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This paper develops efficient methods for computing portfolio value-at-risk (VAR) when the
underlying risk factors have a heavy-tailed distribution. In modeling heavy tails, we focus on
multivariate t distributions and some extensions thereof. We develop two methods for VAR
calculation that exploit a quadratic approximation to the portfolio loss, such as the delta-gamma
approximation. In the first method, we derive the characteristic function of the quadratic
approximation and then use numerical transform inversion to approximate the portfolio loss
distribution. Because the quadratic approximation may not always yield accurate VAR estimates, we
also develop a low variance Monte Carlo method. This method uses the quadratic approximation to
guide the selection of an effective importance sampling distribution that samples risk factors so that
large losses occur more often. Variance is further reduced by combining the importance sampling with
stratified sampling. Numerical results on a variety of test portfolios indicate that large variance
reductions are typically obtained. Both methods developed in this paper overcome difficulties
associated with VAR calculation with heavy-tailed risk factors. The Monte Carlo method also extends
to the problem of estimating the conditional excess, sometimes known as the conditional VAR.
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1. INTRODUCTION

A central problem in market risk management is estimation of the profit-and-loss

distribution of a portfolio over a specified horizon. Given this distribution, the

calculation of specific risk measures is relatively straightforward. Value-at-risk (VAR),

for example, is a quantile of this distribution. The expected loss and the expected excess

loss beyond some threshold are integrals with respect to this distribution. The difficulty

in estimating these types of risk measures lies primarily in estimating the profit-and-loss

distribution itself, especially the tail of this distribution associated with large losses.
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All methods for estimating or approximating the distribution of changes in portfolio

value rely (at least implicitly) on two types of modeling considerations: assumptions

about the changes in the underlying risk factors to which a portfolio is exposed, and a

mechanism for translating these changes in risk factors to changes in portfolio value.

Examples of relevant risk factors are equity prices, interest rates, exchange rates, and

commodity prices. For portfolios consisting of positions in equities, currencies,

commodities, or government bonds, mapping changes in the risk factors to changes in

portfolio value is straightforward. But for portfolios containing complex derivative

securities this mapping relies on a pricing model.

The simplest and perhaps most widely used approach to modeling changes in

portfolio value is the variance-covariance method popularized by RiskMetrics (1996).

This approach is based on assuming (i) that changes in risk factors are conditionally

multivariate normal over a horizon of, say, one day, two weeks, or a month, and (ii) that

portfolio value changes linearly with changes in the risk factors. (‘‘Conditionally’’ here

means conditional on information available at the start of the horizon; the uncondi-

tional distribution need not be normal.) Under these assumptions, the portfolio profit-

and-loss distribution is conditionally normal; its standard deviation can be calculated

from the covariance matrix of the underlying risk factors and the sensitivities of the

portfolio instruments to these risk factors. The attraction of this approach lies in its

simplicity. But each of the assumptions on which it relies is open to criticism, and

research in the area has tried to address the shortcomings of these assumptions.

One line of work has focused on relaxing the assumption that portfolio value

changes linearly with changes in risk factors while preserving computational

tractability. This includes, in particular, the ‘‘delta-gamma’’ methods developed in

Britten-Jones and Schaefer (1999), Duffie and Pan (2001), Rouvinez (1997), and Wilson

(1999). These methods refine the relation between risk factors and portfolio value to

include quadratic as well as linear terms. Methods that combine interpolation

approximations to portfolio value with Monte Carlo sampling of risk factors are

considered in Jamshidian and Zhu (1997), Picoult (1999), and Shaw (1999). Low

variance Monte Carlo methods based on exact calculation of changes in portfolio value

are proposed in Cardenas et al. (1999), Glasserman, Heidelberger, and Shahabuddin

(2000), and Owen and Tavella (1999).

Another line of work has focused on developing more realistic models of changes in

risk factors. It has long been observed that market returns exhibit systematic deviation

from normality: across virtually all liquid markets, empirical returns show higher peaks

and heavier tails than would be predicted by a normal distribution, especially over

short horizons. Early studies along these lines include Mandelbrot (1963), Fama

(1965), Praetz (1972), and Blattberg and Gonedes (1974). More recent investigations,

some motivated by value-at-risk, include Bouchaud, Sornette, and Potters (1997),

Danielsson and de Vries (1997), Eberlein and Keller (1995), Eberlein, Keller, and

Prause (1998), Embrechts, McNeil, and Straumann (2001), Hosking, Bonti, and Siegel

(2000), Huisman et al. (1998), Koedijk, Huisman, and Pownall (1998), McNeil and

Frey (1999), Heyde (1999). Using different approaches to the problem and different sets

of data, these studies consistently find high kurtosis and heavy tails. Moreover, most

studies find that the tails in financial data are not so heavy as to produce infinite

variance (as would be implied by a nonnormal stable distribution), though higher order

moments (e.g., fifth and higher) may be infinite.

This paper contributes to both lines of investigation by developing methods for

calculating portfolio loss probabilities when the underlying risk factors are heavy
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