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This paper describes, analyzes and evaluates an algorithm for estimating portfolio loss
probabilities using Monte Carlo simulation. Obtaining accurate estimates of such loss

probabilities is essential to calculating value-at-risk, which is a quantile of the loss distribution.
The method employs a quadratic (’’delta-gamma’’) approximation to the change in portfolio
value to guide the selection of effective variance reduction techniques; specifically importance
sampling and stratified sampling. If the approximation is exact, then the importance sampling
is shown to be asymptotically optimal. Numerical results indicate that an appropriate combi-
nation of importance sampling and stratified sampling can result in large variance reductions
when estimating the probability of large portfolio losses.
(Value-At-Risk; Monte Carlo; Simulation; Variance Reduction Technique; Importance Sampling;
Stratified Sampling; Rare event)

1. Introduction
An important concept for quantifying and managing
portfolio risk is value-at-risk (VAR) (Jorion 1997, Wil-
son 1999). VAR is defined as a quantile of the loss in
portfolio value during a holding period of specified
duration. If the value of the portfolio at time t is V(t),
the holding period is 3t, and the value of the portfo-
lio at time t + 3t is V(t + 3t), then the loss in portfolio
value during the holding period is L=V(t)−V(t+ 3t).
For a given probability p, the VAR, xp, is defined to be
the (1−p)th quantile of the loss distribution:

P{L¿xp}=p: (1)

Typically, the interval 3t is one day or two weeks and
p is close to zero, often p≈ 0:01. Monte Carlo simulation
is frequently used to estimate the VAR. In such a sim-
ulation, changes in the portfolio’s ’’risk factors’’ (e.g.,
interest rates, currency exchange rates, stock prices,
etc.) during the holding period are generated and the
portfolio is reevaluated using these new values for the
risk factors. This is repeated many times so that the loss

distribution may be estimated. We should note that
this type of Monte Carlo VAR analysis is often aug-
mented with ’’stress’’ tests using predetermined
stress scenarios. This is done primarily because the
underlying distributional assumptions (especially cor-
relations) implicit in the analysis may tend to break
down in extreme circumstances.

The computational cost required to obtain accurate
Monte Carlo VAR estimates is often enormous. This
is because of two factors. First, the portfolio may con-
sist of a very large number of financial instruments.
Furthermore, computing the value of an individual
instrument may itself require substantial computa-
tional effort. Thus each portfolio evaluation may be
costly. Second, a large number of runs (portfolio eval-
uations) are required to obtain accurate estimates of
the loss distribution in the region of interest. We fo-
cus on this second issue: the development of variance
reduction techniques designed to dramatically re-
duce the number of runs required to achieve accurate
estimates of low probabilities. A general discussion
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on variance reduction techniques may be found in
Hammersley and Handscomb (1964). The technique
described in this paper builds on the methods of
Glasserman et al. (1999a, c), which were developed to
reduce the variance when pricing a single instrument.
Those methods combine specific implementations of
two general purpose variance reduction techniques:
importance sampling and stratified sampling. In this
paper we also combine these two techniques, but in a
way that is tailored to the VAR setting so the method
is quite different from that of Glasserman et al. (1999a,
c). Preliminary numerical results for the technique de-
scribed in this paper, and for related techniques, were
reported in Glasserman et al. (1999b). We now focus
on the most promising approach tried in Glasserman
et al. (1999b), provide a rigorous analysis of this ap-
proach, and perform more extensive experiments on
it.

Our approach is to approximate the portfolio loss
by a quadratic function of the underlying risk fac-
tors and to use this approximation to design variance
reduction techniques. Quadratic approximations are
widely used without simulation; indeed the second-
order Taylor series approximation is commonly called
the ’’delta-gamma approximation’’ (Britten-Jones and
Schaefer 1999, Jorion 1997, Rouvinez 1997, Wilson
1999). While our approach could be combined with
other quadratic approximations, many of the first
and second derivatives needed for the delta-gamma
approximation are routinely computed for other pur-
poses quite apart from the calculation of VAR. One
premise of this paper is that these derivatives are thus
readily available as inputs to be used in a VAR simula-
tion and do not represent an additional computational
burden.

When the change in risk factors has a multivariate
normal distribution, as is commonly assumed (and as
we will assume), then the distribution of the delta-
gamma approximation can be computed numerically
(Imhof 1961, Rouvinez 1997). While this approxima-
tion is not always accurate enough to provide precise
VAR estimates, we describe how it may be used to
guide selection of an importance sampling (IS) change
of measure for sampling the changes in risk factors.
IS is a particularly appropriate technique for ’’rare
event’’ simulations, which corresponds to the VAR

problem with a small value of p. See Bucklew (1990),
Chen et al. (1993), Glasserman et al. (1999a, c), and
Heidelberger (1995) and the references therein for
detailed discussions of IS. As the distribution of the
quadratic approximation can be computed numeri-
cally, it can also be used as either a control variable or
for stratified sampling. Numerical results in Glasser-
man et al. (1999b) showed that while the effectiveness
of the control variable decreases as p decreases, the
effectiveness of a combination of IS and stratified
sampling increases as p decreases. This is the method
we focus on in this paper. Independent of our work,
CBardenas et al. (1999) have studied using the delta-
gamma approximation as a control variable and in a
simple form of stratified sampling (with two strata)
without IS.

The rest of the paper is organized as follows.
In §2 we develop the quadratic approximation
and describe the proposed IS change of measure
based on this approximation. When this approxi-
mation is exact, we show that the IS is ’’asymptot-
ically optimal’’ for estimating P{L¿x} for large x,
meaning that the second moment of the estimator
decreases at the fastest possible exponential rate as x
increases. We also consider asymptotics as the num-
ber of risk factors becomes large and establish effec-
tiveness of the method in this limit as well. Stratified
sampling and its combination with IS are described in
§3. In §4, we show how accurate estimates for P{L¿x}
can translate to accurate estimates of the VAR xp. First,
we show that when the IS is selected so as to optimize
estimation of P{L¿x}, it is simultaneously asymptoti-
cally optimal for estimating P{L¿y} for a wide range
of ys about x. In addition, we establish a central limit
theorem (CLT) for the quantile estimate of the VAR xp
under IS and stratification. The form of the asymptotic
variance in this CLT is typical of quantile estimates in
other settings and implies that any variance reduction
obtained for estimating P{L¿x} in a neighborhood of
xp carries over to a VAR estimate. The complete algo-
rithm is stated in §5 and numerical results are given for
a variety of sample portfolios. In most cases, the vari-
ance is reduced by at least one order of magnitude and
often more than two orders of magnitude improve-
ment are obtained. For one rather extreme case there
is no improvement and further investigation reveals
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