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Av. Presidente Errázuriz 3485, Las Condes, Santiago, Chile; correa@uai.cl

∗∗ Sloan School of Management, Massachusetts Institute of Technology

Office E53-361, 77 Massachusetts Ave., Cambridge, MA 02139, USA; schulz@mit.edu

∗∗∗ Graduate School of Business, Columbia University

Uris Hall, Room 418, 3022 Broadway Ave., New York, NY 10027, USA; stier@gsb.columbia.edu

Abstract. We present a short, geometric proof for the price-of-anarchy results that have

recently been established in a series of papers on selfish routing in multicommodity flow

networks and on nonatomic congestion games. This novel proof also facilitates two new

types of theoretical results: On the one hand, we give pseudo-approximation results that

depend on the class of allowable cost functions. On the other hand, we derive stronger

bounds on the inefficiency of equilibria for situations in which the equilibrium costs are

within reasonable limits of the fixed costs. These tighter bounds help to explain empirical

observations in vehicular traffic networks. Our analysis holds in the more general context

of nonatomic congestion games, which provide the framework in which we describe this work.
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1. Introduction

Congestion games (Rosenthal 1973) are noncooperative games in which players’ strategies

consist of subsets of resources, and the utility of a player depends only on the number of

players choosing the same or some overlapping strategy. We consider nonatomic congestion

games (Schmeidler 1973), which model interactions involving a continuous number of players,

each having a negligible affect on other players. Nonatomic congestion games have been

studied, among others, by Milchtaich (2000, 2004), Chau and Sim (2003), and Roughgarden

and Tardos (2004).
1
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The most prominent example of a nonatomic congestion game is the traffic routing model

of Wardrop (1952). The arcs in a given network represent the resources, the different origin-

destination pairs correspond to the player types, and the strategies available to a particular

player type are the paths in the network between its origin-destination pair. The cost of an

arc describes the delay experienced by traffic traversing that arc as a function of the flow on

that arc. A social optimum corresponds to a multicommodity flow of minimum total delay,

whereas in a Wardrop equilibrium, every player is traveling on a shortest path.

Nash equilibria in general and Wardrop equilibria in particular are typically inefficient:

they generally do not minimize the social cost. Koutsoupias and Papadimitriou (1999)

proposed to analyze the inefficiency of equilibria from a worst-case perspective; this led to

the notion of “price of anarchy” (Papadimitriou 2001), which is the ratio of the worst social

cost of a Nash equilibrium to the cost of an optimal solution. In the context of selfish routing

(i.e., the traffic model described in the previous paragraph), the price of anarchy was analyzed

in a series of papers for increasingly more general classes of cost functions and other model

features; see, among others, Roughgarden and Tardos (2002), Roughgarden (2003), Chau

and Sim (2003), Correa, Schulz, and Stier-Moses (2004), Roughgarden and Tardos (2004),

and Perakis (2007).

In this article, we give alternative proofs for the price-of-anarchy results in the above-

mentioned papers. Our proofs simplify and unify previous arguments, and they provide

insights that enable us to extend these results to more general settings. The paper is orga-

nized as follows. Nonatomic congestion games are formally defined in Section 2. In Section 3,

we present new proofs for two known bounds on the inefficiency of equilibria in nonatomic

congestion games with affine, separable cost functions. These proofs rely on a new interpre-

tation of the parameter β, originally introduced by Correa, Schulz, and Stier-Moses (2004) in

the context of traffic routing. This interpretation sets the stage for various generalizations.

In Section 4, we consider nonseparable, nonlinear cost functions. We also discuss the special

cases of separable cost functions (Section 4.1) and of situations in which the variable costs

of resources do not exceed their fixed costs by too much (Section 4.2). Section 5 contains

our concluding remarks.

2. Nonatomic Congestion Games

A nonatomic congestion game consists of a finite set A of resources and k different types of

players. Players are infinitesimal agents, and the continuum of players of type i is represented

by the interval [0, ni], for some ni > 0, i = 1, 2, . . . , k. Each player type i possesses a set Si of

strategies, and each strategy consists of a subset of the resources. For notational convenience,

we assume that the sets Si, i = 1, 2, . . . , k, are disjoint. We denote their union by S. The rate

of consumption of a resource a ∈ S by a strategy S ∈ Si is given by ra,S > 0. Each player



3

selects a strategy, which leads to a strategy distribution x = (xS)S∈S with
∑

S∈Si
xS = ni

for each player type i, and xS > 0 for all S ∈ S. A strategy distribution generates a

utilization rate xa :=
∑k

i=1

∑
S∈Si:a∈S ra,S xS for each resource a ∈ A. In the sequel, we use x

interchangeably to denote a strategy distribution or its associated vector of utilization rates.

Moreover, we let X represent both the space of feasible strategy distributions and that of

feasible utilization rate vectors. This abuse of notation is harmless because we are interested

only in the total cost of different strategy distributions, and the total cost of any strategy

distribution is fully specified by its corresponding vector of utilization rates.

The cost of a resource a ∈ A is given by a continuous function ca : R
A
>0 → R>0. The cost

functions ca considered here include separable functions, for which ca(x) = ca(xa), and affine

functions, for which ca(x) =
∑

a′∈A ca,a′xa′ + ba for some coefficients ca,a′ and ba. The cost

experienced by a player that selects a strategy S ∈ S is given by cS(x) :=
∑

a∈S ra,S ca(x).

We define the social cost C(x) of a strategy distribution x as the total disutility experienced

by all players:

C(x) :=
k∑

i=1

∑

S∈Si

cS(x)xS =
∑

a∈A

ca(x)xa = 〈c(x), x〉 .

Here, c(x) := (ca(x))a∈A, and 〈c(x), x〉 denotes the inner product of the two vectors c(x)

and x.

A social optimum xopt is a feasible strategy distribution of minimum social cost; i.e.,

C(xopt) 6 C(x) for all strategy distributions x ∈ X. Because c is continuous and X is

compact and convex, a social optimum exists and is well-defined.

Extending the notion of Wardrop equilibrium (1952) to nonatomic congestion games, a

strategy distribution xeq is called an equilibrium if all players of the same type experience

the same cost, and there is no strategy of smaller cost; i.e., cS(xeq) 6 cS′(xeq) for any two

strategies S, S ′ ∈ Si with xeq
S > 0, for each i = 1, 2, . . . , k. It is well known (e.g., de Palma

and Nesterov 1998) that if a strategy distribution xeq is an equilibrium, then it satisfies

〈c(xeq), xeq − x〉 6 0 for all strategy distributions x ∈ X. (1)

Hartman and Stampacchia (1966) proved that for c continuous, (1) always has a solution (if

X is compact and convex). In the following, we assume that the operator c : R
A
>0 → R

A
>0

is monotone; i.e., 〈c(x) − c(y), x − y〉 > 0 for all x, y ∈ R
A
>0. Monotonicity guarantees the

existence of equilibria, and every solution to the variational inequality (1) is, in fact, an

equilibrium (de Palma and Nesterov 1998).

For a given instance of a nonatomic congestion game, we measure the inefficiency of an

equilibrium with the help of the ratio C(xeq)/C(xopt), where xeq and xopt denote a (worst)

equilibrium and a social optimum, respectively. The price of anarchy for a class of games is

defined as the supremum of this ratio over all instances belonging to that class.
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Figure 1. Illustration of the proof of Theorem 3.1

3. A Graphical Proof for Affine and Separable Cost Functions

Let us begin by studying nonatomic congestion games with affine and separable cost

functions. We present a new proof of an existing bound on the worst-case inefficiency of

equilibria, and a strengthening of a pseudo-approximation bound. The key insight into both

results comes from a graphical representation of the situation.

We assume for the rest of this section that the cost of a resource a ∈ A under the utilization

rate vector x is ca(x) = ca(xa) = caxa +ba for some nonnegative coefficients ca and ba. Under

this assumption, it is known not only that an equilibrium xeq exists, but also that different

equilibria have the same social cost (Beckmann, McGuire, and Winsten 1956).

The following result shows that, in equilibrium, the social cost cannot increase by more

than 33%, compared to a social optimum. This means that the lack of central coordination

does not cause a significant loss of efficiency. The most compact proof of this fact was

presented in the context of selfish routing by Correa, Schulz, and Stier-Moses (2004); our

proof below can be viewed as a geometric variant of it. The result itself is due to Roughgarden

and Tardos (2002, 2004).

Theorem 3.1 (Roughgarden and Tardos 2004). Let xeq be an equilibrium of a nonatomic

congestion game with separable, affine cost functions, and let xopt be a social optimum.

Then, C(xeq) 6 4/3 C(xopt).

Proof. Let x be a feasible strategy distribution. Because of (1), we have

C(xeq) =
∑

a∈A

ca(x
eq
a )xeq

a 6
∑

a∈A

ca(x
eq
a )xa =

∑

a∈A

ca(xa)xa +
∑

a∈A

(ca(x
eq
a ) − ca(xa))xa . (2)

Since the functions ca are nondecreasing, we need to focus only on the expressions (ca(x
eq
a )−

ca(xa))xa for which xa < xeq
a to bound the last term in (2) from above. In this case,

(ca(x
eq
a ) − ca(xa))xa is equal to the area of the shaded rectangle in Figure 1. Note that
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the area of any rectangle whose upper-left corner point is (0, ca(x
eq
a )) and whose lower-right

corner point lies on the line representing ca(ya) = caya + ba, is at most half that of the

triangle defined by the three points (0, ca(x
eq
a )), (0, ba), and (xeq

a , ca(x
eq
a )). In turn, the area

of the triangle is at most half that of the rectangle defined by the two points (0, 0) and

(xeq
a , ca(x

eq
a )). In particular,

(ca(x
eq
a ) − ca(xa))xa 6

1

4
ca(x

eq
a )xeq

a . (3)

Setting x = xopt proves the claim. �

An immediate consequence of this proof is a pseudo-approximation result, which upper

bounds the social cost of an equilibrium by that of an optimal strategy distribution for the

same game with more players of each type. More precisely, to obtain the following result,

one needs only the following inequality derived in the preceding proof,

∑

a∈A

ca(x
eq
a )xa 6 C(x) +

1

4
C(xeq), (4)

which holds for any nonnegative vector x (i.e., x need not be a feasible strategy distribution).

Corollary 3.2. If xeq is an equilibrium of a nonatomic congestion game with separable,

affine cost functions, and yopt is a social optimum for the same game with 5/4 times as

many players of each type,1 then C(xeq) 6 C(yopt).

Proof. Using (1) together with the feasibility of the vector (4/5) yopt for the original game,

and (4), we obtain

C(xeq) =
5

4

∑

a∈A

ca(x
eq
a )xeq

a −
1

4
C(xeq) 6

∑

a∈A

ca(x
eq
a )yopt

a −
1

4
C(xeq) 6 C(yopt) .

�

The smallest value for which this corollary remains true is, in fact, 5/4. A tight example is

presented in a more general context in Section 4.2. The first result of this kind was given by

Roughgarden and Tardos (2002), who showed that an equilibrium traffic assignment causes

a total travel time of at most that of a social optimum routing twice as much traffic. This

result and its subsequent extension to general nonatomic congestion games (Roughgarden

and Tardos 2004) hold for arbitrary (albeit separable) cost functions. The selfish routing

version of Corollary 3.2 is due to Chakrabarty (2004) and inspired us to qualify the pseudo-

approximation bounds according to the class of cost functions considered; see the next section

for details.

1Formally, the continuum of players of type i in the new game is represented by the interval [0, 5

4
ni], i =

1, 2, . . . , k.



6 JOSÉ R. CORREA, ANDREAS S. SCHULZ, AND NICOLÁS E. STIER-MOSES

4. Nonseparable and Nonlinear Cost Functions

In this section, we generalize the results of the previous section to nonatomic congestion

games with general cost functions, as defined in Section 2. Afterwards, we discuss some

important special cases for which we can provide additional insights.

In several practical situations, the cost of using one resource may depend on the rate

of consumption of other resources, and the relations between utilization rates and costs

may be nonlinear. For instance, the time a vehicle needs to cross through a stop sign

clearly depends on the amount of traffic on the perpendicular street; the waiting time of

passengers at a given bus stop depends on the number of passengers boarding the bus at

previous stops; or, to give an example in the context of wireless communication networks,

transmission delays might depend on the load of neighboring cells, because of interference.

In transportation science, congestion effects are usually modeled with the help of degree-4

polynomials (Bureau of Public Roads 1964), and in telecommunication engineering, delays

usually arise from queueing effects; in either case, the functions are nonlinear.

In the previous section, we used the linearity of the cost functions ca in one place only,

namely when we proved (3). An appropriate generalization of (3) is, in fact, the key for

extending Theorem 3.1 and Corollary 3.2 to more general classes of cost functions. To that

effect, we define, for a cost function c and a vector v ∈ X,

β(c, v) := max
x∈R

A

>0

〈c(v) − c(x), x〉

〈c(v), v〉
,

where 0/0 = 0, by convention. For a given class of cost functions C, we let

β(C) := sup
c∈C,v∈X

β(c, v).

Note that, because of the monotonicity of c ∈ C, β(C) 6 1. This parameter was originally

introduced by Correa, Schulz, and Stier-Moses (2004) in the context of traffic routing and

separable cost functions. It leads directly to the following lemma, which is a generalization

of (4).

Lemma 4.1. Let xeq be an equilibrium of a nonatomic congestion game with cost functions

drawn from a class C of nonseparable cost functions, and let x be a nonnegative vector. Then,

〈c(xeq), x〉 6 C(x) + β(C)C(xeq).

Proof. Using the definition of β(C) and the linearity of the inner product, we get

〈c(xeq), x〉 = 〈c(x), x〉 + 〈c(xeq) − c(x), x〉

6 〈c(x), x〉 + β(c, xeq)〈c(xeq), xeq〉

6 C(x) + β(C)C(xeq). �
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The following theorem generalizes the main results of Section 3, yielding price-of-anarchy

and pseudo-approximation results for nonatomic congestion games with nonseparable and

nonlinear cost functions. Actually, it also strengthens previously known price-of-anarchy

bounds for the case of nonseparable cost functions. These prior bounds require stronger as-

sumptions on the cost functions, such as convexity and differentiability. Chau and Sim (2003)

proved that the price of anarchy for nonseparable and symmetric cost functions is bounded

by a natural extension of the parameter α(C) of Roughgarden and Tardos (see the discus-

sion in Section 4.1 below). Perakis (2007) considered general nonseparable cost functions

and proved upper bounds on the price of anarchy using variational inequalities as well. Her

bounds depend on two parameters that measure the asymmetry and the nonlinearity of the

cost functions considered.

Theorem 4.2. Let xeq be an equilibrium of a nonatomic congestion game with cost functions

drawn from a class C of nonseparable cost functions.

(a) If xopt is a social optimum for this game, then C(xeq) 6 (1 − β(C))−1C(xopt).

(b) If yopt is a social optimum for the same game with 1 + β(C) times as many players of

each type, then C(xeq) 6 C(yopt).

Proof. For (a), it suffices to use (1) and Lemma 4.1:

C(xeq) = 〈c(xeq), xeq〉 6 〈c(xeq), xopt〉 6 C(xopt) + β(C)C(xeq).

Let us now prove part (b). Because of the feasibility of (1 + β(C))−1 yopt for the original

game, we have that 〈c(xeq), xeq〉 6 〈c(xeq), (1 + β(C))−1 yopt〉. Therefore,

C(xeq) = (1 + β(C))〈c(xeq), xeq〉 − β(C)〈c(xeq), xeq〉

6 (1 + β(C))〈c(xeq), (1 + β(C))−1yopt〉 − β(C)〈c(xeq), xeq〉

6 C(yopt) + β(C)C(xeq) − β(C)C(xeq)

= C(yopt).

The last inequality follows from Lemma 4.1. �

Both parts of this theorem are tight for particular classes of cost functions, as we will

illustrate in Section 4.2.

It remains to determine the value of β(C) for certain classes of cost functions. We start off

by considering affine cost functions of the form c(x) = Ax + b, with b > 0 and A symmetric

and positive semidefinite. In this setting, Theorem 4.2 provides a simple proof of a result

by Chau and Sim (2003), who established that the price of anarchy for this class of cost
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functions is at most 4/3. Indeed, in this case

β(c, v) = max
x∈R

A

>0

〈c(v) − c(x), x〉

〈c(v), v〉
=

maxx∈R
A

>0

〈A(v − x), x〉

〈Av, v〉 + 〈b, v〉
.

As A is symmetric and positive semidefinite, the numerator amounts to a convex mini-

mization problem, and the optimum is attained at x = v/2, leading to a β-value of 1/4.

Theorem 4.2 yields C(xeq) 6 4/3 C(xopt), where xopt is a social optimum for this game.

Moreover, C(xeq) 6 C(yopt), for a social optimum yopt of the same game with 5/4 times as

many players of each type.

4.1. Separable Cost Functions. An important special case is that of nonatomic conges-

tion games with separable, nonlinear cost functions. In practice, this class of cost functions

is often used as a simplified model of reality when there are insufficient data to estimate the

interdependencies among different resources. Moreover, several prior results were derived in

this setting. A separable, continuous, and nondecreasing cost function ca : R>0 → R>0 is

“standard” if it is differentiable, and its product with the identify function is convex.

Theorem 4.3 (Roughgarden and Tardos 2004, Theorem 4.7). For a nonzero cost function ca

in a given class C of standard cost functions, define

α(ca) := sup
xa>0:ca(xa)>0

(λµ + (1 − λ))−1,

where λ ∈ [0, 1] satisfies ca(λxa) + (λxa)c
′
a(λxa) = ca(xa) and µ = ca(λxa)/ca(xa) ∈ [0, 1].

Let xeq be an equilibrium of a nonatomic congestion game with cost functions drawn from C.

If xopt is a social optimum of this game, then C(xeq) 6 α(C) C(xopt), where α(C) :=

sup06=ca∈C
α(ca).

Under the assumptions of Theorem 4.3, one can show that α(C) = (1 − β(C))−1 (Correa,

Schulz, and Stier-Moses 2004). In particular, Theorem 4.3 is, in fact, a special case of

Theorem 4.2 (a). Indeed, for such cost functions, β(C) = supca∈C,va>0 β(ca, va), where

β(ca, va) := max
xa>0

(ca(va) − ca(xa))xa

ca(va)va

= max
06xa6va

(ca(va) − ca(xa))xa

ca(va)va

.

While this coincides with the original definition of β(C) by Correa, Schulz, and Stier-

Moses (2004), the authors did not provide the interpretation offered by Figure 2. If we

go back to the proof of Theorem 3.1 and argue along similar lines, we encounter the situa-

tion depicted in this figure. It remains to observe that β(C) is an upper bound on the ratio

of the area of the shaded rectangle to that of the large rectangle.

Concrete values of β(C) can be readily calculated for several classes of cost functions. For

example, the maximum inefficiency of equilibria in games with quadratic or cubic cost func-

tions is 1.626 and 1.896, respectively; for polynomials of degree at most 4, it is 2.151. More
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Figure 2. Illustration of the definition of β

generally, when C contains polynomials of degree at most d with nonnegative coefficients,

then β(C) = d/((d + 1)1+1/d), which implies that the price of anarchy grows asymptotically

as Θ(d/ ln d). For details on these calculations, the reader is referred to Roughgarden (2003)

and Correa, Schulz, and Stier-Moses (2004).

Let us also point out that Theorem 4.2 (b) dominates the following result.

Theorem 4.4 (Roughgarden and Tardos 2004, Theorem 5.1). Let xeq be an equilibrium of

a nonatomic congestion game with nondecreasing, continuous, and separable cost functions.

If yopt is a social optimum of the same game with twice as many players of each type, then

C(xeq) 6 C(yopt).

4.2. Cost Functions with Limited Congestion Effects. To motivate our next set of

results, it is helpful to consider selfish routing in traffic networks. The empirically observed

ratio of the total travel time of a Wardrop equilibrium to that of a system optimum is

typically significantly smaller than predicted by the price-of-anarchy results of Theorem 4.2.

For instance, in the computational studies of Jahn et al. (2005), the largest ratio of Wardrop-

equilibrium cost to system-optimum cost over several realistic instances was 1.15 (instead of

the theoretical worst case of 2.151). Qiu et al. (2006) made similar observations in the context

of telecommunication networks. Indeed, for a given class of cost functions, the corresponding

price of anarchy is a worst-case measure, taken over all possible instances. However, if one

compares the time needed to drive to work during rush hour with the duration of the same

trip at night, then the free-flow travel time is usually not a negligible fraction of the rush-

hour experience. We therefore consider the following scenario: the cost of any given resource

at utilization rate zero is at least a constant fraction of that of the same resource at the

utilization rate in equilibrium.2

2To be formally correct, this assumption requires that the equilibrium utilization rates of all resources are
unique, as it is the case when c is strictly monotone (de Palma and Nesterov 1998). To circumvent this
problem, we formulate the following results in terms of a specific equilibrium.
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The ratio between the cost at equilibrium and that under no utilization is usually referred

to as the travel time index in studies of transportation systems. It measures the congestion

level in a given urban area. According to the Texas Transportation Institute (2005), the most

congested city in the United States is Los Angeles, which has a travel time index of 1.75.

The average index among very large urban areas in the United States is 1.48.

A different instance of this concept may be found in production processes, where the fixed

cost of any one resource accounts for a non-negligible fraction of the total cost (fixed plus

variable costs) in equilibrium.

The next result makes the technical assumption that the family C of allowable cost func-

tions is closed under the subtraction of costs at utilization rate zero; i.e., c − c(0) ∈ C for

all c ∈ C. Without this assumption, the improvement resulting from considering fixed costs

would remain hidden in the value of β(C).

Theorem 4.5. Let C be a family of cost functions that is closed under the subtraction of

costs at utilization rate zero. Let xeq be an equilibrium of a nonatomic congestion game with

cost functions drawn from C that satisfy c(0) > η c(xeq), for some 0 6 η < 1.

(a) If xopt is a social optimum for this game, then C(xeq) 6 (1 − (1 − η)β(C))−1C(xopt).

(b) If yopt is a social optimum of the same game with 1 + (1 − η)β(C) as many players of

each type, then C(xeq) 6 C(yopt).

Proof. Consider a game with cost functions as specified in the hypothesis. Let us write

c(x) = M(x) + c(0). Note that M ∈ C, and 〈c(xeq), xeq〉 > 〈M(xeq), xeq〉/(1 − η). Thus,

β(c, xeq) = max
x∈R

A

>0

〈c(xeq) − c(x), x〉

〈c(xeq), xeq〉

6 (1 − η) max
x∈RA

>0

〈M(xeq) − M(x), x〉

〈M(xeq), xeq〉

6 (1 − η)β(C).

We can therefore replace Lemma 4.1 with 〈c(xeq), x〉 6 C(x) + (1− η)β(C)C(xeq). The rest

of the proof is then identical to that of Theorem 4.2. �

We illustrate this result by computing the new bounds for the class of separable polyno-

mials that have nonnegative coefficients and maximum degree d. The interesting aspect of

this particular case is that we can use again the picture introduced in Section 3. Indeed,

because ca(0) > η ca(x
eq
a ), the area (ca(x

eq
a ) − ca(xa))xa of the small shaded rectangle in

Figure 3 is at most β(C) times that of the rectangle with upper-left corner point (0, ca(x
eq
a ))

and lower-right corner point (xeq
a , ca(0)), which itself is of size at most (1 − η)ca(x

eq
a )xeq

a .

Figure 4 (a) displays the relationship between η and the refined bound on the price of an-

archy established by Theorem 4.5 for polynomials of various degrees. It is worth mentioning
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Figure 3. Illustration of the proof of Theorem 4.5 for separable cost functions.

that the price of anarchy is at most 1/η, even if we do not place any additional restriction

on C. This observation qualifies the discussion by Roughgarden and Tardos (2002, 2004) on

the unboundedness of the price of anarchy for instances with general cost functions.

As another example, consider a vehicular network in which users travel at most twice as

long when the network is congested compared to the situation when it is not, as seems to

be the case in all urban areas in the United States (Texas Transportation Institute 2005).

Following the recommendation of the Bureau of Public Roads (1964), we let cost functions be

polynomials of degree 4. Hence, Theorem 4.2 (a) gives an upper bound of 2.151 on the price

of anarchy, if we do not take the congestion level into account. In contrast, Theorem 4.5 (a)

gives a more accurate bound of 1.365. More generally, the bounds provided by Theorem 4.5

may offer a good explanation of the satisfactory performance of equilibria in many practical

situations. Figure 4 (b) illustrates Theorem 4.5 (b).
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Figure 4. (a) Price of anarchy as a function of fixed to total costs. (b) Min-
imum values for which the pseudo-approximation results hold. Each curve
refers to a family of polynomials of a certain degree with nonnegative coeffi-
cients.
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Let us also point out that the bounds in Theorem 4.5 (and, therefore, Theorem 4.2) are

tight, for separable cost functions. Consider the traffic assignment instance in Figure 5, where

v units of flow must be routed from one node to the other over two parallel arcs a and a′. The

cost functions are ca(xa) = c(v) (a constant) and ca′(xa′) = η c(v)+(1−η)c(xa′), respectively.

Here, the function c : R>0 → R>0 and the scalar v are chosen such that β(C) = β(c, v). Both

bounds given in Theorem 4.5 are simultaneously tight for this instance.

v v

c(v)

η c(v) + (1 − η)c(xa′)

Figure 5. Instance for which the bounds provided by Theorem 4.5 are tight

5. Discussion and Concluding Remarks

Most of the preceding results and proof techniques can almost effortlessly be carried for-

ward to a variety of different settings. As an example to illustrate this, we sketch two

extensions: a different type of social cost function, and general side constraints on the uti-

lization rates. Let us also mention that the proof-by-picture idea put forward in Section 3

has recently been used by others to derive bounds on the price of anarchy in a variety of

noncooperative games (Yang and Huang 2005; Farzad, Olver, and Vetta 2006; Acemoglu,

Johari, and Ozdaglar 2007; Harks 2007).

Another social cost function that is relevant in a variety of contextual areas such as

evacuation planning, telecommunication networks, and supply chain management is the

maximum cost of a used strategy (Roughgarden 2004; Correa, Schulz, and Stier-Moses 2007).

For a given strategy distribution x, let us denote by L(x) the maximum cost cS(x) over all

strategies S ∈ S for which xS > 0. The results of Correa, Schulz, and Stier-Moses (2007)

and Theorem 4.5 imply that the price of anarchy does not change.

Corollary 5.1. Let xeq be an equilibrium of a nonatomic congestion game with a single

player type and cost functions drawn from a class C of nonseparable cost functions such that

ca(0) > η ca(x
eq), for some 0 6 η < 1.

(a) If x is the vector of utilization rates of a feasible strategy distribution, then L(xeq) 6

(1 − (1 − η)β(C))−1 L(x).

(b) If y is a feasible utilization rate vector of the same game with 1 + (1 − η)β(C) times as

many players, then L(xeq) 6 L(y).
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For the original social cost function, all results presented here can be extended to the

setting with arbitrary side constraints in the space of resources. (The same is true if one

were to consider side constraints in the space of strategies.) From a practical standpoint,

capacity constraints are the simplest and perhaps most useful type of side constraints. In the

context of traffic assignment, Hearn (1980), Larsson and Patriksson (1994, 1995, 1999), and

Marcotte, Nguyen, and Schoeb (2004), among others, have advocated the explicit inclusion

of resource capacities as an obvious way of improving the quality of models. An equilibrium

with side constraints is an equilibrium in the same game without side constraints, but where

players experience infinite disutilities when their actions would result in infeasible solutions.

For formal definitions, details, and references on these equilibria, we refer the reader to

Correa, Schulz, and Stier-Moses (2004) and Stier-Moses (2004).

In the conference version of this article (Correa, Schulz, and Stier-Moses 2005), we also

considered instances for which the cost of each resource at utilization rate zero is equal to zero.

This assumption helps to capture situations in which variable costs dominate fixed costs, or

where fixed costs can be neglected altogether. Subsequently, Dumrauf and Gairing (2006)

computed the exact price of anarchy for polynomial cost functions of this kind. It turns out

that when variable costs dominate, the price of anarchy is smaller than in the general case.

Together with the results of Section 4.2, this suggests that the price of anarchy is largest in

instances with intermediate levels of congestion: when congestion is low, players are aligned

with the system, and when congestion is high, the system does poorly anyway because the

problem is not the alignment of incentives, but the lack of capacity.
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