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Abstract 

We show that valuing performance IS equtvalent to valumg a partrcular contmgent clatm on an 
index portfoho. In general the form of the contingent clatm 1s not known and must be esttmated. We 
suggest approximatmg the contmgent clatm by a serves of opttons. We tllustrate the use of our 
method by evaluatmg the performance of 130 mutual funds durmg the pertod 1968882. We find that 
the relative performance rank of a fund ts rather insenstttve to the choice of the index, even though 
the actual value of the servtces of the portfoho manager depends on the choice of the mdex 

1. Introduction 

Evaluating the performance of portfolio managers has received wide attention 
in the financial economics literature, presumably due to the fact that a substan- 
tial part of the savings of investors is managed by professionals. The principle 
behind performance evaluation is rather straightforward. All we have to do is to 
assign the correct value to the cashflow (net of management fees) the manager 
generates from the amount entrusted to him by the investor. The difference 
between the assigned value and the amount entrusted to the manager is the 
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value of the services provided by the manager. If this difference is positive then 
we designate the manager as providing “valuable service.” 

There are several difficulties in implementing this rather simple principle. One 
of the more serious difficulties is due to the fact that financial economists have 
yet to come up with a satisfactory valuation model that consistently values 
arbitrary streams of cashflows sufficiently close to their market price. Every 
capital asset pricing model that has been suggested has performed poorly at 
least with respect to one subset of the assets examined. Hence, an analyst who 
uses a particular valuation model has to be aware of the collection of assets for 
which the model performs satisfactorily. 

For example, linear beta pricing models like the Capital Asset Pricing Model 
(CAPM) that are commonly used in valuing financial assets assign negative 
prices to some states of nature, and hence will assign implausible values to some 
options, even when they assign the correct value to the primitive set of assets on 
which the options are written. This was first pointed out by Dybvig and 
Ingersoll (1982) who constructed an option on the market portfolio (with an 
associated positive cashflow) to which the CAPM assigned a negative price. This 
observation cannot be ignored by arguing that few portfolio managers use 
traded options in their portfolios. As Merton (1981) and Dybvig and Ross (1985) 
point out, portfolios managed using superior information will exhibit option- 
like features, even when the portfolio manager does not explicitly trade in options. 

Grinblatt and Titman (1989) stress the relevance of these results for portfolio 
performance evaluation by pointing out the need to use valuation models with 
positive state price densities, since a manager selling a call option on the index 
will be incorrectly classified as a superior performer by an investor using 
Jensen’s alpha [or Treynor-Black’s (1972) appraisal ratio] to evaluate perfor- 
mance. While these observations provide important insights into the issues 
involved, they do not provide operationally useful guidelines. This is because 
not every model that uses a positive state price density and values the set of 
primitive securities correctly will assign the same value to options on those 
securities. Also, the numerous candidate state price densities (or period weight- 
ing measures, to use the Grinblatt-Titman terminology) that have performed 
poorly in empirical studies of Intertemporal Capital Asset Pricing Models are 
all strictly positive. Even the empirical state price density associated with the 
CAPM and the Arbitrage Pricing Theory (APT) very rarely take negative values 
[see Hansen and Jagannathan (199 1 b)]. Hence an analyst who chooses a posit- 
ive state price density to avoid assigning a negative value to a contingent claim 
that pays a positive amount may still not assign the correct value.’ 

‘See Harrlson and Kreps (1979) and Green and Srlvastava (1985) who show that m every 
arbitrage free economy there ~111 m general exist an mfimte collectlon of posltlve state price densities 
which asslgn the same (correct) value to the pnmltlve securltles for which traded prices are observed. 
Hansen and Jagannathan (1991a) show how to construct a posltlve price density usmg data on asset 
prlcex and payoffs 
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In this paper we address the difficulty that arises from managed portfolios 
having option-like features in a different way than Grinblatt and Titman. We 
assume that options on certain stock index portfolios are either traded or can be 
valued using arbitrage methods. We suggest approximating the payoff on the 
managed portfolio using payoffs on a limited number of options on a suitably 
chosen index portfolio. We can then arrive at an approximate value for the 
managed portfolio by finding the value of the options used in approximating its 
payoff. We provide some guidelines for choosing the index portfolio and 
establish conditions under which our procedure will work reasonably well using 
theoretical arguments as well as simulation. We also illustrate its use by 
empirical examples. 

Our approach can be viewed as the nonlinear analogue of the linear beta 
pricing model of Connor (1984). We assume, as Connor does, that the equilib- 
rium marginal rate of substitution of at least one individual who has frictionless 
access to financial markets is a function of only a finite number of “factors,” and 
that the factors are payoffs on portfolios of traded securities. However, unlike 
Connor, we do not assume that only that part of asset payoffs that is in the linear 
span of the factors is priced. This is because, as already pointed out, while such 
an assumption may be reasonable for the primitive set of securities, it will in 
general not be appropriate for derivative claims on the primitive assets. Instead, 
for implementation purposes, our approach can be viewed as assuming that only 
that part of an asset’s payoff that is in the linear span of the factors and certain 
limited number of options on the factors is priced, where we allow payoffs to 
resemble options on the primitive assets. We provide asymptotic justifications 
for our approach. These justifications are in the same spirit as those provided by 
Ross (1976) and Chamberlain and Rothschild (1983) for linear factor pricing 
models. 

Notice that when the analyst uses only one specific option on an index 
portfolio (along with the risk-less payoff) to approximate the managed portfolio 
payoff, our method resembles the HenrikssonMerton (1981) method. However, 
it is important to stress that the motivation for the two methods are entirely 
different. Henriksson and Merton were primarily interested in classifying the 
abilities of the portfolio manager into two dichotomous parts: (i) market timing 
ability and (ii) ability to select undervalued securities. We are interested in 
assigning a value to the portfolio management services provided by the manager 
without imposing such a dichotomy. 

This is because models that try to classify abilities into two dichotomous parts 
have to reckon with the following difficulty. As Admati, Bhattacharya, 
Pfleiderer, and Ross (1986) point out, even in theory, it is rather difficult to arrive 
at rigorous and consistent definitions of timing and selectivity abilities. 
This distinction is even more difficult in practice for the following reason. As 
Jagannathan and Korajczyk (1986) show, a portfolio manager can show su- 
perior timing ability by following some fairly simple portfolio strategies. For 
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example, a manager who has no abilities of any sort and who writes covered 
calls will show inferior market timing ability and superior selectivity when 
evaluated by the Henriksson-Merton procedures. These criticisms do not apply 
to our method. In fact, the Henriksson-Merton method is also approximately 
valid when used to measure the total value of a portfolio manager’s abilities, 
even when the manager does not behave as assumed by Merton in developing 
his performance evaluation framework. 

The rest of the paper is organized as follows: In Section 2 we develop the 
theoretical framework for performance evaluation. In Section 3 we examine the 
ability of the approximations we suggest to capture the true underlying value of 
a portfolio strategy. We demonstrate that, in general, we will need more than 
one option on the index for our approximations to work reasonably we1L3 In 
Section 4 we demonstrate the use of our method by evaluating the performance 
of 130 mutual funds. The paper ends with a summary of our results and 
suggestions for further research. 

2. Theoretical framework 

2.1. Economic environment 

We suppose the following scenario. A portfolio manager announces that he 
can provide R, dollars at time T for each dollar invested now (time t), net of any 
management fee. Without doubting the veracity of the portfolio manager, the 
question is, should an investor invest in such a fund. The answer is yes if the 
gross value, at the margin, of R, is greater than the required investment of one 
dollar; that is, if the net present value is positive. 

The net value per period per dollar invested, at the margin, VI, of a payoff 
R, for an individual with nominal marginal rate of substitution MJ is given by: 

V’ = E[M’R,IF’] - 1 (1) 

where Fj denotes the date t information set of the investor j. Note that VJ is in 
the information set FJ. This expression will arise from a quite general intertem- 
poral utility maximization problem. Furthermore, the net value at the margin of 
any traded return, R, is zero, and hence: 

1 = E[M’RIF’] 

jlf the analyst knows how the manager takes his/her declslons, It may be possible to derive 
a prior1 restrictions on the functional form of the contingent claim This ~111 improve the preclslon 
with which the manager’s alxlitles can be valued. 
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Substituting into equation (l), we get 

V’ = E[MJ(R, - R)IFJ] (3) 

A convenient choice of R is the nominally risk-free return R,. Defining 
X, = R, - R,, we get 

V’ = E[MjX,IF’]. (4) 

Notice that the value, VJ. of the payoff X,, will in general depend on the 
information set, FJ, as well as the preferences of agent j through the marginal 
rate of substitution MJ. Since preferences are not typically observable, equation 
(2) is not empirically implementable. However, as long as a sufficient number of 
securities are traded in the market, all agents whose marginal rates of substitu- 
tion Mj depend only on the payoffs from traded claims will agree on the 
expectation of the value, E[Vj], of the managed portfolio. Furthermore this 
value is the value of a traded contingent claim. Assumption 1, below, is the 
formal condition that a sufficient number of securities be traded. Assumption 2, 
below, allows us to conclude that all marginal rates of substitution that are 
functions of the payoffs on traded securities are equal. Assumption 2 can be 
derived as a theorem from Assumption 1 and the assumption of no arbitrage 
opportunities [see Hansen and Richard (1987)] but in the interest of simplicity 
we skip the intervening steps. 

Assumption 1. Let FT denote the information set generated by the time Tpayoffs 
from allowable trading strategies, and F the corresponding common knowledge 
information set at time t. Assume that if D is in FT, that is, D is a function of the 
payoffs of allowable trading strategies, then D itself is the outcome of some 
allowable trading strategy. 

Assumption 2. There is a unique Z in F,, which is strictly positive with 

probability one, such that the price of a payoff D in FT is E[ZDIF]. 

Assumption 1 is similar to, but weaker than, the assumption that markets are 
complete. To illustrate Assumption 1, consider the case of one risk-free security 
with gross return R, and one risky security with random date T gross return of 
Y which is generated by a lognormal diffusion process. The information repres- 
ented by FT is the specific realization of Y. Hence D = max( Y - k, 0) is in 
FT-that is, the realization of D is known once Y is known. However, when 
limited to trading only once in the risk-free and the risky assets, it is not possible 
to create a portfolio with a date T payoff of D, and Assumption 1 will not be 
satisfied in this economy. When continuous trading in the risk-free and the risky 
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assets is possible between dates t and T, and when the price process of the risky 
security follows, for example, a lognormal diffusion, then D as well as any 
function of Y can be attained as the payoff of a self-financing portfolio strategy. 
Thus, Assumption 1 can be viewed as an assumption about either the availabil- 
ity of traded assets or the continuous arrival of information and the ability to 
trade continuously without friction. 

2.2. Valuation methodolog~~ 

We first consider the valuation by individuals with the common knowledge 
information set F, whose marginal rates of substitution are spanned by traded 
securities and securities created by allowable dynamic trading strategies. All 
such individuals will have the same marginal rate of substitution. This can be 
seen by noting that if a marginal rate of substitution is spanned by traded 
securities, then it is in F, and furthermore satisfies 1 = E[MRlF] for all gross 
returns R on traded securities. But by Assumption 2, there is a unique 2 in 
F, such that E[ZRlF] = 1 and hence the marginal rate of substitution M is 
equal to Z. Thus, the value, at the margin, of the portfolio payoff, X,, to any 
investor whose marginal rate of substitution is spanned by traded securities, 
based on the common information set F, is given by: 

V = E[MX,IF] = E[ZX,1F]. (5) 

Note that X, can show positive (or negative) value since the managed 
portfolio is not a traded asset. This is true even if the payoff X, is in FT. For 
example, suppose a portfolio manager has perfect information about the return 
on some index RI, and suppose he invests in the index if RI exceeds the risk-free 
return, R,-, and otherwise invests in the risk-free security. Then, R, will be given 
by R, = max(RI, Rf) and the excess return will be given by X, = max(R, - R,, 
0). This return is in F,, but as long as the manager’s information is not 
completely reflected in prices it will not have a zero value. Put another way, the 
above excess return can be generated by any trader (by Assumption I), but it will 
require an investment equal to the value of a call option on the index with 
exercise price equal to the gross risk-free rate, R,. The portfolio manager can 
supply it with a zero investment (borrow at R, and invest in the managed 
portfolio). 

The relation in (5) could form the basis of a performance evaluation 
procedure. Notice that V is the value at the margin of a borrowed dollar 
invested in the managed portfolio conditional on the information set F gener- 
ated by prices of financial claims alone, at date t. The common information set 
F may be complicated; hence it is easier to estimate the average value 
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u = E[ V],4 given by: 

2’ = E [A4XJ = E [ZX,] . 

The average value is appropriate in the following scenario. The manager 
accepts a dollar from the investor and returns R, dollars after one period. This is 
repeated for several periods. The evaluator observes only the time series of 
returns, R,, on the managed portfolio, along with returns on some index 
portfolios. We assume that even if the manager’s abilities change over time, it 
does so in some systematic stochastic fashion such that average ability is well 
defined. 

Determining Z could be very difficult in general, as it involves finding the 
marginal utility of an individual and evaluating it at his or her optimal con- 
sumption, or equivalently, observing all contingent claim prices. Proposition 1 
suggests an evaluation procedure when there is an individual whose marginal 
rate of substitution is a function only of the return on some index portfolio. 

Proposition 1. Suppose there is an individual whose marginal rate of substitu- 
tion, Ml, is a function solely of the vector of returns, RI, on some index 
portfolios. Then the average value of the portfolio. v, is the average price of the 
traded security with payoff e(R,) = EIXpIRI] = E[R, - R,IR,]. 

Proof 

E(V’) = E[E(M’X,IF’)] = E[MjXJ = E[MjE[X,IR,]] = E[M’e(R,)] 

= 4-WRI11 

where Z is the unique element of F, satisfying E [ZR] = 1. Q.E.D. 

Intuitively, X,, can be decomposed into two parts: a payoff that is related to 
the marginal rate of substitution which is a function of the vector of returns on 
some indices, R,, and a payoff that is uncorrelated with the marginal rate of 
substitution. This latter payoff has zero mean and a zero average price. Valuing 
the managed portfolio then consists of finding the average price of the contin- 
gent claim, e(R,). To simplify the analysis, henceforth, we will assume that RI is 
a scalar, that is, there is only one index. 

We should note that in general every individual’s marginal rate of substitu- 
tion will not be spanned by traded securities. An individual’s marginal rate of 
substitution is a function of real consumption. In an intertemporal setting, real 
consumption is a function of nominal income from financial investments as well 

4Note that we use the term average value to mean expected value. 
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as investments in nontraded assets, the proportion of nominal wealth consumed 
and of the price level. 

According to Proposition 1, we need not find the equilibrium marginal rate of 
substitution, Z. All we have to do is find an individual (who actively maximizes) 
who holds some portfolio with return RI and whose consumption is determined 
by the return RI. For example, as Rubinstein (1976) has pointed out, if all 
investors have the same information set and logarithmic utility (or power utility 
and the growth rate in consumption is i.i.d.) then R, will be the return on the 
market index portfolio. Epstein and Zin (1991) show that when all investors 
have logarithmic utility, then the result will obtain even when they are not 
expected utility maximizers. The assumption that all investors have the same 
information set implicitly assumes that the actively managed portfolio is small 
relative to the size of the economy. 

The empirical problem, then, consists of determining the index (which could 
be multi-dimensional), estimating the relation between the portfolio excess 
return, X,, and the index return, R,, and applying contingent claim valuation 
techniques to arrive at the average value of e(R,). 

The assumption that the marginal rate of substitution depends only on the 
return, R,, suggests an alternative approach. One could use the time series of 
returns on all or some subset of traded assets to estimate the marginal rate of 
substitution, M = f(R,). Since the function f(.) is not known, it must be estim- 
ated. One approach would be to use splines or polynomials to approximate the 
function f( .). If a sufficiently long time series of data is available one may also 
estimate the functional formf(.) by nonparametrrc methods [see Gallant and 
Tauchen (1989)].5 Estimating the value then consists of finding the average of 
the product of the estimated marginal rate of substitution and the portfolio 
excess returns. The advantage of this method is that it concentrates on the 
unobservable part of the valuation relation and this is an important direction for 
future research in this area. The advantage of our approach is that it provides 
the characteristics of the managed portfolio that are useful for valuing it. An 
investor may agree with our characterization of the attributes of the payoff 
generated by the manager but disagree with the value we assign to it. Our 
approach will provide useful information even to such an investor. 

Our approach also allows the use of prior information regarding the trading 
strategy of the portfolio manager. Specifically, such information could be used 
to choose the functional form of the conditional expectation. Furthermore, the 
shape of the contingent claim (the conditional expectation) may be of indepen- 
dent interest to investors. Also, as we show later on in the paper, our procedure 
is applicable even when the assumption of Proposition 1 is not satisfied. 

5Bansal and Vswanathan (1991) follow this approach m their empwlcal exammatlon of asset 
prices 
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In general, the value of X, to an individual whose marginal rate of substitu- 
tion is not spanned by traded securities will depend upon the covariance of that 
part of his marginal rate of substitution that is due to nontraded assets with the 
part of the managed return that is nontraded. However, the value to such an 
investor will be given by Proposition 1 if: (1) the investor can duplicate the 
payoff from the managed portfolio by trading in marketed securities (possibly at 
a higher cost than the manager) or (2) the correlation between the part of the 
individual’s marginal rate of substitution due to nontraded assets and the part of 
the return due to nontraded assets is zero. Further, if the marginal rate of 
substitution is close to Z in mean square, then the values will be close. These 
results are stated formally and proven in Proposition 2. 

Proposition 2. Let u = E[Ze(Z)] denote the average value of the payoff, X,, to 
all investors whose marginal rate of substitution depend only on the returns on 
traded claims. where e(Z) = E[X,lZ]. Let M be an individual’s marginal rate of 
substitution (not necessarily measurable with respect to FT). The average value 
of the payoff X, to this individual is given by E(MX,). Then, we have the 
following characterization of IE(MX,) - z:I. 

a. If X, is in FT, then IE[MX,] - z:/ = 0. 

b. If COV(X, - e(Z), M - Z) = 0, then IE[MX,] - UJ = 0. 

c. If (E[(M - Z)2])o.5 < c/SD(Xp - e(Z)), then IE[MX,] - c‘J < E. 

Proof First note that for all returns, R, on traded securities, 

1 = E[MR] = E[RE[MlF,]] 

Since EIMIFT] is in FT and since Z is unique, E[MIF,] = Z. 

a. If X, is in FT, then E[MX,] = E[X,E[MIF,]] = E[ZXJ 

= E[Ze(Z)] = u. 

b. E[MX,] = E[(M - Z + Z)XJ = z: + E[(M - Z)X,] 

= u + E[(M - Z)(X, - e(Z) + e(Z))] 

= o + CO V(M - Z, X, - e(Z)). 

c. l~CMX,I - 4 = IECW - Z)X,ll = IEUM - ZKX, - 4Z))lI 

d E[I(M - Z)(X, - e(Z))11 B (E[(M - Z)21]o 5 

x SD(X, - e(Z)) . 

by the Cauchy-Schwarz inequality, where SD indicates standard deviation. 
Under the conditions of the proposition, the last expression is less than E. 0 



142 L.R. Glostm and R Jagannathan. A contittgant claim approach 

Before considering issues associated with implementing the procedure, it is 
appropriate to consider the generality of our model. Assumption 1 is the crucial 
assumption and is the one most likely to be violated. Allowing the possibility of 
informed trading by the portfolio manager may restrict the ability of traders to 
replicate payoffs. For example, in the presence of informed traders, one would 
expect there to be a bid-ask spread, and hence trading will not be frictionless. 
We are therefore implicitly assuming that the portfolio manager is “small” 
relative to the market in order to guarantee the consistency of our methodology. 
The assumption that the portfolio manager’s abilities change over time (if at all 
they do) in a systematic stochastic fashion is likely to be very restrictive.6 We 
need this assumption to enable the use of time-series methods to estimate and 
value the manager’s abilities. This assumption can be relaxed if the analyst has 
access to substantial additional information regarding how the manager takes 
decisions (in addition to time series data on the return on the managed port- 
folio). 

Given these limitations, the technique described in Proposition 1 is relatively 
robust and immune to manipulation by the portfolio manager. Given the 
assumption that the marginal rate of substitution of at least one investor is 
a function of some identifiable index return, and given a reasonably accurate 
specification of the form of the function e(RI) = E[X,IR,], a portfolio manager 
will not be able to show spurious value through continuous trading or creative 
use of options and other contingent claims. Use of the wrong functional form for 
e(.) or use of the wrong index return, however, could lead to erroneous valuation 

of the portfolio manager’s abilities. 

2.3. Choosing the jiunc.tional form 

Several parametric as well as nonparametric methods are available for estima- 
ting the function e(.), when the functional form of e(.) is not known. When one 
takes the parametric approach, one can choose either polynomials or splines, 
since it is well known that any function can be arbitrarily closely approximated 
by a collection of spline functions or polynomial functions. Alternatively, one 
could use a semi parametric method to estimate the joint density of X, and 
R, and then compute the conditional expectation function, e(.). Each has its 
strengths and weaknesses and we discuss these below. 

6For example, constder a portfolio manager who spectalizes by watchmg what happens m the 
Mtddle East. Such a person mtght have been able to predtct the war in the Middle East and moved 
the money m and out of otl stocks at approprtate ttmes durmg the recent Iraq-Kuwatt crists and 
earned “abnormal” returns for hts clients. It is not clear when the manager wtll be able to repeat such 
a performance m the future. 



2.3.1. Parametric estimation 

If one were to choose the sphne approach, then a continuous, piecewise linear 
fit would appear to be the easiest to value. Note that a piecewise linear fit will be 
of the form: 

X, = /3, + DIR1 + 1 G,max(R, - t,, 0) 

Notice that max(R, - t,, 0) is the payoff, at expiration, on an index call option 
with exercise price t,, when the current value of the index is one. The value of 
a dollar for sure, received in one period is l/R,. The value of R, received in one 
period is 1. Thus. given estimates Bi and pi, the estimated value is 

where C, is the average value of a call option with one period to expiration and 
exercise price t, on the index with current value equal to one. The strength of this 
procedure is the ease and intuitive appeal of the valuation phase of the exercise. 
To implement such a procedure, one must specify the number and location of 
the knots (the ti’s), run the regression and then make some assumption about the 
distribution of the return R,. A reasonable bench mark to start with is to assume 
that RI is lognormally distributed, so the C, are BlackkScholes prices. The major 
weakness lies in the specification of the location and number of knots. With 
a large sample, one could let least squares minimization choose the location of 
a given number of knots. Such a large sample size would not typically be 
available. Thus, one is forced to ad hoc specifications of the location of the 
knots. 

An alternative procedure is to fit a polynomial relation: 

In this case, one need only specify the order of the polynomial and run the 
regression to obtain estimates $,. The value estimate is then given by: 

ti = C Fl~[z~;]. 

As in the case of splines, a reasonable bench mark to start with is to assume that 
RI is lognormally distributed in identifying Z and evaluating E [ZRf].’ The 
strength of the polynomial approach, relative to the spline approach is that no 

‘See Dybvlg (1988) for examples showmg how to compute Z under alternatlve stochastic process 
assumptions. 



ad hoc placement of the knots is required. The polynomial approach has two 
weaknesses. First, in small samples, the estimated coefficients can be very 
sensitive to outliers. Second, while R; is, in theory, a perfectly reasonable 
contingent claim, it is not one that is observed. Consequently, the evaluator may 
have little confidence in the pricing of this claim. We discuss the polynomial 
approximation so that we can point out the connection to the well known 
Treynor-Mazuy (1966) and Admati et al. (1986) methods. 

Many of the measures of performance evaluation that have appeared in the 
literature resemble special cases of this general parametric methodology. Re- 
member however that the theoretical support for our approach is different than 
the ones on which these approaches were originally developed. For example, 
suppose that one specifies R, to be a broad portfolio of stocks, and the risk-free 
rate is a constant. r. In this case, instead of working with E(XJR,), we can work 
with ,5(X,1X1) = e(X,), where X1 = RI - r. If there are a priori reasons to specify 
e(X,) = c( + /3X,, then the estimate of value, E[ZX,] is given by x/R/, a scaling 
of Jensen’s alpha. Admati et al. (1986) suggest estimating e(X,) = CI~ + cc1 X, 
+ mzXf and testing the significance of x2 for market timing ability. If selling 

covered calls is possible, then x2 may be significant, but yet the manager may 
have no valuable information. We suggest calculating the value as (cc,/Rf)+ 
x2V(X:) where V(X:) is the value of a contingent claim which pays X:. 

Another example is provided by the analysis of market timing in Henriksson 
and Merton (1981). Suppose, as in Henriksson and Merton, the portfolio 
manager is a market timer, and that X, = xX,, where x is either one or zero. 
Further, suppose that: 

E[xlFr] = pz if X, > 0 

1 -P1 ifX,gO 

Then. 

E[ZX,] = E[ZX,a] = EIZX,E[zlFT]] 

= p2ECZX,I + ECZ(pl + p2 - I)( - min(X,, O))l 

= (p1 + p2 - l)PV 

where PV is the value of a one period put on the stock index with current value 
of 1 and exercise price equal to one plus the risk-free rate. 

It is unlikely that the specification of E[alF,] is exactly correct, even when the 
portfolio manager is a pure market timer. Rather, it may be viewed as a conveni- 
ent approximation to the true relation between CI and X,. This is brought home 



by consideration of Henriksson and Merton’s parametric test /$, + BiX,,, + 
bz( - min(X,, 0)) the value of which is given by (,Co/Rf) + p2PV. It is important 
to stress, however, that the manager need not be a market timer as assumed by 
Henriksson and Merton. One can view this as a “one-knot spline” approxima- 
tion to what may be a more complicated relation between X, and X,. Similarly, 
Jensen’s alpha calculation can be seen as a linear approximation to the true 
relation, and the approach suggested by Admati et al. (1986) can be viewed as 
a quadratic approximation to the true relation. Even when we choose more than 
one index and project the portfolio excess returns on the index returns, as the 
above analysis suggests, the true projection need not be linear. The Connor and 
Korajczyk (1986) approach to performance evaluation can be thought of as 
a linear approximation to the true functional rela,tion between managed port- 
folio excess returns and the set of index excess returns. 

2.3.7. Semi parurnetric estimation 

On purely statistical grounds, a technique based on Gallant, Rossi and 
Tauchen (1992) may well be superior. The primary advantage it offers is the 
ability to fit a wide range of stochastic relations between random variables, even 
with a fairly small set of parameters. As the following shows, however, the 
contingent claim that this technique delivers is difficult to interpret and to value. 

Define Y by Y = (X,, R,)‘. Following Gallant, Rossi, and Tauchen (1992) the 
density of Y,f(.), is proportional to: 

P,(R- ‘( Y - rn))‘~$(R- ‘( Y - rn))/det(R), 

where P, is a polynomial of order n, m is the mean vector, nz = (mP, m,)‘, R is such 
that RR’ is the variance covariance matrix of Y and 4 is the standard bivariate 
normal density. Denote by,f,,, and_& respectively, the conditional density of 
X, given R, and the marginal density of R, derived from f(.). We seek the 
expectation of XP given RI derived fromf(.): 

e(R,) = Jxf&(xlR,)d.u = 
&” (x, R,)dx 

ff(x> R,)dx . 

Define r(R,) to be the linear regression of XP on R, and a constant, and let SE be 
the standard deviation of the residual from this regression. Consider the normal- 
ization of Y: 

R- '(Y - m) = ((X, - r(R,))/SE), ((R, - m,)/a,)’ = (z,, zt)’ 
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where C, is the standard deviation of R,. Notice that Z, and Z1 are orthogonal 
and have zero mean and unit variance. Then, e(R,) is given by: 

(.x - r(Rh) 
SE f (x. R,W 

e(R,) = r(R,) + SE 
i.fCx, R,)dx ’ 

Fix R, at some value t. Then given the normalization above: 

e(t) = r(t) + SE 

.[,I’(,, ?)2] 

E[P.(Z. y)2] ’ 

where Z is a standard normal random variable. The numerator of the second 
term will be a polynomial of degree 3~ - 1, while the denominator will be 
a polynomial of degree 2n. For example, consider II = 1. In this case, e(R,) is 
given by: 

e(RI) = bo + hRI + 2Wgo + glRd/(l + (go + g1R1J2) 

for some constants to be estimated (b,, gr, SE; i = 0, 1). 
As with the polynomial case, the second term on the right is, in theory, 

a reasonable contingent claim. It is not a contingent claim that we observe and 
hence valuing with confidence is difficult. Even if one is willing to make the 
BlackkScholes assumptions, valuation requires numerical integration. 

Given current pricing and statistical methodologies, we prefer approximating 
the function e(.) by splines. We believe that this approach will be empirically 
preferable to nonparametric methods when the analyst is constrained to work 
with relatively short time series of data. Also, we prefer splines to polynomials 
and semi parametric methods since splines can be interpreted as options and 
hence are easier for practitioners to understand and value. 

3. Ability to approximate the true function using a limited number of options 

3.1. The porffolio manager has no abilities 

Like all other approximations that have been suggested in the literature on 
asset pricing, the approximations we have suggested are not uniform. If the 
manager knows that the analyst is using a specified number of options to 
evaluate performance, the manager (if he is allowed to do so) can show spurious 
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superior performance by engaging in certain trading strategies. This is not 
a limitation only of our method. This is true of all performance evaluation 
methods. This weakness arises from the fact that every known empirically 
implementable asset pricing model is itself an approximation and misprices 
a certain subset of assets. Hence an important question that needs to be 
addressed before choosing the number and type of options used to approximate 
the managed portfolio payoff is whether the approximation is adequate. 

In this section we show that payoffs from certain option trading strategies 
(which exhibit substantial curvature) can be approximated sufficiently well by 
using only three options. We suggest using similar methods to evaluate the 
adequacy of the number and type of options used in the specific application the 
practitioner is interested in, taking into consideration the tradeoff between 
Type I and Type II errors. 

Our motivation for examining the ability of the payoff on a portfolio of 
options to approximate the payoff on certain arbitrarily chosen call options 
arises from the following observation. One way that a portfolio manager can 
appear to be providing valuable management services is through the use of 
dynamic trading strategies which replicate payoffs from options. According to 
the theory developed above. such use of trading strategies based on common 
knowledge should not show value. Strictly speaking, this requires knowing the 
functional form of the projection. To investigate how well various approxima- 
tions work, we assume that the managed portfolio returns are generated in the 
following way: Each month, the manager purchases a three-month call option 
on the market index at the Black-Scholes price. holds it for one month and sells 
it at the Black-Scholes price. We assume that monthly continuously com- 
pounded index returns are normally distributed, with a mean of 0.0109 and 
a standard deviation of 0.0608. corresponding to the sample moments of the 
stock index portfolio during 1968 to 1982. The risk-free rate is assumed constant 
each period at 0.54 percent, corresponding to the average continuously com- 
pounded treasury bill rate during the above period. 

We examine 5 portfolio strategies, ranging from buying a call with an exercise 
price equal to 0.95 of the value of the index to buying a call with an exercise price 
equal to 1.2 of the value of the index. For each portfolio strategy we look at five 
specifications of the projection: 

1. x,= flo + BiX, + E 

2. X, = PO + B1 X, + Prmax(X,, 0) + R (Henriksson-Merton) 

3. X, = /I0 + /3,X1 + bzmax(X, - t, 0) + E 

4. X, = PO + plXI + f12max(X, - ti, 0) + p3max(X, - f2, 0) + E 

5. X, = PO + BIXr + p,max(X, - ti, 0) + /&max(X, - t2, 0) 

+ ,R4max(XI - t3, 0) + e 
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We compute the true parameters (including the location of the knots) by 
minimizing the sum of the squared errors of the projections for each of the five 
models above, using 20,000 simulated observations. Numerical methods were 
used to calculate the minimizing parameters. We calculate the values using 
Black-Scholes procedures. The value of 1 is l/R,. The value of XI is 0 and the 
remaining terms in expressions 2 through 5 are valued using the Black-Scholes 
price of the indicated option. 

Table 1 presents the result of the simulations. The linear approximation is 
inadequate even for calls close to being at the money. The one-knot spline does 
substantially better than the Henriksson-Merton approach (that is, a one-knot 
spline with the knot located at the risk-less return). Higher order splines with 
optimally located knots do better than a one-knot spline. A two-knot spline 
appears to provide a reasonable approximation even for a way out of the money 
call (with a strike price to spot index ratio of 1.10 to 1.20). These results suggest 
that even in those situations where a one-knot spline may be adequate, the 
location of the knot will generally not be at the risk-free return as in the 
HenrikssonMerton method. However, the three-knot value estimates were not 
critically dependent on the location of the knots. For example, the values 
obtained when the expected number of observations between knots was 
equalized were still close to zero. For options with exercise prices of 0.9, 1, 1.1. 
and 1.2 the values were, respectively (annualized and in percent) - 0.29, - 0.9, 
- 2. and 2.25. 

Table 1 

Vartous approwtmattons to e(R) = E[XIR]. R IS lognormally dtstrtbuted mtth E[log(R)] = 
0.010891. SD(log(R)) = 0.060799. The excess return. X, over the rusk-free rate (log(R,) = 0.005419) 
on the managed portfoho is generated by buymg a 3 month call on the mdex and holdmg It for one 
month. The esttmated values of X, are annualized rn percent and based on 20,000 stmulated 

observattons. 

Esttmated value 

Exerctse 
Prtce H-M zero 

Number of knots m the aplme 

One Two Three 

0.95 - 0.35 - 3.34 -021 - 005 0 13 
1 00 - 0.40 - 7 55 - 0.17 ~ 0.12 - 0 11 
105 - 1 54 ~ 8.73 -040 - 0.39 - 0.44 
1.10 - 606 - 21.19 ~ 3.05 ~ 0.46 - 0.38 
1 15 - 10.75 _ 28.01 _ 2.01 - 1.69 - 0.36 
1 20 ~ 1768 - 66.16 - 13.92 ~ 1.17 - 1.26 

Note that the true value of X, the excess return IS zero. smce we assume frtcttonless tradmg 
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The next question that arises is that of power, that is, whether our approach is 
capable of detecting ability when it does exist. In what follows we examine 
a situation where the portfolio manager has superior information of a particular 
type and uses it in a particular way. Since power can only be examined against 
specific alternatives, the practitioner is advised to examine the power function of 
the particular approximation he chooses for the specific alternatives of interest 
to him or her. 

We suppose that the market index return is lognormally distributed with its 
historical mean and standard deviation. Now suppose that there is a manager 
who sees a signal, S, given by S = lo&R,,,) + E, where E is independent of R, and 
normalfy distributed with mean zero and variance equal to a’( 1 - RSQ)~RSQ, 

where c? is the variance of log(R,) and RSQ is the R-Square of the regression of 
log(R,,) on S in the population. Assume, further, that the manager invests in the 
market if E[R,IS] > R, and invests in treasury bills otherwise. We also assume 
that the manager is extremely small relative to the “liquidity” of the market and 
hence does not affect market prices due to his trading activity. After some 
tedious but straightforward calcuiations it can be shown that the value of the 
information when used in this way is @(c2) - @(cl) where @ is the standard 
normal cumulative distribution function and c2 and c, are given by: 

cz = [(p - r)[(l - RSQ)/RSQ] + a2/(2RSQ))/(a(l,‘RSQ)o~s), 

Cl = c2 - o/(~/RSQ)~.~, 

1-1 = .Wx&,,)], 0’ = Var(log(R,)), Y = log(R,) . 

We simulated 100 samples of 40 observations each, for values of RSQ ranging 
from 0.05 to 1. The results for one- and three-knot sphnes are reported in 
Table 2. We have insufficient data to optimally place the knots and hence we 
placed the knots so that, in expectation, there would be an equal number of 
observations between the knots. Thus. for three knots, the knots were placed at 
the 25, 50, and 75 percent points of the distribution of RI. As can be seen. the 
power function is fairly steep even for 40 observations, and the one-knot spline 
(knot at the median of the R, distribution) appears to do a satisfactory Job. 

3.3. Choosirlg the in&s 

~Jnfortunately, the methodology we have been discussing does not get around 
the problem of the correct choice of an index. Fortunately, however, we can 
show that if the index choice is not too bad, and as long as we can correctly value 
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Table 2 

Various approxtmattons to e(R) = E[XIR], where R 1s lognormally dtstributed; E[log(R)] 
= 0 010891, SD(log(R)) = 0.060799 The excess return, X, 1s gtven by X = I( R - Rf) where Rfls the 

rusk-free rate (0.54159%), I 1s 1 If E[RIS] > Rf and zero otherwrse, where S = log(R) + E and E IS 
normally distributed, Independent of R wtth mean zero and variance equal to (1 - RSQ)/RSQ times 
the variance of log(R). That IS, RSQ IS the asymptotic R-Square from the regression of log(R) on S. 
Each model was estimated 100 times with 40 stmulated observations each True values and average 
esttmated values are annualized. m percent. The column trtled “number of rejecttons” shows the 
number of ttmes, out of 100, that the estimated value was sigmficantly larger than zero at the 
mdtcated levels. The knots were placed so as to equahze the expected number of observations 

between the knots. 

RSQ 
True 
value 

One-knot sphne 

Average Number of 
estimated rejecttons 

value 005 0.01 

Three-knot sphne 

Average Number of 
esttmated rejectrons 

value 0.05 001 

I .oo 29.10 29 10 100 100 29 10 100 100 
0.90 27 61 27.53 100 100 27 61 100 100 
0.80 26 03 26.14 100 100 26.21 100 100 
070 24.33 24.25 100 100 24.04 100 100 
0.60 22.50 22 80 100 100 22.49 100 100 
0.50 20.51 19.95 98 97 21.00 100 100 
0.40 18.29 16.97 96 87 18.73 100 100 
0.30 15.75 15.20 92 77 15.25 90 78 
0.20 12.72 12.80 82 59 12.11 76 56 
0.10 8 68 8.37 50 35 942 56 40 
005 571 5.79 34 16 4 92 31 15 

the contingent claim, then the resulting value estimate will be close to the true 
value. Formally, suppose that R, is the correct index return and the average 
value of the contingent claim, e(RI) = E [X,lRI]. is the correct average value of 
the managed portfolio. Suppose we pick an incorrect index return, R, and 
estimate the contingent claim e’(R;) = E[X,IR;]. The following proposition 
shows that if R; explains most of the variation of Z or if given R;, RI explains 
little of the remaining variation in X,, then the true average value E [Ze(RI)] will 
be close to average value arrived at using the incorrect index R;, E [Ze’(R;)]. 

Proposition 3. If the variance of Z unexplained by R;, 

E[(Z - E[ZlR;])‘] = (1 - RSQ(Z; R;))var(Z) 

is small, or the difference between the variance of X, explained by RI and R; and 
the variance of X, explained by R;, 

EC(RCX,I RI, R;l - e’(R;))‘] = (RSQ(X,; RI, R;) - RSQ(X,; R;))var(XJ 
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is small, then the squared valuation error, 

(EC.wRI)I - Jwww)2 

is small. 

Proof: 

(E[Ze(R,)] - E[Ze’(R;)])2 = (E[ZX,] - E[Ze’(R;)])’ 

= (ECZ(ECXpIRI, Kl) - e’(W1)2 

= VW-EEZIR;l)WCX,I RI, &I - 4R~)1)2 

d (EC@ - ECWW21J W(ECX,lR> %I 

- 4Ri))‘l) 

= var(Z)(l - RSQ(Z; R;)) 

x varW,)(RSQW,; RI, W 

- RSQ(X,; R;)). 0 

As with other continuity results of this sort [Green (1986) for example] the 
bound is not uniform over all possible managed portfolios. For example, 
levering up a managed portfolio will increase the divergence from the true value. 
Thus, as Green (1986) points out in the context of evaluating the performance of 
managers using Jensen’s alpha, performance ranks evaluated using one proxy 
can easily be reversed using another proxy that is close to the original proxy. 
Thus, the same problems noted by Roll (1978) with ranking portfolios will 
appear with the methodology examined here. The positive aspect of the proposi- 
tion is that no matter what the true index is, if the chosen index and the 
functional form of the projection explain most of the variation in X,, then the 
valuation error will be small. 

This proposition suggests that different indices may be used to evaluate 
different portfolios. For example, if a manager switches funds between bills and 
some index with return R’, then in the absence of knowledge of the true index, 
the index being timed may be the most appropriate index to use. The next 
proposition provides a condition under which the correct value can be inferred 
from the use of an incorrect index. 
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Proposition 4. Suppose that the portfolio excess return is given by 
X, = \v(R’ - Rf) = 1v.X’. where R’ is the return on some portfolio of traded 
security and R, the risk-less return. The scalar random variable, IV, takes on the 
value of one or zero, and is a function of a (possibly multi-dimensioned) signal, S, 
which in turn is a function of X’ and observational noise v which is independent 
of X’ and the return, R, on the true index. Then the true average value of the 
managed portfolio, E[ZX,], equals the average value of the contingent claim 

E(X,IX’), ECZE CX,lX’ll. 

Proof: 

E[ZX,] = E[ZwX’] = E[ZX’E[wIR, X’]] = E[ZX’E[wlX’]] 

= EIZEIXplX’]]. 0 

These results suggest that knowledge of what the manager is doing will most 
likely help in choosing the right functional form and the right index to achieve 
the right mix of Type I and Type II errors. 

In the empirical finance literature, it is common practice to use the return on 
the equally weighted index portfolio of stocks on the NYSE as the market index 
portfolio (or the single pre-specified factor in linear beta pricing models). 
However, Proposition 4 suggests that if the portfolio manager behaves as 
though he allocates the funds between cash and a particular portfolio of 
securities, then it may be advisable to use such a portfolio of securities as the 
index. There are a priori reasons to believe that while the portfolio of stocks held 
by some portfolio managers resembles the value weighted index of stocks traded 
on the exchange, others resemble the equally weighted index. Hence in our 
empirical study of mutual funds to illustrate the application of our methods we 
will examine how sensitive our conclusions are to the choice of the index. 

4. Evaluating the performance of mutual funds 

Lehmann and Modest (1987) examine the performance of 130 mutual funds 
over the period 1968 to 1982. Their primary concern was the sensitivity of 
performance evaluation to the choice of the index. They find that a substantial 
number of fund returns exhibit option-like features (that is, nonlinearly related 
to the return on the index, see Tables X and XI, pages 254-55) which provides 
a priori justification for using our valuation method. They conclude that (a) the 
choice of the index matters in the sense that the number of rejections of the 
hypothesis of zero value changes, in some cases substantially, and (b) there is 
evidence of negative value in the mutual fund returns. Lehmann and Modest’s 
analysis was fairly wide ranging, looking at not only the equally and value 
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weighted indices, but various APT indices as well. Our analysis, using the 
LehmannModest data set will be more modest. Our intent is to illustrate our 
methodology on actual portfolio returns and examine how the choice of the 
index and the number of knots matters. Unlike Lehmann and Modest, who 
examine the statistical significance of the Treynor-Black (1972) appraisal ratios 
and the coefficient on the quadratic term, we examine the statistical significance 
of the total value of the fund manager’s abilities. 

For the analysis of the mutual funds, we used a slight modification of the 
spline estimation discussed above. Specifically, we regressed the excess portfolio 
return divided by one plus the interest rate on a spline function of the gross 
index return divided by the gross interest rate. That is, defining X$, to be 
X,4(1 + rft) and RT, to be R&l + rft) where RI, is the gross (one plus) rate of 
return on the index, the one-knot spline estimation is: 

Xzl = u. + al RT, + a,MAX(R$ - k, 0) + e, 

This was done for two reasons. First, RF, is more likely than R,, to be stationary. 
Second, the valuation of the resulting projection of Xpt, conditional on the 
interest rate, is independent of the interest rate. This can be seen by multiplying 
the estimated projection by (1 + rrJ to get: 

e, = ~(1 + rJ,) + a,R,, + u2MAX(RI, - k(1 + rr,), 0). 

The value of the first two terms is a0 + a,. Using the Black-Scholes formula, the 
value of the third term is: 

az(N(d~) - Nddk(l + rJ/(l + rf,)) = u2(N(dl) - kN(d,)) , 

where 

di = [log( 1) - log(k( 1 + rJ) + 0.52~~ + log( 1 + rf,)]/v 

= - log(k)/c + u/2 

and d, = dl - 1:. In these expressions o is the standard deviation of the continu- 
ously compounded index return, while N(.) is the standard normal distribution 
function. When the one-knot spline was estimated, the knot was put at k = 1. 
When three-knot splines were estimated, the knots were placed at 1 and at 
exp(m: + 0.67~:) where rnT and a: are respectively the mean and standard 
deviation of log(R,,) - log(1 + rft) and 0.67 is approximately the 75 percent 
point of the standard normal distribution. 

Our results agree with both the conclusions of Lehmann and Modest in the 
sense that there are substantial differences in the value estimates obtained using 
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Table 3 

Mutual fund performance 

Cross-secttonal dtstrtbutton of the value estimates for 130 mutual funds usmg vartous specificattons 
Value IS calculated wtth respect to the NYSE value wetghted index. Values are annuahzed and m 

percent 

Mean 
Standard devtatton 
Dectles mm 

8 
9 
Max 

One-knot splme Three-knot splme 

- 0.091 - 0.171 
2.692 2.703 

- 8.645 - 8.704 
- 3.036 - 3.291 
_ 2.144 _ 2.182 
- 1.195 ~ 1.297 
- 0.905 - 0.984 
-0334 -0400 

0 340 0 360 
1.098 1.088 
2 029 1987 
3 233 3 112 

10 097 10.094 

the two indices. Furthermore there is a preponderance of negative values. 
However, we find that the two value estimates are highly correlated and the rank 
correlation is also very high. 

Our methods classify some funds as providing “valuable service” independent 
of whether we use the equally weighted or the value weighted index. This finding 
is consistent with that of Lee and Rahman (1990). In classifying fund managers 
as having superior ability we cannot use the standard 5 percent significance level 
as a cutoff. This is because if none of the funds managers have any abilities and 
the estimation errors are uncorrelated then 5 percent of the funds should indeed 
show superior performance if the test statistic is right. To take this into account, 
we use the Bonforoni p-values. Also, the evidence supports the view that for the 
mutual fund portfolios we consider, there is not much gain to be obtained from 
using more than one option (in addition to the risk-free asset) along with the 

index return to approximate the excess return on mutual funds. 
Tables 3 and 4 present the cross-sectional distribution of value estimates with 

respect to the value weighted and equally weighted index respectively for the 
one-knot and three-knot spline cases. There are two conclusions to be drawn 
from these tables. First, the one-knot and three-knot spline specifications pro- 
duce very similar results, suggesting that use of the one-knot spline approxima- 
tion may be sufficient for this particular application. In fact, the correlation 
between the values obtained using the two indices is never less than 0.995. 
Second, use of the equally weighted index produces lower values in general. It 
also appears that the use of the equally weighted index just shifts the distribution 
of values to the left by a constant amount, where the constant approximately 
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Table 4 

Mutual fund performance 

Cross-sectional distribution of value estimates for 130 mutual funds usmg various specifications. 
Value ts calculated with respect to the AMEX and NYSE equally wetghted index. Values are 

annuahzed and in percent. 

Mean 
Standard devtatton 
Deciles min 
I 
2 
3 
4 
5 
6 
7 
8 
9 
Max 

One-knot sphne Three-knot splme 

- 3.055 - 2 678 
2.752 2 723 

~ 12.065 - 11.421 
- 6 100 - 5.156 
- 5 336 - 4.973 
- 4.535 - 4 204 
- 3.763 ~ 3321 
~ 2.849 - 2.666 
- 2.140 - 1.922 
- 1.712 - 1.361 
-0825 ~ 0.480 

0.166 0.567 
7.585 7.775 

equals the value assigned to the value weighted portfolio of stocks in the NYSE 
when the equally weighted portfolio of stocks is used as the index. We suspect 
that this may be due to the fact that mutual fund portfolios resemble the value 
weighted index portfolio and the value weighted index is under-valued by the 
equally weighted index. 

Tables 5 and 6 report the cross-sectional distribution of the t-statistics 
(computed allowing for the presence of conditional heteroscedasticity) for the 
hypothesis of zero value for the mutual fund manager’s abilities, for the value 
weighted and equally weighted indices respectively. An examination of the 
minimum and maximum t-statistics with an application of the Bonforoni bound 
suggests that when using the value weighted index there is evidence of both 
positive and negative value while there is evidence only of negative value when 
value is estimated using the equally weighted index. 

Despite the significant differences in value estimates obtained using the two 
indices and different number of knots, the value estimates themselves are highly 
correlated. Table 7 shows that the correlation between any two value estimates 
is never less than 0.95. 

The top performer by any measure (both one- and three-knot specifications 
with either index) was the Templeton Growth fund. One interesting observation 
is that the shape of the fit tends to be concave with a positive intercept. See 
Figure 1. The shape is similar to a fund that uses written covered calls in its 
portfolios, but obtains a better than fair value for its written calls. 

In our analysis we used the Black-Scholes model to evaluate the value of the 
estimated options. Hence to some extent our conclusions depend on the validity 
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Table 5 

Mutual fund performance 

Cross-secttonal dtstrtbutton of 130 t-stattsttcs. Each t-stattsttc ts for the hypotheses that the asso- 
ctated fund IS providmg zero net value returns. Value is calculated wtth respect to tb* NYSE 
value-wetghted mdex The “Bonforom p” is the p-value of the associated t-stattsttc multipheo by 130. 

Min t 
Bonforoni p 
Average t 
Max t 
Bonforom p 
Number wtth t-stattsttcs 
< -2.326 
- 2.326 < t < - 196 
- 1.96 < t < - 1.645 
- 1.645 < t < 0 

O<t<l.645 
1.645 < t < 1.96 
1.96 < t < 2.326 
2.326 < t 

One-knot spline Three-knot sphne 

- 4.01 
0.008 

- 0.09 
4.2 I 
0.003 

8 8 
4 5 
7 7 

52 51 
41 41 

9 9 
4 4 
5 5 

- 4.05 
0 007 

- 0 13 
4 18 
0.004 

Table 6 

Mutual fund performance 

Cross-secttonal dtstribution of 130 t-statisttcs. Each t-stattsttc is for the hypothesis that the asso- 
ciated fund is providing zero net value returns Value ts calculated with respect to the AMEX and 
NYSE equally-wetghted Index. The “Bonforom p” IS the p-value of the assoctated t-statistic 

multtphed by 130 

Min t 
Bonforom p 
Average t 
Max t 
Bonforom p 
Number wtth t-stattsttcs 
< -2326 
- 2.326 < t < - 1.96 
- 1 96 < t < ~ 1 645 
- 1645<t<O 

0< t< 1.645 
1.645<t< 196 
1.96 < t < 2.326 
2 326 < t 

One-knot sphne Three-knot sphne 

- 4.16 ~ 4.32 
0 004 0.002 

- 1.19 - 1.11 
2.94 2.98 
0.427 0.375 

15 15 
12 12 
15 14 
72 70 
14 17 

1 0 
0 1 
1 1 

of the Black-&holes model. However, it should not be difficult to modify our 
procedure to make use of any other option pricing model that the analyst 
considers appropriate. If prices on traded options are available, the arguments 
in this paper can be extended to justify the use of the Linear Factor Model 
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Table 7 

Mutual fund performance 

Correlations and rank correlatmns of 130 value estimates obtamed from the NYSE value welghted 
Index and the AMEX and NYSE equally welghted mdex for various specifications of the relations 

between the portfolio excess return and the Index excess return 

Correlation Rank correlation 

One-knot spline 
Three-knot sphne 

0 964 0.958 
0.978 0.97 I 

-0 2 0 

Excess Return on CRSP EW InrJiz 

+ Fund Excess Return - F,,ted Expected Excess Refum 

Fig 1 Temptleton growth fund 

analogue of Jensen’s alpha suggested by Connor and Korajczyk (1986) when 
excess return on a few bench mark options are used as “factors” in addition to 
the excess return on the factors suggested by Connor and Korajczyk. 

Our analysis is almost certainly affected by a survivorship bias-we restrict 
attention to those funds in operation between 1968 and 1982. Consideration of 
this bias merely strengthens our conclusion that there is a preponderance of 
negative values. It is of course possible that the positive performers were merely 
the survivors of an originally large family of competing mutual funds. It is not 
clear why the survivor problem should bias our analysis of the index choice, 
however. Still, for the evaluation of mutual funds this is an important area of 
further research [see Brown, Goetzmann, Ibbotson, and Ross (1992)]. 



158 L R. Gloskw and R. Jagmnuthan. A contrngent claim approach 

5. Conclusion 

The purpose of this paper is to develop a fairly general methodology for 
valuing the performance of managed portfolios. The general approach is to 
decompose the payoff on the managed portfolio into two components: the first is 
a function of the return on some index portfolio (or a set of index portfolios), and 
the second is the residual that is left out. We assume that for some choice of the 
index portfolio the residual has zero value. Hence the value of the payoff from 
the managed portfolio is the value of the contingent claim on the index portfolio 
defined by the first part of the decomposition. 

In practice, the form of the projection is not known. We suggest approximat- 
ing the form of the contingent claim using low order linear splines or poly- 
nomials. Our results suggest that a three-knot linear spline may be adequate to 
capture some types of nonlinearitiesPnamely, that may arise due to portfolio 
insurance and market timing strategies of portfolio managers, so long as 
sufficiently long time-series of data is available. While approximating the func- 
tion using a one-knot spline is operationally similar to the HenrikssonMerton 
(1981) method, there are two differences. First, the theoretical support for 
our model arises from entirely different arguments. Second, the knot is not 
necessarily located at the risk-free rate. Even though it may not be possible to 
separate abilities into “timing” and “selectivity,” the total value estimated by the 
Henriksson-Merton method may be reasonably close to the true value. Hence 
our results can be viewed as supporting the use of the Henriksson-Merton 
method for detecting superior performance, but not for identifying the source of 
this superior performance. Similarly the value of the portfolio manager’s abil- 
ities estimated by the Treynor-Mazuy quadratic regression method can be 
viewed as a polynomial approximation. Jensen’s alpha can be viewed as a linear 
approximation. 

The choice of an index is problematic, since theory does not provide adequate 
guidance in this respect. We present results suggesting that if the index chosen 
is reasonably close to the true index, or if the managed portfolio return 
that is not explained as a (nonlinear) function of the return on some index 
portfolio is relatively small, then the estimated value will be close to the true 
value. 

Our procedure gives the value at the margin and hence is sensitive to scaling, 
in the sense that scaling up the size of the operations by leverage will increase 
value. Hence the value computed according to this procedure cannot in general 
be used to compare different fund managers, or to predict the demand for the 
portfolio. This is a common shortcoming of performance evaluation procedures. 
If a stand can be taken on investor preferences, and the index the investor will 
hold in the absence of access to the managed portfolio, Bayesian extensions to 
the valuation method described here can be used to arrive at an estimate of the 
value of the manager’s abilities. 
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Our approach also helps in appreciating the major difficulties involved in 
evaluating performance. First, the assumption that the ability of the portfolio 
manager varies over time in a sufficiently systematic stochastic fashion severely 
restricts the applicability of our method as well as the other methods that have 
been suggested in literature. Second, the form of the contingent claim has to be 
estimated. As the figures in Table 1 suggest, no one particular choice for the 
functional form of the contingent claim may be able to capture all types of 
nonlinearities involved adequately. One possible way out of this difficulty is to 
choose the functional form after extensive discussions with the portfolio man- 
ager to understand how the manager operates. To minimize the moral hazard 
problems involved, it will be necessary to monitor the manager ex post to ensure 
that the operations were consistent with what wa] agreed upon earlier. 

We examined the performance of 130 mutual funds during 1968882 to 
illustrate the use of our method. We found that while the value estimates depend 
on the choice of the index, the relative rankings were not all that sensitive to the 
choice of the index. Our analysis using mutual funds suggest that use of 
one-knot spline may be adequate. We found that while superior performance is 
indeed rare, there still were either a few superior performers or lucky survivors. 

Our results can be viewed as supporting the use of the multi-factor analogue 
of Jensen’s alpha suggested by Connor and Korajczyk (1986) by modifying their 
approach to include the excess returns on certain selected options on stock 
index portfolios as additional “factor excess returns.” 

Appendix 

We used monthly returns on 130 mutual funds during the period January 
1968 through December 1982. This data set was originally compiled by Roy 
Henriksson and updated by Bruce Lehmann and David Modest. We are 
grateful to Bruce Lehmann and David Modest for letting us use their data set. 
A detailed description of this data set appears in Lehmann and Modest (1987). 

We also used monthly returns on the value weighted index and equally 
weighted index of stocks in the American and New York Stock Exchanges from 
the CRSP monthly tapes available from the Center for Research in Security 
Prices. University of Chicago. 

All computations were done using GAUSS version 1.49b and RATS version 
2.0. 
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