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THE TERM STRUCTURE OF SIMPLE FORWARD RATES
WITH JUMP RISK

PAUL GLASSERMAN

Graduate School of Business, Columbia University, New York

S. G. KOU

IEOR Department, Columbia University, New York

This paper characterizes the arbitrage-free dynamics of interest rates, in the presence
of both jumps and diffusion, when the term structure is modeled through simple for-
ward rates (i.e., through discretely compounded forward rates evolving continuously in
time) or forward swap rates. Whereas instantaneous continuously compounded rates
form the basis of most traditional interest rate models, simply compounded rates and
their parameters are more directly observable in practice and are the basis of recent re-
search on “market models.” We consider very general types of jump processes, modeled
through marked point processes, allowing randomness in jump sizes and dependence
between jump sizes, jump times, and interest rates. We make explicit how jump and
diffusion risk premia enter into the dynamics of simple forward rates. We also for-
mulate reasonably tractable subclasses of models and provide pricing formulas for
some derivative securities, including interest rate caps and options on swaps. Through
these formulas, we illustrate the effect of jumps on implied volatilities in interest rate
derivatives.
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1. INTRODUCTION

This paper characterizes the arbitrage-free dynamics of interest rates, in the presence of
both jumps and diffusion, when the term structure is modeled through simple forward
rates—that is, through discretely compounded forward rates evolving continuously in
time—or through forward swap rates. We consider very general types of jump processes
(allowing randomness in jump sizes and dependence between jump sizes, jump times, and
interest rates) and identify how jump and diffusion risk premia enter into the dynamics
of simple forward rates. We also formulate a reasonably tractable subclass of models and
provide pricing formulas for some term structure derivatives.

Our investigation builds on several strands of research, in particular on the dy-
namics of instantaneous continuously compounded rates (as in Heath, Jarrow, and
Morton 1992), option pricing with jumps (as in Merton 1976), LIBOR and swap rate
market models (including Brace, Gatarek, and Musiela 1997; Jamshidian 1997; Miltersen,
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Sandmann, and Sondermann 1997; Musiela and Rutkowski 1997a), and especially the
marked point process framework of Björk, Kabanov, and Runggaldier (1997). The moti-
vation for models based on simple forwards (in contrast to the instantaneous rates tradi-
tionally treated in continuous-time models) lies in building a model based on observable
quantities. Most market rates are indeed based on simple compounding, so instantaneous
continuously compounded rates often represent an idealized approximation to market
data. This point is relevant whether one tries to infer model parameters from time-series
data or from prices of derivative securities because most derivatives contracts are tied to
simple rates.

Motivation for including jumps comes from both time-series properties and derivative
prices. Specific sources of jumps in interest rates, including economic news and moves
by central banks, are put forward in Babbs and Webber (1997), Das (1999b), El-Jahel,
Lindberg, and Perraudin (1997), and Johannes (2003). These studies find compelling
empirical evidence for jumps. Das (1999b) and Johannes argue that the kurtosis in short-
term interest rates is incompatible with a pure-diffusion model. Jumps in interest rates can
also be used to try to reproduce the patterns in implied volatilities derived from market
prices of interest rate derivatives. The pricing of interest rate derivatives in the presence
of jumps is considered in Björk et al. (1997), Burnetas and Ritchken (1997), Das (1999a),
Das and Foresi (1996), Duffie and Kan (1996), Duffie, Pan, and Singleton (2000), Jarrow
and Madan (1995, 1999) and Shirakawa (1991). The possibility of default (as modeled in
Duffie and Singleton 1999 and Jarrow and Turnbull 1995) provides further motivation
for including jumps, though we do not consider credit risk here.

Implied volatilities extracted from interest rate caps are putative parameters of simple
forward rates, which again motivates adopting simple forwards as the building blocks of
a model. (Similarly, implied volatilities extracted from options on interest rate swaps are
putative parameters of forward swap rates.) In special cases of the general framework
we develop, interest rate caps or swaptions can be priced explicitly, making it possible to
investigate what types of patterns in implied volatility can be produced through jumps.
The general framework is necessary for the formulation of tractable special cases: it turns
out that for caps to be priced using a Poisson-based formula, the actual process of jumps
must be substantially more complex than a Poisson process. The additional complexity
needed follows from general considerations on precluding arbitrage; in particular, the
Poisson property is not in general preserved by the necessary changes of measure.

The rest of this paper is organized as follows. Section 2 develops further motivation
and background on modeling simple forward rates and on representing jump processes.
Section 3 presents our main results: a general formulation of the arbitrage-free dynamics
of simple forwards subject to jumps, and reduction to a tractable subclass. Section 4
presents some pricing formulas and numerical results on implied volatilities. Section 5
undertakes a similar analysis based on swap rates rather than forward rates: we present the
arbitrage-free dynamics of the term structure of swap rates with both jumps and diffusion
and then provide pricing formulas for options on swaps. All proofs are collected in the
Appendixes.

2. MOTIVATION AND BACKGROUND

2.1. Simple Forwards

As in Brace et al. (1997), Jamshidian (1997), and Miltersen et al. (1997), we consider
models of the term structure based on simple forward rates with a fixed accrual period
δ, expressed as a fraction of a year (e.g., to model 3-month rates we would take δ = 1/4).
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With δ fixed, we denote by L(t, T) the forward rate for the interval from T to T + δ as of
time t ≤ T. Thus, a party entering into a contract at time t to borrow $1 over the interval
[T, T + δ] will receive $1 at time T and will return to the lender $(1 + δL(t, T)) at time
T + δ. Denoting by B(t, τ ) the time-t price of a zero-coupon bond maturing at τ , the
forward rate satisfies

L(t, T) = 1
δ

(
B(t, T )

B(t, T + δ)
− 1

)
.(2.1)

Conversely, for any k = 1, 2, . . . ,

B(t, t + kδ) =
k−1∏
i=0

1
1 + δL(t, t + iδ)

.(2.2)

Simple compounding of this type is characteristic of 3-month or 6-month LIBOR. We
will, however, treat the forward rates and associated bonds as default-free, though in
practice LIBOR reflect some credit risk.1

These simple forward rates should be contrasted with the instantaneous, continuously
compounded short rate of classical models and also with the instantaneous forward rates
modeled in the framework of Heath et al. (1992). The instantaneous forwards f (t, T) of
the Heath-Jarrow-Morton framework satisfy

L(t, T) = 1
δ

(
exp

{∫ T+δ

T
f (t, s) ds

}
− 1

)
,(2.3)

but this relation cannot in general be inverted, so the distinction is not simply one of
choice of variables. Arbitrage-free models based on simple forwards have been advanced
by Brace et al. (1997), Jamshidian (1997), and Miltersen et al. (1997), and this work has
given rise to a rapidly expanding related literature. Among other attractive features, these
models are based on quantities that are more directly observable in the market than are
the instantaneous rates of much of the earlier literature.

Working with simple forward rates often facilitates calibration to derivatives prices,
in particular caps and floors. The information about the underlying forward rates in
the market prices of caps and floors is commonly summarized through an implied
volatility derived from the (so-called) Black (1976) formula (see our equation (4.1) in
Section 4). These implied volatilities are frequently used as inputs to models for pric-
ing other derivatives. In more detail, a caplet for the period [T, T + δ] struck at K pays
δ(L(T, T) − K)+ at T + δ. The Black formula may be viewed as evaluating the discounted
expected payoff

B(0, T + δ)E[δ(L(T, T) − K)+],(2.4)

under the assumption that L(T, T) is lognormally distributed with mean L(0, T) and
log L(T, T) having variance σ 2

TT. The implied volatility is the value of σT that equates
(2.4) to the market price.

A simple way to introduce dynamics that yield a lognormal distribution for L(t, T)
specifies

dL(t, T)
L(t, T)

= σT dW t,(2.5)

1 Miltersen et al. note that, through results of Duffie and Singleton (1999), their model can be used to
represent defaultable interest rates under appropriate assumptions and with some redefinition of terms. A
similar reinterpretation should be possible in our setting as well. See also Duffie et al. (2000).
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with Wt a standard Brownian motion. The absence of a drift in this specification further
implies that the conditional expectation of L(T, T ) at time t is L(t, T), as is implicit in
the Black formula. It turns out, however, that a model specifying (2.5) for all T fails to be
arbitrage free. More precisely, there is no probability measure under which forward rates
for all maturities simultaneously evolve according to (2.5) in an arbitrage-free model.

Despite this apparent inconsistency, Brace et al. (1997), Jamshidian (1997), Miltersen
et al. (1997), and Musiela, and Rutkowski (1997a) were nevertheless able to construct
arbitrage-free models of the term structure in which cap prices indeed conform to the
Black formula. The models are, in effect, kept arbitrage free through inclusion of an
appropriate stochastic drift in (2.5) for each maturity T. The forward rates are thus not
simultaneously lognormal, but each becomes lognormal under a maturity-specific change
of measure. Each such change of measure is associated with a change of numeraire which
further serves to justify discounting by a zero-coupon bond. These ideas are discussed in
greater detail in Section 3 and Appendix B.

On one hand, these models provide a theoretical basis for the market convention of
quoting or interpreting cap prices through the Black formula; on the other hand, they
also make evident an incompatibility between market prices and the models intended to
explain them. For in these models the same implied volatility should apply to all caps and
floors of a given maturity, regardless of strike price, whereas volatilities implied by market
prices vary systematically with strike. This volatility skew is particularly pronounced in
the Japanese market, but is also present in the US dollar market.

There are various means by which one might try to incorporate an implied volatility
skew. These include adding a stochastic volatility, changing from a lognormal to constant
elasticity of variance (CEV) form of volatility (as in Andersen and Andreasen 2000), or
allowing for jumps. Empirical evidence in equity markets (Bakshi, Cao, and Chen 1997;
Bates 2000; Das and Sundaram 1999) suggests that both jumps and stochastic volatility
play an important role in the implied volatility skew observed there. It is therefore natural
to investigate how jumps can be incorporated in a model of simple forwards.

A naive extension of the naive “Black model” in (2.5) specifies

dL(t, T) = −λmL(t, T) dt + σT L(t, T) dWt + L(t−, T)d

(
Nt∑

i=1

(Yi − 1)

)
,(2.6)

where Nt is a Poisson process with arrival rate λ and the Yi are i.i.d. lognormal random
variables with mean 1 + m. (By writing L(t−, T) we specify the value of L(·, T) just
before a possible jump at t.) This is a jump-diffusion of the type considered by Merton
(1976) as a model of a stock price, with the drift modified to make L(t, T) a martingale.
The marginal distributions of L(t, T) under (2.6) are Poisson mixtures of lognormal
distributions. “Pricing” a caplet according to (2.4) therefore results in a “Merton-Black
formula,”

∞∑
k=0

e−λT (λT)k

k!
BCk,(2.7)

where each BCk is an evaluation of the Black formula but with arguments depending on
k; this will be made explicit in Corollary 4.1. This pricing formula is nearly as tractable
as the Black formula. Moreover, if caplets are priced according to (2.7), their Black-
implied volatilities will vary with strike. Indeed, by varying the parameters of (2.6) it is
possible to reproduce a variety of patterns in implied volatilities as functions of strike; see
Section 4.1.
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This simple example serves to motivate the questions we investigate: Is (2.6) con-
sistent with an arbitrage-free model of the term structure? Can the naive pricing for-
mula (2.7) be reconciled with a genuine pricing model? More generally, when is a jump-
diffusion model of the term structure of simple forward rates arbitrage-free? We provide
answers to these questions (and their analogs for forward swap rates) in subsequent
sections.

2.2. Modeling Jumps

Addressing these questions requires an investigation of the dynamics of the term struc-
ture with respect to different choices of numeraire asset and under the associated proba-
bility measures. This in turn requires consideration of jump processes more general than
the compound Poisson process appearing in (2.6). The marked point process framework
developed by Björk et al. (1997) provides a convenient framework.

A marked point process (MPP) is characterized by a sequence {(τn, Xn), n = 1, 2, . . .}.
The τn take values in (0, ∞) and satisfy τ1 < τ2 < · · · < τn < τn+1 < · · · , supn τn = ∞;
interpret these as the times of potential jumps. The marks Xn may in general take values
in an abstract space; we will use them to determine the sizes of the jumps at the points
τn , though they are not themselves the jump sizes. Forward rates of different maturities
may respond to the marks with jumps of different magnitudes. For our purposes, it will
suffice to consider marks taking values in [0, ∞).

To construct a jump process, first let Nt be the number of points in [0, t]: Nt = sup{n ≥
0 : τn ≤ t}. Let h be a real-valued function of the marks (and possibly also of the points)
and consider the jump process J(t) = ∑Nt

n=1 h(Xn, τn). The function h transforms the
abstract mark Xn into a jump magnitude. In (2.6), it takes the form h(x, τ ) ≡ h(x) = x − 1.

We construct our models on a probability space (
,F, {Ft, t ≥ 0}, P) on which
are defined a multidimensional Brownian motion W and r marked point process
{(τ (i )

n , X (i )
n ), n = 1, 2, . . .}, i = 1, 2, . . . , r , not necessarily independent of each other or

the Brownian motion. With each forward rate we associate jump-size functions Hi , i =
1, . . . , r , and define

J(t) =
r∑

i=1

N (i )
t∑

n=1

Hi
(
X (i )

n , τ (i )
n

)
,(2.8)

with N (i )
t the counting process associated with the ith marked point process. The dynamics

of a forward rate L(t, T) take the form

dL(t, T ) = α(t)L(t, T ) dt + γ (t)L(t, T ) dW(t) + L(t−, T) d J(t),(2.9)

for adapted processes α and γ satisfying regularity conditions. The r marked point
processes in (2.8) can be dependent on each other but we require that the jump times
τ

(i )
n , n ≥ 1, 1 ≤ i ≤ r , be distinct (this is needed for a generalization of the Girsanov

theorem).
We assume that each marked point process {(τn, Xn)} has an intensity λ(dx, t). Intu-

itively, λ(dx, t) is the arrival rate of points with marks in dx. More precisely, the intensity
has the property that, for all suitably integrable h,

Nt∑
n=1

h(Xn, τn) −
∫ t

0

∫ ∞

0
h(x, s)λ(dx, s) dts(2.10)
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is a martingale in t, the inner integral being over the mark space. (The key assumption
here is that the arrival rate is absolutely continuous in time; otherwise, in addition to the
dt term in (2.9) we would need a λ(dx, dt) term.) For a marked point process in which
the points follow a Poisson process and the marks are i.i.d. random variables (as would
be the case in the Merton model (2.6)) the intensity takes the form

λ(dx, t) = λ · f (x) dx,

where λ is the Poisson arrival rate and f is the common density of the marks.
A valuable feature of modeling jumps through marked point processes and their intensi-

ties arises in considering term structure dynamics under different probability measures. In
a pure-diffusion setting, changing probability measures typically corresponds to adding
a drift to a Brownian motion. In a model with jumps, changing probability measures can
involve changing the jump intensity as well. We will see that even if we want the jumps in
a forward rate to follow a Poisson process under one measure, we have no choice but to
suppose that they follow a more general marked point process under other measures.

3. MODEL CONSTRUCTION

We now proceed to investigate conditions under which a term structure model of the
general form (2.9) is consistent with the absence of arbitrage. The main task lies in
identifying the appropriate form of the risk premium determining the drift in (2.9), once
the other parameters have been specified.

A prerequisite to this investigation is a precise notion of what it means for a model
to be arbitrage free in the presence of jumps, which further entails defining a class of
admissible trading strategies. Our objective is the construction of models formulated
purely in terms of simple forwards and their parameters; one could in principle specify
a class of admissible trading strategies and develop the associated theory in this setting.
Rather than make such a digression here, we choose a more efficient and only slightly less
general route: We define a model of the term structure of simple forwards L(t, T ) to be
arbitrage free if it can be embedded in an arbitrage-free model of instantaneous forwards
f (t, T) via (2.3). The necessary theory for instantaneous forwards has been developed by
Björk et al. (1997), so we may invoke their results. We stress, however, that the models we
construct are purely models of simple forwards and make no reference to hypothetical
instantaneous forwards. Indeed, the instantaneous forwards appear nowhere in the rest of
this section. Jamshidian (1999) has recently developed a model of simple forwards driven
by very general discontinuous semimartingales; his framework does not use underlying
instantaneous rates but rather works with simple rates throughout.

To simplify both the analysis and notation, we formulate our results in a discrete-tenor
setting in which the maturity T is restricted to a finite set of dates 0 = T0 < T1 < · · · <

TM < TM+1. (In Appendix A we prove an intermediate result that does hold simultane-
ously for all maturities T and from which we prove Theorem 3.1.) We will further assume
that the intervals Ti+1 − Ti are equally spaced with a common spacing of δ (e.g., a quarter
year or a half year). Let Ln(t) = L(t, Tn) so that Ln is the forward rate for the accrual
period [Tn, Tn+1]. Similarly, let Bn(t) = B(t, Tn) denote the price of a zero coupon bond
maturing at Tn . Let η(t) = inf{k ≥ 0 : Tk ≥ t} so that η(t) is the index of the next maturity
as of time t.

The results of this section are proved in Appendixes A and B under regularity condi-
tions. Ideally, all conditions would be made explicit in the statements of the results. As it




