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Abstract

The classic integrability problem asks (i) what conditions guarantee that

demand functions can be rationalized by a well-behaved utility function and

(ii) if such a utility exists, how can it be recovered. Hurwicz and Uzawa

(1971) provided answers to both questions. However for the popular case

of changing tastes, as represented by a sequence of non-nested utilities, the

Hurwicz and Uzawa conditions fail to hold in general. Following Strotz

(1956), an individual can determine her dynamic demands via a naïve or

sophisticated solution technique. For given dynamic demands, we provide

necessary and su¢ cient conditions such that the demands are rationalized

by a set of utilities using the sophisticated solution process. Moreover we

provide a means for recovering the generating sequence of utilities, although

this sequence of utilities is not unique. We also give su¢ cient conditions for

demands to be rationalized by a sequence of utilities using the naive solution

process and for recovering the complete set of generating utilities for two

special cases.
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1 Introduction

The classic integrability problem of �nding conditions guaranteeing that a given

set of individual demand functions could have been generated by a budget con-

strained, utility maximizing consumer was formulated in its modern form in the

mathematical notes section of Samuelson (1950). Hurwicz and Uzawa (1971)

proved that multicommodity demand functions can be rationalized by a strictly

quasiconcave utility if the corresponding Slutsky matrix is symmetric and negative

semide�nite and also provided a process for recovering the utility function.1 These

results were further re�ned in Hurwicz and Richter (1979). One important area

of economic analysis where the Slutsky symmetry and negative semide�niteness

conditions are known to possibly fail is in dynamic choice problems. Following

the classic papers of Strotz (1956), Pollak (1968) and Phelps and Pollak (1968), it

is now popular to allow for the possibility that decision makers might not have a

single well-behaved intertemporal utility, but rather may exhibit changing tastes

which can re�ect a bias for the present and self control issues.2 Whereas the

integrability problem is largely solved for the classic static setting, the question

of �nding conditions for rationalizing demands corresponding to changing tastes

seems not to have been investigated. This paper seeks to contribute to �lling this

void.

The changing tastes optimization problem can most simply be framed in a

three period certainty setting with a single consumption good ct (t = 1; 2; 3) in

each period t. Assume preferences in period one are de�ned over (c1; c2; c3) triples

and represented by U (1). Preferences in period two de�ned over (c2; c3) pairs are

represented by U (2). For any �xed c1 = c1, U (1)(c1; c2; c3) and U (2)(c2; c3 jc1)
di¤er by more than a strictly increasing transformation. To determine an optimal

plan, an individual can follow naive choice by using U (1) to make the period one

consumption decision and then in period two given remaining resources, use U (2)

to make the allocation between c2 and c3. Since in general the period one demands

for c2 and c3 will be revised in period two, the consumer is said to exhibit time

inconsistency. Alternatively, she could follow sophisticated choice and solve the

problem recursively using U (2) to make the allocation between c2 and c3 conditional

on c1 and then use U (1) to select c1.3

For the case of sophisticated choice, we derive necessary and su¢ cient con-

1Several other standard properties are assumed �see Theorem 1 in Section 2.
2See, for example, Laibson (1997), O�Donoghue and Rabin (1999, 2015) and Loewenstein,

O�Donoghue and Rabin (2003) and the relevant references cited in these papers.
3An alternative game theoretic solution is proposed in Phelps and Pollak (1968), which will

not be considered in this paper.
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ditions for demands to be rationalizable by a (U (1); U (2))-pair. To establish the

existence of U (2), conditions are given for deriving the period two and period

three conditional demands (corresponding to the �rst stage of the sophisticated

optimization process) from the given unconditional demands. Based on these con-

ditional demands, it is possible to directly apply the Hurwicz and Uzawa (1971)

theorem to test whether there exists a unique U (2). For the existence of U (1) in

place of the Slutsky symmetry and negative semide�niteness properties assumed

by Hurwicz and Uzawa (1971), we require the invertibility of the (unconditional)

given demands and the existence of the conditional demands (as well as a few

other standard properties).4 While our result ensures the existence of a utility

pair, it does not suggest that the period one utility is unique. U (1) satis�es a

partial di¤erential equation, and surprisingly the solution to this equation can

yield a set fU (1)g, where each utility in the set di¤ers from other members of the

set by more than an increasing transformation.5 In this recovery process which

is quite di¤erent from that of Hurwicz and Uzawa (1971), the multiplicity of U (1)

functions arises because the sophisticated solution does not correspond to the op-

timal demand functions maximizing U (1). The latter is the only set of demands

that can uniquely determine U (1) up to an increasing transformation. It follows

from our integrability result that when the classic Hurwicz and Uzawa conditions

(see Theorem 1 below) hold, it not only implies the existence of a non-changing

tastes utility rationalizing sophisticated choice but if the resulting utility is twice

continuously di¤erentiable also implies the existence of a set of changing tastes

utilities rationalizing the same demands. However without the partial di¤erential

equations we derive, it is unclear how one would recover the changing tastes set

of utilities.

Selden and Wei (2015) have shown that a given set of dynamic demand func-

tions can sometimes be rationalized both as sophisticated choice corresponding to

a changing tastes pair (U (1); U (2)) and as a standard utility maximization based

on a non-changing tastes U .6 In this case, the dynamic demands satisfy both our

4Shafer (1974, 1975) also considers a representation for the intransitive preferences. How-

ever his discussion is based on the classical static setting instead of an intertemporal setting.

Therefore in contrast to our changing tastes assumption, no speci�c argument is given for why

the consumer would have intransitive preferences. Moreover, no su¢ cient condition is given

such that demands can be rationalized by his representation.
5Each ordinally equivalent collection of utilities is treated as one member in fU (1)g.
6Since the observed consumption demands can come from both a non-changing tastes U

and a changing tastes (U (1); U (2))-pair, one can never distinguish which are the true generating

utilities. It follows that if a given data set of (demand, price) observations satis�es the classic

Afriat (1967) - Varian (1983) Generalized Axiom of Revealed Preference (GARP), implying that

the data is consistent with the maximization of a concave utility, there is no guarantee that
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necessary and su¢ cient conditions for the existence of (fU (1)g; U (2))-pairs and the
Hurwicz and Uzawa (1971) conditions. However using the Hurwicz and Uzawa

recovery process one can only recover the one member of fU (1)g corresponding to
the non-changing tastes utility U and the period two continuation of this utility

corresponding to the unique U (2). Our recovery process allows one to recover the

full set fU (1)g including U . Motivating Example 1 in Section 3 illustrates a case
in which a given set of demands is rationalized by both a (U (1); U (2)) pair and a

di¤erent non-changing tastes U where all three utilities are strictly increasing and

quasiconcave on the full choice space.

Motivating Example 2 demonstrates that a given dynamic demand function can

be rationalized as naive choice based on one (U (1); U (2))-pair and as sophisticated

choice based on another (U (1); U (2))-pair where the U (1) functions di¤er but the

U (2) functions are the same. We also extend our analysis to the case where there

are two time periods with multiple goods in each period. In this case, one must

include in the necessary and su¢ cient conditions a type of symmetry restriction

on the derivatives of the inverse demand functions.

The reader may well note a historical irony in the role of invertibility condi-

tions in our integrability theorems for sophisticated choice and the disavowal of

invertibility in favor of Slutsky symmetry in the classic paper of Samuelson (1950,

pp. 377-385). In our analysis since Slutsky symmetry is not satis�ed in general

for the changing tastes case, it cannot be assumed. Interestingly we show that

for sophisticated choice, after assuming one can solve for conditional demands to

guarantee the existence of U (2), assuming the invertibility of demands (EI) can

guarantee the existence of fU (1)g. Therefore, although the Property (EI) has

nothing essential to do with the traditional integrability problem as argued by

Samuelson (1950), it plays an important role in the integrability problem with

changing tastes.

For the case of naive demands, to �nd a rationalizing (U (1); U (2))-pair exactly

the same conditional demand properties are required for the existence of U (2) as in

the sophisticated case. However to �nd U (1), it is only possible to identify a quite

weak set of su¢ cient conditions since one knows only the c1 demand function

optimizing U (1) and has no information about the optimal c2 and c3 demands

the individual doesn�t exhibit changing tastes. Kubler (2004) notes that for dynamic demand

tests of revealed preference where there is only a single extended observation, one can test time-

separable and time-invariant utility but not more general forms such as Kreps-Porteus utility.

In fact given that the demands corresponding to time-separable and time-invariant preferences

could also have also been generated by a changing tastes (U (1); U (2))-pair, the ability to reach

strong conclusions based on revealed preference tests of these demand functions seems quite

limited.
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(given that the period two optimization is based on U (2)). This is in contrast to the

sophisticated case where one has information relating to the c1-dependence of the

c2 and c3 conditional demands when maximizing U (1) with respect to c1. Indeed

the naive problem of �nding U (1) is formally analogous to the static integrability

problem of incomplete demand systems often observed and analyzed in empirical

multicommodity demand applications. For the static problem, Epstein (1982)

provides some weak su¢ cient conditions which can be directly applied to the

naive choice problem of �nding U (1). However these conditions do not result in the

recovery of all possible U (1) functions. In this paper we identify two special cases

where the complete set of period one utilities
�
U (1)

	
together with U (2), which

rationalize the given demands as naive choice, can be recovered. Interestingly,

these two special cases are related to the class of e¤ectively consistent preferences

discussed in Selden and Wei (2015).

The rest of the paper is organized as follows. Section 2 gives the basic setup.

Two motivating examples are provided in Section 3. In Section 4, we �rst derive

necessary and su¢ cient conditions for the existence of
��
U (1)

	
; U (2)

�
assuming the

given demands correspond to sophisticated choice in the three period case, where

there is only one commodity in each period. Then we generalize our results

to the two period case with multiple commodities in each period. In Section

5, we give su¢ cient conditions for the existence of
��
U (1)

	
; U (2)

�
assuming the

given demands correspond to naive choice and discuss two special cases where the

complete set of utilities
�
U (1)

	
rationalizing the given demands as naive choice

can be identi�ed. Concluding comments are provided in Section 6. Proofs of the

results and supplemental materials are provided in the Appendix.

2 Preliminaries

Assume that there are two periods and M (M � 3) commodities. The �rst K

commodities are consumed in period one and the remainingM�K � 2 commodi-
ties are consumed in period two.7 Let c = (c1; :::; cM) 2 RM+ denote the quantities

of the M commodities and p = (p1; :::; pM) denote the corresponding prices. A

consumer is endowed with income or initial wealth of y1 which she seeks to allocate

over time periods t = 1; 2. Preferences for periods one and two are represented

respectively by

U (1)(c1; :::; cM) : C1 � :::� CM ! R (1)

7Although in this paper we focus on the case of a single taste change, we demonstrate in

Appendix E that our integrability result for sophisticated choice, Theorem 2, does indeed extend

to a setting with two taste changes. The other results can be extended similarly.
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and 8 (c1; :::; cK) 2 C1 � :::� CK ,

U (2)(cK+1; :::; cM j c1; :::; cK) : CK+1 � :::� CM ! R; (2)

where Ci denotes the set of possible consumption values for commodity i, which

is (a subset of) R+. We frequently will refer to utilities as satisfying the following
property.

Property 1 Utility U is (i) a real-valued function de�ned on (a subset of) the

positive orthant of a Euclidean space, (ii) continuous, (iii) strictly increasing in

each of its arguments and (iv) strictly quasiconcave.

In this paper, we focus on the case of changing tastes which will be said to

occur if and only if there exists a (c1; :::; cK) 2 C1 � ::: � CK such that for every

strictly increasing transformation T

U (2)(cK+1; :::; cM j c1; :::; cK) 6= T (U (1)(c1; :::; cK ; cK+1; :::; cM)): (3)

Thus, preferences will change if and only if U (2) is not nested in U (1).

The consumer faces the optimization problems

P1 : max
c1;:::;cM

U (1)(c1; :::; cM) S:T: y1 �
MX
i=1

pici (4)

and

P2 : max
cK+1;:::;cM

U (2)(cK+1; :::; cM j c1; :::; cK) S:T: y2 = y1�
KX
i=1

pici �
MX

j=K+1

pjcj:

(5)

Let c� = (c�1; ::; c
�
M) denote the optimal two period consumption plan for P1.

Applying terminology from Machina (1989) and McClennen (1990), the c� plan is

said to be resolute if and only if the consumer does not modify her (c�K+1; :::; c
�
M)

plan even if her tastes change.

Following Strotz (1956) and Pollak (1968), it is standard to consider the fol-

lowing solution techniques for problems P1 and P2.

De�nition 1 P1 and P2 are said to be solved by naive choice if �rst P1 is solved
for the optimal (c�1; :::; c

�
K ; cK+1; :::; cM) = (c

�
1; ::; c

�
K ; c

�
K+1; :::; c

�
M) and then the op-

timal (c�K+1; :::; c
�
M) is determined from solving P2 conditional on (c�1; :::; c

�
K).

De�nition 2 P1 and P2 are said to be solved by sophisticated choice if �rst
P2 is solved for the conditionally optimal (c��K+1 (c1; :::; cK) ; :::; c

��
M (c1; :::; cK))

and then the optimal (c��1 ; :::; c
��
K ) is determined from solving P1 conditional on

(c��K+1 (c1; :::; cK) ; :::; c
��
M (c1; :::; cK)).
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The vectors c� = (c�1; ::; c
�
M) and c

�� = (c��1 ; ::; c
��
M) denote respectively the so-

lutions resulting from the naive and sophisticated optimizations. A consumption

plan will be said to be consistent if and only if
�
c�K+1; :::; c

�
M

�
=
�
c�K+1; :::; c

�
M

�
for

any (p1; :::; pM ; y1). Although the consistency of the plan is su¢ cient to ensure

that c� = c��, it is not necessary. As introduced in Selden and Wei (2015), one

can also have the following case of e¤ectively consistent demands and preferences.

De�nition 3 Given
�
U (1); U (2)

�
, if there exists a unique naive and sophisticated

pair (c�; c��) as characterized in De�nitions 1 and 2 which for every (p; y1) satis�es

c� = c�� and is rationalizable by a non-changing tastes U satisfying Property 1,

i.e.,

c� = c�� = argmax
c1;:::;cM

U(c1; :::; cM) S:T: y1 �
MX
i=1

pici; (6)

then this common plan and associated preferences are said to be e¤ectively con-
sistent. Otherwise, they are e¤ectively inconsistent.8

In Subsection 4.1.3, we show how to recover both the changing tastes utilities

(U (1); U (2)) and a non-changing tastes U from a given set of e¤ectively consistent

demands.

Let ci (p; y1) = ci (p1; :::; pM ; y1) (i = 1; :::;M) denote a given set of dynamic

demand functions and c (p; y1) denote the corresponding demand vector. If

ci (p; y1) (i = 1; :::;M) are generated based on naive or sophisticated choice us-

ing a (U (1); U (2))-pair, they will be referred to as the unconditional demands
resulting from solving the period one and period two decision problems P1 and P2.

The demand functions

ci = ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) (7)

resulting from solving just the period two optimization P2 will be referred to as the

conditional demands. These functions can depend on p1; :::; pK but only through
(c1; :::; cK ; y2). The dependence on period one goods arises from U (2)(cK+1; :::; cM j
c1; :::; cK) where (c1; :::; cK) can enter as preference parameters.

Throughout this paper, we will refer to the following properties for all (p; y1) 2
RM++ �R+ (unless otherwise stated) of a given set of unconditional demand func-
tions:9

8For e¤ective consistency, we always assume that there is a unique sophisticated choice so-

lution. It should be noted that this is not true in general, since as pointed out by Peleg and

Yaari (1973), the sophisticated choice process need not always generate an optimal plan. This

problem arises when substitution of the P2 solution into the P1 optimization results in U (1) not

being concave in c1.
9Although these properties are de�ned for the complete set of demand functions ci (p; y1)

(i = 1; :::;M), one can also apply them to the partial demand system by specifying the demand
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(P) ci (p; y1) (i = 1; :::;M) are real-valued functions de�ned on (a subset of) the
positive orthant of a Euclidean space;

(TD) ci (p; y1) (i = 1; :::;M) are twice continuously di¤erentiable;

(H) ci (p; y1) (i = 1; :::;M) are homogeneous of degree zero with respect to prices
and income;

(B) Budget Balancedness:10
MX
i=1

pici = y1; (8)

(EC) Existence of Conditional Demands: based on the unconditional demands
ci (p1; :::; pM ; y1) (i = 1; :::;M) and y2 = y1 � �Ki=1pici, one can solve for the
continuously di¤erentiable functions

ci = ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) ; (9)

(EI) Existence of Inverse (Unconditional) Demands: based on the unconditional
demands ci (p1; :::; pM ; y1) (i = 1; :::;M), one can solve for pi (i = 1; :::;M)

as continuously di¤erentiable functions of (c1; :::; cM);

(S) Slutsky Symmetry: the corresponding Slutsky matrix (�ij)M�M is symmetric,

where

�ij =
@ci
@pj

+ cj
@ci
@y1

; (10)

(N) Slutsky Negative Semide�niteness: the corresponding Slutsky matrix (�ij)M�M
is negative semide�nite;

(ND) Slutsky Negative De�niteness: the corresponding Slutsky matrix (�ij)M�M
is negative de�nite.

Although Properties (EC) and (EI) are stated globally, we next provide two

simple tests for local versions of these properties. If either test fails, then one can

conclude that Property (EC) or (EI) is not satis�ed. If both tests are satis�ed,

then one can seek to directly solve the appropriate systems of equations for the

conditional and inverse demand functions. First to test for (EC), it will prove

functions one considers. For example, if we say ci (p; y1) (i = 1; :::;K) satisfy Property (S), we

mean (�ij)K�K is symmetric.
10We use the term "Budget Balancedness" following Jehle and Reny (2011). This condition

is also referred to as Walras�law in Mas-Colell, Whinston and Green (1995).

8



useful to denote the Jacobian matrix of derivatives of the vector (c1; :::; cK ; y2)

with respect to (p1; :::; pK ; y1) evaluated at (p01; :::; p
0
K ; y

0
1) as

Jc =
@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)

����
(p1;:::;pK ;y1)=(p01;:::;p0K ;y01)

: (11)

Lemma 1 For the given unconditional demands ci (p1; :::; pM ; y1) (i = 1; :::;M)
and (p01; :::; p

0
K ; y

0
1) 2 RK++�R+, there is an open neighborhood containing (p01; :::; p0K ; y01)

such that there exist continuously di¤erentiable conditional demands

ci (p1; :::; pM ; y1) = ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) (12)

if and only if det Jc 6= 0.

The actual process for solving for the conditional demands assuming the con-

ditions in Lemma 1 are satis�ed is discussed in Subsection 4.1.1 below. Next

for the (EI) test, denote the Jacobian matrix of derivatives of the vector demand

function c (p;y1) with respect to (p1; :::; pM) evaluated at (p01; :::; p
0
M) as

J =
@ (c1; :::; cM)

@ (p1; :::; pM)

����
(p1;:::;pM )=(p01;:::;p0M)

: (13)

Lemma 2 For the given unconditional demands ci (p1; :::; pM ; y1) (i = 1; :::;M)
and (p01; :::; p

0
M) 2 RM++, there is an open neighborhood containing (p01; :::; p0M)

such that pi (i = 1; :::;M) can be expressed as continuously di¤erentiable functions

(c1; :::; cM) if and only if det J 6= 0.

Tests for properties (EC) and (EI), involving global assumptions, are given

by Corollaries 5 and 6, respectively, in Appendix C. For each of the examples

considered in this paper, if the conditions in Lemmas 1 (2) hold in the entire

parameter space, it can be veri�ed that the conditions in Corollary 5 (6) also are

satis�ed. For this reason, we apply the Lemmas 1 and 2 tests for (EC) and (EI),

respectively, to each point in the parameter space.

Given a set of demand functions ci (p; y1) (i = 1; :::;M), the classic integrability

problem asks what properties of the demands guarantee that there exists a utility

function U(c1; :::; cM) such that

c (p; y1) = argmax
c1;:::;cM

U(c1; :::; cM) S:T: y1 �
MX
i=1

pici: (14)

We can now state a version of the solution provided by Hurwicz and Uzawa

(1971).11

11The statement of Theorem 1 is adapted from Mas-Colell, Whinston and Green (1995, pp.

75-76). Hurwicz and Uzawa (1971) assume ci (p; y1) (i = 1; 2; :::;M) are di¤erentiable rather

than satisfying (TD) and assume a boundedness condition (also see Border 2014). A re�ned

version of Theorem 1 is given in Hurwicz and Richter (1979).
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Theorem 1 Assume a given set of demands ci (p1; :::; pM ; y1) (i = 1; :::;M) which
have the Properties (P), (TD) and (B). Then there exists a unique (up to an

increasing transformation) U(c1; :::; cM), satisfying Property 1, which rationalizes

the demands if and only if Properties (S) and (N) hold.

Hurwicz and Uzawa (1971) also provide a recovery process based on the income

compensation function for deriving the utility function U (up to a positive a¢ ne

transformation) which rationalizes the given demands. Their existence result

and recovery process generates in a single utility function which is well-behaved

in the sense of Property 1. In the case of changing tastes, the integrability

problem becomes one of �nding conditions for the existence of potentially di¤erent

(U (1); U (2))-pairs corresponding to a given set naive or sophisticated demands and

identifying a process for recovering the utility pairs.

3 Motivating Examples

In this section, we consider the special case where M = 3 and there are three

periods with one commodity in each period. The consumer�s changing tastes are

represented by U (1)(c1; c2; c3) and U (2)(c2; c3j c1) and the optimization problems
P1 and P2 are revised accordingly.

In each of the two examples discussed below, a set of dynamic demand functions

c1 (p1; p2; p3; y1), c2 (p1; p2; p3; y1) and c3 (p1; p2; p3; y1) is assumed. In the �rst

example, a given set of demands is shown to satisfy Theorem 1 and hence is

rationalizable by a non-changing tastes utility U . However the same demands are

also shown to be rationalizable by a changing tastes (U (1); U (2))-pair, satisfying

Property 1, based on sophisticated choice. The second example demonstrates

that a given set of demand functions can be rationalized both as naive choice

based on one (U (1); U (2))-pair and as sophisticated choice based on a di¤erent

(U (1); U (2))-pair.

Example 1 Assume that

c1 =
2p1 + 3y1 � 2

p
p21 + 3p1y1

9p1
; (15)

c2 =
6y1 + 2

p
p21 + 3p1y1 � 2p1
18p2

and c3 =
6y1 + 2

p
p21 + 3p1y1 � 2p1
18p3

: (16)

These demands satisfy (P), (TD), (B), (S) and (N). Thus following Theorem 1,

the demands can be rationalized by a non-changing tastes utility U . Using the
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Hurwicz and Uzawa (1971) recovery process, one can obtain

U (c1; c2; c3) = (
p
c1 + 1)

p
c2c3: (17)

It can be veri�ed that the demands are also rationalizable as sophisticated choice

based on the changing tastes (U (1); U (2))-pair

U (1) (c1; c2; c3) =
q
(
p
c1 + 1) c2 + ((

p
c1 + 1) c3)

1
4 ; (18)

and

U (2)(c2; c3j c1) = ln c2 + ln c3: (19)

All three utilities (17) - (19) satisfy Property 1 over the full choice space. Clearly

U (1) di¤ers from U by more than an increasing transformation.12

Example 2 Assume that

c1 =
y1
p1
� p1
p2
� p1
p3
; c2 =

p21
p2
+

p21
p3

2p2
and c3 =

p21
p2
+

p21
p3

2p3
; (20)

where the following is assumed to ensure that Property (P) holds

y1 �
p21
p2
+
p21
p3
: (21)

These demands satisfy Properties (P), (TD), (B) and (H) but not (S) and hence

cannot be rationalized by a non-changing tastes utility U . However, it can be

veri�ed that the demand functions (20) correspond to naive choice utilizing

U (1) (c1; c2; c3) = c1 + 2
p
c2 + 2

p
c3 and U (2)(c2; c3j c1) = ln c2 + ln c3 (22)

and also sophisticated choice utilizing

U (1) (c1; c2; c3) = c1 + 2
p
2 (c2 + c3) and U (2)(c2; c3j c1) = ln c2 + ln c3: (23)

Each of the utilities in (22) and (23) satis�es Property 1 except for U (1) in (23)

which is quasiconcave but not strictly quasiconcave.13 Clearly the two U (1) func-

tions are not ordinally equivalent and thus from just knowing the demands (20)

it is impossible to tell whether they have been generated by naive or sophisticated

choice.
12In the application of sophisticated choice, one can express the non-changing tastes utility

(17) as a (U (1); U (2))-pair, where U (1) corresponds to (17) and U (2)(c2; c3) =
p
c2c3 is the period

two continuation of U which is ordinally equivalent to (19).
13For U (1) and U (2) in (23), if one were to consider naive choice, there would be an in�nite

number of optimal solutions for the optimization problem P1 if p2 = p3 and no interior solution

if p2 6= p3. However, there is a unique sophisticated choice solution for any p2 and p3 satisfying
(21).
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These examples raise two questions we address in the next section. First,

when will a (U (1); U (2))-pair exist that rationalizes a given set of dynamic demands

corresponding to sophisticated choice? Second, how can the generating utilities

be found? The same questions are addressed for naive choice in Section 5.

4 Rationalizing Sophisticated Choice

In this section, we address the integrability question for sophisticated choice �rst

assuming three goods and then more than three goods. In both settings, there is

only one change in tastes. The �nal subsection explores a potential strengthening

of our existence results.

4.1 Three Commodity Case

For the three commodity case, we �rst derive necessary and su¢ cient conditions

for the existence of the utilities (fU (1)g; U (2)) which rationalize a given set of
sophisticated demands and then describe a process for recovering the generating

utilities. Our method for recovering the set of period one utilities is based on the

solution to a partial di¤erential equation and is quite di¤erent from the one used by

Hurwicz and Uzawa (1971) to recover a non-changing tastes U . The application

of our existence result and recovery process are illustrated in the second subsection

with several examples. The third subsection considers a special case where the

period two and three conditional demands are linear in period two income.

4.1.1 Existence

In general, a set of dynamic demand functions

c1 (p1; p2; p3; y1) , c2 (p1; p2; p3; y1) and c3 (p1; p2; p3; y1) (24)

obtained via sophisticated choice will not satisfy (S) and (N), and a single U will

fail to exist. If the unconditional demands (24) satisfy (EC),14 then (p1; y1) can

be solved for as functions of (c1; p2; p3; y2) from the pair of equations

c1 = c1 (p1; p2; p3; y1) and y2 = y1 � p1c1 (p1; p2; p3; y1) : (25)

Substituting p1 (c1; p2; p3; y2) and y1 (c1; p2; p3; y2) into the period two and period

three unconditional demands, one obtains the conditional demand functions c2 =

14That is, they pass the tests in Lemma 1 or Corollary 5 in Appendix C.
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c2(p2; p3; y2j c1) and c3 = c3(p2; p3; y2j c1), respectively. (This process is illustrated
in more detail in Example 4 below.)

In addition to Property (EC), to ensure the existence of U (2), it is also necessary

to assume that c2(p2; p3; y2j c1) and c3(p2; p3; y2j c1) satisfy (S) and (N). However
if the conditional demands satisfy (P), (TD), (B) and (H), it follows from Katzner

(1970, Theorem 4.1-2 for the two commodity case) that Property (S) is always

implied.15 In order to ensure the existence of U (1), the unconditional demands

have to satisfy (EI).

Theorem 2 Assume a given set of demand functions ci (p1; p2; p3; y1) (i = 1; 2; 3)
which have the Properties (P), (TD), (H) and (B).16 Then there exists a (U (1); U (2))-

pair which generates these demands as a result of sophisticated choice, where U (1)

is twice continuously di¤erentiable and U (2) satis�es Property 1,17 if and only if

the demand functions also have Properties (EC) and (EI) and the corresponding

conditional demand functions c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) have Property
(N). In this case, U (1) satis�es

@U (1)

@c1
+
@c2
@c1

@U (1)

@c2
+
@c3
@c1

@U (1)

@c3
= 0; (26)

where c2 and c3 are functions of (c1; p2; p3; y1 � p1c1) and @c2
@c1
and @c3

@c1
can be trans-

formed into functions of (c1; c2; c3) using the inverse demand functions.

Remark 1 The fact that Property (EI) is essential in Theorem 2 may at �rst blush
seem at odds with the discussion of integrability in Samuelson (1950). Indeed in

essence referring to (EI), he states emphatically that "reversibility as such has

absolutely nothing to do with integrability" (Samuelson, 1950, p. 385). To see

this, notice that once Properties (S) and (N) are assumed, (EI) is automatically

15To see that Property (N) does not always hold for the two commodity case, assume that

c1 =
p1y1
p21 + p

2
2

and c2 =
p2y1
p21 + p

2
2

:

It can be veri�ed that although the corresponding Slutsky matrix is symmetric, it is also positive

semide�nite.
16In Theorem 1, it will be noted that (H) is not assumed. As shown by Jehle and Reny (2011,

Theorem 2.5) if Properties (P) and (TD) hold, then (B) and (S) imply (H). But for Theorem

2, since (S) may fail to hold it is necessary to assume (H).
17Since the U (1) utility is recovered using eqn. (26), it must be twice continuously di¤er-

entiable due to the Frobenius condition. It should be emphasized that when the sophisti-

cated demands satisfy Properties (P), (TD), (H) and (B), it is possible that they are gener-

ated by a non-di¤erentiable (U (1); U (2))-pair. A simple example is U (1) = min (c1; c2; c3) and

U (2) = min (c2; c3). Since for Theorem 1, the generating utility is recovered via an integration

process rather than solving a partial di¤erential equation, this issue never arises.
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satis�ed and hence it adds nothing to solving the integrability problem, which is

also the reason why Hurwicz and Uzawa (1971) do not include Property (EI) in

their result (Theorem 1).

Although (EC) and (EI) together cannot ensure the existence of a single ra-

tionalizing non-changing tastes utility U , they are necessary and su¢ cient for the

existence of a set
�
U (1)

	
associated with sophisticated choice. More speci�cally,

(EC) ensures the existence of the conditional demands and (EI) ensures that the

partial di¤erential equation (26) for U (1) based on these conditional demands is

solvable.

If the conditions in Theorem 2 are satis�ed, then it follows from its proof

(see Appendix D) that Theorem 1 can be employed to guarantee the existence

of a unique (up to an increasing transformation) U (2). Moreover, one can use

the Hurwicz and Uzawa (1971) recovery process to solve for U (2) based on the

conditional demands. The partial di¤erential equation (26) in Theorem 2 can be

solved by �nding the characteristic equations and deriving the two independent

�rst integrals. Then the general solution fU (1)g is given by any combination of
these two �rst integrals. This process is illustrated in several examples in the

next subsection.

As Example 4 below shows, a U (1) obtained as a solution to the partial di¤eren-

tial equation eqn. (26) may not be strictly increasing and quasiconcave. However

if the conditional demands c2(p2; p3; y2j c1) and c3 = c3(p2; p3; y2j c1) are indepen-
dent of c1 and at least one of the conditional demands is a normal good then it

follows from Corollary 1 below that at least one utility in fU (1)g will be strictly
increasing in a subspace of C1�C2�C3. The independence of c1 assumed in our
motivating Examples 1 and 2, is commonplace in the changing tastes literature.18

As will be seen from the corollary, this case corresponds to the assumption that

the period two utility U (2)(c2; c3j c1) is weakly separable in (c2; c3).19 Finally, the

conditional demands being independent of c1 can simplify somewhat the process

for recovering a (U (1); U (2))-pair.

Corollary 1 Suppose that the conditions in Theorem 2 hold and the conditional

demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) are independent of c1, then U (2)

18Indeed the popular additively separable quasihyperbolic discounting case exhibits this prop-

erty. See, for example, Laibson (1997) and Diamond and Koszegi (2003).
19It follows that c1 plays no role in the period two optimization and the simpler notation

U (2) (c2; c3) will be used for this case throughout the rest of the paper. A similar notational

convention will be employed in Subsection 4.2 for the general case of more than three commodi-

ties.
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is weakly separable in (c2; c3) and eqn. (26) becomes

@U (1)

@c1
� p1

@c2
@y2

@U (1)

@c2
� p1

@c3
@y2

@U (1)

@c3
= 0: (27)

Moreover among the set of U (1) functions that solve (27), there will exist at least

one member that is strictly increasing at least in some subspace of C1 � C2 � C3,

if and only if @c2
@y2

> 0 or @c3
@y2

> 0 or equivalently, c2 or c3 is a normal good with

respect to second period income.

A necessary and a su¢ cient condition for the existence of at least one member

in
�
U (1)

	
to be locally twice continuously di¤erentiable, strictly increasing and

quasiconcave is provided in Appendix F. Despite this condition being relatively

strong, it is satis�ed by most of the examples given in this paper. A conjecture

relating to at least one U (1) satisfying these same properties over the full choice

space is given in Subsection 4.3.

It should be emphasized that given a set of unconditional sophisticated de-

mands, Theorem 2 and Corollary 1 ensure the existence of a unique U (2) (up to an

increasing transform) and a set of period one utilities fU (1)g with in�nitely many
non-ordinally equivalent members. The latter set arises since there always exist

two independent �rst integrals for the partial di¤erential equations (26) and (27).

4.1.2 Recovery Process

In this subsection, we illustrate the use of the partial di¤erential equations in

Theorem 2 and Corollary 1 to derive the utilities
��
U (1)

	
; U (2)

�
that rationalize

a given set of sophisticated demands. Before doing so, consider the following

example in which a given set of demands fails to satisfy property (EI).

Example 3 Assume that20

c1 =
y1

p1 + p2 + p3
; c2 =

(p2 + p3) y1
2p2 (p1 + p2 + p3)

; c3 =
(p2 + p3) y1

2p3 (p1 + p2 + p3)
: (28)

It can be veri�ed that these demands satisfy Properties (P), (TD), (H) and (B)

but not Property (S), and thus a non-changing tastes U fails to exist. Also there

does not exist a U (1) which can rationalize the demands as sophisticated choice

since det J = 0, where the Jacobian matrix is given by

J =

26664
� y1
(p1+p2+p3)

2 � y1
(p1+p2+p3)

2 � y1
(p1+p2+p3)

2

� (p2+p3)y1
2p2(p1+p2+p3)

2 �(p1p3+(p2+p3)
2)y1

2p22(p1+p2+p3)
2

p1y1
2p2(p1+p2+p3)

2

� (p2+p3)y1
2p3(p1+p2+p3)

2
p1y1

2p3(p1+p2+p3)
2 �(p1p2+(p2+p3)

2)y1
2p23(p1+p2+p3)

2

37775 ; (29)

20This example is similar to Exercise 2.F.17 in Mas-Colell, Whinston and Green (1995).
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and Property (EI) is not satis�ed.21

Before considering an example illustrating the application of Theorem 2, we

�rst analyze the simpler case of motivating Example 2 where the conditional de-

mands are independent of c1 and Corollary 1 applies. We discuss this example

in some detail in order to illustrate the processes for (i) deriving the conditional

demands from the given unconditional demands and (ii) solving the partial di¤er-

ential eqn. (27) for the set fU (1)g.

Example 4 Assume that the unconditional demands are given by eqn. (20) in
Example 2. The demands satisfy Properties (P), (TD), (B) and (H). To verify

that Property (EC) holds, �rst note

c1 =
y1
p1
� p1
p2
� p1
p3

and y2 = y1 � p1c1 =
p21
p2
+
p21
p3
: (30)

Since

det
@ (c1; y2)

@ (p1; y1)
6= 0 8(p1; y1) 2 R++ � R+; (31)

the unconditional demands satisfy (EC). Using (30) and solving for (p1; y1) as

functions of (c1; y2), yields

p1 =

s
y2

1
p2
+ 1

p3

and y1 = c1

s
y2

1
p2
+ 1

p3

+ y2: (32)

Substituting the above two expressions into the unconditional demands for c2 and

c3 in (20), one obtains the conditional demand functions

c2 (p2; p3; y2j c1) =
y2
2p2

and c3 (p2; p3; y2j c1) =
y2
2p3

; (33)

which are independent of c1 and increasing in y2. Moreover, it can be veri�ed that

the conditional demands (33) satisfy Property (N) and hence applying Corollary

1, U (2) exists and is independent of c1. Following the Hurwicz and Uzawa (1971)

recovery process yields

U (2) (c2; c3) = ln c2 + ln c3; (34)

21Interestingly, although the demands (28) do not correspond to sophisticated choice, following

the analysis in Section 5 below they can be rationalized as naive choice by the changing tastes

(U (1); U (2))-pair

U (1) (c1; c2; c3) = min (c1; c2; c3) and U (2) (c2; c3) = ln c2 + ln c3:
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which satis�es Property 1. To establish the existence of a period one utility U (1),

it can be veri�ed that

det
@ (c1; c2; c3)

@ (p1; p2; p3)
6= 0 8(p1; p2; p3) 2 R3++ (35)

and hence Property (EI) is satis�ed. Given that the requisite demand properties

hold, Corollary 1 applies and the partial di¤erential equation (27) can be used to

solve for U (1). First based on eqn. (33),

�p1
@c2
@y2

= � p1
2p2

and � p1
@c3
@y2

= � p1
2p3

: (36)

Solving for the inverse demands from (20), one obtains

p1
y1
=

1

c1 �
p
2 (c2 + c3)

; (37)

p2
y1
=

p
c2 + c3

p
2c2

�
c1 �

p
2 (c2 + c3)

� and
p3
y1
=

p
c2 + c3

p
2c3

�
c1 �

p
2 (c2 + c3)

� : (38)
Substituting the above inverse demand functions into eqn. (36) yields

� p1
2p2

= �
p
2c2

2
p
c2 + c3

and � p1
2p3

= �
p
2c3

2
p
c2 + c3

: (39)

Thus, eqn. (27) can be rewritten as

2
p
c2 + c3

@U (1)

@c1
�
p
2c2

@U (1)

@c2
�
p
2c3

@U (1)

@c3
= 0: (40)

The two characteristic equations are given by

dc1
2
p
c2 + c3

+
dc2p
2c2

= 0 and
dc2p
2c2

� dc3p
2c3

= 0; (41)

and the two independent �rst integrals are

 1 (c1; c2; c3) = c1 + 2
p
2 (c2 + c3) and  2 (c1; c2; c3) =

c2
c3
: (42)

It follows that

U (1) (c1; c2; c3) = f

�
c1 + 2

p
2 (c2 + c3);

c2
c3

�
: (43)

Since f is an arbitrary function, in general the U (1) functions associated with

di¤erent f functions di¤er by more than an increasing transformation. Therefore,

eqn. (43) de�nes a set of U (1) function. One special form of the function f(x; y) =
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x corresponds to the utility (23) referenced in Example 2. Another form of the

period one utility corresponding to f(x; y) = x+ ln y is given by

U (1) (c1; c2; c3) = c1 + 2
p
2 (c2 + c3) + ln

c2
c3
: (44)

This utility is strictly increasing and quasiconcave for all (c1; c2; c3) 2 (0;1) �
(0; 1)� (2;1).22

In the above example, multiple U (1)�s are recovered based on Corollary 1 al-

though as noted in the discussion following Theorem 2, not all of the utilities

need be strictly increasing and quasiconcave everywhere. Since the conditions of

Corollary 1 are satis�ed, at least one member of the set of possible U (1) functions

(de�ned by eqn. (43)) will be strictly increasing over some subset of the choice

space. In the example, the U (1) corresponding to f(x; y) = x is actually strictly

increasing and quasiconcave in the whole space. But another member (44) is

strictly increasing and quasiconcave when (c1; c2; c3) 2 (0;1)� (0; 1)� (2;1) and
decreasing in c3 when (c1; c2; c3) 2 (0;1)� (2;1)� (0; 1). As suggested in Sec-

tion 1, this multiplicity of U (1) functions arises because the sophisticated solution

does not result in a complete set of optimal demand functions corresponding to

the period one optimization problem P1.

The next example illustrates the application of Theorem 2, where the condi-

tional demands depend on c1 and Corollary 1 does not apply.

Example 5 Assume that

c1 =
y1

p1 � p2 � p3
� (p1 � p2 � p3)

�
1

p2
+
1

p3

�
; (45)

c2 = (p1 � p2 � p3)

�
p1 + p2 � p3

2p22
+
p1 + p2 � p3
2p2p3

�
� y1
p1 � p2 � p3

(46)

and

c3 = (p1 � p2 � p3)

�
p1 + p3 � p2

2p23
+
p1 + p3 � p2
2p2p3

�
� y1
p1 � p2 � p3

; (47)

where the following are assumed to ensure that Property (P) holds

p1 > p2 + p3; (48)

22If one assumes f(x; y) = y, then following sophisticated choice,

U (1) =
c2
c3
=
y2= (2p2)

y2= (2p3)
=
p3
p2

is a constant and hence the utility value is the same for all c1 < y1=p1. Therefore, the given c1
demand function can be viewed as an optimal solution.
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y1 � (p1 � p2 � p3)
2

�
1

p2
+
1

p3

�
(49)

and

y1 �
1

2
(p1 � p2 � p3)

2

�
1

p2
+
1

p3
+

p1
p2p3

�
: (50)

The demands satisfy Properties (P), (TD), (B) and (H) but not (S) and (N).

Therefore, there is no U to rationalize these demands. It can be shown that

the requisite demand properties for Theorem 2 apply and the partial di¤erential

equation (26) can be used to solve for U (1). Given the resulting two independent

�rst integrals, it follows that

U (1) (c1; c2; c3) = f

�
c1 + 2

p
2 (c2 + c3 + 2c1);

c2 + c1
c3 + c1

�
: (51)

If one assumes f (x; y) = x, then

U (1) (c1; c2; c3) = c1 + 2
p
2 (c2 + c3 + 2c1); (52)

which satis�es Property 1 except that it is quasiconcave instead of strictly qua-

siconcave. (Supporting computations for this example are provided in Appendix

H.)

If a given set of demands satisfy the conditions in Theorem 1, does this imply

that the conditions in Theorem 2 hold as well? The following result establishes

that this is indeed the case if the non-changing tastes utility U recovered based

on the Hurwicz and Uzawa (1971) process is twice continuously di¤erentiable.23

However without the partial di¤erential equation in Theorem 2, it is not clear how

one would recover the changing tastes set of utilities.

Corollary 2 If a given set of demands satisfy the conditions in Theorem 1, then

there exists a non-changing tastes U satisfying Property 1 which rationalizes the

demands. If U is twice continuously di¤erentiable, then the given demands also

satisfy the conditions in Theorem 2 and there exists a (U (1); U (2))-pair which ra-

tionalizes the demands as sophisticated choice, where U (1) can be expressed as

U (1) (c1; c2; c3) = f (g (c1; c2; c3) ; U (c1; c2; c3)) ; (53)

U (c1; c2; c3) and g (c1; c2; c3) are the independent �rst integrals of the characteristic

equations for the partial di¤erential equation (26) and U (2) is the continuation of

U . Moreover, there exists at least one U (1) in the set fU (1)g de�ned by (53) which
satis�es Property 1.

23The reason that U is required to be twice continuously di¤erentiable is to ensure that

Property (EI) holds (refer to the proof of Corollary 2 in Appendix I).
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Following Corollary 2, Theorem 2 can be viewed as a generalization of Theorem

1 since when Properties (S) and (N) are satis�ed, one can also recover the non-

changing tastes U using the partial di¤erential equation in Theorem 2 (assuming

U is twice continuously di¤erentiable). In fact, one of the �rst integrals is always

the non-changing tastes U (c1; c2; c3) which is a member of fU (1)g.
The application of Corollary 2 is illustrated by the following example, where

the conditional demands will be seen to exhibit c1 dependence and one member

of fU (1)g will be recognized to be the popular habit formation utility (see, for
example, Constantinides 1990).

Example 6 Assume that

c1 =
y1

p1 + � (p2 + p3) + p2

�
p1
p2
+ �

�
1 + p3

p2

�� 1
1+�
+ p3

�
p1
p3
+ �

�
1 + p2

p3

�� 1
1+�

;

(54)

c2 =

�
�+

�
p1
p2
+ �

�
1 + p3

p2

�� 1
1+�

�
y1

p1 + � (p2 + p3) + p2

�
p1
p2
+ �

�
1 + p3

p2

�� 1
1+�
+ p3

�
p1
p3
+ �

�
1 + p2

p3

�� 1
1+�

(55)

and

c3 =

�
�+

�
p1
p3
+ �

�
1 + p2

p3

�� 1
1+�

�
y1

p1 + � (p2 + p3) + p2

�
p1
p2
+ �

�
1 + p3

p2

�� 1
1+�
+ p3

�
p1
p3
+ �

�
1 + p2

p3

�� 1
1+�

;

(56)

where � > �1 and 0 < � < 1. These demands satisfy Properties (P), (TD), (B),

(S) and (N) and using Theorem 1 one can recover the non-changing tastes utility

U (c1; c2; c3) = �
c��1
�
� (c2 � �c1)

��

�
� (c3 � �c1)

��

�
; (57)

which satis�es Property 1 and is twice continuously di¤erentiable. It can be veri-

�ed that the requisite demand properties for Theorem 2 hold. It follows that U (2)

is the period two continuation of (57)

U (2) (c2; c3j c1) = �
(c2 � �c1)

��

�
� (c3 � �c1)

��

�
(58)

and one can use the partial di¤erential equation (26) to solve for U (1), yielding

U (1) (c1; c2; c3) = f

 
�c

��
1

�
� (c2 � �c1)

��

�
� (c3 � �c1)

��

�
;
c2 � �c1
c3 � �c1

!
: (59)

(Supporting computations for this example are provided in Appendix J.)
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4.1.3 Conditional Demands A¢ ne in Income

Based on Examples 4 - 6, it would seem that when the conditional demands are

a¢ ne in y2, the U (1) obtained from solving the partial di¤erential equation in

Theorem 2 always has c2�a(c1)
c3�b(c1) as one of its independent �rst integrals, where

a (c1) and b (c1) are arbitrary functions which can depend on c1. We next verify

that this is the case.

Corollary 3 Assume that the conditions in Theorem 2 hold and the conditional

demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) satisfy

c2 (p2; p3; y2j c1)� a (c1) = k2 (p2; p3) y2 (60)

and

c3 (p2; p3; y2j c1)� b (c1) = k3 (p2; p3) y2; (61)

where a (c1) and b (c1) are arbitrary functions of c1 and k2 (p2; p3) and k3 (p2; p3)

are arbitrary functions of (p2; p3).24 Then there exists a (U (1); U (2))-pair which

generates these demands as a result of sophisticated choice and U (1) can be ex-

pressed as

U (1) (c1; c2; c3) = f

�
g (c1; c2; c3) ;

c2 � a (c1)

c3 � b (c1)

�
; (62)

where g (c1; c2; c3) and (c2 � a (c1))=(c3 � b (c1)) are the two independent �rst in-

tegrals of the characteristic equations for the partial di¤erential equation (26).

We next show that the assumption that conditional demands are a¢ ne in y2
also plays a critical role in extending our integrability results to the case of de-

mands associated with e¤ectively consistent preferences (see De�nition 3). Selden

and Wei (2015) provide necessary and su¢ cient conditions in terms of the forms

of U (1) and U (2) such that demands exhibit the myopic separable and quasilinear

cases of e¤ective consistency. However, they provided no means for being able to

recover the speci�c utility functions generating a given set of e¤ectively consistent

demands. If sophisticated demands take the myopic separable form of e¤ective

consistency, then the unconditional period one demand function c1(p1; p2; p3; y1)

must be independent of p2 and p3 and the full set of unconditional sophisticated

demands must be rationalizable by a non-changing tastes utility U (Selden and

Wei, 2015, Proposition 4). However the assumption that these demands also sat-

isfy the properties in Corollary 1 is not su¢ cient to ensure that Property (S) holds

and that the Hurwicz and Uzawa (1971) recovery process can employed to obtain

24When the functions a (c1) and b (c1) are independent of c1, Corollary 3 can be viewed as a

special case of Corollary 1.

21



U . But as we next show, if one additionally assumes that the conditional demand

functions are a¢ ne in y2, then the unconditional demands can be rationalized by

both a non-changing tastes U and a changing tastes (U (1); U (2))-pair taking the

required forms given in Selden and Wei (2015, Corollary 1). (The generalized

quasilinear case is considered in Appendix M.)

Corollary 4 Assume that the conditions in Corollary 1 are satis�ed and further
assume that the unconditional demand function c1 (p1; p2; p3; y1) is independent

of p2 and p3 and the conditional demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1)
satisfy

c2 (p2; p3; y2j c1) = k2 (p2; p3) y2 and c3 (p2; p3; y2j c1) = k3 (p2; p3) y2; (63)

where k2 (p2; p3) and k3 (p2; p3) are arbitrary functions of (p2; p3), and have Prop-

erty (N). Then preferences are e¤ectively consistent in the sense of De�nition 3

and sophisticated choice can be rationalized by a non-changing tastes U (c1; c2; c3)

which takes the form

U (c1; c2; c3) = h (g (c1) c2; g (c1) c3) : (64)

Moreover, there exists a (U (1); U (2))-pair which generates these demands as a result

of sophisticated choice, where U (1) (c1; c2; c3) is given by

U (1) (c1; c2; c3) = f (g (c1) c2; g (c1) c3) (65)

and U (2) (c2; c3) is homothetic and satis�es Property 1.

In Corollary 4, g (c1) c2 and g (c1) c3 are the two independent �rst integrals

corresponding to the partial di¤erential equation (27), where g (c1) is uniquely de-

termined (up to an arbitrary constant of integration) by the unconditional demand

function for c1 (see the derivation of g(c1) for Example 1 below). The h function

in U is uniquely determined by the c2 and c3 conditional demand functions and the

f function in U (1) is arbitrary, implying that one member of U (1) where f = h (up

to a monotone transformation) corresponds to U .25 The conditions in Corollary

4 are shown in its proof to imply that Property (S) holds. If the unconditional

25At �rst glance, the U (1) in Corollary 4 does not seem to be a special case of eqn. (62) in

Corollary 3. However noticing that c2=c3 = g (c1) c2=(g (c1) c3), c2=c3 is also a �rst integral, it

follows that eqn. (65) can alternatively be expressed as

U (1) (c1; c2; c3) = f

�
h (g (c1) c2; g (c1) c3) ;

c2
c3

�
;

which is more directly consistent with (62) in Corollary 3.
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demands also satisfy Property (N), then U satis�es Property 1, implying that this

property is satis�ed by at least one member of
�
U (1)

	
.

Revisiting Example 1, one will note that the period one unconditional demand

function (15) is independent of p2 and p3. Moreover, the full set of unconditional

demands (15) - (16) satisfy each of the conditions in Corollary 4 � indeed the

corresponding conditional demands are given by ci = y2= (2pi) (i = 2; 3) ensuring

that condition (63) is satis�ed. Applying Corollary 4 and using eqn. (15), one

obtains

y1 = 3p1c1 + 2p1
p
c1: (66)

Substituting this equation into the following ordinary di¤erential equation derived

in the proof of Corollary 4

p1c1 + p1
g (c1)

g0 (c1)
= y1; (67)

and solving for g (c1) yields

g (c1) = (
p
c1 + 1) expK; (68)

where K is an arbitrary constant of integration. Without loss of generality,

assuming K = 0, one obtains

U (1) (c1; c2; c3) = f ((
p
c1 + 1) c2; (

p
c1 + 1) c3) : (69)

Given this result we can obtain the speci�c utilities in Example 1. Letting

f (x; y) =
p
xy, U (1) converges to the non-changing tastes U given by eqn. (17),

which satis�es Property 1 over the full choice space. Alternatively assuming

f (x; y) = x
1
2 + y

1
4 , we obtain the speci�c changing tastes form (18).

4.2 More Than Three Commodity Case

In this subsection, we return to the more general setting of Section 2, whereM > 3.

We begin by demonstrating that for this case it is possible to extend Corollary 1

and guarantee the existence of a set of period one utilities fU (1)g.

Theorem 3 Assume (i) a given set of unconditional demands ci (p1; :::; pM ; y1)
(i = 1; :::;M) which have the Properties (P), (TD), (H), (B) and (EC) and (ii)

the conditional demands ci(pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) are in-

dependent of (c1; :::; cK). Then there exists a (U (1); U (2))-pair, where U (1) is twice

continuously di¤erentiable and U (2) satis�es Property 1 and is weakly separable in
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(cK+1; :::; cM), such that the given demands ci (p1; :::; pM ; y1) (i = 1; :::;M) corre-

spond to sophisticated choice if and only if they satisfy Property (EI), the condi-

tional demand functions ci(pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) have the

Properties (S) and (N) and the following condition is satis�ed

@pj
@ci

� pi
@pj
@y2

=
@pi
@cj

� pj
@pi
@y2

(i; j = 1; :::; K) ; (70)

where pi is a function of (c1; :::; cK ; pK+1; :::; pM ; y2).26 In this case U (1) (c1; :::; cK)

satis�es the following system of equations

@U (1)

@ci
� pi

MX
j=K+1

@cj
@y2

@U (1)

@cj
= 0 (i = 1; :::; K) : (71)

Furthermore, pi
@cj
@y2
(i = 1; :::; K; j = K + 1; :::;M) are functions of (p1; :::; pM) and

can be transformed into functions of (c1; :::; cM) using the inverse demand func-

tions.

(The case with more than one change in tastes is discussed in Appendix O.)

The key di¤erence between Theorem 3 and Corollary 1 is that once Properties

(P), (TD), (H), (B), (EI) and (EC) are satis�ed, the partial di¤erential equation

(27) for U (1) always has a solution while the group of partial di¤erential equations

(71) may not have a solution. The additional condition (70) in Theorem 3 ensures

that a solution exists.27

Remark 2 In attempting to also extend Theorem 2 to the more general set-

ting where one does not assume that the conditional demands are independent

of (c1; :::; cK), the single partial di¤erential eqn. (26) becomes the set of equations

@U (1)

@ci
+

MX
j=K+1

@cj
@ci

@U (1)

@cj
= 0 (i = 1; 2; :::; K) : (72)

26One will note a similarity between condition (70) and the Antonelli condition that 8i; j 2
f1; :::;M � 1g

aji =
@pj
@ci

� pi
@pj
@cM

=
@pi
@cj

� pj
@pi
@cM

= aij

assuming pM = 1 (see Katzner 1970, p. 45). If inverse demands exist and the corresponding

Antonelli matrix is symmetric and negative semide�nite, it follows from Katzner (1970, Theorem

3.2-13) that Properties (S) and (N) hold. If Properties (P), (TD) and (B) are also satis�ed,

then there exists a twice continuously di¤erentiable utility which rationalizes the demands.
27In order for the partial di¤erential equations (71) in Theorem 3 to have a solution, one can

think of (70) as ensuring that the equations in (71) are compatible. To see this point, consider

a simple set of partial di¤erential equations where there is no solution. If one equation is given

by @U=@c1 = f (c1; c2; c3; c4) and another equation is given by @U=@c2 = g (c1; c2; c3; c4), then

since @2U=@c1@c2 = @2U=@c2@c1, we must have @f=@c2 = @g=@c1. If this does not hold, the set

of partial di¤erential equations do not have a solution.
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Although it is possible to write out the Frobenius conditions that ensure the exis-

tence of a solution for the set of partial di¤erential equations (72), the results are

cumbersome and do not seem to o¤er much economic insight.

We next illustrate an application of Theorem 3.

Example 7 Assume that c1 and c2 are consumption goods in period one and c3
and c4 are goods in period two. The unconditional demands are given by

c1 =
y1
p1
� p1
p2
� p1
p3
� p1
p4
; c2 =

p21
p22
; c3 =

p21
p3
+

p21
p4

2p3
and c4 =

p21
p3
+

p21
p4

2p4
; (73)

where the following is assumed to ensure that Property (P) holds

y1 �
p21
p2
+
p21
p3
+
p21
p4
: (74)

It is straightforward to show that these demands satisfy Properties (P), (TD),

(H) and (B) but violate property (S). Following the same process as discussed in

Subsection 4.1.2, one can show that Property (EC) is satis�ed, derive the condi-

tional demands c3 (p3; p4; y2j c1; c2) and c4 (p3; p4; y2j c1; c2) and verify that they
are independent of (c1; c2) and satisfy Property (N). Then Theorem 1 holds for the

conditional demands and one can recover the following period two utility

U (2) (c3; c4) = ln c3 + ln c4: (75)

It can be easily veri�ed that (EI) holds. Combining the independent �rst integrals

yields

U (1) (c1; c2; c3; c4) = f

�
c1 + 2

p
c2 + 2

p
2 (c3 + c4);

c3
c4

�
: (76)

(Supporting computations for this example are provided in Appendix P.)

It su¢ ces to note that the e¤ective consistency results in Corollary 4 and

Appendix M extend naturally to the case whereM > 3 if one adds the assumption

that ci(p1; :::; pM ; y1) (i = 1; :::; K) satisfy Properties (S) and (N).

4.3 Quasiconcavity of U (1): A Global Result

In Appendix F, both a necessary condition and a su¢ cient condition are given such

that at least one member in
�
U (1)

	
is locally twice continuously di¤erentiable,

strictly increasing and quasiconcave. We next conjecture, but have not been

able to prove, that these properties of U (1) will hold globally only if the period one

unconditional demands (c1; :::cK) satisfy (S) and (ND). This assertion is motivated

by Example 8 below and consistent with each of the examples presented in this

paper.
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Conjecture 1 Assume the conditions in Theorem 3 hold implying that there ex-

ist a set of period one utilities
�
U (1)

	
and a U (2), which is weakly separable in

(cK+1; : : : ; cM), and which together rationalize a given set of demands ci (p1; :::; pM ; y1)

(i = 1; :::;M) as sophisticated choice. Then at least one member in
�
U (1)

	
is

twice continuously di¤erentiable, strictly increasing and quasiconcave over the full

choice space only if the unconditional demands ci (p1; :::; pM ; y1) (i = 1; :::; K) have

Properties (S) and (ND).28

In Conjecture 1, we assume that the conditions in Theorem 3 hold, implying

that the period two conditional demands ci(pK+1; :::; pM ; y2j c1; :::; cK)

(i = K + 1; :::;M) have the Properties (S) and (N). We also assume that the pe-

riod one unconditional demands ci (p1; :::; pM ; y1) (i = 1; :::; K) have Properties (S)

and (ND), where the latter implies Property (N). However, together these assump-

tions do not imply that the unconditional demands ci (p1; :::; pM ; y1) (i = 1; :::;M)

have Properties (S) and (N) and hence there may not exist a non-changing tastes

U .

Consistent with Conjecture 1, we next provide a simple three period, three com-

modity example in which the unconditional period one demand c1 (p1; p2; p3; y1)

fails to satisfy (ND). Although one can recover the generating utilities (fU (1)g; U (2)),
none of the U (1) functions is quasiconcave. We also show that when there exists a

U (1) that is twice continuously di¤erentiable, strictly increasing and quasiconcave

and a unique U (2) independent of c1, the unconditional demand c1 (p1; p2; p3; y1)

satis�es (ND).

Example 8 Assume three periods and one commodity in each period. The de-

mand functions are given by

c1 =

�
p1
p22
+ p1

p23

�
y1

2 +
�
p1
p2

�2
+
�
p1
p3

�2 and ci =
y1�

2 +
�
p1
p2

�2
+
�
p1
p3

�2�
pi

(i = 2; 3) : (77)

As the following demonstrates, period one consumption does not satisfy (ND)

@c1
@p1

+ c1
@c1
@y1

=
2p22p

2
3 (p

2
2 + p23) y1

(2p22p
2
3 + p21 (p

2
2 + p23))

2 > 0: (78)

28It should be noted that if the full set of unconditional demands ci (p1; :::; pM ; y1)

(i = 1; :::;M) can be rationalized by a non-changing tastes utility function, they can only satisfy

(S) and (N) but not (ND) since (B) and (H) imply that the Slutsky matrix is always singular

and hence cannot be negative de�nite (see Mas-Colell, Whinston and Green 1995, Proposition

2.F.3). But it is possible for the partial demand system ci (p1; :::; pM ; y1) (i = 1; :::;K) to satisfy

(S) and (ND) as shown in Example 8 below.
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Since the conditional demands ci = y2= (2pi) (i = 2; 3) are independent of c1, ap-

plying Corollary 1 and the associated recovery process one obtains

U (1) (c1; c2; c3) = f

�
c21 + c22 + c23;

c2
c3

�
and U (2) (c2; c3) = ln c2 + ln c3: (79)

Also consistent with Conjecture 1, it can be veri�ed that no member of the set

fU (1)g de�ned in (79) can be quasiconcave. Next assume a di¤erent set of uncon-
ditional demands

c1 =
y1

p1

�
1 + p1

�
1p
2p2
+ 1p

2p3

�2� and ci =
y1p1

�
1p
2p2
+ 1p

2p3

�2
2pi

�
1 + p1

�
1p
2p2
+ 1p

2p3

�2� (i = 2; 3) :

(80)

The conditions in Conjecture 1 are satis�ed including the requirement that the

period one unconditional demand function satis�es (ND)

@c1
@p1

+ c1
@c1
@y1

= �
4p2p3

�p
p2 +

p
p3
�2
y1

p1

�
p1
�p

p2 +
p
p3
�2
+ 2p2p3

�2 < 0: (81)

Since the conditional demands ci = y2= (2pi) (i = 2; 3) are independent of c1, ap-

plying Corollary 1 one obtains

U (1) (c1; c2; c3) = f

�
p
c1 +

p
c2 +

p
c3;

c2
c3

�
and U (2) (c2; c3) = ln c2 + ln c3:

(82)

If f (x; y) = x,

U (1) (c1; c2; c3) =
p
c1 +

p
c2 +

p
c3: (83)

Then consistent with Conjecture 1, (83) is strictly increasing and quasiconcave

over the full choice space.

One may wonder whether there is any connection between the assumption that

ci (p1; :::; pM ; y1) (i = 1; :::; K) satisfy Properties (S) and (ND) and the satisfaction

of Properties (P) through (EI) listed in Section 2. We next show that surpris-

ingly, if ci (p1; :::; pM ; y1) (i = 1; :::; K) satisfy Properties (S) and (ND), then the

conditions in Lemma 1 hold implying that (EC) is satis�ed locally. First, denote

the Slutsky matrix for the period one unconditional demands ci (p1; :::; pM ; y1)

(i = 1; :::; K) as (�ij)K�K .

Theorem 4 If the unconditional demands ci (p1; :::; pM ; y1) (i = 1; :::; K) satisfy
Properties (S) and (ND), then at each point (p01; :::; p

0
K ; y

0
1) 2 RK++ � R+

det Jc = det
@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)

����
(p1;:::;pK ;y1)=(p01;:::;p0K ;y01)

6= 0 (84)

and Property (EC) holds in a neighborhood of (p01; :::; p
0
K ; y

0
1).
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Therefore if Conjecture 1 can be veri�ed, then combining it with our other

results, ci (p1; :::; pM ; y1) (i = 1; :::; K) satisfying Properties (S) and (ND) is nec-

essary not only for the existence of the conditional demands but also for the

possibility of a strictly increasing and quasiconcave member in the set
�
U (1)

	
.

5 Rationalizing Naive Choice

This section addresses the question of integrability for naive choice in a three com-

modity setting. Assuming that the given demands c1 (p1; p2; p3; y1), c2 (p1; p2; p3; y1)

and c3 (p1; p2; p3; y1) correspond to naive choice, we �rst provide a su¢ cient con-

dition for the existence of a rationalizing (U (1); U (2))-pair. As in the case of

sophisticated demands, it is possible for naive demands to correspond to a set

of period one utilities fU (1)g, where each member of the set di¤ers from other

members by more than an increasing transformation. Paralleling the argument

in Subsections 4.1.1 and 4.1.2, one can derive the period two and three condi-

tional demand functions c2(p2; p3; y2) and c3(p2; p3; y2) and use the Hurwicz and

Uzawa (1971) recovery process to obtain a unique U (2)(c2; c3) (up to an increasing

transformation).

To recover a U (1) function from naive demands, one confronts the immediate

problem of having information only about the c1 demand function (and the amount

y2 = y1�p1c1 available for c2 and c3). In the case where one has resolute demand
functions corresponding to c1, c2 and c3, a unique non-changing tastes utility can

be recovered using Theorem 1 and the Hurwicz and Uzawa (1971) process. But

for the case of changing tastes, in general one only has the c1 demand function

where naive and resolute choice agree. This problem is closely related to the ques-

tion of integrability for incomplete demand systems which is often encountered in

empirical static demand applications (see, for example, LaFrance and Hanemann

1989). Consider the three commodity version of the P1 optimization problem

(4). Assume that the demand function c1 (p1; p2; p3; y1) is known but the resolute

ci (p1; p2; p3; y1) (i = 2; 3) are not known. We next give a su¢ cient condition for

the existence of a (U (1); U (2))-pair that rationalizes naive demands. This theorem

is a direct consequence of Theorem 2 in Epstein (1982) and the results in his Table

1 adapted to our setting.29

29LaFrance and Hanemann (1989) introduce the notion of weak integrability of incomplete

demand systems. They relax the condition in Epstein (1982) that @ci=@pj = 0 (i = 1; :::;K;

j = K + 1; :::;M). It is interesting to observe that this condition is equivalent to preferences

being myopic separable as discussed in Kannai, Selden and Wei (2014). As will be seen below,

myopic separability of period one demands not only guarantees the existence of U (1), but also
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Theorem 5 Assume a given set of demand functions ci (p1; p2; p3; y1) (i = 1; 2; 3)
which have the Properties (P), (TD), (H), (B) and (EC) and the corresponding

conditional demand functions c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) have Property
(N). Furthermore suppose that c1 (p1; p2; p3; y1) satis�es Property (ND) and is

linear in y1 or independent of (p2; p3). Then there exists a (U (1); U (2))-pair which

generates these demands as the result of naive choice, where U (1) is continuous,

non-decreasing and quasiconcave and U (2) satis�es Property 1.30

The application of Theorem 5 is quite di¤erent from that of the integrability

results derived for sophisticated choice in the prior section. Rather than solving a

partial di¤erential equation such as (26) in Theorem 2, the recovery method uses

the assumption in Theorem 5 that c1 (p1; p2; p3; y1) is linear in y1 or independent of

(p2; p3) which implies the existence of an expenditure function which can then be

used to recover U (1) following the Hurwicz and Uzawa process. This is illustrated

in Example 9 in Appendix R.

For a given c1 demand function, each speci�c U (1) derived from the expenditure

function using Table 1 in Epstein (1982) may not represent the consumer�s actual

period one preferences generating her resolute choice demands since the full set of

possible U (1) functions is not recovered. Next we discuss two special cases, where

it is possible to characterize the full set of utilities (fU (1)g; U (2)) that rationalize
naive choice. In these cases, the consumer�s period one utility function that would

rationalize resolute choice will be in the fU (1)g set. It should be emphasized that
these two special cases are the only instances of which we are aware where the full

set of U (1) functions can be recovered.

Theorem 6 Assume a given set of demand functions ci (p1; p2; p3; y1) (i = 1; 2; 3)
which have the Properties (P), (TD), (H) and (B). Then there exists a (U (1); U (2))-

pair which generates these demands as the result of naive choice where U (1) (c1; c2; c3)

the recovery of the full set of utilities fU (1)g rationalizing c1 as naive choice. A second case

where one can recover fU (1)g is when preferences are representable by the generalized quasilinear
utility function (87) in Theorem 7 below. These results can be viewed as a generalization of

conditions for the integrability of incomplete demand systems in Epstein (1982) and LaFrance

and Hanemann (1989).
30Epstein (1982) assumes that the incomplete demand system satisfy Properties (S) and (ND).

For the single demand function c1 (p1; p2; p3; y1), (S) is automatically satis�ed and (ND) becomes

�11 =
@c1
@p1

+ c1
@c1
@y1

< 0:

We assume c1 satis�es (ND) instead of (N) since as Epstein (1982, Example 1) argues, for an

incomplete demand system, (N) cannot ensure the existence of a quasiconcave U (1).
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takes the form

U (1) (c1; c2; c3) = f (g (c1) c2; g (c1) c3) ; (85)

where f is an arbitrary function and g (c1) is uniquely determined (up to a con-

stant) by c1 (p1; p2; p3; y1), at least one member of fU (1)g is continuous, non-
decreasing and quasiconcave and U (2) satis�es Property 1 if (i) the unconditional

demand functions ci (p1; p2; p3; y1) (i = 1; 2; 3) also have Property (EC), (ii) the

conditional demand functions c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) have Prop-
erty (N) and (iii) the unconditional demand function c1 (p1; p2; p3; y1) satisi�es

(ND) and is independent of p2 and p3.

It will be noted that in Corollary 4 we obtain exactly the same U (1) (c1; c2; c3)

for rationalizing sophisticated choice as is obtained in Theorem 6 for rationalizing

naive choice. However in the latter result, unlike the former, since conditional

demands are not assumed to be proportional to y2, the preferences rationalizing

naive choice may not be e¤ectively consistent. Hence there may not be a non-

changing tastes U (c1; c2; c3) which rationalizes naive choice. This is consistent

with the fact that in general Property (S) is not be satis�ed when the conditions

in Theorem 6 hold.

It follows from Theorem 6 that U (2) can be recovered from the conditional

demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) following the Hurwicz and Uzawa
(1971) recovery process. To recover U (1) (c1; c2; c3), since f is an arbitrary func-

tion, one only needs to determine g (c1). Given that the unconditional period one

demand in Theorem 6 is myopic separable, it follows from Selden and Wei (2015)

that c1 (p1; p2; p3; y1) is a solution to

p1c1 + p1
g (c1)

g0 (c1)
= y1: (86)

Therefore, one can use the same approach to recover g (c1) from the unconditional

demand function c1 (p1; p2; p3; y1) as shown in the proof of Corollary 4 and in the

discussion of Example 1 following Corollary 4. Similar observations apply as well

for Theorem 7 below.

Theorem 7 Assume a given set of demand functions ci (p1; p2; p3; y1) (i = 1; 2; 3)
which have the Properties (P), (TD), (H) and (B). Then there exists a (U (1); U (2))-

pair which generates these demands as the result of naive choice where U (1) (c1; c2; c3)

takes the form

U (1) (c1; c2; c3) = f (g (c1) + c3; c2) ; (87)

where f is an arbitrary function and g (c1) is uniquely determined (up to a con-

stant) by c1 (p1; p2; p3; y1), at least one member of fU (1)g is continuous, non-
decreasing and quasiconcave and U (2) satis�es Property 1 if (i) the unconditional
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demand functions ci (p1; p2; p3; y1) (i = 1; 2; 3) also have Property (EC), (ii) the

conditional demand functions c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) have Prop-
erty (N) and (iii) the unconditional demand function c1 (p1; p2; p3; y1) satisi�es

(ND) and is independent of p2 and y1.31

It can be veri�ed that the demand functions (15) - (16) in Example 1 satisfy

the conditions in Theorem 6. As a result, these demands can be rationalized as

naive choice by

U (1) (c1; c2; c3) = f ((
p
c1 + 1) c2; (

p
c1 + 1) c3) (88)

and

U (2) (c2; c3j c1) = ln c2 + ln c3: (89)

Given that the demands in this example are e¤ectively consistent, it is not sur-

prising that the rationalizing utilities (88) - (89) are the same as those obtained

for sophisticated choice (see the discussion at the end of Section 4.1.3).

Clearly the integrability results for the case of naive choice are much weaker

than for sophisticated choice. For the sophisticated case although one confronts

incomplete information, as evidenced by the fact that demands are rationalized

by a set of period one utilities fU (1)g rather than a single utility as in the classic
static demand case, the full set of rationalizing utilities can be recovered. In

contrast for the naive case, except for the special case of demands considered in

Theorems 6 and 7, even assuming very strong conditions such as in Theorem 5,

there is no known approach to recover the full set of U (1) functions.

(In Appendix R, we show that Theorems 5, 6 and 7 extend naturally to the case

of more than three commodities. Proofs for the more general cases of Theorems

6 and 7 are given in the Appendix.)

6 Conclusion

In this paper, we extend the classic integrability results of Hurwicz and Uzawa

(1971) to the case of changing tastes. Necessary and su¢ cient conditions are

given for the existence of a rationalizing (U (1); U (2))-pair assuming that the given

demands correspond to sophisticated choice and su¢ cient conditions are given as-

suming that the demands correspond to naive choice. A number of open questions

31If the c1 demand function does not depend on y1 and only depends on p1 and p2, then

U (1) (c1; c2; c3) = f (g (c1) + c2; c3) :
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remain. First although we can extend Corollary 1 to the case of more than three

commodities, is it possible to similarly extend Theorem 3? Second whereas a

classic revealed preference test (e.g., Varian 1982) based on period two demands

and prices can be employed to determine whether conditional demands are con-

sistent with maximizing U (2), can a revealed preference test be constructed for

U (1)?32 Third since the integrability results for naive choice are generally weak,

do stronger conditions exist in other related settings such as where instead of

choosing over (c1; c2; c3) vectors, the consumer chooses over current consumption

and one and two period zero coupon bonds (see, for example, Selden and Wei

2015)?33

Appendix

A Proof of Lemma 1

First prove su¢ ciency. Consider the following set of equations

ci = ci (p1; :::; pM ; y1) (i = 1; :::; K) and y2 = y1 �
KX
i=1

pici (p1; :::; pM ; y1) :

(A.1)

If

det
@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)

����
(p1;:::;pK ;y1)=(p01;:::;p0K ;y01)

6= 0; (A.2)

then there is an open neighborhood containing (p01; :::; p
0
K ; y

0
1) such that (p1; :::; pK ; y1)

can be solved for as functions of (c1; :::; cK ; pK+1; :::; pM ; y2) from the set of equa-

tions (A.1). Substituting

pi (c1; :::; cK ; pK+1; :::; pM ; y2) (i = 1; :::; K) and y1 (c1; :::; cK ; pK+1; :::; pM ; y2)

(A.3)

into the period two unconditional demands, one obtains the conditional demands

ci(pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M). Next prove necessity. Since

there is an open neighborhood containing (p01; :::; p
0
K ; y

0
1) such that

ci (p1; :::; pM ; y1) = ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) ; (A.4)

32Since in general U (1) need not be quasiconcave, it may be helpful to consider the non-

parametric tests discussed in Polisson, Quah and Renou (2015) where the rationalizing utility is

not required to be quasiconcave.
33As noted in Selden and Wei (2015, footnote 48), when considering naive and sophisticated

choice for consumption and bond purchases it is useful to assume a simple transaction cost

structure to ensure that the consumer avoids retrading.
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(p1; :::; pK ; y1) must be solved for as functions of (c1; :::; cK ; pK+1; :::; pM ; y2) from

the set of equations (A.1). Thus the inverse function theorem implies

det
@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)

����
(p1;:::;pK ;y1)=(p01;:::;p0K ;y01)

6= 0: (A.5)

B Proof of Lemma 2

This result directly follows from the inverse function theorem.

C Global Tests for Properties (EC) and (EI)

To derive global tests for Properties (EC) and (EI), �rst consider the following

global inverse function theorem.

Theorem 8 (Gordon 1972, Theorem A) A continuously di¤erentiable map f (x)

from RN to RN is a di¤eomorphism if and only if f is proper and the Jacobian

det (@fi=@xj) never vanishes.

As noted by Gordon (1972), a map is proper if and only if inverse images of

compact subsets are compact. Following Wagsta¤ (1975), since a set in RN is

compact if and only if it is bounded and closed, and since the pre-image of a

closed set under a continuous map is closed, the properness of any continuous

f : RN ! RN reduces to the requirement that

kxk ! 1) kf (x)k ! 1; (C.1)

i.e., if x goes to the boundary of RN , then kf (x)k ! 1. To apply this result in
a standard demand setting, the problem is that prices typically are not allowed to

be negative and hence cannot be de�ned on RN . To solve this problem, we follow
Wagsta¤ (1975) in using the following normalization

MX
i=1

pi = 1 (C.2)

for a system of M commodities. Then consider the continuously di¤erentiable

excess demand function z (p) in RM�1, where p is a price vector in the set

S =

(
p 2 RM�1

++ :

M�1X
i=1

pi < 1

)
: (C.3)
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Introduce the following homeomorphic map h : x ! p, where x 2 RM�1 and

p 2 S,

h (x) =

(
p+ x

(1+kxk)g( x
kxk)

(x 6= 0)

p (x = 0)
; (C.4)

given that

g (x) = inf

�
t 2 R++ : p+

1

t
x 2 S

�
: (C.5)

Since h is a homeomorphic map, z (p) is proper if and only if z � h (x) is proper.
Note that kxk ! 1 if and only if p ! @S, where @S is the boundary of the set

S. Therefore, Theorem 8 can be also restated as follows.

Theorem 9 A continuously di¤erentiable map z from S to RM�1 is a di¤eomor-

phism if and only if for any i 2 f1; :::;M � 1g

pi ! 0) kz (p)k ! 1 (C.6)

and the Jacobian det (@zi=@pj) never vanishes.

The condition (C.6) is often referred to as a desirability condition in equilibrium

demand analyses (see, for example, Balasko 2011, p. 28).

Building on the argument in Wagsta¤ (1975, p. 523), in a pure exchange

economy where demands and endowments are denoted respectively ci and ci

(i = 1; :::;M � 1), since endowments are �nite the excess demands zi = ci � ci

are not de�ned on RM�1 but on the set

H =
�
z 2 RM�1 : zi � �ci; i = 1; :::;M � 1

	
: (C.7)

To ensure that the map is surjective, the domain for z (p) should be modi�ed from

RM�1 to H. Since �ci is also a boundary point, z (p) is proper if and only if for
some i 2 f1; :::;M � 1g

pi ! 0) kz (p)k ! 1 or zi (p)! �ci (C.8)

for some i 2 f1; :::;M � 1g. Therefore, Theorem 9 can be modi�ed as follows.

Theorem 10 A continuously di¤erentiable map z from S to H is a di¤eomor-

phism if and only if for any i; j 2 f1; :::;M � 1g

pi ! 0) kz (p)k ! 1 or zi (p)! �ci (C.9)

and the Jacobian det (@zi=@pj) never vanishes.
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To transform this result based on excess demands to one based on unconditional

demands, notice that we have the following relation between the (unconditional)

demands and excess demands

ci (p1; :::; pM�1) = zi (p1; :::; pM�1) + ci (i = 1; :::;M � 1) : (C.10)

In a distribution economy such as is being assumed in the main body of this paper,

it is more typical to use y1 = 1 as the normalization rather than (C.2). But since

we want to apply the global inverse function results of Wagsta¤ (1975) to our

setting, we use his normalization (C.2), which will not a¤ect the necessary and

su¢ cient conditions for the existence of the global inverse function. However in

this case, y1 will be determined from

y1 =

M�1X
i=1

pici +

 
1�

M�1X
i=1

pi

!
cM : (C.11)

Then we have the following global test for Property (EI).

Corollary 5 For a given set of unconditional demands ci (p1; :::; pM�1; y1)

(i = 1; :::;M), where

y1 =
MX
i=1

pici; (C.12)

(p1; :::; pM�1; y1) 2 S�R+ can be expressed as continuously di¤erentiable functions
of (c1; :::; cM) based on the set of equations

ci (p1; :::; pM�1; y1) = ci (i = 1; :::;M � 1) (C.13)

and

y1 =

MX
i=1

pici (C.14)

if and only if for any i; j 2 f1; :::;M � 1g

pi ! 0) k(c1 (p) ; :::; cM�1 (p))k ! 1 or ci (p)! 0 (C.15)

and the Jacobian det (@ci=@pj) never vanishes.

Proof. Since

ci (p1; :::; pM�1; y1) = zi (p1; :::; pM�1; y1) + ci (i = 1; :::;M � 1) ; (C.16)

it follows fromTheorem 10 that (p1; :::; pM�1) 2 S can be expressed as continuously
di¤erentiable functions of (c1; :::; cM) based on the set of equations

ci (p1; :::; pM�1; y1) = ci (i = 1; :::;M � 1) ; (C.17)

35



where

y1 =
M�1X
i=1

pici +

 
1�

M�1X
i=1

pi

!
cM ; (C.18)

if and only if for any i; j 2 f1; :::;M � 1g

pi ! 0) k(c1 (p) ; :::; cM�1 (p))k ! 1 or ci (p)! 0 (C.19)

and the Jacobian det (@ci=@pj) never vanishes. Noticing that

y1 =

MX
i=1

pici =
M�1X
i=1

pici +

 
1�

M�1X
i=1

pi

!
cM ; (C.20)

if (p1; :::; pM�1) 2 S can be expressed as continuously di¤erentiable functions of

(c1; :::; cM), y1 can be also expressed as a continuously di¤erentiable function of

(c1; :::; cM), which completes the proof.

Paralleling (C.6) in Theorem 9, the condition

pi ! 0) k(c1 (p) ; :::; cM�1 (p))k ! 1 (C.21)

in (C.15) and (C.29) in Corollary 6 below will be recognized as an assumption on

the desirability of demand.

To apply Corollary 5 as a test, once the unconditional demands ci (p1; :::; pM�1; y1)

(i = 1; :::;M) are given, one needs to rewrite ci (p1; :::; pM�1; y1) (i = 1; :::;M � 1)
as

ci

 
p1; :::; pM�1;

M�1X
i=1

pici +

 
1�

M�1X
i=1

pi

!
cM

!
(C.22)

and then check whether the following conditions hold for any ci 2 R+: for any
i; j 2 f1; :::;M � 1g

pi ! 0) k(c1 (p) ; :::; cM�1 (p))k ! 1 or ci (p)! 0 (C.23)

and the Jacobian det (@ci=@pj) never vanishes.

To derive a necessary and su¢ cient condition for the existence of conditional

demands, consider the normalization

KX
i=1

pi = 1 (C.24)

resulting in (p1; :::; pK�1) being a price vector in the set

S 0 =

(
p 2 RK�1++ :

K�1X
i=1

pi < 1

)
: (C.25)

Then we have the following global test for Property (EC).
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Corollary 6 For a given set of unconditional demands ci (p1; :::; pM ; y1) (i = 1; :::;M),
where

y1 =
MX
i=1

pici; (C.26)

(p1; :::; pK�1; y1) 2 S 0�R+ can be expressed as continuously di¤erentiable functions
of (c1; :::; cK ; pK+1; :::; pM ; y2) based on the set of equations

ci (p1; :::; pM ; y1) = ci (i = 1; :::; K � 1) (C.27)

and

y1 =
KX
i=1

pici + y2 (C.28)

if and only if for any i; j 2 f1; :::; K � 1g

pi ! 0) k(c1 (p) ; :::; cK�1 (p))k ! 1 or ci (p)! 0 (C.29)

and the Jacobian det (@ci=@pj) never vanishes.

Proof. Since

ci (p1; :::; pM ; y1) = zi (p1; :::; pM ; y1) + ci (i = 1; :::; K � 1) ;

it follows from Theorem 10 that (p1; :::; pK�1) 2 S 0 can be expressed as contin-

uously di¤erentiable functions of (c1; :::; cK ; pK+1; :::; pM ; y2) based on the set of

equations

ci (p1; :::; pM ; y1) = ci (i = 1; :::; K � 1) ; (C.30)

where

y1 =

K�1X
i=1

pici +

 
1�

K�1X
i=1

pi

!
cK + y2; (C.31)

if and only if for any i; j 2 f1; :::; K � 1g

pi ! 0) k(c1 (p) ; :::; cK�1 (p))k ! 1 or ci (p)! 0 (C.32)

and the Jacobian det (@ci=@pj) never vanishes. Noticing that

y1 =
K�1X
i=1

pici +

 
1�

K�1X
i=1

pi

!
cK + y2; (C.33)

if (p1; :::; pK�1) 2 S 0 can be expressed as continuously di¤erentiable functions of

(c1; :::; cK ; pK+1; :::; pM ; y2), y1 can be also expressed as a continuously di¤eren-

tiable function of (c1; :::; cK ; pK+1; :::; pM ; y2), which completes the proof.
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D Proof of Theorem 2

First prove su¢ ciency. The sophisticated demand functions c1 (p1; p2; p3; y1),

c2 (p1; p2; p3; y1) and c3 (p1; p2; p3; y1) have the Properties (P), (TD), (H) and (B).

Then if (EC) holds, the conditional demand functions c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1)
exist and also have the Properties (P), (TD), (H) and (B). It follows from Katzner

(1970, Theorem 4.1-2) that (S) always holds for c2 and c3 and thus assuming (N) is

satis�ed, Theorem 2.6 in Jehle and Reny (2011) ensures the existence of a unique

U (2) satisfying Property 1. Given the conditional demands c2 (p2; p3; y2j c1) and
c3 (p2; p3; y2j c1), U (1) must satisfy the following partial di¤erential equation

@U (1)

@c1
+
@c2
@c1

@U (1)

@c2
+
@c3
@c1

@U (1)

@c3
= 0; (D.1)

which follows from dU(1)

dc1
= 0 by the chain rule. Since Property (EC) holds,

(p1; p2; p3) can be transformed into functions of (c1; c2; c3) through inverse de-

mands, implying that the coe¢ cients in the �rst order partial di¤erential equation

(D.1) can be expressed as functions of (c1; c2; c3). Therefore, U (1) exists, but is not

uniquely determined. Next prove necessity. Assume there exists a U (2) satisfying

Property 1. Maximizing U (2) (c2; c3j c1) subject to the budget constraint

p2c2 + p3c3 = y2 (D.2)

yields the conditional demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1). Therefore,
the conditional demands must exist, implying that Property (EC) holds. Since

the positive, continuously di¤erentiable conditional demands c2 (p2; p3; y2j c1) and
c3 (p2; p3; y2j c1) can be rationalized by a utility function U (2) satisfying Property
1, it follows from Jehle and Reny (2011) that the Properties (H) and (B) are

satis�ed. Since U (1) satis�es equation (D.1), if the inverse demands do not exist,

then the coe¢ cients of this partial di¤erential equation cannot be expressed as

functions of (c1; c2; c3) and thus there is no solution for U (1). Therefore, Property

(EI) must be satis�ed.

E Four Period, Four Commodity Case

Assume there are four periods and one commodity in each period. The consumer

faces the optimization problems

P1 : max
c1;c2;c3;c4

U (1)(c1; c2; c3; c4) S:T: y1 �
4X
j=1

pjcj; (E.1)
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P2 : max
c2;c3;c4

U (2)(c2; c3; c4j c1) S:T: y2 = y1 � p1c1 �
4X
j=2

pjcj (E.2)

and

P3 : max
c3;c4

U (3)(c3; c4j c1; c2) S:T: y3 = y1 � p1c1 � p2c2 �
4X
j=3

pjcj: (E.3)

We assume that Properties (P), (TD), (H) and (B) hold. First consider the

existence of U (3). Suppose that (EC) holds, i.e.,34

@ (c1; c2; y3)

@ (p1; p2; y1)
6= 0 8 (p1; p2; y1) 2 R2++ � R+; (E.4)

implying that the conditional demands c3 (p3; p4; y3j c1; c2) and c4 (p3; p4; y3j c1; c2)
exist. If one assumes c3 (p3; p4; y3j c1; c2) and c4 (p3; p4; y3j c1; c2) have Property
(N), then there exists a U (3). Next consider the existence of U (2). Since

y3 = y2 � p2c2; (E.5)

we have

ci (p3; p4; y3j c1; c2) = ci (p3; p4; y2 � p2c2j c1; c2) (i = 3; 4) : (E.6)

If we assume that (EC) holds, i.e.,

@ (c1; y2)

@ (p1; y1)
6= 0 8 (p1; y1) 2 R++ � R+; (E.7)

then we have the conditional demand function c2 (p2; p3; p4; y2j c1) and U (2) satis-
�es

@U (2)(c2; c3; c4j c1)
@c2

+
@c3
@c2

@U (2)(c2; c3; c4j c1)
@c3

+
@c4
@c2

@U (2)(c2; c3; c4j c1)
@c4

= 0:

(E.8)

Noticing that
@ci (p3; p4; y2 � p2c2j c1; c2)

@c2
(i = 3; 4) (E.9)

are functions of (p2; p3; p4; y2) (c1 is treated as a constant parameter), if we assume

that (EI) holds, i.e.,

@ (c2; c3; c4)

@ (p2; p3; p4)
6= 0 8 (p2; p3; p4) 2 R3++; (E.10)

34Although one can conduct the test for the global version in Appendix C, we use the local

version throughout this appendix and Appendix O for simplicity.
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where ci (i = 2; 3; 4) are conditional demand functions, then the coe¢ cients of the

partial di¤erential equation (E.8) can be expressed as functions of (c2; c3; c4) and

hence there exists a solution U (2). Finally, U (1) satis�es

@U (1)(c1; c2; c3; c4)

@c1
+

4X
i=2

@ci
@c1

@U (1)(c1; c2; c3; c4)

@ci
= 0; (E.11)

where c2 = c2 (p2; p3; p4; y1 � p1c1j c1) and

ci = ci (p3; p4; y1 � p1c1 � p2c2j c1; c2 (p2; p3; p4; y1 � p1c1j c1)) (i = 3; 4) :

(E.12)

If we assume that (EI) holds, i.e.,

@ (c1; c2; c3; c4)

@ (p1; p2; p3; p4)
6= 0 8 (p1; p2; p3; p4) 2 R4++; (E.13)

where ci (i = 1; 2; 3; 4) are unconditional demand functions, then the coe¢ cients of

the partial di¤erential equation (E.11) can be expressed as functions of (c1; c2; c3; c4)

and hence there exists a solution U (1). In summary, we have the following theo-

rem.

Theorem 11 Assume a given set of demand functions ci (p1; p2; p3; p4; y1)

(i = 1; 2; 3; 4) which have the Properties (P), (TD), (H) and (B). There exists

a (U (1); U (2); U (3))-triplet which generates these demands as a result of sophisti-

cated choice, where U (1) and U (2) are twice continuously di¤erentiable and U (3)

satis�es Property 1, if and only if

@ (c1; c2; y3)

@ (p1; p2; y1)
6= 0 8 (p1; p2; y1) 2 R2++ � R+; (E.14)

@ (c1; y2)

@ (p1; y1)
6= 0 8 (p1; y1) 2 R++ � R+

and
@ (c2; c3; c4)

@ (p2; p3; p4)
6= 0 8 (p2; p3; p4) 2 R3++; (E.15)

where

ci = ci (p2; p3; p4; y2j c1) (i = 2; 3; 4) ; (E.16)

and
@ (c1; c2; c3; c4)

@ (p1; p2; p3; p4)
6= 0 8 (p1; p2; p3; p4) 2 R4++; (E.17)

where

ci = ci (p1; p2; p3; p4; y1) (i = 1; 2; 3; 4) ; (E.18)
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and the corresponding conditional demand functions

c3(p3; p4; y3j c1; c2) and c4(p3; p4; y3j c1; c2) (E.19)

have Property (N). In this case, U (1) satis�es

@U (1)(c1; c2; c3; c4)

@c1
+

4X
i=2

@ci
@c1

@U (1)(c1; c2; c3; c4)

@ci
= 0 (E.20)

and U (2) satis�es

@U (2)(c2; c3; c4j c1)
@c2

+
@c3
@c2

@U (2)(c2; c3; c4j c1)
@c3

+
@c4
@c2

@U (2)(c2; c3; c4j c1)
@c4

= 0;

(E.21)

where in eqn. (E.20),

@ci (p1; p2; p3; p4; y1)

@c1
(i = 2; 3; 4) (E.22)

are functions of (p1; p2; p3; p4; y1) that can be transformed into functions of

(c1; c2; c3; c4) using the inverse demand functions and in eqn. (E.21)

@ci (p3; p4; y2 � p2c2j c1; c2)
@c2

(i = 3; 4) (E.23)

are functions of (p2; p3; p4; y2) (c1 is treated as a constant parameter) that can be

transformed into functions of (c2; c3; c4j c1) using the inverse demand functions.

F Strict Monotonicity and Quasiconcavity of U (1):

Local Results

To simplify the notation of the conditions for the existence of at least one U (1)

being strictly increasing and quasiconcave, denote for any function ' (c1; c2; c3)

L' =
@'

@c1
+
@c2
@c1

@'

@c2
+
@c3
@c1

@'

@c3
=
@'

@c1
� a

@'

@c2
� b

@'

@c3
; (F.1)

where c2 and c3 are functions of (c1; p2; p3; y1 � p1c1) and a = �@c2
@c1

and b = �@c3
@c1

are transformed into functions of (c1; c2; c3) using the inverse demand functions.

Then we have the following theorem.

Theorem 12 Assume that U (1) satis�es

LU (1) =
@U (1)

@c1
� a

@U (1)

@c2
� b

@U (1)

@c3
= 0: (F.2)
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Given a (c1; c2; c3) 2 R3+, a necessary condition such that at least one solution to
the partial di¤erential equation (F.2) is strictly increasing and quasiconcave in an

open neighborhood of (c1; c2; c3) is that the algebraic system

ax+ by > 0 and xLa+ yLb � 0 (F.3)

has a positive solution (x; y), where a; b; La; Lb are evaluated at (c1; c2; c3). A suf-

�cient condition such that at least one solution to the partial di¤erential equation

(F.2) is strictly increasing and quasiconcave in an open neighborhood of (c1; c2; c3)

is that the algebraic system

ax+ by > 0 and xLa+ yLb < 0 (F.4)

has a positive solution (x; y), where a; b; La; Lb are evaluated at (c1; c2; c3).

Proof. First consider the necessary condition. Since U (1) satis�es

LU (1) =
@U (1)

@c1
� a

@U (1)

@c2
� b

@U (1)

@c3
= 0; (F.5)

if there exists a U (1) that is strictly increasing in an open neighborhood of (c1; c2; c3),

then at (c1; c2; c3), we have

a
@U (1)

@c2
+ b

@U (1)

@c3
=
@U (1)

@c1
> 0; (F.6)

implying that there exists a positive solution (x; y) =
�
@U(1)

@c2
; @U

(1)

@c3

�
satisfying

ax+ by > 0: (F.7)

Consider the Bordered Hessian matrix of U (1)

B =

26664
0 U

(1)
2 U

(1)
3 U

(1)
1

U
(1)
2 U

(1)
22 U

(1)
23 U

(1)
12

U
(1)
3 U

(1)
23 U

(1)
33 U

(1)
13

U
(1)
1 U

(1)
12 U

(1)
13 U

(1)
11

37775 ; (F.8)

where

U
(1)
i =

@U (1)

@ci
and U

(1)
ij =

@2U (1)

@ci@cj
(i; j = 1; 2; 3) : (F.9)

U (1) being quasiconcave implies that the principal minors of the Bordered Hessian

matrix B must satisfy (i)

det

"
0 U

(1)
2

U
(1)
2 U

(1)
22

#
= �

�
U
(1)
2

�2
� 0; (F.10)

42



(ii)

det

264 0 U
(1)
2 U

(1)
3

U
(1)
2 U

(1)
22 U

(1)
23

U
(1)
3 U

(1)
23 U

(1)
33

375 = �U (1)22 �U (1)3 �2 + 2U (1)23 U (1)2 U
(1)
3 � U

(1)
33

�
U
(1)
2

�2
� 0

(F.11)

and (iii) detB � 0. It is clear that (i) is automatically satis�ed. We can always
assume that (ii) is satis�ed with the strict inequality. The reason is as follows.

One can assign arbitrary initial values for U (1) on the given c1 = c1 plane (so

U (1) is an arbitrary function of c2 and c3). Hence (ii) can be satis�ed with strict

inequality on this plane and by continuity it is satis�ed in a three dimensional

neighborhood of (c1; c2; c3). Therefore, we only need a condition corresponding

to (iii) detB � 0. Di¤erentiating

@U (1)

@c1
= a

@U (1)

@c2
+ b

@U (1)

@c3
(F.12)

with respect to c1, c2 and c3 respectively yields

U
(1)
11 = a1U

(1)
2 + aU

(1)
12 + b1U

(1)
3 + bU

(1)
13 ; (F.13)

U
(1)
12 = a2U

(1)
2 + aU

(1)
22 + b2U

(1)
3 + bU

(1)
23 (F.14)

and

U
(1)
13 = a3U

(1)
2 + aU

(1)
23 + b3U

(1)
3 + bU

(1)
33 ; (F.15)

where

ai =
@a

@ci
and bi =

@b

@ci
(i = 1; 2; 3) : (F.16)

For the matrix B, subtracting a times the second column and b times the third

column from the fourth column and using eqns. (F.12) - (F.15), we have

detB = det

26664
0 U

(1)
2 U

(1)
3 0

U
(1)
2 U

(1)
22 U

(1)
23 a2U

(1)
2 + b2U

(1)
3

U
(1)
3 U

(1)
23 U

(1)
33 a3U

(1)
2 + b3U

(1)
3

U
(1)
1 U

(1)
12 U

(1)
13 a1U

(1)
2 + b1U

(1)
3

37775 : (F.17)

For the above matrix, subtracting a times the second row and b times the third

row from the fourth row and using eqns. (F.12) - (F.15), one obtains

detB = det

26664
0 U

(1)
2 U

(1)
3 0

U
(1)
2 U

(1)
22 U

(1)
23 a2U

(1)
2 + b2U

(1)
3

U
(1)
3 U

(1)
23 U

(1)
33 a3U

(1)
2 + b3U

(1)
3

0 a2U
(1)
2 + b2U

(1)
3 a3U

(1)
2 + b3U

(1)
3 U

(1)
2 La+ U

(1)
3 Lb

37775 ;
(F.18)
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where

U
(1)
2 La+ U

(1)
3 Lb = U

(1)
2 (a1 � aa2 � ba3) + U

(1)
3 (b1 � ab2 � bb3) : (F.19)

Therefore,

detB =
�
U
(1)
2 La+ U

(1)
3 Lb

�
det

264 0 U
(1)
2 U

(1)
3

U
(1)
2 U

(1)
22 U

(1)
23

U
(1)
3 U

(1)
23 U

(1)
33

375+
�
U
(1)
2

�
a3U

(1)
2 + b3U

(1)
3

�
� U

(1)
3

�
a2U

(1)
2 + b2U

(1)
3

��2
: (F.20)

Since

det

264 0 U
(1)
2 U

(1)
3

U
(1)
2 U

(1)
22 U

(1)
23

U
(1)
3 U

(1)
23 U

(1)
33

375 > 0 (F.21)

is assumed, detB � 0 implies that U (1)2 La + U
(1)
3 Lb � 0 and hence there exists a

positive solution (x; y) =
�
U
(1)
2 ; U

(1)
3

�
satisfying

xLa+ yLb � 0: (F.22)

Combining this condition with condition (F.7) above, a necessary condition such

that at least one solution to the partial di¤erential equation (F.2) is strictly increas-

ing and quasiconcave in an open neighborhood of (c1; c2; c3) is that the algebraic

system

ax+ by > 0 and xLa+ yLb � 0 (F.23)

has a positive solution (x; y), where a; b; La; Lb are evaluated at (c1; c2; c3). Next

consider the su¢ cient condition. Given a (c1; c2; c3), if the algebraic system

ax+ by > 0 and xLa+ yLb < 0 (F.24)

has a positive solution (x; y), where a; b; La; Lb are evaluated at (c1; c2; c3), then

by continuity, one can de�ne � (c2; c3) in an open neighborhood of (c2; c3) such

that
@�

@c2
= x and

@�

@c3
= y (F.25)

and thus � (c2; c3) is strictly increasing in this open neighborhood. Moreover,

noticing that if (x; y) is a solution to the algebraic system (F.24), then for any

positiveN ,
�
x
N
; y
N

�
is also a solution and hence (x; y) can be chosen to be arbitrarily

small. Since in eqn. (F.20), the �rst term on the right hand side is homogeneous
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of degree three in
�
U
(1)
2 ; U

(1)
3

�
and the second term is homogeneous of degree four

in
�
U
(1)
2 ; U

(1)
3

�
, if (x; y) is small enough, setting

U
(1)
2 =

@�

@c2
= x and U

(1)
3 =

@�

@c3
= y (F.26)

results in detB < 0. Therefore, solving the initial value problem

@U (1)

@c1
+
@c2
@c1

@U (1)

@c2
+
@c3
@c1

@U (1)

@c3
= 0 (F.27)

and

U (1) (c1; c2; c3) = ' (c2; c3) ; (F.28)

there exists a solution in an open neighborhood of (c1; c2; c3) such that U (1) is

strictly increasing and quasiconcave.

G Proof of Corollary 1

Since the conditional demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) are indepen-
dent of c1,

@c2
@c1

=
@c2
@y2

@y2
@c1

= �p1
@c2
@y2

and
@c3
@c1

=
@c3
@y2

@y2
@c1

= �p1
@c3
@y2

: (G.1)

It follows from Theorem 2 that U (1) satis�es

@U (1)

@c1
� p1

@c2
@y2

@U (1)

@c2
� p1

@c3
@y2

@U (1)

@c3
= 0: (G.2)

Moreover, following the discussion in Appendix F, the necessary and su¢ cient

condition for the existence of at least one locally strictly increasing U (1) is that

the following inequality has a positive solution

ax+ by > 0; (G.3)

where

a = �@c2
@c1

= p1
@c2
@y2

and b = �@c3
@c1

= p1
@c3
@y2

; (G.4)

which is also equivalent to

@c2
@y2

> 0 or
@c3
@y2

> 0: (G.5)

Next we prove that U (2) is weakly separable in (c2; c3). To see this, �rst note that

when U (2) is weakly separable in (c2; c3), the marginal rate of substitution (MRS)

between c2 and c3 is independent of c1, implying that the conditional demands are

independent of c1. Moreover, if ci(p2; p3; y2j c1) = ci(p2; p3; y2) (i = 2; 3), then the

MRS between c2 and c3 must be independent of c1, implying that U (2) is weakly

separable in (c2; c3).
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H Supporting Calculations for Example 5

To verify (EC), �rst calculate

y2 = y1 � p1c1 = (p1 � p2 � p3)

�
p1
p2
+
p1
p3

�
� (p2 + p3) y1
p1 � p2 � p3

: (H.1)

Based on eqns. (45) and (H.1),

@ (c1; y2)

@ (p1; y1)
6= 0 8(p1; y1) 2 R++ � R+; (H.2)

and Property (EC) holds. Solving for p1 and y1 as functions of (c1; y2) and

then substituting the resulting expressions into eqns. (46) - (47), one obtains the

conditional demands

c2 (p2; p3; y2j c1) =
y2 � (p2 � p3) c1

2p2
and c3 (p2; p3; y2j c1) =

y2 � (p3 � p2) c1
2p3

:

(H.3)

Viewing c1 as a preference parameter, the conditional demands satisfy (S) and

(N). Hence one can use the Hurwicz and Uzawa (1971) recovery process to derive

U (2) (c2; c3j c1) = ln (c2 + c1) + ln (c3 + c1) : (H.4)

To establish the existence of a U (1), it can be veri�ed that

det
@ (c1; c2; c3)

@ (p1; p2; p3)
6= 0 8(p1; p2; p3) 2 R3++ (H.5)

and hence Property (EI) is satis�ed. Solving for p1 and y1 as functions of

(p1; p2; p3; y2) yields

p1 = p2 + p3 +

p
p2p3 (p2 + p3) (c1 (p2 + p3) + y2)

p2 + p3
(H.6)

and

y1 = (p2 + p3) c1 +
c1
p
p2p3 (p2 + p3) (c1 (p2 + p3) + y2)

p2 + p3
+ y2: (H.7)

First based on eqn. (H.3),

@c2
@c1

= �p1 + p2 � p3
2p2

and
@c3
@c1

= �p1 + p3 � p2
2p3

: (H.8)

Solving for the inverse demands from (45) - (47), one obtains

p1
y1

=
2c21w2w

2
3 � 2w2w3

p
2c21w

2
3 (w2 + w3)

2c1w2w23 (c
2
1 � 2 (w2 + w3))

+

(w2 + w3)
�p

2c21w
2
3 (w2 + w3)� 2w2w3 � 2w23

�
2w2w23 (c

2
1 � 2 (w2 + w3))

; (H.9)
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p2
y1
=
2w2w3 + 2w

2
3 �

p
2c21w

2
3 (w2 + w3)

2w2w3 (2 (w2 + w3)� c21)
(H.10)

and
p3
y1
=
2w2w3 + 2w

2
3 �

p
2c21w

2
3 (w2 + w3)

2w23 (2 (w2 + w3)� c21)
; (H.11)

where

w2 = c1 + c2 and w3 = c1 + c3: (H.12)

Substituting eqns. (H.9) - (H.11) into eqn. (H.8), we have

@c2
@c1

=
�c21w2w3 + (w2 � c1)

p
2c21w

2
3 (w2 + w3) + c1 (2w2w3 + 2w

2
3)

c1

�p
2c21w

2
3 (w2 + w3)� 2w2w3 � 2w23

� (H.13)

and

@c3
@c1

=
�c21w23 + (w3 � c1)

p
2c21w

2
3 (w2 + w3) + c1 (2w2w3 + 2w

2
3)

c1

�p
2c21w

2
3 (w2 + w3)� 2w2w3 � 2w23

� : (H.14)

The two characteristic equations are given by

dc2
dc1

=
�c21w2w3 + (w2 � c1)

p
2c21w

2
3 (w2 + w3) + c1 (2w2w3 + 2w

2
3)

c1

�p
2c21w

2
3 (w2 + w3)� 2w2w3 � 2w23

� (H.15)

and

dc3
dc1

=
�c21w23 + (w3 � c1)

p
2c21w

2
3 (w2 + w3) + c1 (2w2w3 + 2w

2
3)

c1

�p
2c21w

2
3 (w2 + w3)� 2w2w3 � 2w23

� : (H.16)

Thus the two independent �rst integrals are

 1 (c1; c2; c3) = c1+2
p
2 (c2 + c3 + 2c1) and  2 (c1; c2; c3) =

c2 + c1
c3 + c1

: (H.17)

I Proof of Corollary 2

When the Properties (P), (TD), (B), (S) and (N) are satis�ed, Theorem 1 guar-

antees that there exists a U (c1; c2; c3) to rationalize the demands. If U is twice

continuously di¤erentiable, Property (EI) holds since the inverse demands can be

derived from the �rst order condition and Property (EC) holds since the condi-

tional demands always exist. Moreover as discussed in footnote 16, Property (H)

also holds. In this case, for the partial di¤erential equation (26)

 1 (c1; c2; c3) = U (c1; c2; c3) (I.1)

is always one of the �rst integrals.
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J Supporting Calculations for Example 6

To recover a
�
U (1); U (2)

�
-pair for this case, �rst note that

y2 =

y1

�
� (p2 + p3) + p2

�
p1
p2
+ �

�
1 + p3

p2

�� 1
1+�
+ p3

�
p1
p3
+ �

�
1 + p2

p3

�� 1
1+�

�
p1 + � (p2 + p3) + p2

�
p1
p2
+ �

�
1 + p3

p2

�� 1
1+�
+ p3

�
p1
p3
+ �

�
1 + p2

p3

�� 1
1+�

:

(J.1)

Based on eqns. (54) and (J.1),

@ (c1; y2)

@ (p1; y1)
6= 0 8(p1; y1) 2 R++ � R+; (J.2)

and hence Property (EC) holds. Solving for p1 and y1 as functions of (c1; y2)

and substituting the resulting expressions into eqns. (55) - (56), one obtains the

conditional demands

c2 = �c1 +
y2 � � (p2 + p3) c1

p2 + p3

�
p2
p3

� 1
1+�

and c3 = �c1 +
y2 � � (p2 + p3) c1

p3 + p2

�
p3
p2

� 1
1+�

: (J.3)

Then viewing c1 as a preference parameter, one can verify that Property (P),

(TD), (H), (B) and (N) hold. Using the Hurwicz and Uzawa (1971) recovery

process, one obtains

U (2) (c2; c3j c1) = �
(c2 � �c1)

��

�
� (c3 � �c1)

��

�
: (J.4)

To establish the existence of a U (1), note that

det
@ (c1; c2; c3)

@ (p1; p2; p3)
6= 0 8(p1; p2; p3) 2 R3++ (J.5)

and hence Property (EI) is satis�ed. Solving for p1 and y1 as functions of

(p1; p2; p3; y2) yields

p1 = p2

0B@
0B@y2=c1 � � (p2 + p3)

p2 + p3

�
p2
p3

� 1
1+�

1CA
1+�

� �

�
1 +

p3
p2

�1CA (J.6)

and

y1 = y2 + p2c1

0B@
0B@y2=c1 � � (p2 + p3)

p2 + p3

�
p2
p3

� 1
1+�

1CA
1+�

� �

�
1 +

p3
p2

�1CA : (J.7)
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Now substituting the conditional demands (J.3) into U (1) yields

U (1) (c1; c2 (c1) ; c3 (c1))

= U (1)

0B@c1; �c1 + y2 � � (p2 + p3) c1

p2 + p3

�
p2
p3

� 1
1+�

; �c1 +
y2 � � (p2 + p3) c1

p3 + p2

�
p3
p2

� 1
1+�

1CA : (J.8)

Taking the derivative of the right hand side of the above equation with respect to

c1 and setting it to zero, one obtains the following partial di¤erential equation

@U (1)

@c1
+
@c2
@c1

@U (1)

@c2
+
@c3
@c1

@U (1)

@c3
= 0; (J.9)

where
@c2
@c1

= �� p1 + � (p2 + p3)

p2 + p3

�
p2
p3

� 1
1+�

and
@c3
@c1

= �� p1 + � (p2 + p3)

p3 + p2

�
p3
p2

� 1
1+�

: (J.10)

Solving for the inverse demands yields
p1
y1
=

1

c1 +
c2(c2��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��
+ c3(c3��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��
;

(J.11)

p2
y1
=

(c2��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��

c1 +
c2(c2��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��
+ c3(c3��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��

(J.12)

and

p3
y1
=

(c3��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��

c1 +
c2(c2��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��
+ c3(c3��c1)�1��

c�1��1 ��(c2��c1)�1����(c3��c1)�1��
:

(J.13)

Therefore, we have

@c2
@c1

= �� p1 + � (p2 + p3)

p2 + p3

�
p2
p3

� 1
1+�

= ��
c�1��1 ��(c2��c1)�1����(c3��c1)�1��

(c3��c1)�1��
+ �

�
(c2��c1)�1��

(c3��c1)�1��
+ 1
�

(c2��c1)�1��

(c3��c1)�1��
+ (c2��c1)�1

(c3��c1)�1
(J.14)

and
@c3
@c1

= �� p1 + � (p2 + p3)

p3 + p2

�
p3
p2

� 1
1+�

= ��
c�1��1 ��(c2��c1)�1����(c3��c1)�1��

(c3��c1)�1��
+ �

�
(c2��c1)�1��

(c3��c1)�1��
+ 1
�

1 + (c2��c1)��

(c3��c1)��
: (J.15)
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Thus, U (1) satis�es

0 =
@U (1)

@c1
+

0@�� c�1��1 ��(c2��c1)�1����(c3��c1)�1��

(c3��c1)�1��
+ �

�
(c2��c1)�1��

(c3��c1)�1��
+ 1
�

(c2��c1)�1��

(c3��c1)�1��
+ (c2��c1)�1

(c3��c1)�1

1A @U (1)

@c2

+

0@�� c�1��1 ��(c2��c1)�1����(c3��c1)�1��

(c3��c1)�1��
+ �

�
(c2��c1)�1��

(c3��c1)�1��
+ 1
�

1 + (c2��c1)��

(c3��c1)��

1A @U (1)

@c3
:(J.16)

It can be veri�ed that the two independent �rst integrals are

 1 (c1; c2; c3) = �
c��1
�
� (c2 � �c1)

��

�
� (c3 � �c1)

��

�
(J.17)

and

 2 (c1; c2; c3) =
c2 � �c1
c3 � �c1

: (J.18)

K Proof of Corollary 3

When the conditional demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) satisfy

c2 (p2; p3; y2j c1)�a (c1) = k2 (p2; p3) y2 and c3 (p2; p3; y2j c1)�b (c1) = k3 (p2; p3) y2;

(K.1)

where a (c1) and b (c1) are arbitrary functions of c1 and k2 (p2; p3) and k3 (p2; p3)

are arbitrary functions of (p2; p3), we always have

c2 (p2; p3; y2j c1)� a (c1)

c3 (p2; p3; y2j c1)� b (c1)
=
k2 (p2; p3)

k3 (p2; p3)
: (K.2)

Since including the term k2(p2;p3)
k3(p2;p3)

in U (1) will not a¤ect the optimization problem

max
c1

U (1) (c1; c2 (c1) ; c3 (c1)) S:T: y1 �
3X
i=1

pici; (K.3)

c2�a(c1)
c3�b(c1) is always one of the two independent �rst integrals for the partial di¤er-

ential equation (26).

Remark 3 Since c2�a(c1)
c3�b(c1) increases with c2 and decreases with c3, including this

term in U (1) will in general cause U (1) to fail to be strictly increasing. But this is

not always the case. For instance, the U (1) function (69) can be also written as

U (1) (c1; c2; c3) = f

�
(
p
c1 + 1) c2;

c2
c3

�
: (K.4)
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Although the term c2
c3
is not increasing in both c2 and c3, if we use the equivalent

form f
��p

c1 + 1
�
c2;
�p

c1 + 1
�
c3
�
, it is clear that U (1) is strictly increasing if f is

an increasing function. Moreover, in general, although the U (1) (c1; c2; c3) form in

(62) is not strictly increasing and quasiconcave in the whole space, it is possible to

specify a subspace such that U (1) (c1; c2; c3) is strictly increasing and quasiconcave

as shown in Example 4.

L Proof of Corollary 4

To show preferences are e¤ectively consistent, we need to prove that the uncondi-

tional demands ci (p1; p2; p3; y1) (i = 1; 2; 3) satisfy Property (S). Note that

@c2
@p1

=
@c2
@y2

@y2
@p1

=
@c2
@y2

@ (y1 � p1c1)

@p1
=
@c2
@y2

�
�c1 � p1

@c1
@p1

�
(L.1)

and
@c2
@y1

=
@c2
@y2

@y2
@y1

=
@c2
@y2

@ (y1 � p1c1)

@y1
=
@c2
@y2

�
1� p1

@c1
@y1

�
; (L.2)

implying that for the Slutsky matrix (�ij)3�3, we have

�21 =
@c2
@p1

+ c1
@c2
@y1

= �p1c1
@c1
@y1

@c2
@y2

� p1
@c1
@p1

@c2
@y2

= (y1 � p1c1)
@c1
@y1

@c2
@y2

� @c2
@y2

�
y1
@c1
@y1

+ p1
@c1
@p1

�
: (L.3)

Property (H) implies y1 @c1@y1
+p1

@c1
@p1
= 0. Since the conditional demand c2 (p2; p3; y2j c1)

is independent of c1 and proportional to y2, we have

@c2
@y2

=
c2
y2
: (L.4)

Therefore

�21 = (y1 � p1c1)
@c1
@y1

@c2
@y2

= c2
@c1
@y1

: (L.5)

Since c1 is independent of p2 and p3,

�12 =
@c1
@p2

+ c2
@c1
@y1

= c2
@c1
@y1

= �21: (L.6)

Similarly, one can also prove �13 = �31. Moreover, it can be veri�ed that

�23 =
@c2
@p3

+ c3
@c2
@y1

=

�
@c2
@p3

�
y2=const

� p1
@c2
@y2

@c1
@p3

+ c3
@c2
@y2

�
1� p1

@c1
@y1

�
=

�
@c2
@p3

�
y2=const

+ c3
@c2
@y2

� p1
c2c3
y2

@c1
@y1

; (L.7)
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where
�
@c2
@p3

�
y2=const

denotes the derivative of the conditional demand c2 with re-

spect to p3. Similarly,

�32 =
@c3
@p2

+ c2
@c3
@y1

=

�
@c3
@p2

�
y2=const

� p1
@c3
@y2

@c1
@p2

+ c2
@c3
@y2

�
1� p1

@c1
@y1

�
=

�
@c3
@p2

�
y2=const

+ c2
@c3
@y2

� p1
c2c3
y2

@c1
@y1

: (L.8)

Since the conditional demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) satisfy Prop-
erty (S), �

@c2
@p3

�
y2=const

+ c3
@c2
@y2

=

�
@c3
@p2

�
y2=const

+ c2
@c3
@y2

; (L.9)

implying that �23 = �32. Therefore the unconditional demands ci (p1; p2; p3; y1)

(i = 1; 2; 3) satisfy Property (S) and preferences are e¤ectively consistent. It

follows from Selden and Wei (2015) that there exists a U (c1; c2; c3) that takes the

form

U (c1; c2; c3) = h (g (c1) c2; g (c1) c3) (L.10)

to rationalize the demands, where g (c1) is uniquely determined (up to an arbitrary

constant of integration) from the c1 unconditional demand function. To see this,

note that the c1 unconditional demand function is a solution to the following

ordinary di¤erential equation

p1c1 +
p1g (c1)

g0 (c1)
= y1: (L.11)

To recover g (c1) from the c1 demand function, express y1 as a function of (p1; c1).

Since Property (H) holds, one must have

y1 = p1' (c1) ; (L.12)

implying that

c1 +
g (c1)

g0 (c1)
= ' (c1) ; (L.13)

or equivalently,

(ln g (c1))
0 =

1

' (c1)� c1
: (L.14)

Solving the above ordinary di¤erential equation yields a unique function g (c1) up

to an arbitrary constant of integration. Following from Selden andWei (2015), the

demands ci (p1; p2; p3; y1) (i = 1; 2; 3) also correspond to the sophisticated choice

of a
�
U (1); U (2)

�
-pair, where

U (1) (c1; c2; c3) = f (g (c1) c2; g (c1) c3) (L.15)

and U (2) is homothetic.
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M Generalized Quasilinear E¤ective Consistency

Case

In this appendix, we discuss the integrability problem associated with sophisti-

cated choice for the generalized quasilinear e¤ective consistency case. A su¢ cient

condition for e¤ective consistency given by Selden and Wei (2015) assumes that

U (1) (c1; c2; c3) and U (2) (c2; c3) take the following quasilinear forms, i.e.,

U (1) (c1; c2; c3) = g (c1) + f (c2) + c3 and U (2) (c2; c3) = h (c2) + c3: (M.1)

However for e¤ective consistency, U (1) can take the more general form

U (1) (c1; c2; c3) = f (g (c1) + c3; c2) ; (M.2)

which will be referred to as the generalized quasilinear form. The reason is as

follows. For naive choice, c�1 is determined by the �rst order condition g
0 (c1) =

p1=p3. For sophisticated choice, we can rewrite U (1) as

U (1) (c1; c2; c3) = f

�
g (c1) +

y1 � p1c1 � p2c2
p3

; c2

�
: (M.3)

Since c��2 is independent of y2, the optimal c��1 must satisfy

g0 (c1)� @

�
y1 � p1c1 � p2c2

p3

�
=@c1 = g0 (c1)�

p1
p3
= 0: (M.4)

Therefore, c�1 = c��1 and preferences are e¤ectively consistent. Then we have the

following corollary.

Corollary 7 Assume the conditions in Corollary 1 are satis�ed and further as-
sume that the demand function c1 (p1; p2; p3; y1) is independent of p2 and y1, the

conditional demand c2 (p2; p3; y2j c1) is independent of y2 and the conditional de-
mands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) have Property (N). Then prefer-

ences are e¤ectively consistent in the sense of De�nition 3 and sophisticated choice

can be rationalized by a non-changing tastes U (c1; c2; c3) which takes the form

U (c1; c2; c3) = g (c1) + h (c2) + c3: (M.5)

Moreover, there exists a (U (1); U (2))-pair which generates these demands as a result

of sophisticated choice, where U (1) (c1; c2; c3) is given by

U (1) (c1; c2; c3) = f (g (c1) + c3; c2) (M.6)

and U (2) (c2; c3) is given by

U (2) (c2; c3) = h (c2) + c3 (M.7)

and satis�es Property 1.
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Proof. To show preferences are e¤ectively consistent, we need to prove that the
unconditional demands ci (p1; p2; p3; y1) (i = 1; 2; 3) satisfy Property (S). Notice

that
@c2
@p1

=
@c2
@y2

@y2
@p1

= 0 and
@c2
@y1

=
@c2
@y2

@y2
@y1

= 0; (M.8)

implying that

�21 =
@c2
@p1

+ c1
@c2
@y1

= 0:

Since c1 is independent of p2 and y1,

�12 =
@c1
@p2

+ c2
@c1
@y1

= 0 = �21: (M.9)

Moreover, since c3 (p2; p3; y2j c1) is independent of c1,

@c3
@p1

=
@c3
@y2

@y2
@p1

=
@ (y2 � p2c2)

p3@y2

@y2
@p1

=
1

p3

�
�c1 � p1

@c1
@p1

�
(M.10)

and
@c3
@y1

=
@c3
@y2

@y2
@y1

=
@ (y2 � p2c2)

p3@y2

@y2
@y1

=
1

p3

�
1� p1

@c1
@y1

�
; (M.11)

implying that

�31 =
@c3
@p1

+ c1
@c3
@y1

= �p1
p3

@c1
@p1

:

Since c1 is independent of p2 and y1,

�13 =
@c1
@p3

+ c3
@c1
@y1

=
@c1
@p3

: (M.12)

Property (H) implies p1 @c1@p1
+ p3

@c1
@p3
= 0. Therefore, �13 = �31. Finally, it can be

veri�ed that

�23 =

�
@c2
@p3

�
y2=const

� p1
@c2
@y2

@c1
@p3

+ c3
@c2
@y1

=

�
@c2
@p3

�
y2=const

(M.13)

and

�32 =

�
@c3
@p2

�
y2=const

� p1
@c2
@y2

@c1
@p2

+ c2
@c3
@y1

=

�
@c3
@p2

�
y2=const

+ c2
@c3
@y2

: (M.14)

Since the conditional demands c2 (p2; p3; y2j c1) and c3 (p2; p3; y2j c1) satisfy Prop-
erty (S) and�

@c2
@p3

�
y2=const

+ c3
@c2
@y2

=

�
@c2
@p3

�
y2=const

=

�
@c3
@p2

�
y2=const

+ c2
@c3
@y2

; (M.15)
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this implies that �23 = �32. Therefore the unconditional demands ci (p1; p2; p3; y1)

(i = 1; 2; 3) satisfy Property (S) and hence preferences are e¤ectively consistent.

It follows from Selden and Wei (2015) that there exists a U (c1; c2; c3) that takes

the form

U (c1; c2; c3) = g (c1) + h (c2) + c3 (M.16)

to rationalize the demands, where g (c1) and h (c2) are uniquely determined (up

to an arbitrary constant of integration) from the c1 and c2 unconditional demand

function, respectively. To recover g (c1) from c1 (p1; p2; p3; y1), noticing that the

unconditional demand function c1 (p1; p2; p3; y1) is independent of p2 and y1 and

Property (H) holds, one must have

c1 (p1; p2; p3; y1) = '

�
p1
p3

�
: (M.17)

It follows from the �rst order condition of the utility (M.16) that

g0 (c1) =
p1
p3
= '�1 (c1) : (M.18)

h (c2) can be recovered following a similar argument. Since it is obvious that

g (c1) + c3 and c2 are two �rst integrals, the demands also correspond to the

sophisticated choice of a
�
U (1); U (2)

�
-pair, where

U (1) (c1; c2; c3) = f (g (c1) + c3; c2) and U (2) (c2; c3) = h (c2) + c3; (M.19)

where f is an arbitrary function.

Remark 4 For the generalized quasilinear case in Corollary 7, c2 (p2; p3; y2j c1)
being independent of y2 and c1 implies that c3 is linear in y2. Moreover, since

c2 (p2; p3; y2j c1) is independent of y2 and c1, it is one of the �rst integrals in U (1),
which can be viewed as a degenerate case for c2�a(c1)

c3�b(c1) .

N Proof of Theorem 3

First prove su¢ ciency. Since the demand functions ci (p1; :::; pM ; y1) (i = 1; 2; :::;M)

satisfy the Properties (P), (TD), (H), (B) and (EC), the conditional demand func-

tions c2(pK+1; :::; pM ; y2j c1; :::; cK) and c3(pK+1; :::; pM ; y2j c1; :::; cK) exist due to
(EC) and also have the Properties (P), (TD), (H) and (B). Since the condi-

tional demands ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) are independent

of (c1; :::; cK) and also have the Properties (S) and (N), Theorem 2.6 in Jehle and
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Reny (2011) ensures the existence of a unique U (2) satisfying Property 1. Given

the conditional demands

cj

 
pK+1; :::; pM ; y1 �

KX
i=1

pici

!
(j = K + 1; :::;M) ; (N.1)

U (1) must satisfy the following system of partial di¤erential equations

@U (1)

@ci
+

MX
j=K+1

@cj
@ci

@U (1)

@cj
= 0 (i = 1; 2; :::; K) : (N.2)

Noticing that

@cj
@ci

=
@cj

�
pK+1; :::; pM ; y1 �

PK
i=1 pici

�
@ci

= �pi
@cj
@y2

; (N.3)

eqn. (N.2) can be rewritten as

@U (1)

@ci
� pi

MX
j=K+1

@cj
@y2

@U (1)

@cj
= 0 (i = 1; 2; :::; K) : (N.4)

Since Property (EI) holds, pi (i = 1; 2; :::; K) can be transformed into functions of

ci (i = 1; 2; :::;M) through the inverse demands, implying that the coe¢ cients in

the �rst order partial di¤erential equation (N.4) can be expressed as functions of

(c1; :::; cM). Setting

eU (1) (c1; ::; cK ; pK+1; ::; pM ; y2)
= U (1)(c1; :::; cK ; cK+1 (pK+1; :::; pM ; y2) ; :::; cM (pK+1; :::; pM ; y2)); (N.5)

eqn. (N.4) can be rewritten as

@ eU (1)
@ci

� pi
@ eU (1)
@y2

= 0 (i = 1; 2; :::; K) : (N.6)

De�ning

Li eU (1) = @ eU (1)
@ci

� pi
@ eU (1)
@y2

(i = 1; 2; :::; K) ; (N.7)

eqn. (N.4) can be rewritten as

Li eU (1) = 0 (i = 1; 2; :::; K) : (N.8)

It follows from the Frobenius theorem for integrability that the above system of

partial di¤erential equations have a solution if

LiLj eU (1) = LjLi eU (1); (N.9)
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or equivalently

@pj
@ci

� pi
@pj
@y2

=
@pi
@cj

� pj
@pi
@y2

(i; j = 1; 2; :::; K) : (N.10)

Next prove necessity. Since the conditional demands c2 (pK+1; :::; pM ; y2j c1; :::; cK)
and c3 (pK+1; :::; pM ; y2j c1; :::; cK) (i) satisfy the Properties (P), (TD) and (H), (ii)
are independent of (c1; :::; cK) and (iii) can be rationalized by a utility function

U (2) satisfying Property 1, it follows from Theorem 2.6 in Jehle and Reny (2011)

that the Properties (B), (S) and (N) are satis�ed. Set

eU (1) (c1; ::; cK ; pK+1; ::; pM ; y2) = U (1)(c1 (pK+1; :::; pM ; y2) ; :::; cM (pK+1; :::; pM ; y2)):

(N.11)

Since eU (1) satis�es
@ eU (1)
@ci

� pi
@ eU (1)
@y2

= 0 (i = 1; 2; :::; K) ; (N.12)

if the inverse demands do not exist, then the coe¢ cients of the above partial

di¤erential equation cannot be expressed as functions of (c1; :::; cK ; pK+1; ::; pM ; y2)

and thus there is no solution for U (1). Therefore, Property (EI) must be satis�ed.

Moreover, it follows from the Frobenius theorem for integrability, eqn. (N.12) has

a solution only if

LiLj eU (1) = LjLi eU (1); (N.13)

or equivalently

@pj
@ci

� pi
@pj
@y2

=
@pi
@cj

� pj
@pi
@y2

(i; j = 1; 2; :::; K) ; (N.14)

where pi is a function of c1; :::; cK ; pK+1; :::; pM ; y2.

O Multiple Changes in Tastes: General Case

Assume there are three periods and there are K commodities in the �rst period,

H � K commodities in the second period and M � H commodities in the third

period. The consumer faces the optimization problems

P1 : max
c1;:::;cM

U (1)(c1; :::; cM) S:T: y1 �
MX
j=1

pjcj; (O.1)

P2 : max
cK+1;:::;cM

U (2)(cK+1; :::; cM j c1; :::; cK) S:T: y2 = y1�
KX
j=1

pjcj �
MX

j=K+1

pjcj

(O.2)
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and

P3 : max
cH+1;:::;cM

U (3)(cH+1; :::; cM j c1; :::; cH) S:T: y3 = y1�
HX
j=1

pjcj �
MX

j=H+1

pjcj:

(O.3)

First consider the existence of U (3). We assume that the demand functions

ci (p1; :::; pM ; y1) (i = 1; 2; :::;M) satisfy the Properties (P), (TD), (H) and (B).

If we also assume (EC) holds, i.e.,

@ (c1; :::; cH ; y3)

@ (p1; :::; pH ; y1)
6= 0 8 (p1; :::; pH ; y1) 2 RH++ � R+; (O.4)

then the conditional demands ci (pH+1; :::; pM ; y3j c1; :::; cH) (i = H + 1; :::;M) ex-

ist and also have the Properties (P), (TD), (H) and (B). If the conditional demands

ci (pH+1; :::; pM ; y3j c1; :::; cH) (i = H + 1; :::;M) are independent of (c1; :::; cH) and

also have the Properties (S) and (N), Theorem 2.6 in Jehle and Reny (2011) en-

sures the existence of a unique U (3) satisfying Property 1. Next consider the

existence of U (2). Since

y3 = y2 �
HX

j=K+1

pjcj; (O.5)

we have 8i 2 fH + 1; :::;Mg

ci (pH+1; :::; pM ; y3j c1; :::; cH) = ci

 
pH+1; :::; pM ; y2 �

HX
j=K+1

pjcj

����� c1; :::; cH
!
:

(O.6)

If we assume that (EC) holds, i.e.,

@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)
6= 0 8 (p1; :::; pK ; y1) 2 RK++ � R+; (O.7)

then the conditional demands ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) ex-

ist. Further assume that the conditional demands ci (pK+1; :::; pM ; y2j c1; :::; cK)
(i = K + 1; :::;M) are independent of (c1; :::; cK). Then U (2) (cK+1; :::; cM) satis-

�es 8i 2 fK + 1; :::; Hg

@U (2)

@ci
+

MX
j=H+1

@cj
@ci

@U (2)

@ci
= 0: (O.8)

Noticing that cj (pH+1; :::; pM ; y3j c1; :::; cH) (j = H + 1; :::;M) are independent of

(c1; :::; cH), 8i 2 fK + 1; :::; Hg and 8j 2 fH + 1; :::;Mg,

@cj
@ci

=
@cj

�
pH+1; :::; pM ; y2 �

PH
l=K+1 plcl

�
@ci

= �pi
@cj
@y3

(O.9)
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and eqn. (O.8) can be rewritten as

@U (2)

@ci
� pi

MX
j=H+1

@cj
@y3

@U (2)

@cj
= 0 (i = K + 1; :::; H) : (O.10)

If we assume that (EI) holds, i.e.,

@ (cK+1; :::; cM)

@ (pK+1; :::; pM)
6= 0 8 (pK+1; :::; pM) 2 RM�K

++ ; (O.11)

where ci (i = K + 1; :::;M) are conditional demand functions and the following

Frobenius condition holds
@pj
@ci

� pi
@pj
@y3

=
@pi
@cj

� pj
@pi
@y3

(i; j = K + 1; :::; H) ; (O.12)

where pi is a function of cK+1; :::; cH ; pH+1; :::; pM ; y3, then there exists a solution to

the set of partial di¤erential equations (O.10) implying that U (2) exists. Finally,

U (1) satis�es 8i 2 f1; :::; Kg

@U (1)

@ci
+

MX
j=K+1

@cj
@ci

@U (1)

@ci
= 0; (O.13)

where cj = cj

�
pK+1; :::; pM ; y1 �

PK
l=1 plcl

�
(j = K + 1; :::; H) and 8j 2 fH + 1; :::;Mg

cj = cj

 
pH+1; :::; pM ; y1 �

HX
l=K+1

plcl �
KX
l=1

plcl

!
= cj

 
pK+1; :::; pM ; y1 �

KX
l=1

plcl

!
:

(O.14)

Therefore, 8i 2 f1; :::; Kg and 8j 2 fK + 1; :::;Mg,

@cj
@ci

=
@cj

�
pK+1; :::; pM ; y1 �

PK
l=1 plcl

�
@ci

= �pi
@cj
@y2

(O.15)

and eqn. (O.13) can be rewritten as

@U (1)

@ci
� pi

MX
j=K+1

@cj
@y2

@U (1)

@cj
= 0 (i = 1; :::; K) : (O.16)

If we assume that (EI) holds, i.e.,

@ (c1; :::; cM)

@ (p1; :::; pM)
6= 0 8 (p1; :::; pM) 2 RM++; (O.17)

where ci (i = 1; :::;M) are unconditional demand functions and the following

Frobenius condition holds
@pj
@ci

� pi
@pj
@y2

=
@pi
@cj

� pj
@pi
@y2

(i; j = 1; :::; K) ; (O.18)

where pi is a function of c1; :::; cK ; pK+1; :::; pM ; y2, then there exists a solution to

the set of partial di¤erential equations (O.16) implying that U (1) exists.

59



P Supporting Calculations for Example 7

It can be veri�ed that

det
@ (c1; c2; c3; c4)

@ (p1; p2; p3; p4)
6= 0 8(p1; p2; p3; p4) 2 R4++; (P.1)

implying that (EI) holds. Using the conditional demands and inverse demand

functions, eqn. (71) in Theorem 3 can be expressed as

2
p
c3 + c4

@U (1)

@c1
�
p
2c3

@U (1)

@c3
�
p
2c4

@U (1)

@c4
= 0 (P.2)

and

2
p
(c3 + c4) c2

@U (1)

@c2
�
p
2c3

@U (1)

@c3
�
p
2c4

@U (1)

@c4
= 0: (P.3)

Applying eqn. (70) in Theorem 3, the necessary and su¢ cient condition for the

existence of a solution to eqns. (P.2) - (P.3) is

@p2
@c1

� p1
@p2
@y2

=
@p1
@c2

� p2
@p1
@y2

: (P.4)

Expressing p1 and p2 as functions of (c1; c2; p3; p4; y2) and substituting them into

(P.4), it follows that

@p2
@c1

� p1
@p2
@y2

= 0� 1

2
�
1
p3
+ 1

p4

�p
c2
= � 1

2
�
1
p3
+ 1

p4

�p
c2

=
@p1
@c2

� p2
@p1
@y2

; (P.5)

implying that eqn. (P.4) holds and a solution to the partial di¤erential eqns. (71)

exists. Therefore, eqns. (P.2) - (P.3) have a solution. To solve these partial

di¤erential equations for U (1), note that the two independent �rst integrals for

eqn. (P.2) are given by

 1 (c1; c2; c3; c4) = c1+g (c2)+2
p
2 (c3 + c4) and  2 (c1; c2; c3; c4) =

c3
c4
(P.6)

and the two independent �rst integrals for eqn. (P.3) are given by

 1 (c1; c2; c3; c4) = h (c1) + 2
p
c2 + 2

p
2 (c3 + c4) and  2 (c1; c2; c3; c4) =

c3
c4
:

(P.7)

Therefore,

U (1) (c1; c2; c3; c4) = f

�
c1 + 2

p
c2 + 2

p
2 (c3 + c4);

c3
c4

�
: (P.8)
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Q Proof of Theorem 4

Note that

Jc

=
@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)

=

266664
@c1
@p1

: : : @c1
@pK

@c1
@y1

... : : :
...

...
@cK
@p1

: : : @cK
@pK

@cK
@y1

�c1 �
PK

i=1 pi
@ci
@p1

: : : �cK �
PK

i=1 pi
@ci
@pK

1�
PK

i=1 pi
@ci
@y1

377775 :(Q.1)
Since the matrix determinant is invariant under elementary transformations, mul-

tiplying the ith line of the matrix Jc by pi (i = 1; :::; K) and adding them to the

last line of Jc yields

det Jc = det

266664
@c1
@p1

: : : @c1
@pK

@c1
@y1

... : : :
...

...
@cK
@p1

: : : @cK
@pK

@cK
@y1

�c1 : : : �cK 1

377775 : (Q.2)

Multiplying the last line of Jc by � @ci
@y1
(i = 1; :::; K) and adding them respectively

to the ith line of Jc, one obtains

det Jc = det

266664
@c1
@p1
+ c1

@c1
@y1

: : : @c1
@pK

+ cK
@c1
@y1

0
... : : :

...
...

@cK
@p1

+ c1
@cK
@y1

: : : @cK
@pK

+ cK
@cK
@y1

0

�c1 : : : �cK 1

377775

= det

2664
@c1
@p1
+ c1

@c1
@y1

: : : @c1
@pK

+ cK
@c1
@y1

... : : :
...

@cK
@p1

+ c1
@cK
@y1

: : : @cK
@pK

+ cK
@cK
@y1

3775 ; (Q.3)

which is the determinant of the Slutsky matrix of the unconditional demands

ci (p1; :::; pM ; y1) (i = 1; :::; K), i.e.,

det (�ij)K�K = det
@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)
: (Q.4)

If the period one demand functions ci (p1; :::; pM ; y1) (i = 1; :::; K) have the Prop-

erties (S) and (ND), then

det (�ij)K�K

(
< 0 if K is odd

> 0 if K is even
; (Q.5)
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implying that at each point (p01; :::; p
0
K ; y

0
1) 2 RK++ � R+

det Jc = det
@ (c1; :::; cK ; y2)

@ (p1; :::; pK ; y1)

����
(p1;:::;pK ;y1)=(p01;:::;p0K ;y01)

(
< 0 if K is odd

> 0 if K is even
: (Q.6)

It follows from Lemma 1 that Property (EC) holds in a neighborhood of (p01; :::; p
0
K ; y

0
1).

R Rationalizing Naive Choice

In this appendix, we discuss how to rationalize naive choice in more detail. In

the next example, the given demands satisfy Slutsky symmetry and hence they

correspond to a case where naive and sophisticated choice agree and one can use

the Hurwicz and Uzawa (1971) process to recover a non-changing tastes U and

thus also a U (1) and a U (2). Moreover, since the c1 demand function satis�es

the condition in Theorem 5,35 we show that these demands can be also viewed as

corresponding to naive choice and derive a (U (1); U (2))-pair that rationalizes the

demands.

Example 9 Assume that

c1 =
y1

p1 + p2

�
p1
p2

�2
+ p3

�
p1
p3

�2 , c2 =

�
p1
p2

�2
y1

p1 + p2

�
p1
p2

�2
+ p3

�
p1
p3

�2 (R.1)

and

c3 =

�
p1
p3

�2
y1

p1 + p2

�
p1
p2

�2
+ p3

�
p1
p3

�2 : (R.2)

It can be veri�ed that the corresponding Slutsky matrix is symmetric and negative

semide�nite. Following the Hurwicz and Uzawa (1971) recovery process, these

demands can be rationalized by

U (c1; c2; c3) =
p
c1 +

p
c2 +

p
c3: (R.3)

Next assume that the given demands correspond to naive choice. Since the con-

ditional demands for c2 and c3 are

c2 =
y1 � p1c1

p2 + p3

�
p2
p3

�2 = y2

p2 + p3

�
p2
p3

�2 (R.4)

35The c1 demand function will be seen not to take the form in Table 1 below associated with

e¤ective consistency.
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and

c3 =
(y1 � p1c1)

�
p2
p3

�2
p2 + p3

�
p2
p3

�2 =
y2

�
p2
p3

�2
p2 + p3

�
p2
p3

�2 ; (R.5)

we have

U (2) (c2; c3) =
p
c2 +

p
c3: (R.6)

Next we apply the process in Epstein (1982) to recover U (1). Since the c1 demand

function is

c1 =
y1

p1 + p2

�
p1
p2

�2
+ p3

�
p1
p3

�2 ; (R.7)

following Table I in Epstein (1982), we can assume that the indirect utility function

is given by

V (p1; p2; p3; y1) =
y1

exp

 R p1 1

t+p2
�
t
p2

�2
+p3

�
t
p3

�2dt
! (R.8)

=
y1

exp (ln p1 � ln (p1p2 + p1p3 + p2p3) + C)
(R.9)

=
(p1p2 + p1p3 + p2p3) y1

p1 expC
; (R.10)

where C is a constant ensuring that Property (B) is satis�ed. Following Roy�s

identity,

c2 =
�@V=@p2
@V=@y1

and c3 =
�@V=@p3
@V=@y1

: (R.11)

It can be veri�ed that if

C = ln (p2p3) ; (R.12)

then

p1c1 + p2c2 + p3c3 = y1: (R.13)

Therefore, the indirect utility function is given by

V (p1; p2; p3; y1) =
(p1p2 + p1p3 + p2p3) y1

p1p2p3
: (R.14)

Then we have

c2 =
�@V=@p2
@V=@y1

=

�
p1
p2

�2
y1

p1 + p2

�
p1
p2

�2
+ p3

�
p1
p3

�2 (R.15)

and

c3 =
�@V=@p3
@V=@y1

=

�
p1
p3

�2
y1

p1 + p2

�
p1
p2

�2
+ p3

�
p1
p3

�2 : (R.16)
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Following the Hurwicz and Uzawa (1971) recovery process, these demands can be

rationalized by

U (1) (c1; c2; c3) =
p
c1 +

p
c2 +

p
c3; (R.17)

which coincides with eqn. (R.3).36 However, since this process assumes that the

preferences are homothetic, it cannot give all possible forms of U (1).

The following provides a simple application of Theorem 6, where the demands

also satisfy e¤ective consistency.

Example 10 Assume that

c1 =
y1
2p1

; c2 =
y1
4p2

and c3 =
y1
4p3

: (R.18)

It can be veri�ed that the corresponding Slutsky matrix is symmetric and negative

semide�nite. Following the Hurwicz and Uzawa (1971) recovery process, these

demands can be rationalized by

U (c1; c2; c3) = 2 ln c1 + ln c2 + ln c3: (R.19)

Next assume that the given demands correspond to naive choice. Since the con-

ditional demands for c2 and c3 are

c2 =
y1 � p1c1
2p2

=
y2
2p2

and c3 =
y1 � p1c1
2p3

=
y2
2p3

; (R.20)

we have

U (2) (c2; c3) = ln c2 + ln c3: (R.21)

Since the unconditional demands (R.18) satisfy the requirements in Theorem 6,

we have

U (1)(c1; c2; c3) = f (g (c1) c2; g (c1) c3) : (R.22)

Combining the �rst order condition with the budget constraint, one can verify that

the optimal c1 satis�es

p1c1 + p1
g (c1)

g0 (c1)
= y1: (R.23)

36To see the direct utility function (R.17) is consistent with the indirect utility function (R.14),

substitute the optimal demands (R.7), (R.15) and (R.16) into (R.17) and simplify yielding

V (p1; p2; p3; y1) =

s
(p1p2 + p1p3 + p2p3) y1

p1p2p3
;

which is ordinally equivalent to the indirectly utility function (R.14).
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Since the solution to the above equation is c1 =
y1
2p1
, we have

g (c1)

g0 (c1)
= c1; (R.24)

implying that

g (c1) = Kc1; (R.25)

where K is a constant. Without loss of generality, assume K = 1 and then we

have

U (1)(c1; c2; c3) = f (c1c2; c1c3) : (R.26)

In summary, the demand functions (R.18) can be generated as the result of naive

choice using the period one and two utilities

U (1)(c1; c2; c3) = f (c1c2; c1c3) and U (2)(c2; c3) = ln c2 + ln c3; (R.27)

where f(x; y) is an arbitrary function and de�nes the complete set of period one

utilities fU (1)g for naive choice associated with the unconditional demands (R.18).
Next we show that if one follows the Epstein (1982) process to recover U (1), then

only a subset of the set of all possible U (1) functions in (R.26) can be obtained.

Since the c1 demand function is given by

c1 =
y1
2p1

; (R.28)

it follows from Table I in Epstein (1982) that the indirect utility function is given

by

V (p1; p2; p3; y1) =
y1

exp
�R p1 1

2t
dt
� = y1p

p1 expC
; (R.29)

where C is a constant which ensures that Property (B) is satis�ed. Following

Roy�s identity,

c2 =
�@V=@p2
@V=@y1

and c3 =
�@V=@p3
@V=@y1

: (R.30)

It can be veri�ed that if

C = ln
�
p�2p

1=2��
3

�
; (R.31)

where 0 < � < 1
2
is some constant, then

p1c1 + p2c2 + p3c3 = y1: (R.32)

Therefore, the indirect utility function is given by

V (p1; p2; p3; y1) =
y1

p
p1p�2p

1=2��
3

: (R.33)
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c1 (p1; p2; p3; y1) U (1) (c1; c2; c3)

c1 (p1; p2; p3; y1) = h1 (p1; y1) U (1) (c1; c2; c3) = f (g (c1) c2; g (c1) c3)

c1 (p1; p2; p3; y1) = h1 (p1; p3) U (1) (c1; c2; c3) = f (g (c1) + c3; c2)

c1 (p1; p2; p3; y1) = h1 (p1; p2) U (1) (c1; c2; c3) = f (g (c1) + c2; c3)

c1 (p1; p2; p3; y1) = a (p1; p2; p3) y1 There exists a homothetic U (1)

c1 (p1; p2; p3; y1) = a (p1; p2; p3) y1 + b (p1; p2; p3) There exists a quasihomothetic U (1)

Table 1:

Then we have

c2 =
�@V=@p2
@V=@y1

=
�y1
p2

and c3 =
�@V=@p3
@V=@y1

=
(1=2� �) y1

p3
: (R.34)

Following the Hurwicz and Uzawa (1971) recovery process, these demands can be

rationalized by

U (1) (c1; c2; c3) =
p
c1c

�
2 c
1=2��
3 : (R.35)

This utility will be recognized to be a special case of the general form (R.27) where

f (x; y) = x�y1=2��. To see that the set fU (1)g includes other well-behaved period
one utilities satisfying Property 1, let f (x; y) = x

1
2 + y

1
4 . In this case the speci�c

member is given by

U (1)(c1; c2; c3) = (c1c2)
1
2 + (c1c3)

1
4 ; (R.36)

which satis�es Property 1. Clearly (R.36) is not homothetic and not ordinally

equivalent to (R.35) and would generate very di¤erent resolute demands even

though it together with U (2) would generate exactly the same set of unconditional

naive demands (R.18).

This example illustrates that when e¤ective consistency holds an in�nite num-

ber of U (1) functions can be recovered, whereas in Example 9 where e¤ective

consistency does not hold only a single U (1) can be recovered (although in princi-

ple other period one utilities may exist). It is an open question whether fU (1)g
can be other than a singleton for any case of naive choice not satisfying e¤ective

consistency.

Table 1 summarizes the relationship between naive c1 demand functions and

the rationalizing U (1) functions. It is assumed that Properties (P), (TD), (H)

and (EC) hold and the c1 (unconditional) demand function satis�es p1c1 < y1 and

Property (ND). The �rst line in the table follows from Theorem 6 and the second

and third lines follow from Theorem 7. For these three cases, the full set of possible

U (1) functions can be determined. The fourth and �fth lines follow from Epstein
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(1982, Table 1). It should be emphasized that for these latter two cases, Epstein

(1982) only proves the existence of U (1) and gives an approach for recovering a U (1)

by assuming c2 and c3 are linear in income. Therefore although U (1) may not be

unique (up to an increasing transformation), following Epstein�s (1982) approach,

one can only recover the homothetic or quasihomothetic members from the set of

possible functions.

Since the results in Epstein (1982) can be applied to the case where M > 3,

we next extend Theorem 5 to the M > 3 case.

Theorem 13 Assume that a given set of demand functions ci (p1; :::; pM ; y1)

(i = 1; :::;M) have the Properties (P), (TD), (H), (B) and (EC). If the demand

functions ci (p1; :::; pM ; y1) (i = 1; :::; K) (i) have the Properties (S) and (ND),

(ii) are linear in y1 or (iii) are independent of (pK+1; :::; pM) and the conditional

demand functions ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) have the Prop-

erties (S) and (N), then there exists a (U (1); U (2))-pair which generates these de-

mands as the result of naive choice, where U (1) is continuous, non-decreasing and

quasiconcave and U (2) satis�es Property 1.

Proof. Since the naive demands ci (p1; :::; pM ; y1) (i = 1; :::;M) satisfy Properties
(P), (TD), (H), (B) and (EC), it follows that ci (p1; :::; pM ; y1) (i = 1; :::; K) also

have Properties (P), (TD), (H) and satisfy

KX
i=1

pici < y1: (R.37)

If we further assume that ci (p1; :::; pM ; y1) (i = 1; :::; K) (i) have the Properties

(S) and (ND) and (ii) are either linear in y1 or independent of (pK+1; :::; pM),

then it follows from Epstein (1982) that there exists a continuous, non-decreasing

and quasiconcave U (1) (c1; :::; cM) to rationalize the incomplete demand system

ci (p1; :::; pM ; y1) (i = 1; :::; K). Moreover, the conditional demands

ci(pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) exist due to (EC) and also sat-

isfy Properties (P), (TD), (H) and

MX
i=K+1

pici = y2: (R.38)

Since we further assume that ci (pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M) sat-

isfy the Properties (S) and (N), it follows from Hurwicz and Uzawa (1971) that

there exists a U (2) (cK+1; :::; cM j c1; :::; cK) satisfying Property 1 which rationalizes
the conditional demands. Thus there exists a (U (1); U (2))-pair which rationalizes

the demands ci (p1; :::; pM ; y1) (i = 1; 2; :::;M) as a result of naive choice.
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Moreover since the su¢ cient conditions for e¤ective consistency can naturally

be extended to the M > 3 case, we next generalize Theorems 6 and 7 (the proof

of Theorem 15 is similar to that of Theorem 14 and hence is omitted).

Theorem 14 Assume that a given set of the demand functions ci (p1; :::; pM ; y1)
(i = 1; :::;M) have the Properties (P), (TD), (H) and (B). Then there exists a

(U (1); U (2))-pair such that the demands ci (p1; :::; pM ; y1) (i = 1; :::;M) correspond

to naive choice where U (1) (c1; :::; cM) takes the form

U (1) (c1; :::; cM) = f (g (c1; ::; cK) cK+1; :::; g (c1; ::; cK) cM) ; (R.39)

where f is an arbitrary function and g (c1; ::; cK) is uniquely determined (up to

an arbitrary constant of integration) by ci (p1; :::; pM ; y1) (i = 1; :::; K), at least

one member of fU (1)g is continuous, non-decreasing and quasiconcave and U (2)

satis�es Property 1 if (i) the unconditional demand functions ci (p1; :::; pM ; y1)

(i = 1; :::;M) have Property (EC), (ii) the corresponding conditional demands

ci(pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M � 1) have the Properties (S) and
(N) and (iii) the unconditional demand functions ci (p1; :::; pM ; y1) (i = 1; :::; K)

have the Properties (S) and (ND) and are independent of (pK+1; :::; pM).

Proof. Since ci (p1; :::; pM ; y1) (i = 1; :::;M) have the Properties (P), (TD), (H)
and (B), it follows from Theorem 1 that there exists a U (2) satisfying Prop-

erty 1 if and only if (i) the unconditional demand functions ci (p1; :::; pM ; y1)

(i = 1; :::;M) have Property (EC) and (ii) the corresponding conditional demands

ci(pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M � 1) have the Properties (S) and
(N). It follows from Theorem 2 in Epstein (1982) that if the unconditional de-

mand functions ci (p1; :::; pM ; y1) (i = 1; :::; K) have the Properties (P), (TD), (H),

(S), (ND) and are independent of (pK+1; :::; pM), then there exists a continuous,

non-decreasing and quasiconcave U (1) to rationalize this partial demand system.

Then following Kannai, Selden and Wei (2014), U (1) (c1; :::; cM) takes the form

U (1) (c1; :::; cM) = f (g (c1; ::; cK) cK+1; :::; g (c1; ::; cK) cM) (R.40)

if and only if ci (p1; :::; pM ; y1) (i = 1; :::; K) are independent of (pK+1; :::; pM).

Theorem 15 Assume that a given set of demand functions ci (p1; :::; pM ; y1)

(i = 1; :::;M) have the Properties (P), (TD), (H), (B) and (EC). Then there exists

a (U (1); U (2))-pair such that the demands ci (p1; :::; pM ; y1) (i = 1; :::;M) correspond

to naive choice where U (1) (c1; :::; cM) takes the form

U (1) (c1; :::; cM) = f (g (c1; ::; cK) + cM ; cK+1; :::; cM�1) ; (R.41)
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where f is an arbitrary function and g (c1; ::; cK) is uniquely determined (up to

an arbitrary constant of integration) by ci (p1; :::; pM ; y1) (i = 1; :::; K), at least

one member of fU (1)g is continuous, non-decreasing and quasiconcave and U (2)

satis�es Property 1 if (i) the unconditional demand functions ci (p1; :::; pM ; y1)

(i = 1; :::;M) have Property (EC), (ii) the corresponding conditional demands

ci(pK+1; :::; pM ; y2j c1; :::; cK) (i = K + 1; :::;M � 1) have Properties (S) and (N)
and (iii) the unconditional demand functions ci (p1; :::; pM ; y1) (i = 1; :::; K) have

the Properties (S) and (ND) and are independent of (pK+1; :::; pM�1; y1).

Remark 5 As in the three period, three commodity case, it remains unresolved
whether (i) the su¢ cient conditions in Theorem 13 can be weakened and (ii) there

are other cases in addition to those in Theorems 14 and 15 where one can recover

the full set of U (1) functions.
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