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ABSTRACT Using variance reduction techniques to reduce the num-
ber of trials required to obtain accurate VAR estimates
This paper considers efficient estimation wa&lue-at-risk is therefore an attractive possibility. As VAR estimation

which is an important problem in risk management. The involves a “rare event” simulation problem for smail
value-at-risk is an extreme quantile of the distribution of importance sampling (IS) is a natural candidate for vari-
the loss in portfolio value during a holding period. An ance reduction. Glasserman, Heidelberger and Shahabuddin
effective importance sampling technique is described for (1999b, 1999d) (henceforth GHS) proposed and analyzed
this problem. The importance sampling can be further an IS procedure for the VAR problem. The approach used
improved by combining it with stratified sampling. In this there is applicable when the change in risk factaxs, has
setting, an effective stratification variable is the likelihood a multivariate normal distribution; this is often assumed in
ratio itself. The paper examines issues associated with practice. First, the portfolio losg is approximated by a
the allocation of samples to the strata, and compares the quadratic functionQ, of AS. Then the IS uses an expo-
effectiveness of the combination of importance sampling nential change of measure f@r, which is asymptotically
and stratified sampling to that of stratified sampling alone. optimal for estimatingP{L > x} for large values ofx,
provided the approximation is exact. In an asymptotically
1 INTRODUCTION optimal procedure, the second moment of the estimate goes
to zero at twice the rate that{L > x} approaches zero,
This paper is concerned with efficient simulation techniques which is the best possible rate. With this IS, large values
for estimatingvalue-at-risk(VAR), a problem of importance of Q are much more likely and thus if ~ Q, the event
in risk management (see Jorion (1997) and Wilson (1999)). {L > x} is no longer a rare event under IS. The IS is further
The VAR is a quantile of the distribution of the loss in combined with stratified sampling, where the stratification
portfolio value during a holding period. Leht denote variable isQ; the distribution ofQ can be computed numer-
the duration of the holding period and I&t denote the ically. Typically, we allocate an equal number of samples to
loss in portfolio value during this holding period. Then, each equiprobable (under IS) stratum. While large variance
for a given probabilityp, the VAR, x, is defined by the reductions were obtained in test examples, this allocation
relationshipP{L > x,} = p. Typically p is near zero, e.g., policy is suboptimal. Preliminary experimental results in-
p = 0.01, and Ar is either one day or two weeks. Monte dicated that substantial additional gains were possible with
Carlo simulation is often used to estimate the VAR. Such a a better allocation policy. A crude form of stratification on
simulation consists of first generating changes in the “risk Q, without IS and using only two strata and proportional
factors,” A S, that affect the value of portfolio. Examples of allocation was independently proposed bgr@enas et al.
risk factors include interest rates, currency exchange rates, (1999).
asset prices, etc. The portfolio is re-evaluated, using the This paper further considers issues associated with IS,
new risk factor values at the end of the holding period, and stratified sampling, and their combination. In particular,
the loss (or gain) in portfolio value is calculated. This may we study the interaction between IS and the allocation of
be quite time consuming since the portfolio may consist of samples to the strata in stratified sampling. Under IS, large
a large number of financial instruments. This process is values of Q are more likely to be generated. In stratified
repeated multiple times so that the loss distribution can be sampling, with or without IS, any number of samples can be
estimated. However, for small values pf a large number allocated to the strata, and thus the sampling distribution of

of trials may be required to accurately estim&gl. > x} Q can be arbitrarily modified. For example, without IS, an
for x in the region of interest. Thus the VAR calculation extreme modification of the allocation policy can lead to a
may be computationally intensive. sampling distribution ofD which is approximately equal to

the sampling distribution 0@ under IS. When viewed this
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way, it is natural to ask whether the combination of IS and
stratification is significantly better than just stratification
alone.

We address this issue from both a theoretical and ex-
perimental perspective. First, we prove that the variance of
a sample from a small stratum under stratification (9ris
approximately equal to the variance of a sample from that
stratum under IS and stratification. This is true because of
the particular way in which the IS is done; the likelihood
rato becomes a function af and so stratifying onQ is
equivalent to stratifying on the likelihood rato. This sug-
gests that, given the same strata definition and allocation
policy, the variances of the two methods should be approx-
imately equal. In particular, the variances under optimal
allocation should be approximately equal. While it is thus
tempting to claim that IS is not needed, we will argue that
IS provides, at a minimum, a simple framework for defining
strata and an efficient initial allocation policy, one that is
asymptotically optimal.

We compare the efficiencies of the two methods empir-
ically and confirm that the best possible variance reductions
of the two methods are about the same. In practice, how-
ever, estimation of the optimal allocation (using, e.g., pilot
studies) may be not be practical since a large fraction of
the computer budget might be exhausted simply obtain-
ing estimates of the optimal allocation. Thus we consider
several heuristic allocation policies and empirically study
how close their performance is to optimality. For several
sample portfolios, we show that large variance reductions
are achieved using these heuristic allocation policies.

2 THE BASIC METHOD

We summarize the methodology described in GHS (1999b,
1999d). The goal is to estimaf®{L > x}. We assume that
the change in risk factora S is anm dimensional column
vector having a multivariate normal distribution with mean
vector 0 and covariance matrix, and thats = CC’ for
some matrixC (such as the Cholesky decompositiorst

We assume that a quadratic approximatio.ts given by

L~ag+dAS+ASAAS =ag+ Q

(e.g., the “delta-gamma” approximation, p. 192 of Jorion
(1997)). Expresg in diagonalized form a®) = »'Z +
Z'AZ where Z is a vector ofm independent standard
normals and

1. Ais the diagonal matrix with the eigenvalues
{»} of C"AC on the diagonal, and
2. b’ =d'CwhereC = CU andU is the orthogo-

nal matrix whose columns are the eigenvectors
of C’AC(= UAU').

352

Changes in risk factors can be generated by setiSg=
CcZ.

Let A1 > A; and assume.; > 0. For IS, let0 <
6 < A1/2 be a “twisting parameter” and let thg&;’s be
independent normals where the varianceZpfis changed
from 1 to

1
(1—20%)

and the mean of; is changed from O to

o?(0) =

i (0) = 0b;o7(6).

Then P{L > x} = Ey[£I(L > x)] where E, denotes
expectation under IS with twisting paramefeand is the
likelihood ratio (LR) which in this case simplifies to

t=1£(Q) =exply(©) — 00} 1)

where

1

3 (0b;)?
vo) =3

m
———— —log(1—26%;) ).

Z(l—ZOM og( 1>>

i=1

Because of the form of the LR, this IS is equivalent to

exponentially twisting the quadratic for@. If the portfolio

is exactly quadratic, i.e., if = ap+ Q, then setting = 6,

where
V' (0x) = x —ag

results in an asymptotically optimal IS procedure. Under
IS with twisting parametef,, the mean oD is x —ag and,
if the portfolio is quadratic, the mean @&f is x. Variations
on this basic method are possible; e.g., twisting only the
Z;'s associated with positive eigenvalues

Under IS,

CI(L > x) ~ exply(6) —0Q}(Q > x — ag)

which motivates combining IS with stratification gh With

this combination, most of the variance in both the LR and the
indicator is removed. For stratification, defikentervals
(strata) S; = (s;—1,s;] and letp(@, j) = Py{Q € S;}.
Typically the strata are defined so that), j) = 1/k; this

is what was done in GHS (1999b). Numerical transform
inversion techniques are used to compute the distribution
of Q and then to find th¢S;} from the {p (9, j)}.

Let n; be the number of samples (the allocation)

that are to be drawn from stratufnand letZ;; and¢;; be the
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loss and LR, respectively, of theth sample from stratum Let f’; be the stratified sampling estimator using this optimal
j. Then, P{L > x} is estimated by allocation. Then

: & (kL p@, v, )2
D 1 *71 i=1
Py = E P(Q»]'); E I(L;ij > x)¢;;. @) Var[ P[] = . (4)
j=1 Ji=1

If instead of usingf;*’s one usesf;, then

Whené =0, ¢;; = 1 and (2) defines the stratified estimate

without IS. . k()2 .
Because of the form of the LR given in (1), stratifying Var[P,] = (Z = )Var[Pj]. (5)
on Q is equivalent to stratifying on the LR. A combination i=1 !

of IS with stratification on the LR was also used to advantage _ _ L
in GHS (1999a, 1999c¢) in the context of pricing European- Pilotruns may be done to get estimates ofitlt i)'s in
style, path-dependent options. In that setting, only the order to estimate the optimal allocation using (3). Typically,

mean was changed and the stratification was done on ain practice, the total number of samples that one can use
linear combination. for the pilot run are too few to get even reasonably good

To stratify on Q, we must be able to sampi@ and estimates of these quantities. With this in mind we devise
also sampleZ given Q. A simple method for doing this ~ Some heuristics for allocations to strata that try to do the best

is described in GHS (1999b, 1999d) and is referred to given this constraint. We will assume that we have a total
as the “bin tossing method.” First, generate a vector ~ budget ofn,, (small) for the pilot runs. For convenience
of independent normals with the appropriate means and We Will assume that, is some multiple ofk, so that
variances and then compu@. If Q € S;, then thisZ we haven,/k samples per stratum. We describe and test
has the distribution ofZ given Q € S;. If there are fewer three simple heuristics to illustrate the potential benefit
thann; samples from stratur then use thi<Z to evaluate ~ Of improved allocations. There is ample room for the
the portfolio, otherwise discard it. We continue sampling development of other allocation rules.

until there are the required number of samples from each ~ Heuristic 1: This heuristic is based on the fact thft,
stratum. as a function ofi, appears to have a “normal-like” shape,
centered near. Once sucty;* (in particular, for the second
3  EFFECTIVE ALLOCATION OF SAMPLES case of Portfolio (c), explained in Section 5) is given by
TO STRATA “Optimal” line in Figure 1. This motivates the following
algorithm:
Most of the experimental results in GHS (1999b, 1999d) ) _
allocate samples equally to each stratum. In this section we 1. Do a pilot run withn, / k samples per stratum
investigate heuristics for allocating samples more wisely in and get (very) crude estimates @9, /), say
order to improve the variance reduction obtained. 0(6,1). Let
The variance of?, is given by L
£z p@, Hv@, j)
L LYk p0.00,)
VarP] =Y p@. ). j)*/n;
j=1 i.e., the (very) crude estimate of thff. This
allocation is given by “Crude” line in Figure 1
wherev(, j)2 = Var[I(L > x)¢|Q € S;1. Suppose we 2. Find a normal curve that best fits tlies. One
have a fixed budget of samples that can be drawn, i.e., way is the following:

n=n1+ny...ng. Let f; = n;/n be the fraction allocated F_ vk _
to stratumi. The allocation that minimizes the above * Cokmputef - Li=y fik ands(f) =
variance expression can easily be derived (see, e.g., p. 300 Yialfi = Nk
of Fishman (1996)); the optimal fraction of samples devoted e For eachi, update the fractiong; using
to stratumj, f;", is given by B
' expl—(fi = ))?/2-s())
fi <

3) S oaexpl—(f; = P2/@- (M)

6, v, j
fr= p©, v, j)

Yk PO, @, i) o _
The denominator is simply a normaliza-
tion constant.
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05 Mustration of Heuristics Let the stratum be the intervé), y + Ay] and define
Optimal
Crud =

o3 - H::Jriiticl 7 ARy (y) PotY € (v, y + Ayl},

—+—  Heuristic 2
—e—  Heuristic 3

| mg(s) = Eg[ f(2)|Y = s],

mP(s) = Eglf(Z)?Y = s],

Fraction Allocated

v2(s) = Var[f(2)|Y = s]=mP (s) — mg(s)%,

and

Vo(y) = APy(»)?NVarg[f(Z)L]Y € (v, y + Ayl

@ m wm s w Let AP(y), m(s), m@(s), v3(s) and V(y) denote the
corresponding quantities without 1S, i.e, when= 0. We
Figure 1: lllustration of sample allocations for Portfolio (c). assume thapy(y) and p(y), the density ofy with and
without IS, exist.
3. Finally we allocate 80% of the samples accord-

ing to this normal curve, and the remaining Theorem 1 Suppose = £(Y). If £(s), mp(s) and

20% equally among alt strata, i.e., for each mf,z) (s) are finite and continuous in a neighborhood yof
i, we setf, 08 f +0.2 (1/}(). This and if p(s) and py(s) are positive, finite and continuous in
ensures that we have at least some samplesin & Neighborhood of;, then
each stratum. The final allocation is given in Vo(y)
Figure 1. lim 2237 _ 2,201y,
g o (Ay)2 P V()

Heuristic 2: In this case we do a “coarser” stratification
(i.e., combine several strata from the original stratification
scheme into one) so that we have more samples per stratum
in the pilot runs. We then estimate the optimal allocation
for this coarser stratification. The fraction thus allocated to
the coarser strata is then equally divided among all strata
that constituted that coarser stratum. Finally, as in Heuristic

0 .
20% oaually among all Stata.  The final allocaton s 1S & function off, the istribution ofZ given ¥ under S i
given in Figure 1. |d.enjt|call to the distribution of g|ve(r;)Y under t?e original

Heuristic 3: Same as Heuristic 2, except that before distribution; thusmg(s) = m(s), mg"(s) = m®(s), and
the last step, we fit a normal curve as in Heuristic 1. The v5(s) = v%(s). These relationships would not generally

The theorem states that, under appropriate smoothness con-
ditions, when one combines IS with stratification on the LR,
then the variance of a sample from a small stratum is, in the
limit, independent of the IS distribution. Furthermore, this
limiting variance is identical to that which is obtained under
stratified sampling alone. The proof of the theorem, which
is given in the Appendix, relies on the fact that since the LR

final allocation is given in Figure 1. hold if the stratification were done on some other variable,

rather than on the variable defining the LR. Theorem 1 also

4 STRATIEICATION WITH AND WITHOUT holds in the option pricing setting described in GHS (1999a,
IMPORTANCE SAMPLING 1999c). In that setting, the mean of a standard notas

changed from 0 to somg; and¢ = cexp{— Y _ u;Z;} for
We now compare stratification with importance sampling to  SOMe constant. Thus the theorem holds if one stratifies on
plain stratification. In particular, we analyze the contribution ¥ = >_ 1iZi (but not if the stratification is done on some
of a single sample from a small stratum to the variance of ©Other linear combination).
P.. By (1), stratifying onQ is equivalent to stratifying on
¢, so we state the result more generally in terms of using © EXPERIMENTAL RESULTS
IS and stratifying on the LR to estimafe] f (Z)] for some
function f. We assume that the LR can be expressed as We test the performance of some of the methods described

¢ = ¢(Y) for some random variabl&. (Identify ¥ = Q above on a variety of portfolios originally used in GHS
and f(Z) = I(L > x).) (1999b). For completeness, we list here all those portfolios.
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These were intended to cover a wide range of qualitative reduction technique. All the stratification methods use 40
features of portfolios. For example, Portfolios (a), (b) and equiprobable strata with respect to the importance sampling
(c), below have increasing quadratic terms relative to the distribution of the quadratic. Also, to standardize the re-
linear terms. Other features like one dominant eigenvalue, sults, one specifies the loss threshaldas xsig Standard
linearly increasing eigenvalues, etc., were also incorporated deviations above the mean loss according to the quadratic
among the choice of portfolios. In all buttwo casesthey were approximation and variesgy, i.e.,

taken to be uncorrelated; case (j), below, used a covariance

matrix of 10 international equity indices downloaded from

the RiskMetricdM web site. In the uncorrelated cases, all

assets have an annual volatility of 0.30 and an initial value
of 100. A 10 day horizon and an interest rate of 5% were
assumed in each case.

x=0_Ari+ao)+xsa |y bF+2) 22
i i i

Results for IS and ISS-Q are taken from GHS (1999b).
Variance ratios in the last four columns were estimated
using the theoretical expressions in (3)-(5). The last column

@) 0.5yr ATM short ten at-the-money calls and i X . . .
five at-the-money puts on each asset, all op- (OPT) gives esfumate_s of the potential variance re_:ducnon
tions having a half-year maturity: that can be achieved if samples were al.logated opnmally to

(b) 0.1yr ATM same as previous but with maturity strata, i.e., the best that any of the heuristics could possibly
of 0.10 years: do. These were done by using 1000. samples per stratum to

©) Delta hedged:same as previous but with num- acpurately estlmate the strqtum var!anee@, i) an.d then
ber of puts on each asset increased to result using (4) to estimate the optimal variance reduction. These
in a linear term of zero: long runs were also used to accurately estimatg ttgusing

(d) 0.25yr OTM short ten calls struck at 110 and (3). The variancg reductiqn factors for Hll,_H2 and H3 were
ten puts struck at 90, all expiring in 0.25 years: obtained by running 100 trials of the heurlstlc. For egch trial,

() 0.25yr ITM same as previous but with calls we generate 200 samples, deter.mlne the e}llocatfob)( '
struck at 90, puts at 110; frorr_1 these s_amples, and determine the variance redu_ctlon

) Large A1: same as “Delta hedged” but with achieved using (5_). We then average over all 100 trials.
number of calls and puts on first assetincreased Thus, the results in the table are estimates of how much
by a factor of 10; variance reduction could be achieved on the average by

) Linear »: same as “Delta hedged” but with apply.ing the heuristics, with a budget of 200 samples for
number of calls and puts ath asset increased the pilot runs. _
by a factor ofi,i = 1,..., 10 The results in T_able 1 su_gg_est some con5|ste_nt patterns.

(h) 100, p = 0.0: short ten at-the-money calls Of the three heuristics, Heuristic 2 seems to dominate when
and ten at-the-money puts on 100 underlying
assets, all options expiring in 0.10 years; Table 1: Comparison of variance reduction methods. For

(i) 100, p = 0.2 same as previous but with portfolios (a), (b) and (c), the smallest valuesxgfy have
correlations of distinct assets set to 0.20. P{L > x} ~ 0.05 while the largest values afsiq have

) Index short fifty at-the-money calls and fifty P{L > x} ~ 0.005 For all other values ofst, P{L >

at-the-money puts on 10 underlying assets, all
options expiring in 0.5 years. The covariance
matrix for the asset prices is given in GHS

x} ~ 0.01. The heuristics use a total of 200 samples to
determine an allocation.
Estimated Variance Ratios

(1999b). The initial asset prices are taken as Pc(’g)- zs '758 IS?B-GQO ';;1 jgg T’é : OfoT64

(100, 50, 30, 100, 80, 20, 50, 200, 150, 10). ob 205 o071 12 1436 740 2661

Table 1 compares the various methods and heuristics (b) 1?7'?; 5?:1; 3405, ‘é ligé 2?85 1475;;1 4f$f
described earlier for estimating loss probabilities. Their 26 219 69.9 299 270 224 469
performance is indicated by the estimated variance ratios 83 271 730 732 593 583 1105
in Columns 3 to Columns 8: “IS” is importance sampling, © %jg 13:2 ég:g gé 4213 gi 1‘2?3
“1ISS-Q” is stratification with importance sampling with 32 285 481 133 71 127 200
equal number of samples per stratum, and “H1”, “H2” and (d 27 230 602 215 138 169 332
“H3" are stratifications with importance sampling where ((?)) ;57 ng 2620'83 123137 18480 19741 232312
Heuristic 1, Heuristic 2 and Heuristic 3, are used, re- (@ 30 173 292 103 78 89 150
spectively, for allocating samples to strata. The estimated (hy 25 269 454 118 94 114 165
variance ratio is an estimate of the variance using stan- () 25 103 234 98 77 70 175
G) 32 183 119 401 276 337 1148

dard simulation divided by the variance using a variance
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there is a strong linear component (e.g., Portfolio (a)), and

Finally, we conduct some experiments with plain strat-

Heuristic 1 seems to dominate when the quadratic component ification (and no 1IS). Table 2 gives the variance ratios for

is particularly strong (e.g. Portfolio (c)). The performance
of Heuristic 3 seems to be dominated by the better of
Heuristic 1 and Heuristic 2 in each case, but seems to be

as good as the others when averaged over the wide range

of portfolios considered. In general, on the average, the
heuristics provide at leda 2 times improvement and up to
10 times improvement over the 1SS-Q case, by using just
200 samples for the pilot runs.

Since the heuristics use so few samples to determine
allocations, one may expect some degree of variability in
the amount of variance reduction a heuristic obtains for a
given portfolio. Conceptually, this means that in (5), the
fi's may be thought of as being random variables, and so
Var[ﬁx] is a random variable. As a general rule we found
that the more the fraction of the optimal variance reduction a
heuristic captures (on the average) for a portfolio, the less is
the variability in this fraction; indeed if a heuristic captures
100% of the optimal variance reduction “on the average”,
then it does so each time, and then this variability will
be zero. To illustrate this trend experimentally, define the
(estimated) coefficient of variation (CV) to be the ratio of
the (estimated) standard deviation of the variance reduction
obtained for a given portfolio, to the (estimated) expected

value of the variance reduction obtained, expressed as a

percentage. Heuristic 1 had a CV of about 0.8% for the
first case of Portfolio (c) to about 29% for the last case of
Portfolio (a). Heuristic 2 had a CV of 2% for the first case
of Portfolio (a), to 46% for the first case of Portfolio (c).
The CV of Heuristic 3 seemed to be the most consistent
over the wide range of portfolios considered, being less
than 20% each time.

We have also investigated how the effectiveness of
the allocation heuristics varies with the number of samples
used for pilot runs. We find very little additional (average)
variance reduction from using 400 samples in the pilot runs

plain stratification for Portfolio (c) where

e the stratification uses equal number of samples
in each stratum and the intervals are based on
the original distribution of the quadratic (S-Q)
same as above but the intervals are based on
the importance sampling distribution of the
quadratic (S-Q-I)

the stratifications use the estimated optimal
allocation and the intervals are based on the
original distribution (S-Q-OPT)

same as above but the intervals are based on the
importance sampling distribution (S-Q-OPT-
1.

We chose Portfolio (c) for this illustration because its linear
term is zero and its quadratic term has all eigenvalues equal;
these features facilitate a more direct implementation of
stratified sampling as compared to bin tossing (sidte
then has a chi-square distribution).

Table 2: Variance ratios for plain stratification applied to
Portfolio (c). All variance ratios are based on 40 strata and
1000 samples per stratum.

‘ Estimated Variance Ratios
xstd | S-Q

S-Q-1| S-Q-OPT  S-Q-OPTl
1.9 39 139 46 57
28| 1.7 304 61 125
32| 13 472 50 206

Note that S-Q and S-Q-OPT give inferior results to
their counterparts S-Q-1 and S-Q-1-OPT; using equiprobable
intervals based on importance sampling creates a better
sampling frequency near the region which matters, i.e.,
close tox. Also note how close S-Q-I and ISS-Q-I-OPT
are to ISS-Q and OPT, respectively (the results of which

compared with 200 samples. In most cases, the averageare in Table 1), consistent with Theorem 1.

variance reduction using 80 samples for the pilot runs (2 per

stratum) is almost as much as using 200 samples. However,

we found that the CV of the variance reduction increases
when going from 400 samples to 80 samples. For example,
for Heuristic 1 applied to the second case of Portfolio (c),

the CV was 0.7%, 1.8%, and 7.7%, for 400, 200 and 80
samples, respectively.

Overall, these numerical examples suggest that even
simple heuristics can capture a significant fraction of the
additional variance reduction that can be achieved through
optimal allocation of samples to strata rather than equal
allocation. More refined heuristics may be able to capture
even more of this potential variance reduction.
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Even though we experimented with trials of the heuris-
tics for determining effective allocations, we did not actually
implement stratifications with the suggested allocations. The
latter may pose some difficulties. For example, though the
bin tossing method of stratification works well for IS and
stratification with equal allocation, one may expect it to have
considerably more wastage of the generated normals with
the skewed allocation that one gets from the heuristics. This
is also the case when doing plain stratification with equal
allocation, but with intervals generated using importance
sampling. Currently we are investigating this overhead and
also developing an acceptance-rejection algorithm for gen-
erating the stratified samples while keeping the rejections
to a minimum.
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6 CONCLUSIONS Thus
We have tested several heuristics for allocating samples to
strata when doing importance sampling with stratification.

We showed that simple heuristics can capture a significant 5,4
fraction of the variance reduction that may be achieved if
one allocated samples optimally.

We also compared the combination of stratification
and importance sampling to plain stratification, where both
schemes use the same stratification intervals and the sam
number of samples for each stratum. We proved a result
that in the limit (i.e., as the size of a stratification interval

, _ (P 2
J;QOIZ(y) = (m) my(y)

APy(y)?

Jim =R 200 = POy ().

eA similar argument shows that

APy (y)2
D) 1 (3) = () 2m (3?2

approaches zero) the stratum variances using the two ap- ay=0 (Ay)?

proaches converge to the same value. Experimental res:ultsand thus

confirm the above by showing that the two methods of

stratification give almost the same variance reduction when Vo(y) 2.2
either using equal number of samples per stratum or when Ay—0 (Ay)2 POYVG).

using optimal allocation of samples to the strata. In fact, o 5
the optimal allocation of samples in the two cases is about 1he result follows ifvg(y) = v=(y). For a seta,
the same. However, in practice, the importance sampling

approach gives a natural method to generate effective strata. E[I(Z € A)Y =]

P{Z € AlY =y}

r(y)
ACKNOWLEDGMENTS B[t I(Z € A); Y = )]
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APPENDIX: PROOF P)
_ EglI(Z e A)Y =]
First we show that(y) = p(y)/ps(y). Write B po(y)

Py{Z € AlY = y).
P{Y €y, y+ Ayl} = EpllI(Y € [y, y + AyD}. (A-1)
Thus the conditional distribution of givenY is the same

Since( = £(Y), dividing (A-1) by Ay, applying the mean  ynder IS as it is under the original distribution and therefore

value theorem, and lettinghy — O establishes this fact.
Now write Vg (y) = APy (y)?[I2(y) — I1(y)] where

y+Ay
I(y) = Eolf(2)2Y = 512y
2(y) /S:y oL f(2)°] S]APg(y) s

and

y+Ay 2
Po(s) )
I = Egllf(2)|Y = s]———d .
1(») (/;_y o[Lf(2)| S]APe(y) §

Since ifY = s, £ = p(s)/py(s), by the mean value theorem
there exists @’ € (y, y + Ay] such that

p()
po(y)

2
L(y) = ( ) mP () pe(y') A ng(y)-

357

v2(y) = v3(y).
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