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This paper develops formulas for pricing caps and swaptions in Libor market 
models with jumps. The arbitrage-free dynamics of this class of models were 
characterized in Glasserman and Kou (2003) in a framework allowing for 
very general jump processes. For computational purposes, it is convenient to 
model jump times as Poisson processes; however, the Poisson property is not 
preserved under the changes of measure commonly used to derive prices in the 
Libor market model framework. In particular, jumps cannot be Poisson under 
both a forward measure and the spot measure, and this complicates pricing. To 
develop pricing formulas, we approximate the dynamics of a forward rate or 
swap rate using a scalar jump-diffusion process with time-varying parameters. 
We develop an exact formula for the price of an option on this jump-diffusion 
through explicit inversion of a Fourier transform. We then use this formula to 
price caps and swaptions by choosing the parameters of the scalar diffusion to 
approximate the arbitrage-free dynamics of the underlying forward or swap 
rate. We apply this method to two classes of models: one in which the jumps 
in all forward rates are Poisson under the spot measure, and one in which the 
jumps in each forward rate are Poisson under its associated forward measure. 
Numerical examples demonstrate the accuracy of the approximations.

1 Introduction

This paper develops formulas for pricing caps and swaptions in jump-diffusion 
Libor market models. The success of the original Libor market models and their 
extensions (including Brace, Gatarek, and Musiela, 1997; Miltersen, Sandmann, 
and Sondermann, 1997; Jamshidian, 1997; Andersen and Andreasen, 2000; Joshi 
and Rebonato, 2001; and Zühlsdorff, 2000) is due in part to the availability of 
formulas and fast numerical methods for pricing caps and swaptions within this 
framework. These are necessary for model calibration. The Libor market model 
framework was extended to include jumps in Glasserman and Kou (2003) and, 
using a different approach, in Jamshidian (1999). Glasserman and Kou (2003) 
focus on characterizing the arbitrage-free dynamics of forward rates in the 
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 presence jumps. They identify a tractable subclass of models in which caplet 
prices are given through a blending of the formulas of Black (1976) and Merton 
(1976), but they leave open the question of simultaneous pricing of swaptions 
and also the question of cap and swaption pricing for other specifications of the 
jump process. We take up these questions here.

Including jumps in a model of the Libor term structure introduces an issue 
not present in purely diffusive models: the most convenient model of jumps 
is a Poisson process, but the Poisson property is not preserved by the changes 
of measure (eg, between the spot measure, the forward measure, and the swap 
measure) that lie at the heart of the market model framework. In formulating 
a model, one must choose the measure under which jumps will be Poisson. 
Glasserman and Kou (2003) obtain a caplet formula by requiring that each Libor 
rate have Poisson jumps under its associated forward measure; we refer to this 
choice here as a forward Poisson (FP) specification. For other purposes, it may 
be desirable to have jumps in all forward Libor rates follow Poisson processes 
simultaneously under a single measure, so here we also consider cap and swap-
tion prices in a spot Poisson (SP) specification that accomplishes this under the 
spot measure. The arbitrage-free dynamics of forward Libor under both specifi-
cations follow immediately from more general results in Glasserman and Kou 
(2003).

Because we consider cap and swaption prices in both the SP and FP specifica-
tions, we deal with four basic pricing problems. Our strategy for all four cases 
may be summarized as follows:

❑  Express the option (caplet or swaption) as an expectation involving only a 
 single underlying rate (forward rate or swap rate) through appropriate choice 
of measure (forward measure or swap measure).

❑  Approximate the dynamics of the underlying rate under the chosen measure 
using a scalar jump-diffusion with time-varying parameters, Poisson jump 
times, and lognormal jump-size factors.

❑  Apply an extension of Merton’s (1976) formula to value an option on the 
approximating jump-diffusion process.

We comment briefly on each of these steps. The first uses ideas now standard 
in the market model literature; we review these in Section 2. In the last step, 
the extension is needed to handle time-varying parameters. The approximating 
jump-diffusion process has the property that its logarithm has independent incre-
ments, and this lends itself to option pricing through Fourier transform inversion. 
We obtain an option pricing result by inverting the transform explicitly. This for-
mula is the key to our cap and swaption approximations. The formula could also 
be used to incorporate jumps in the pricing of equity or currency options.

In the three-step strategy outlined above, only the second step involves 
approximations – the first and third are exact. To approximate a more general 
process (forward rate or swap rate) using a simpler jump-diffusion, we need, 
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in each case, to choose the approximating drift, diffusion coefficient, Poisson 
arrival rate, and jump-size parameters. We do this by analyzing the dynamics of 
forward rates and swap rates under the appropriate measures.

The presence of jumps suggests that we are working in an incomplete market 
and thus raises the question of the sense in which a formula can legitimately 
be interpreted as a price. We are, in effect, assuming that the market is made 
“nearly” complete by derivative prices. Because caps and swaptions are actively 
traded, the purpose of pricing formulas lies in calibrating model parameters 
(such as jump rates) to market prices – the formulas are most useful in reverse. 
In a complete market, the prices of derivatives would completely determine 
the parameters; in practice, we expect that market prices would substantially 
constrain though not completely determine parameter values. The remaining 
indeterminacy would be removed by imposing additional restrictions on the 
parameterization. This is standard practice in, for example, calibrating a diffu-
sion model to a volatility surface.

The rest of the paper is organized as follows. Section 2 reviews Libor market 
models and discusses derivatives pricing and changes of numeraire. Section 3 
introduces an exact formula for the price of a European option on a particu-
lar type of jump-diffusion with time-varying coefficients. Section 4 discusses 
general arbitrage restrictions on market models with jumps, and the dynamics 
under relevant pricing measures. In Section 5, we develop caplet and swaption 
formulas in the SP specification and support the method through numerical 
experiments. We treat the FP specification in Section 6. By construction, caplets 
are priced exactly in this setting, but we go beyond Glasserman and Kou (2003) 
in allowing for time-varying parameters. We derive a swaption approximation 
and support it through numerical results. Section 7 summarizes the models and 
formulas presented. All proofs are collected in the Appendix.

2 Libor market models and derivatives

We consider Libor market models of the term structure, of the type developed 
by Brace, Gatarek, and Musiela (1997); Miltersen, Sandmann, and Sondermann 
(1997); and Jamshidian (1997). We take a discrete tenor structure – a finite set 
of dates 0 = T0 < T1 < … < TM  + 1, with Ti  + 1 – Ti ≡ δ. The fixed accrual period δ 
is expressed as a fraction of a year; for instance, δ = 1 ⁄ 2 represents six months. 
Each tenor date Tk is the maturity of a zero-coupon bond; Bk (t ) denotes the price 
of that bond at time t ∈[0, Tk] and Bk (Tk) ≡ 1. Forward Libor rates L1,…, LM 
may be defined from the bond prices by setting
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Similarly, L0(0) is the rate for [0, T1]. Let η(t ) = inf{ j ≥ 0: Tj ≥ t} so that η(t ) 
is the index of the next maturity as of time t. Bond prices can then be written in 
terms of Libor rates and the next bond to mature Bη (t ) as
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Absence of arbitrage by trading in bonds is essentially equivalent to the 
existence of a numeraire M(t ) and an associated measure under which dis-
counted asset prices Bj (t ) ⁄M(t ) are martingales. For a general class of payoffs, 
determined by the state of the set of forward rates at time T, the price C(0) of a 
contingent claim with payoff C(T ) becomes

C M
C T

M T
( ) ( )

( )

( )
0 0= ⎡

⎣⎢
⎤
⎦⎥

E

the expectation taken with respect to the measure associated with numeraire 
M(t ). There are several numeraires that have been shown to be convenient in the 
pricing of derivatives. The spot martingale measure P, introduced by Jamshidian 
(1997), uses a discretely compounded money market account as numeraire, 
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Under this measure, the price of a caplet with strike K, for the period [Tn, Tn + 1], 
which pays δ (Ln(Tn) – K) +  at time Tn + 1 is 
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For pricing derivatives tied to just one forward rate (such as a caplet), it is often 
convenient to choose as numeraire a zero-coupon bond maturing at the end of 
the accrual period associated with the forward rate. Thus, to price a claim con-
tingent on Ln, we take as numeraire the bond Bn + 1. Observe from (1) that
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is the ratio of a portfolio of assets to Bn + 1(t), so that under the measure asso-
ciated with Bn + 1 as numeraire, Ln(t ) is a martingale. This in fact is why this 
particular choice of numeraire is convenient. The measure associated with this 
numeraire is usually called the forward measure or terminal measure for matu-
rity Tn + 1; see Musiela and Rutkowski (1997) for background. Writing EPn + 1 for 
expectation under this measure, we have
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P
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n
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The nth caplet price is thus determined by the dynamics of Ln under its associ-
ated forward measure.
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Swaptions are also widely traded derivatives. A payer’s swaption maturing at 
Tn is an option to enter a fixed-for-floating swap between dates Tn and TM + 1. If 
the option is exercised, the holder makes fixed payments δK and receives float-
ing payments δLi (Ti ) at Ti + 1, i = n,…, M. The swaption value at expiration is

C T B T S T Kn M n j
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=
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where the swap rate Sn, M is
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The time-0 swaption price under the spot martingale measure is
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but it is often convenient to change the pricing measure and take, as Jamshidian 
(1997) did, 
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as numeraire, associated to the measure Pn, M. This leads to an alternative rep-
resentation for the swaption price, as the deterministically discounted expected 
value of a European payoff, 
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Furthermore, from the representation, 
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and the form of the numeraire in (7), it is evident that Sn, M is a martingale under 
Pn, M.

We have seen that, under the appropriate changes of measure, both caplets 
and swaptions become European options with trivial discounting, on forward 
and swap rates respectively. This naturally suggests a strategy to develop pricing 
formulas. The idea is to approximate the dynamics of each of the relevant rates, 
under the corresponding pricing measure, by dynamics simple enough to lead to 
formulas for option prices. To carry this out, in the section we develop an option 
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pricing formula for relatively simple scalar jump-diffusion. This formula will 
then be the tool we use to develop cap and swaption pricing formulas.

3 A jump-diffusion option formula

In this section, we digress from our discussion of term structure models to 
develop our key pricing tool. We consider the pricing of a European option on a 
scalar jump-diffusion with Poisson jump times and lognormal jump-size factors. 
This is a process used by Merton (1976) to model a stock price, except that we 
allow the parameters of the model to vary with time. This extension is essential 
for our intended application. We restrict the time dependence of the coefficients 
by allowing them to change only at tenor dates while remaining constant dur-
ing each accrual period. This restriction is computationally convenient and 
consistent with the way interest rate volatilities are calibrated in practice. One 
could presumably extend the pricing formula below to continuously varying para-
meters by appropriately replacing the sums with integrals.

Consider, then, the process

(9)
d
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with W(t ) a standard Brownian motion, γ (t ) deterministic and bounded, N a 
Poisson process with rate λ(t ), and Yj ∈(0, ∞) independent with lognormal 
density f ( · , t) having mean 1 + m (t ), and with W, N, and {Y1, Y2,…,} mutually 
independent. We take the G to be right-continuous and denote by G(t–) the left 
limit at t. As the marks Yj are positive, the form of the jump term ensures that 
G(t ) also remains positive, given positive G(0) . We parameterize each lognor-
mal density f ( · , t ) through the mean µ (t ) and standard deviation σ (t ) of the 
associated normal density. In particular, m = eµ + σ2⁄ 2 – 1. By piecewise constant 
coefficients we mean that a(t ) = ak, γ (t ) = γk, λ (t ) = λ k and f (y, t ) = fk(y) for 
Tk–1 < t ≤ Tk, k = 1,…, M. At this point, G has no specific financial meaning; 
later, we use it to model or approximate a forward rate or a swap rate.

Imposing a piecewise constant parameterization on dynamics (9) leads to 
closed form European option prices through the Fourier transform approach, 
successfully used to price contingent claims by Heston (1993); Duffie, Pan, and 
Singleton (2000); Carr and Madan (1999); and Scott (1997) among others. The 
Fourier inversion approach is based on the transform of the logarithm of the 
asset (G in our case) defined as

ψ( ) ,     log( ( ))z zz G t≡ [ ] ∈E e �

In particular, we need the existence, in analytic form, of ψ (z) at z = 1 + iu 
and z = iu, with u ∈� and i = ��–1. The choice of a lognormal jump density f 
is standard in financial modeling and is also computationally convenient. The 
same method could be used with other choices of f; Kou (1999) uses a double-
 exponential distribution for log jump sizes. The key point is that the logarithm 
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of G has independent increments and piecewise constant coefficients, so its dis-
tribution is given by a convolution and is thus convenient for transform analysis. 
The pricing formula for a European option maturing at Tn, n ≤ M, is as follows:

PROPOSITION 3.1 With G defined as in (9), the expected value of a European 
payoff is
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This result is proved in the Appendix. The integrals in (11) and (12) can be 
computed to very high accuracy in very short time, so the result is essentially a 
closed-form expression.

In allowing time-varying coefficients, the formula above extends the Merton 
formula (1976) for the price of a European option on a lognormal jump-
 diffusion. The Merton formula was used by Glasserman and Kou (2003) (in a 
manner analogous to the use of the Black, 1976, formula in Brace, Gatarek and 
Musiela, 1997) to build a jump-diffusion model that prices caplets (or swap-
tions) exactly by forcing the forward (or swap) rate to be, under its own forward 
(or swap) measure, a scalar lognormal jump-diffusion with Poisson distributed 
jump times and constant coefficients over the life of the rate. In the spirit of 
Glasserman and Kou we obtain Proposition 3.1 as an exact caplet pricing for-
mula for those model specifications in which the dynamics of a forward rate 
under its forward measure are exactly of the form (9). Proposition 3.1 is also 
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potentially useful for equity and currency options, where jumps can be used to 
reproduce a skew in implied volatilities.

Although we do not pursue this line in this paper, we could also build  models, 
with piecewise constant coefficients, that price swaptions exactly through 
Proposition 3.1. However, as noted by Glasserman and Kou (2003), and as will 
become clear later from the dynamics of the rates under different measures, 
exact prices cannot be achieved for caplets and swaptions within the same model 
specification, because the law of the jumps cannot be Poisson under both for-
ward and swap measures. A similar problem arises in the pure diffusion case, 
where it is well-known that there is no model in which the forward and swap 
rates are simultaneously lognormal.

As explained in the Introduction, we develop caplet formulas through the 
dynamics of each forward rate under its associated forward measure. Depending 
on the particular model specification the dynamics are, either exactly or approxi-
mately, of the form (9). Caplets are then priced using the formula in Proposition 
3.1. For swaption formulas, we work along a line well developed in the pure 
diffusion setting by Andersen and Andreasen (2000); Brace, Dun, and Barton 
(2001); Hull and White (2000); Jäckel and Rebonato (2000); and Kawai (2000) 
among others, who characterized the volatility of the swap rate in terms of the 
volatilities of the forward rates. We use the fact that a swap rate is approximately 
a linear combination of simple forward rates and develop approximations for the 
dynamics of the swap rate under the swap measure, with the form (9) and its 
coefficients written in terms of those in the dynamics of the forward rates. We 
then approximate swaption prices through Proposition 3.1.

To approximate a forward rate or swap rate by a process of the form (9), we 
need to choose the parameters of the approximating process. A substantial part 
of the paper consists in choosing these parameters. In particular, we will take the 
density of the jump sizes f in (9) to approximately match the first two moments 
of the conditional expected jump size of the rate of interest. For later use, we 
record here that the expected jump size in (9), conditional on being at a jump 
time τ, is
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Later, we match these expressions to corresponding moments for jumps in for-
ward rates or swap rates in order to select parameters.
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4 Jump-diffusion Libor models

4.1 Modeling jumps

Glasserman and Kou (2003) characterized the arbitrage-free dynamics of Libor 
market models with jumps. Before entering into the details of their formulation 
and possible model specifications, we briefly review some tools used to model 
jumps, most importantly the notions of marked point process (MPP) and associ-
ated intensity. For general mathematical background on MPPs see, eg, Brémaud 
(1981), and for their use in term structure modeling see Björk, Kabanov, and 
Runggaldier (1997).

We describe an MPP through a sequence of pairs of times and marks
{(τj , Xj) , j = 1, 2,…}, with the interpretation that the mark Xj arrives at τj. The τj 
take values in (0, ∞) and are strictly increasing in j. The marks Xj take values in a 
subset of �D. Let N(t ) be the number of points in (0, t]: N(t ) = sup{j ≥ 0: τj ≤ t}. 
From an MPP we construct jump processes by choosing a function H: �D ×
(0, ∞) → � and defining

J t H Xj j
j

N t

( ) ,
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= ( )
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∑ τ
1

The function H transforms the mark Xj into a jump magnitude, and so different 
jump processes can be generated from one MPP by different choices of H. The 
MPP {(τj, Xj)} is assumed to admit an intensity process ν(dx, t ) interpreted as 
the arrival rate of marks in dx, conditional on the history of the MPPs and the 
Brownian motion W(t ) up to t –. More precisely, the intensities have the property 
that, for all bounded H, 
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is a martingale in t.
Marked point processes are the source of the jumps in the forward rate models 

we will consider. The evolution of the rate maturing at Tk takes the general form
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for W a d-dimensional Brownian motion, and deterministic functions αk : [0, ∞) ×
�M → � and γ k : [0, ∞) × �M → �d. The processes Lk are right-continuous and 
L denotes the vector (L1, …, LM). The jump term is driven by r MPPs, with
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and deterministic functions Hki : �
D × (0, TM ) → �, k = 1,…, M, i = 1,…, r.
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Most relevant for practical applications is the case of models driven by 
MPPs with a “Markovian” property – namely, that ν(dx, t) = λ (dx, L (t–), t) 
for some deterministic λ. In other words, the intensity depends on the history 
of the process only through the current state L. Models considered in this work 
will be Markovian, and we will further assume the existence of a mark density 
conditional on the current state. In this case, the intensity can be written as 
λ (dx, L (t–), t) = λ (x, L (t–), t)dx.

Observe that integrating over all possible marks we get the total jump arrival 
rate at t conditional on L (t–), ∫�D λ (x, L (t–), t)dx. Also, the conditional prob-
ability density of the mark, given a jump time τ and L (τ–) is

λ τ τ

λ τ τ

( , ( ), )

( , ( ), )

x L

x L xD

−

−∫ d
�

A subclass within the class of Markovian MPPs with mark density are pro-
cesses for which the intensity is independent of L (t–). The intensity can then be 
written as ν(dx, t ) = λ0(t ), f (x, t ) dx with f ( · , t) a probability density on �D. 
Thus, the arrival times follow a Poisson process with deterministic intensity 
λ0(t ), and the marks are independent and distributed with density f ( · , t) at time 
t. Process (9) belongs to this subclass.

4.2 Dynamics

With the tools of the previous section, we present now a simplified version of 
Theorem 3.1 in Glasserman and Kou (2003). This is a characterization of the 
arbitrage-free dynamics of simple forward rates under the spot martingale mea-
sure P. (This is a minor modification of the usual risk-neutral measure, but based 
on a discretely compounded rather than continuously compounded numeraire.)

The building blocks are a d-dimensional Brownian motion WP (t ) and r marked 
point processes {(τj

(i ), Xj
(i )), j = 1, 2,…}, Xj

(i ) ∈�D, i = 1,…, r with intensities 
νP

(i ). For each n = 1,…, M let γn( · ) be a bounded, adapted, �d-valued process 
and let Hni, i = 1,…, r, be functions from �D × [0, TM] to [–1, ∞). The model
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We have implicitly taken WP(t ) to be a column vector, γ k(t ) a row vector and 
γ k(t )T its transpose. Observe that the first term in (17) is the familiar drift restric-
tion for purely diffusive Libor market models; the second term is the additional 
restriction imposed by jumps.

As mentioned in Section 2, the pricing of the nth caplet is simplified if we 
take Bn + 1 as numeraire. We will use this fact to develop caplet approximations, 
so we discuss now the dynamics of Ln under Pn + 1. Under this measure, Ln 
becomes a martingale and therefore the drift is determined by the characteris-
tics of the jump process. A consequence of the Girsanov theorem generalized to 
processes with jumps (as in Björk, Kabanov, and Runggaldier, 1997) changing 
from the spot measure P to the forward measure Pn + 1 transforms the intensity of 
an MPP. For the class of models in Glasserman and Kou (2003), the intensities 
ν (i)

Pn + 1 and νP
(i) for the i th MPP under the forward and spot measures are related 

as in the following result (proved in the Appendix):

LEMMA 4.1 Under Pn + 1, the intensity of the i th marked point process is given by
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As with caplets, there is also a privileged measure for the pricing of swap-
tions, which we will use to develop swaption approximations. Under the swap 
measure Pn, M the swap rate becomes a martingale, so identification of the jump 
part of the dynamics determines the drift. The change of intensity associated to 
the change from the spot measure P to the swap measure Pn, M is given by

LEMMA 4.2 Under Pn, M, the intensity of the ith marked point process is given by
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δ
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P
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with bj(t ) as in (5).
From these two lemmas we see that the changes of measure considered do not 

preserve the Poisson property because the new intensity is derived from the orig-
inal intensity through multiplication by a stochastic factor. We noted at the end 
of Section 4.1 that the Poisson case is characterized by a deterministic intensity. 
The changes of measure do, however, preserve the Markovian feature because 
the stochastic factor by which the intensity is multiplied is a function only of 
the current levels of the Lks. If, for example, jumps were Poisson under the spot 
measure P, then Lemma 4.1 tells us that under the forward measure Pn + 1 both 
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the arrival rate of jumps and the sizes of jumps would depend on the evolution of 
the forward rates.

4.3 Two model specifications

The class of models defined by (15)–(17) is very wide. Practical implementa-
tion of a pricing model requires the specification of the diffusion volatility and 
characteristics of the jump process. In particular, we have seen that while it is 
desirable for pricing purposes to have Poisson jumps, this feature is restricted by 
the state dependent intensities introduced when changing measures. Therefore, 
a key point in the specification of a model is determining what rate will have 
Poisson jumps under which measure. We focus our investigation on two different 
specifications of the model (15)–(17), each motivated by its own computational 
and modeling advantages. The first specification we consider postulates a 
Poisson process for the jump times of the rates under the spot martingale mea-
sure and independent marks to generate the actual jump magnitudes. We refer 
to this as the spot Poisson (SP) specification. In this case, Monte Carlo methods 
are straightforward to implement because Poisson jumps are easy to simulate, 
and this is useful for the pricing of exotic options. However, as pointed out in 
Glasserman and Kou (2003), and as is apparent in Lemma 4.1, the jumps in each 
rate under its own forward measure cease to be Poisson, as the distribution of the 
jump times and marks becomes state dependent; this complicates caplet  pricing. 
A similar complication arises under the swap measure, and the jumps in the 
swap rate cease to be Poisson. We develop caplet and swaption formulas for this 
model specification approximating the forward and swap rate, under the forward 
and swap measures respectively, with processes of the form (9). Proposition 3.1 
then gives the prices.

Our second specification was developed in Glasserman and Kou (2003) and 
further investigated in Glasserman and Merener (2003). The idea is to choose 
the diffusion volatilities and jump law in (15)–(17) in a way that leads to exact 
closed formulas for caplet prices. This is achieved by forcing each rate to evolve 
exactly as in (9) under its own forward measure. We refer to this as the it for-
ward Poisson (FP) specification. In this case, there is no common measure under 
which all rates follow a Poisson process because the changes of measure intro-
duce state dependent jump arrival rates. For instance, it is clear from Lemma 4.1 
that the jumps of the rates under the spot martingale measure are not Poisson as 
both the arrival rate of the jumps, and the density from which the jump magni-
tudes are sampled, are state dependent. This is consequential because pricing of 
exotic deals must be done in general by simulation methods, typically involving 
the evolution of the whole term structure under a common measure. This task is 
complicated by the non-Poisson nature of the jumps. The issue is discussed in 
detail in Glasserman and Merener (2003), where thinning algorithms for path 
discretization methods are proposed and tested in realistic settings and efficient 
simulation of the model is explored.

By construction, the FP specification prices caplets exactly. We address the 



Volume 7/Number 1, Fall 2003 URL: www.thejournalofcomputationalfinance.com

Cap and swaption approximations in Libor market models with jumps 13

pricing of swaptions, for which we derive a formula through the introduction of 
an approximate swap rate process of the form (9) and subsequent application of 
Proposition 3.1.

5 Spot Poisson (SP) specification

5.1 Dynamics

We formulate in this section a lognormal jump-diffusion Libor model in which 
the law of the jump times, under the spot martingale measure, is Poisson. At a 
jump time, a vector mark X ∈� + 

D is sampled. This mark has independent compo-
nents, each generated from a standard lognormal distribution (meaning that the 
logarithm of each component of X has a standard normal distribution). The map 
that translates x ∈� + 

D into the actual jump magnitude is

(18)H x t t xk jk j
t

j

D
jk( , ) ( ) ( )= −

=
∏ β σ 1

1

with β and σ deterministic and nonnegative, a choice that we will discuss after 
introducing the dynamics of the rates. This specification is a special case of 
(15)–(17) with just one marked point process so r = 1 in (15). Furthermore, this 
point process is Poisson. To summarize, the dynamics of the rates under the spot 
measure are

(19)
d
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and αn(t ) equal to
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where γn is deterministic, Hn is as in (18) and

ν λP x t t f x t x( , ) ( ) ( , )d d=

with λ (t ) a bounded deterministic arrival rate and f ( · , t) multivariate lognormal 
on �D. The marks Xj , j = 1, 2… are independent and WP, N, Xj are mutually 
independent.
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For the purposes of later applying Proposition 3.1, we will take γ, λ, β and 
σ to be constant between tenor dates, though writing in what follows a general 
dependance on t to avoid additional indices. From a practical point of view and 
calibration considerations, a piecewise constant specification is sufficiently 
 general.

The form of Hk in (18) is motivated by noticing that the jump in the logarithm 
of the nth rate at a jump time τ is

log
( )

( )
log( ( , ))

log( ( )) ( ) log ( )( )

L

L
H X

X

n

n
n

jn jn
j

j

D

τ
τ

τ

β τ σ τ

−
⎛
⎝⎜

⎞
⎠⎟

= +

= +{ }
=

∑

1

1

and therefore, conditional on τ, distributed as a multivariate normal because 
log (X (1)),…, log (X (D)) are independent, normally distributed (X ( j ) is the j th 
component of the vector X). Different choices of β and σ generate different cor-
relations between the jump magnitudes of the rates. This is analogous to the role 
of γ in determining the correlations introduced through the diffusion term in a 
multifactor model.

5.2 Simulation

Contingent claim pricing by Monte Carlo simulation entails the generation of 
sample paths of the model presented above. As discussed in Glasserman and 
Merener (2003), in order to minimize biases, it is often convenient to take the 
logarithm of the rates as the variables to solve numerically. We have imple-
mented a first order scheme for the logarithm of the rates on a discretization grid 
that includes all jump times of the Poisson process, which may be computed in 
advance (independently for each path) as their law is independent of the state of 
the system. Glasserman and Merener (2003) and Mikulevicius and Platen (1988) 
discuss path discretization methods for stochastic differential equations with 
jumps, and Kloeden and Platen (1992) give an extensive treatment of discreti-
zation methods for pure diffusions. Notice that the drift term in (19) includes 
an integral in the mark space. This integral is recomputed at every time step 
of the time discretization grid, based on the state of the discretized solution at 
the time. We have implemented Monte Carlo simulation for a model specifica-
tion in which the mark is sampled from � + , that is, taking D = 1. We computed 
numerically the integral in the mark space with a grid uniformly spaced up to 
a sufficiently large cutoff. Recomputing this integral at every point of the time 
grid, which includes all jump times, is probably unnecessary when jumps hap-
pen often. Some of the methods in Kloeden and Platen (1992) may be useful in 
reducing this computational overhead.
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5.3 A caplet formula

In this section we derive a simple approximation for the price of a caplet associ-
ated with the rate Ln. It is clear from (4) that it is convenient to start from the 
dynamics of Ln under the forward measure Pn + 1. Changing numeraire leaves the 
diffusion volatility unchanged. Furthermore, the martingale feature of Ln under 
Pn + 1 dictates the drift term once the intensity of the jump process under the for-
ward measure is identified. The dynamics of Ln under Pn + 1 are

(22)
d
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with γn ∈�d deterministic, Hn as in (18) and where the arrival rates of the jumps 
under Pn + 1 is given by Lemma 4.1, 
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The dynamics (22) and (23) do not lead to exact closed caplet prices because the 
law of the jumps νP n + 1(dx , t) depends on the path of L. We derive a pricing for-
mula by introducing a martingale process L̂ of the form (9) that approximates Ln 
under Pn + 1 in a distribution sense. We consider

(24)
d
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where γ̂ is deterministic, W is a standard (scalar) Brownian motion, N̂ is a 
Poisson process with arrival rate λ̂(t ) and marks sampled from the lognormal 
density f̂ ( · , t) with parameters σ̂(t ), µ̂(t ). W, N̂, and Ŷj , j = 1, 2,… are indepen-
dent, with γ̂, λ̂, σ̂, and µ̂ to be determined. The initial condition is L̂(0) = Ln(0).

We specify the coefficients of the approximate process in terms of those in the 
dynamics of L as follows. First, we take

(25)ˆ ( ) ( ) ( )γ γ γt n t n t= [ ]T 1 2

a natural choice, leading to exact prices in the absence of jumps.
Next, we look at the jump term. We will determine the jump law of L̂ in 

two steps. First, we will define λ̂, the total jump arrival rate of L̂, as an approx-
imation of the total arrival rate of Ln under Pn + 1. Second, we will identify f̂ , the 
conditional jump probability density of L̂, by approximately matching it with the 
conditional jump probability density of Ln.

For the total arrival rate, one would like to define λ̂ as the total jump arrival 
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rate of Ln under Pn + 1, which at each time t is given by the integral over dx of 
(23). Unfortunately, this is not a deterministic process because it depends on L. 
We introduce then an approximation that will become standard throughout the 
rest of the paper, by fixing the rates at time zero. Under this approximation, and 
writing νPn + 1 explicitly as in (23) we define

(26)ˆ ( ) ( ) ( , )
( )

( ) ( ) ( )
( )
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Notice that the explicit time dependence of the coefficients β, σ, λ is preserved.
Last, we identify the parameters of the jump size probability density f̂  by 

approximately matching its first two moments with those of the conditional 
probability density of the jumps of Ln. From our discussion about intensities in 
Section 4, and dynamics (22), we know that the conditional distribution of marks 
of Ln, at a jump time τ, is 
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which can be approximated as νP n + 1(dx, τ–) ⁄ λ̂ (τ –). Therefore, the conditional 
expectation of the jump size is
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This motivates fixing the rates at time zero in the last integral above and, writing 
Hn and νPn + 1 explicitly, defining
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The conditional expectation of the jump size of L̂ at jump time s (under the mea-
sure associated to L̂) follows from (13) because L̂ is of the form (9),
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This suggests matching (27) and m̂, to define the latter in terms of the parameters 
of the original model

(28)ˆ ( ) ( )m t I t≡ 1

We proceed in identical way for the second moment of the conditional jump 
probability. We have
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which motivates defining I2 as
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and matching it to the integral in the right side of
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Using (14) we get
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To summarize, the dynamics of L̂ are given by (24), (25), (26), and (29), and the 
caplet is priced using Proposition 3.1 applied to L̂. The integrals in (26) and (29) 
are computed numerically.

5.4 A swaption formula

The derivation of a swaption formula for model (18)–(21) follows along the lines 
of last section. We recall that, by using ∑M

j = nδBj (t ) as numeraire, the complex 
swaption payoff is transformed into a simple European payoff on the swap rate 
with a deterministic discount factor. Furthermore, the swap rate is a martingale 
under this measure. As in the caplet case, we will obtain a swaption formula 
through Proposition 3.1, by approximating the swap rate Sn, M dynamics under 
the associated swap measure Pn, M with a process Ŝ defined as
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with W a (scalar) standard Brownian motion, γ̂ (t ) deterministic, N̂(t ) a Poisson 
process with intensity λ̂(t ) and Yj distributed as f̂ ( · , t ), lognormal with para-
meters σ̂(t ), µ̂(t ), and W, N̂, and Ŷj , j = 1, 2,… independent. The initial condition 
is Ŝ (0) = Sn, M (0).

As the dynamics of the swap rate are determined by the forward rates (5), we 
begin by considering the dynamics of the forward rates under the swap measure 
Pn, M, 
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and where the arrival rates of the jumps under Pn, M is given by Lemma 4.2
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We have omitted the drift term in (31) because we will force Ŝ to be a martingale 
by construction so the drift of the forward rates is irrelevant for our purposes. 
Notice, however, that the forward rates are not martingales under the swap 
measure. We will approximate the swap rate as a linear combination of simple 
forward rates by fixing at time zero the weights bj (t) in (5). We write bj for bj (0) 
and we have
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and apply Itô’s formula on the right side of the last equation to investigate how 
to approximate the dynamics of the swap rate. The diffusion term is
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This diffusion term is to be approximated by the diffusion term in (30), Ŝ (t ) 
γ̂ (t ) dW, with γ̂ ∈� and quadratic variation γ̂ 2Ŝ (t )2d t. Fixing the rates at time 
zero and matching quadratic variations as in Jäckel and Rebonato (2000), we 
define
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where we have used that Ŝ(0) = Sn, M (0). This would hold exactly (under the 
assumption of constant weights) if all forward rates had the same volatility.

Next we focus on the jump contribution. As we did in the caplet formula of 
Section 5.3, we will (approximately) match the total jump arrival rates and the 
conditional jump probability densities of Ŝ and the process ∑M

j = nbj Lj (t ). Notice 
that while the forward rates that contribute to a swap rate can potentially jump 
with different magnitudes, they all jump at the same times as they are driven by 
the same marked point process. Therefore, the total arrival rate of the jumps of 
∑M

j = nbj Lj (t ) is the integral of νP n, M (dx, t) over �+
D. As in the caplet case, this 

is dependent on the path of L so we fix the rates L and weights b at time zero to 
define
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with Hk(x, t ) as in (18).
Last, we identify f̂  in (31) by approximately matching its first two moments 

with those of the jump size of the swap rate, conditional on being at a jump time. 
As in Section 5.3, the conditional jump probability density is
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which motivates fixing the rates and weights at time zero on the right side above, 
writing νP n, M explicitly and defining
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For Ŝ, which is of the form (9), we use (13) and write
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which suggests matching (35) and the rightmost expression in (36) with Ŝ fixed 
at time 0 to define m̂ as
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with m̂ as in (37).
To summarize, the dynamics of Ŝ are given by (30), (33), (34), and (38) and 

the swaption is priced by applying Proposition 3.1 to Ŝ.

5.5 Numerical results

We are now ready to test the caplet and swaption formulas developed in the 
previous section and compare the prices they give to prices obtained by Monte 
Carlo simulation. For simplicity, we take a one factor diffusion, and jump marks 
sampled from a standard lognormal so D = 1 in (18).

Recall that the parameters of the model are piecewise constant, ie, remain 
constant between tenor dates. We denote this explicitly, with γk (Tj) being the dif-
fusion volatility of the k th rate across the accrual period ending at Tj , and same 
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convention for the rest of the parameters. Using expressions for the moments 
of a lognormal density and the fact that the jumps are Poisson, we compute the 
total instantaneous volatility of rate k in the j th accrual period under the spot 
martingale measure, 

γ λ σ
k j j

T
k j k jT T m T m Tk j( ) ( ) ( ( )) ( ( ))

( )2 2
2

1
2

1 2 1 1+ + − + +( )[ ]e

with 1 + mk (Tj ) = βk (Tj)e (σk (Tj)) 2 ⁄ 2. The instantaneous volatility is approxi-
mately [γk (Tj)

2 + λk (Tj)σk (Tj)
2]½ for βk (Tj) = 1 and σk (Tj)  << 1. The first 

parameter set we consider is this:

Parameter set A: The initial term structure is flat, Lk(0) = 0.06, ∀k, δ = 0.5 and 
the parameters are, for all j and k, 
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As times evolves (j increases), jumps happen less often but are larger in size. For 
some sense on the size of the typical forward rate jump we compute the standard 
deviation of Xσk (Tj) (as we are taking β = 1) for X sampled from a lognormal 
density associated to a standard normal. This is approximately 0.1, so a typical 
forward rate jump size is 10% of the value of the rate. The total instantaneous 
volatility, for all rates during the first accrual period, is approximately 0.245. 
The squared diffusion volatility is 0.01, the jump squared volatility is 0.06 so 
that most of the rate volatility is due to jumps. Also, as the parameters of the 
jump magnitudes do not depend on the rate index k, all rates jump with the same 
percentage magnitude.

Parameter set B: The initial term structure is increasing, Lk(0) = log(1.051271+ 
0.0011178 × k), δ = 0.5. This gives L(0) = 0.05 and L(20) = 0.07. The parameters 
are, for all j and k, 
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In this specification, rates jump more often as time evolves (j increasing). Also, 
we have taken a stationary specification for the conditional distribution of marks 
at jump times, by making σ (and β, trivially) dependent on time to maturity k – j. 
Rates closer to maturity jump with wider amplitude than rates far from maturity. 
The total volatility of the rate that matures next, as seen from time zero, is 0.45. 
This would correspond in practice to a very high volatility period.

We compare our option price formulas against simulation results. The simu-
lation uses a grid with time step 0.5, which coincides with the tenor dates; but 
since the grid also includes all jump times, the effective time step is actually 
much smaller. Monte Carlo simulation is subject to some error due to model 
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discretization. As a simple check, we have compared bond prices estimated from 
simulation with bonds calculated from the initial forward rates. The error in the 
simulated bond prices is sufficiently small to be ignored, which suggests that we 
may safely compare our approximations against option prices computed through 
simulation.

Results for caplets are presented in Tables 1 and 2, results for swaptions are 
presented in Tables 3 and 4. The differences between approximate caplet prices 
and simulated caplet prices are less than the half-widths of the rather tight 95% 
confidence intervals for the simulation results, except perhaps for the in-the-
money, two-year caplet of parameter set B. For all other caplets, the relative 
pricing error, defined as the difference between approximate and exact price 
divided by the exact price, is smaller than the half-widths of the 95% confidence 
intervals divided by the exact price, therefore relative errors are less than 0.5%.

The absolute swaption errors in parameter set A are all smaller than the half-
widths of the 95% confidence intervals, which implies relative errors smaller 

TABLE 1 Approximate vs simulated caplet prices, parameter set A.

Spot Poisson Caplet prices, Parameter set A
Caplet maturity (years) Strike Simulation (95% conf. interval) Approximate price

    2 0.05 116.93 (0.11) 116.96
    2 0.06 71.02 (0.09) 71.04
    2 0.07 41.53 (0.07) 41.56
    5 0.05 127.56 (0.14) 127.60
    5 0.06 94.89 (0.13) 94.93
    5 0.07 70.60 (0.11) 70.64
   10 0.05 121.47 (0.13) 121.38
   10 0.06 100.76 (0.12) 100.69
   10 0.07 84.19 (0.12) 84.13

TABLE 2 Approximate vs simulated caplet prices, parameter set B.

Spot Poisson Caplet prices, Parameter set B
Caplet maturity (years) Strike Simulation (95% conf. interval) Approximate price

    2 0.044 151.82 (0.51) 152.15
    2 0.054 113.02 (0.47) 113.32
    2 0.064 84.71 (0.42) 84.99
    5 0.050 176.96 (0.63) 176.68
    5 0.060 149.59 (0.60) 149.28
    5 0.070 127.45 (0.57) 127.13
   10 0.061 169.97 (0.56) 169.65
   10 0.071 152.63 (0.54) 152.37
   10 0.081 137.80 (0.52) 137.59
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than 0.7%. Therefore the swaption pricing problem, when all rates are driven by 
the same MPP and have the same percentage jump (as σ does not depend on k in 
this case), is solved satisfactorily. In parameter set B present, the accuracy of the 
pricing formulas continues to be excellent for 3 × 3 and 5 × 5 swaptions. While 
the relative pricing errors is larger for options out of the money, the relative error 
is not more than 1% in all cases. The approximate formula is a bit less accurate 
for 3 × 7 options. Comparison between 5 × 5 and 3 × 7 swaptions suggests that 
increasing swap length has more impact on the quality of the approximation than 
longer maturity. Relative pricing error in the 3 × 7 case is largest for the out-of-
the-money swaption, but even the worst case error is less than 2% of the option 
price and thus less than typical bid-ask spreads.

Causes of the comparatively larger errors in set B with respect to set A could 
be the large volatility of parameter set B and also the fact that in specification A 
all rates jump with the same percentage jump so that ∑M

k = nbkLk(τ–) jumps to 
∑M

k = nbkLk(τ–)Xσ with X lognormally distributed. As σ does not depend on k, 

TABLE 3 Approximate vs simulated swaption prices, parameter set A.

Spot Poisson swaption prices, Parameter set A
Swaption length (years) Strike Simulation (95% conf. interval) Approximate price

   3 x 3 ITM 0.05 342.94 (0.94) 342.45
   3 x 3 ATM 0.06 229.51 (0.82) 229.59
   3 x 3 OTM 0.07 151.48 (0.89) 151.61
   3 x 7 ITM 0.05 714.89 (2.07) 713.88
   3 x 7 ATM 0.06 478.96 (1.80) 478.29
   3 x 7 OTM 0.07 315.67 (1.99) 315.48
   5 x 5 ITM 0.05 559.59 (1.03) 560.22
   5 x 5 ATM 0.06 415.89 (0.93) 416.52
   5 x 5 OTM 0.07 309.05 (1.01) 309.68

TABLE 4 Approximate vs simulated swaption prices, parameter set B.

Spot Poisson swaption prices, Parameter set B
Swaption length (years) Strike Simulation (95% conf. interval) Approximate price

   3 x 3 ITM 0.049 439.77 (1.05) 440.94
   3 x 3 ATM 0.059 340.15 (0.97) 341.20
   3 x 3 OTM 0.069 264.56 (1.02) 265.47
   3 x 7 ITM 0.053 849.83 (1.74) 861.15
   3 x 7 ATM 0.063 632.13 (1.58) 641.87
   3 x 7 OTM 0.073 471.13 (1.70) 478.31
   5 x 5 ITM 0.055 702.05 (1.46) 708.36
   5 x 5 ATM 0.065 571.72 (1.36) 577.42
   5 x 5 OTM 0.075 468.37 (1.45) 473.21
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the percentage jump of ∑M
k = nbkLk is also lognormal, consistent with the approx-

imate process Ŝ that has lognormal jumps by construction. This is not the case in 
specification B, in which the percentage jump size depends on the forward rate 
and therefore ∑M

k = nbkLk(τ–)Xσk is not lognormally distributed.

6 Forward Poisson (FP) specification

6.1 Dynamics

We turn now to a specification of the model (15)–(17) in which each forward 
rate has Poisson jumps under its associated forward measure. We will take the 
coefficients of the model to be constant between tenor dates, though we continue 
writing a general dependance on t to avoid additional indices.

We model the evolution of M rates using M marked point processes with 
marks in (0, ∞) and spot intensities νP (i), i = 1,…, M, and a d-dimensional 
Brownian motion W(t ). At time t, the nth forward rate Ln is affected by the ith 
MPP for i = n + 1 – η (t ), n + 2 – η (t ),…, M. The impact of the jumps of the 
marked point processes on the forward rates is stationary because of the depen-
dence on time to maturity n – η (t ). With this choice, the rate that will mature 
next, Lη(t ), is sensitive to all M marked point processes, and if some rate Lk 
jumps then all rates maturing earlier than Tk also jump. The function Hni trans-
forms the abstract marks of the ith marked point process into jump magnitudes 
of the nth rate; with a view towards (9), we choose these to be

(39)
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As shown in Proposition 3.1 of Glasserman and Kou (2003), (9) holds simul-
taneously for all forward rates under their respective forward measures if the 
intensities of the marked point processes under the spot martingale measure 
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for λn(t ) deterministic and bounded. We take fn( · , t) to be lognormal with

∫0

∞
yfn(y, t)dy = 1 + mn(t ). Finally, we choose a lognormal specification of the 

diffusion volatility. The dynamics of Ln under its own forward measure Pn + 1 are

(41)
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with γn deterministic, Nn(t ) a Poisson process with arrival rate λn(t ), the 
marks Yj

(n), j = 1, 2,…, with density fn( · , t) and WP n + 1, N, and Yj
(n), j = 1, 2,…

independent.
The jump processes driving each the rates are defined by (39) and (40). 
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Imposing these on the general model (15)–(17) leads to the dynamics of this 
specification under the spot martingale measure, given explicitly in Glasserman 
and Merener (2003). As discussed in Glasserman and Merener (2003), it is con-
venient to visualize the process in the following way: under the spot martingale 
measure the rate closest to maturity Lη(t ) is driven by a jump process with total 
intensity
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and if Lη(t) + j jumps then Lη(t) + j + 1 jumps with probability
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Notice that, although different forward rates accept a given mark y with different 
state-dependent probabilities, all rates that jump, at a jump time, do it with the 
same mark y.

For the probabilities defined in (42) to be less than or equal than one, ie, for 
the intensities νP

(i) to be nonnegative, some restrictions apply on the parameters 
of the lognormal densities f and the functions λ(t). In particular, 

(43)λ λj j k kt f y t t f y t j k( ) ( , ) ( ) ( , )     < >for

These restrictions are discussed in detail in Glasserman and Kou (2003) and 
Glasserman and Merener (2003). It suffices to state here that the numerical 
experiments in this paper are performed on parameter specifications that satisfy 
these restrictions.

6.2 Caplet pricing

The dynamics of each forward rate under its own forward measure is, by con-
struction, of the form (9) with piecewise constant coefficients, as shown in 
Proposition 3.1 of Glasserman and Kou (2003). Therefore, in this specification, 
caplet prices are computed exactly through Proposition 3.1. 

6.3 A swaption formula

In this section we develop a formula for the price of a swaption in the FP speci-
fication. We will take advantage again of the powerful algorithm introduced in 
Proposition 3.1. To apply this, we need to identify a martingale process Ŝ of the 
form (9) that approximates, in a distribution sense, the dynamics of Sn, M under 
Pn, M. We will achieve this in two steps. First, we will introduce a process L̂ that 
approximates the dynamics of the forward rates under Pn, M, as the exact dyna-
mics of L under Pn, M are very complicated. Second, we will derive the dynamics 
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of Ŝ, based on the dynamics of L̂.
For L̂ we will a postulate a process in which each L̂k (only k = n,…, M are 

relevant to the swap) evolves exactly as Lk does under Pk + 1. In other words, we 
will approximate the dynamics of each forward rate under Pn, M with the dyna-
mics under its own forward measure. This is clearly a crude approximation. A 
way to motivate this choice is as follows. We look at the change of intensity aris-
ing when changing from the forward measure Pk + 1 (the one under which Lk has 
Poisson jumps) to the swap measure Pn, M. The Radon–Nikodym derivative that 
relates the measures is proportional to the ratio
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If this ratio remains constant in time, then the intensities are unaffected by the 
change of measure because of Girsanov’s theorem (Theorem 3.12 in Björk, 
Kabanov, and Runggaldier, 1997). This is trivially true for n = M. But we also 
expect this ratio to remain approximately constant for n >> M – n + 1, because 
bonds in the numerator and denominator mature close to each other, and there-
fore tend to fluctuate together. Intuitively, the dynamics of L̂ should be a good 
approximation to the dynamics of L under Pn, M when M – n + 1, the swap 
length, is much smaller than the maturity date n.

In addition to specifying the marginal law of each L̂k, we need to specify the 
dependence among their jumps. For this we devise a mechanism that approxi-
mates the FP construction in (42). We specify a Poisson process Nn of jumps in 
L̂n (the first rate relevant to the swap); each L̂j, j = n + 1,…, M, then accepts or 
rejects a jump conditional on a jump in L̂j – 1. More explicitly, we define

(44)
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with W a d-dimensional Brownian motion, Nn a Poisson process with rate λn(t ) 
, and L̂j (0) = Lj (0). The mark Yi

(n) is lognormally distributed as fn( · , t) and, for 
j = n + 1,…, M,
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This jump distribution is an approximation to the exact specification in (42). 
All rates evolve simultaneously under Pn, M with joint Poisson dynamics. Notice 
from (45) that the probability that L̂j jumps with mark y given that L̂n jumps with 
mark y is
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(46)
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which is well-defined because of the restrictions on f and λ discussed at the 
beginning of this section. Since the jumps of L̂n arrive with intensity λn(t ) fn(y, t) 
it follows that the effective jump process driving L̂j has intensity λj(t ) fj (y, t). 
Therefore in this approximate process each rate evolves exactly as it would 
under its own forward measure. The dependence in the jumps of the L̂j s approxi-
mates the dependence in the jumps of the Lj s.

Our next goal is to approximate the dynamics of the swap rate under the Pn, M 
measure by a process Ŝ following

(47)
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with γ̂ (t ) deterministic, N̂(t ) a Poisson process with intensity λ̂(t ), Yj distributed 
as f̂ ( · , t), lognormal with parameters µ̂(t ), σ̂(t ) and W, N̂, and Yj , j = 1, 2,… 
independent and Ŝ(0) = Sn, M(0). Fixing the weights bi (t ) in (5) at their time zero 
values bi we have
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We apply Itô’s rule on the right side of (48) to motivate the choice of parameters 
in the dynamics of Ŝ. First, we look at the diffusion term
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Matching this with the diffusion term in (47) we fix the forward rates at their ini-
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where the deterministic time dependence of the parameters γi (t) (through η(t)) is 
preserved.

Next, we focus on the jump term. The goal is to have a jump law in (47) that 
reproduces the total jump arrival rate and the conditional jump size probability 
of ∑M

j = nbj L̂j (t ), which is our proxy for the swap rate.
First, the total arrival rate. It follows from (45) that every jump time of L̂n 

is also a jump time of ∑M
j = nbj L̂j (t ), and that there are no other jump times. 

Therefore, the arrival rate of jump events is
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We continue with the jump magnitudes of Ŝ. We identify f̂  lognormal that 
generates jump sizes approximately distributed as those of ∑M

j = nbj L̂j (t ), by 
approximately matching moments of the jump magnitudes of Ŝ and ∑M

j = nbj L̂j (t ). 
For the latter, conditional on the state of the system at a jump time τ we have
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where we have used the conditional jump probability of L̂j (46) and the fact that 

∫0

∞
(y – 1) fj (y, t)dy = mj (t). The expected jump size in (47), conditional on Ŝ at 
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which suggests, by comparison with (51), fixing the rates at time zero an defin-
ing m̂ as
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Next, we focus on matching the second moment of the jump magnitude con-
ditional on being at a jump time. For ∑M

j = nbj L̂j (t ) we have
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Notice that (45) implies that if i < j then Y ( j ) ≠ 1 implies Y (i) = Y( j); in words, at 
a jump time, all rates maturing earlier than a jumping rate are also jumping rates, 
with the same mark. Therefore, denoting ξ ≡ max{i, j}
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Finally, using that m̂(t ) = e(µ̂ (t ) + (σ̂ (t ))2) ⁄ 2) – 1 we get
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where m̂ is given by (52). The evolution of Ŝ is given then by (47) with (49), 
(50), (56) and (57). The swaption price is then computed using Proposition 3.1 
on the rate Ŝ.
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6.4 Numerical results

We investigate now the accuracy of the swaption formula introduced in the 
previous section. Results are then compared to swaption prices obtained using 
(6), where the expected discounted payoff is computed via Monte Carlo simula-
tion of the term structure under the spot martingale measure. We generate the 
sample paths of the term structure using a first order discretization scheme on 
the logarithm of the forward rates as implemented and discussed in Glasserman 
and Merener (2003). With the accrual period fixed at δ = 0.5, taking the time 
step to be less than 0.1 ensures (empirically) that the bias in the simulated price 
is less that 0.1% of the exact price. Simulated swaption prices are then very 
good approximation to the exact price and provide a benchmark for testing the 
approximate method of Section 6.3.

For simplicity, we perform numerical tests driven by a one factor diffusion and 
M marked point processes, although the method can handle multidimensional 
diffusions. The parameters are held constant between tenor dates. Moreover, 
we make the model stationary in the sense that the parameters of the k th rate 
depend on the number of accrual periods to maturity, k – η(t). As before, γk (Tj) 
denotes the diffusive volatility of Lk during the accrual period ending at Tj. A 
consequence of this stationary specification is that all rates follow, under their 
respective forward measures and for a fixed distance to their own maturities, the 
same stochastic differential equation. The initial term structure is increasing, Lk(
0) = log(1.051271 + 0.0011178 × k) and the accrual period is δ = 0.5. The choice 
of parameters we present next are close to those of model specification SP but not 
identical as we need to satisfy restriction (43). The parameters are as follows.

Parameter Set A: For all j, k, 

γ
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The total instantaneous volatility of the rate next to mature (k = j) is approxi-
mately 0.245, the diffusion square volatility is 0.01 and the jump squared 
volatility is 0.06 so most of the volatility of the maturing rate is due to jumps. 
The jump volatility decreases as rates are more distant from maturity.

Parameter Set B: For all j, k, 

γ

λ σ µ

k j

k j
k j

k j
k j

k j
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T T T

( ) . ,

( ) . ,     ( ) . . ,    ( ) .

=

= × = × = −− −

0 1

5 0 9 0 2 0 9 0 1

The total instantaneous volatility of the rate next to mature is approximately 
0.46, the diffusion square volatility is 0.01 and the jump square volatility is 
0.2, therefore almost all the volatility of the rate next to mature is due to jumps. 
As in parameter set A, jump volatility decreases as rates are more distant from 
 maturity.
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Swaption prices for parameters A and B are presented in Tables 5 and 6. 
Pricing formulas are competitive for practical applications. For 3 × 3 and 5 × 
5 swaptions, the differences between simulated and approximate prices are not 
more than 1% of the exact price. This is also the case for 3 × 7 options in the 
parameter set A, and in the 3 × 7 options in B the relative error does not exceed 
1.2%.

TABLE 6 Approximate vs simulated swaption prices, FP specification, parameter 
set B.

Forward Poisson swaption prices, Parameter set B
Swaption length (years) Strike Simulation (95% conf. interval) Approximate price

   3 x 3 ITM 0.049 362.50 (0.64) 363.79
   3 x 3 ATM 0.059 244.95 (0.55) 245.73
   3 x 3 OTM 0.069 161.15 (0.61) 161.26
   3 x 7 ITM 0.053 653.02 (0.99) 660.36
   3 x 7 ATM 0.063 390.36 (0.81) 394.85
   3 x 7 OTM 0.073 219.69 (0.93) 220.00
   5 x 5 ITM 0.055 521.61 (0.88) 526.11
   5 x 5 ATM 0.065 361.82 (0.77) 364.86
   5 x 5 OTM 0.075 246.37 (0.86) 247.38

TABLE 5 Approximate vs simulated swaption prices, FP specification, parameter 
set A.

Forward Poisson swaption prices, Parameter set A
Swaption length (years) Strike Simulation (95% conf. interval) Approximate price

   3 x 3 ITM 0.049 284.65 (0.31) 285.11
   3 x 3 ATM 0.059 152.00 (0.25) 152.30
   3 x 3 OTM 0.069 74.55 (0.28) 74.46
   3 x 7 ITM 0.053 557.49 (0.53) 560.50
   3 x 7 ATM 0.063 268.08 (0.41) 270.69
   3 x 7 OTM 0.073 111.59 (0.47) 112.29
   5 x 5 ITM 0.055 422.52 (0.65) 424.68
   5 x 5 ATM 0.065 245.90 (0.54) 247.46
   5 x 5 OTM 0.075 134.91 (0.61) 135.44

7 Summary

We conclude by summarizing the characteristics of the model specifications and 
pricing formulas we have presented.

SP specification: All forward rates have Poisson jumps under a common 
mea sure, the spot martingale measure. Caplet prices are approximated using 
Proposition 3.1 and (24) with (25), (26), and (29). Swaption prices are approxi-
mated using Proposition 3.1 and (30) with (33), (34), and (38).
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FP specification: Each forward rate has Poisson jumps under its own forward 
measure. Caplets are priced exactly using Proposition 3.1 and (41). Swaption 
prices are approximated using Proposition 3.1 and (47) with (49), (50), (56) and 
(57).

Appendix

Proof of proposition 3.1

The transform of X(t ) ≡ log(G(t )) at t = Tn is

(58)ψ( ) ,     ( )z zz X Tn= [ ] ∈E e �

with G(t ) evolving as in (9). Then, the expected payoff of a European option 
maturing at Tn with strike K, ie, C(0) = E [(G (Tn) – K) + ], can be written as in 
Heston (1993), and Carr and Madan (1999), 
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All that remains is the calculation of ψ in (58). Application of Itô’s rule and (9) 
(with piecewise constant coefficients) yields the dynamics of X(t ) (where the 
index in the coefficients denotes the accrual period)
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with αi ≡ ai – γi
2 ⁄ 2, N(t ) a Poisson process with intensity λi. The marks Ŷj, i are 

normally distributed with mean µi and standard deviation σi because jumps in X 
are jumps in the logarithm of G. The process X(t ) has independent increments so 
it is convenient to express the terminal state as
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where the increment in the ith accrual period due to the continuous part of the 
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with {Z1, Z2,…, Zn} independent and standard normally distributed. The incre-
ment in the ith accrual period due to the jumps is the sum of the magnitudes of 
the jumps occurring in (Ti – 1, Ti]
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and the total number of jumps in (Ti – 1, Ti], denoted by Ni, is a Poisson random 
variable with parameter δ λi. Since the {∆i

d, ∆i
d} are mutually independent we 

have from (58)
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The transform of a Poisson number of normally distributed jumps is easily cal-
culated and is given explicitly in Scott (1997):
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Next, we insert (63) with z = 1 + iu, and (63) with z = 1, in (60), and insert (63) 
with z = iu in (61), and work tedious but straightforward algebra to obtain (11)–
(12). The time-zero European option price is given by [G(0)Π1 – KΠ2].  

Proof of Lemma 4.1

Proof of Lemma 4.1 is a special case of the proof of Lemma 4.2 as the numeraire 
associated with Pn + 1 is proportional to the numeraire associated with Pn, n

Proof of Lemma 4.2

First, some notation. An MPP can be described through a random measure 
µ(dx, dt) on the product of the mark space and the time axis assigning unit 
mass to each point (τj, Xj). This representation makes it possible to write 
∑j

N
=
(t )
1H (Xj , τj) = ∫0

t
∫�DH(x, s)µ(dx, ds).

Now the proof. We want to identify the change in intensity associated with 
changing from the spot measure P to the swap measure Pn, M. Define
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Itô’s formula and the dynamics of L (15)–(17) give the dynamics of Z. At τ, a 
jump time of the ith MPP, with mark X, the percentage jump in Z is
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Multiplying numerator and denominator by Bη(t ) and recalling the definition of 
the weight bk in (5) this expression simplifies to 
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Now we aggregate the (non-simultaneous) jumps from the r MPPs driving L, and 
write the dynamics of Z in the random measure notation, where the drift follows 
from the martingale condition
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Next we define the swap measure Pn, M through the Radon–Nikodym derivative
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and invoke Girsanov’s theorem (in the form in Theorem 3.12 in Björk, Kabanov, 
and Runggaldier, 1997) to identify the change in intensity associated to the 
change of measure. Girsanov’s theorem states that given a P-martingale process 
A(t ), (P not necessarily being the spot measure) with

d ( )
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and under technical conditions, there is an equivalent measure Q with Radon–
Nikodym derivative
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such that dWP = Γdt + dWQ with WQ a Brownian motion under Q, and the 
intensity of the driving jump process under Q is νQ(dx, t) = Φ(x, t)νP(dx, t). As 
we have r MPPs, we invoke Lemma A.1 in Appendix A of Glasserman and Kou 
(2003) which uses Girsanov’s theorem to get the intensity of each MPP, 
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with bk(t ) = Bk + 1(t ) ⁄M(t ).  
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