1997. CreditMetrics

Technical Document. J.P. Morgan & Co., New York.
Available at <www.riskmetrics.com>.

Johnson, N.L., S. Kotz, and A.W. Kemp. 1993. Uni-
variate Discrete Distributions, 2nd ed. New York:
Wiley.

Li, D. 2000 On default correlation: a copula function
approach. Journal of Fixed Income 9:43–54.

Sadowsky J. and J. Bucklew. 1990. On large deviations
theory and asymptotically efficient Monte Carlo es-
timation. IEEE transactions on information theory
36:579–588.

AUTHOR BIOGRAPHIES

PAUL GLASSERMAN is the Jack R. Anderson
Professor in the Decision, Risk, and Operations Di-
vision of Columbia Business School. His research in-
terests include variance reduction techniques and mod-
eling and computational issues in risk management
and the pricing of derivative securities. He is au-
thor of Monte Carlo Methods in Financial Engineer-
ing, published by Springer-Verlag in 2003. His e-mail
address is <pg20@columbia.edu> and his web page is
<www.paulglasserman.net>.

JINGYI LI is a Ph.D. candidate in the Division of
Decision, Risk, and Operations in Columbia Business
School, New York, NY. Her main focus of interest has
been the application of simulation methods in finance.
She received her B.E. and M.E. in electrical engineering
from Tsinghua University in 1996 and 1999. Her e-mail
address is <jl976@columbia.edu>.


